File: | jdk/src/hotspot/share/opto/mulnode.cpp |
Warning: | line 1042, column 11 Value stored to 'x' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "memory/allocation.inline.hpp" |
27 | #include "opto/addnode.hpp" |
28 | #include "opto/connode.hpp" |
29 | #include "opto/convertnode.hpp" |
30 | #include "opto/memnode.hpp" |
31 | #include "opto/mulnode.hpp" |
32 | #include "opto/phaseX.hpp" |
33 | #include "opto/subnode.hpp" |
34 | #include "utilities/powerOfTwo.hpp" |
35 | |
36 | // Portions of code courtesy of Clifford Click |
37 | |
38 | |
39 | //============================================================================= |
40 | //------------------------------hash------------------------------------------- |
41 | // Hash function over MulNodes. Needs to be commutative; i.e., I swap |
42 | // (commute) inputs to MulNodes willy-nilly so the hash function must return |
43 | // the same value in the presence of edge swapping. |
44 | uint MulNode::hash() const { |
45 | return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); |
46 | } |
47 | |
48 | //------------------------------Identity--------------------------------------- |
49 | // Multiplying a one preserves the other argument |
50 | Node* MulNode::Identity(PhaseGVN* phase) { |
51 | const Type *one = mul_id(); // The multiplicative identity |
52 | if( phase->type( in(1) )->higher_equal( one ) ) return in(2); |
53 | if( phase->type( in(2) )->higher_equal( one ) ) return in(1); |
54 | |
55 | return this; |
56 | } |
57 | |
58 | //------------------------------Ideal------------------------------------------ |
59 | // We also canonicalize the Node, moving constants to the right input, |
60 | // and flatten expressions (so that 1+x+2 becomes x+3). |
61 | Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
62 | Node* in1 = in(1); |
63 | Node* in2 = in(2); |
64 | Node* progress = NULL__null; // Progress flag |
65 | |
66 | // This code is used by And nodes too, but some conversions are |
67 | // only valid for the actual Mul nodes. |
68 | uint op = Opcode(); |
69 | bool real_mul = (op == Op_MulI) || (op == Op_MulL) || |
70 | (op == Op_MulF) || (op == Op_MulD); |
71 | |
72 | // Convert "(-a)*(-b)" into "a*b". |
73 | if (real_mul && in1->is_Sub() && in2->is_Sub()) { |
74 | if (phase->type(in1->in(1))->is_zero_type() && |
75 | phase->type(in2->in(1))->is_zero_type()) { |
76 | set_req(1, in1->in(2)); |
77 | set_req(2, in2->in(2)); |
78 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
79 | if (igvn) { |
80 | igvn->_worklist.push(in1); |
81 | igvn->_worklist.push(in2); |
82 | } |
83 | in1 = in(1); |
84 | in2 = in(2); |
85 | progress = this; |
86 | } |
87 | } |
88 | |
89 | // convert "max(a,b) * min(a,b)" into "a*b". |
90 | if ((in(1)->Opcode() == max_opcode() && in(2)->Opcode() == min_opcode()) |
91 | || (in(1)->Opcode() == min_opcode() && in(2)->Opcode() == max_opcode())) { |
92 | Node *in11 = in(1)->in(1); |
93 | Node *in12 = in(1)->in(2); |
94 | |
95 | Node *in21 = in(2)->in(1); |
96 | Node *in22 = in(2)->in(2); |
97 | |
98 | if ((in11 == in21 && in12 == in22) || |
99 | (in11 == in22 && in12 == in21)) { |
100 | set_req(1, in11); |
101 | set_req(2, in12); |
102 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
103 | if (igvn) { |
104 | igvn->_worklist.push(in1); |
105 | igvn->_worklist.push(in2); |
106 | } |
107 | in1 = in(1); |
108 | in2 = in(2); |
109 | progress = this; |
110 | } |
111 | } |
112 | |
113 | const Type* t1 = phase->type(in1); |
114 | const Type* t2 = phase->type(in2); |
115 | |
116 | // We are OK if right is a constant, or right is a load and |
117 | // left is a non-constant. |
118 | if( !(t2->singleton() || |
119 | (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) { |
120 | if( t1->singleton() || // Left input is a constant? |
121 | // Otherwise, sort inputs (commutativity) to help value numbering. |
122 | (in(1)->_idx > in(2)->_idx) ) { |
123 | swap_edges(1, 2); |
124 | const Type *t = t1; |
125 | t1 = t2; |
126 | t2 = t; |
127 | progress = this; // Made progress |
128 | } |
129 | } |
130 | |
131 | // If the right input is a constant, and the left input is a product of a |
132 | // constant, flatten the expression tree. |
133 | if( t2->singleton() && // Right input is a constant? |
134 | op != Op_MulF && // Float & double cannot reassociate |
135 | op != Op_MulD ) { |
136 | if( t2 == Type::TOP ) return NULL__null; |
137 | Node *mul1 = in(1); |
138 | #ifdef ASSERT1 |
139 | // Check for dead loop |
140 | int op1 = mul1->Opcode(); |
141 | if ((mul1 == this) || (in(2) == this) || |
142 | ((op1 == mul_opcode() || op1 == add_opcode()) && |
143 | ((mul1->in(1) == this) || (mul1->in(2) == this) || |
144 | (mul1->in(1) == mul1) || (mul1->in(2) == mul1)))) { |
145 | assert(false, "dead loop in MulNode::Ideal")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 145, "assert(" "false" ") failed", "dead loop in MulNode::Ideal" ); ::breakpoint(); } } while (0); |
146 | } |
147 | #endif |
148 | |
149 | if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply? |
150 | // Mul of a constant? |
151 | const Type *t12 = phase->type( mul1->in(2) ); |
152 | if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? |
153 | // Compute new constant; check for overflow |
154 | const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12); |
155 | if( tcon01->singleton() ) { |
156 | // The Mul of the flattened expression |
157 | set_req_X(1, mul1->in(1), phase); |
158 | set_req_X(2, phase->makecon(tcon01), phase); |
159 | t2 = tcon01; |
160 | progress = this; // Made progress |
161 | } |
162 | } |
163 | } |
164 | // If the right input is a constant, and the left input is an add of a |
165 | // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0 |
166 | const Node *add1 = in(1); |
167 | if( add1->Opcode() == add_opcode() ) { // Left input is an add? |
168 | // Add of a constant? |
169 | const Type *t12 = phase->type( add1->in(2) ); |
170 | if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? |
171 | assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" )do { if (!(add1->in(1) != add1)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 171, "assert(" "add1->in(1) != add1" ") failed", "dead loop in MulNode::Ideal" ); ::breakpoint(); } } while (0); |
172 | // Compute new constant; check for overflow |
173 | const Type *tcon01 = mul_ring(t2,t12); |
174 | if( tcon01->singleton() ) { |
175 | |
176 | // Convert (X+con1)*con0 into X*con0 |
177 | Node *mul = clone(); // mul = ()*con0 |
178 | mul->set_req(1,add1->in(1)); // mul = X*con0 |
179 | mul = phase->transform(mul); |
180 | |
181 | Node *add2 = add1->clone(); |
182 | add2->set_req(1, mul); // X*con0 + con0*con1 |
183 | add2->set_req(2, phase->makecon(tcon01) ); |
184 | progress = add2; |
185 | } |
186 | } |
187 | } // End of is left input an add |
188 | } // End of is right input a Mul |
189 | |
190 | return progress; |
191 | } |
192 | |
193 | //------------------------------Value----------------------------------------- |
194 | const Type* MulNode::Value(PhaseGVN* phase) const { |
195 | const Type *t1 = phase->type( in(1) ); |
196 | const Type *t2 = phase->type( in(2) ); |
197 | // Either input is TOP ==> the result is TOP |
198 | if( t1 == Type::TOP ) return Type::TOP; |
199 | if( t2 == Type::TOP ) return Type::TOP; |
200 | |
201 | // Either input is ZERO ==> the result is ZERO. |
202 | // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0 |
203 | int op = Opcode(); |
204 | if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) { |
205 | const Type *zero = add_id(); // The multiplicative zero |
206 | if( t1->higher_equal( zero ) ) return zero; |
207 | if( t2->higher_equal( zero ) ) return zero; |
208 | } |
209 | |
210 | // Either input is BOTTOM ==> the result is the local BOTTOM |
211 | if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) |
212 | return bottom_type(); |
213 | |
214 | #if defined(IA32) |
215 | // Can't trust native compilers to properly fold strict double |
216 | // multiplication with round-to-zero on this platform. |
217 | if (op == Op_MulD) { |
218 | return TypeD::DOUBLE; |
219 | } |
220 | #endif |
221 | |
222 | return mul_ring(t1,t2); // Local flavor of type multiplication |
223 | } |
224 | |
225 | MulNode* MulNode::make(Node* in1, Node* in2, BasicType bt) { |
226 | switch (bt) { |
227 | case T_INT: |
228 | return new MulINode(in1, in2); |
229 | case T_LONG: |
230 | return new MulLNode(in1, in2); |
231 | default: |
232 | fatal("Not implemented for %s", type2name(bt))do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 232, "Not implemented for %s", type2name(bt)); ::breakpoint (); } while (0); |
233 | } |
234 | return NULL__null; |
235 | } |
236 | |
237 | |
238 | //============================================================================= |
239 | //------------------------------Ideal------------------------------------------ |
240 | // Check for power-of-2 multiply, then try the regular MulNode::Ideal |
241 | Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
242 | // Swap constant to right |
243 | jint con; |
244 | if ((con = in(1)->find_int_con(0)) != 0) { |
245 | swap_edges(1, 2); |
246 | // Finish rest of method to use info in 'con' |
247 | } else if ((con = in(2)->find_int_con(0)) == 0) { |
248 | return MulNode::Ideal(phase, can_reshape); |
249 | } |
250 | |
251 | // Now we have a constant Node on the right and the constant in con |
252 | if (con == 0) return NULL__null; // By zero is handled by Value call |
253 | if (con == 1) return NULL__null; // By one is handled by Identity call |
254 | |
255 | // Check for negative constant; if so negate the final result |
256 | bool sign_flip = false; |
257 | |
258 | unsigned int abs_con = uabs(con); |
259 | if (abs_con != (unsigned int)con) { |
260 | sign_flip = true; |
261 | } |
262 | |
263 | // Get low bit; check for being the only bit |
264 | Node *res = NULL__null; |
265 | unsigned int bit1 = abs_con & (0-abs_con); // Extract low bit |
266 | if (bit1 == abs_con) { // Found a power of 2? |
267 | res = new LShiftINode(in(1), phase->intcon(log2i_exact(bit1))); |
268 | } else { |
269 | // Check for constant with 2 bits set |
270 | unsigned int bit2 = abs_con - bit1; |
271 | bit2 = bit2 & (0 - bit2); // Extract 2nd bit |
272 | if (bit2 + bit1 == abs_con) { // Found all bits in con? |
273 | Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit1)))); |
274 | Node *n2 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(bit2)))); |
275 | res = new AddINode(n2, n1); |
276 | } else if (is_power_of_2(abs_con + 1)) { |
277 | // Sleezy: power-of-2 - 1. Next time be generic. |
278 | unsigned int temp = abs_con + 1; |
279 | Node *n1 = phase->transform(new LShiftINode(in(1), phase->intcon(log2i_exact(temp)))); |
280 | res = new SubINode(n1, in(1)); |
281 | } else { |
282 | return MulNode::Ideal(phase, can_reshape); |
283 | } |
284 | } |
285 | |
286 | if (sign_flip) { // Need to negate result? |
287 | res = phase->transform(res);// Transform, before making the zero con |
288 | res = new SubINode(phase->intcon(0),res); |
289 | } |
290 | |
291 | return res; // Return final result |
292 | } |
293 | |
294 | //------------------------------mul_ring--------------------------------------- |
295 | // Compute the product type of two integer ranges into this node. |
296 | const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const { |
297 | const TypeInt *r0 = t0->is_int(); // Handy access |
298 | const TypeInt *r1 = t1->is_int(); |
299 | |
300 | // Fetch endpoints of all ranges |
301 | jint lo0 = r0->_lo; |
302 | double a = (double)lo0; |
303 | jint hi0 = r0->_hi; |
304 | double b = (double)hi0; |
305 | jint lo1 = r1->_lo; |
306 | double c = (double)lo1; |
307 | jint hi1 = r1->_hi; |
308 | double d = (double)hi1; |
309 | |
310 | // Compute all endpoints & check for overflow |
311 | int32_t A = java_multiply(lo0, lo1); |
312 | if( (double)A != a*c ) return TypeInt::INT; // Overflow? |
313 | int32_t B = java_multiply(lo0, hi1); |
314 | if( (double)B != a*d ) return TypeInt::INT; // Overflow? |
315 | int32_t C = java_multiply(hi0, lo1); |
316 | if( (double)C != b*c ) return TypeInt::INT; // Overflow? |
317 | int32_t D = java_multiply(hi0, hi1); |
318 | if( (double)D != b*d ) return TypeInt::INT; // Overflow? |
319 | |
320 | if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints |
321 | else { lo0 = B; hi0 = A; } |
322 | if( C < D ) { |
323 | if( C < lo0 ) lo0 = C; |
324 | if( D > hi0 ) hi0 = D; |
325 | } else { |
326 | if( D < lo0 ) lo0 = D; |
327 | if( C > hi0 ) hi0 = C; |
328 | } |
329 | return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); |
330 | } |
331 | |
332 | |
333 | //============================================================================= |
334 | //------------------------------Ideal------------------------------------------ |
335 | // Check for power-of-2 multiply, then try the regular MulNode::Ideal |
336 | Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
337 | // Swap constant to right |
338 | jlong con; |
339 | if ((con = in(1)->find_long_con(0)) != 0) { |
340 | swap_edges(1, 2); |
341 | // Finish rest of method to use info in 'con' |
342 | } else if ((con = in(2)->find_long_con(0)) == 0) { |
343 | return MulNode::Ideal(phase, can_reshape); |
344 | } |
345 | |
346 | // Now we have a constant Node on the right and the constant in con |
347 | if (con == CONST64(0)(0LL)) return NULL__null; // By zero is handled by Value call |
348 | if (con == CONST64(1)(1LL)) return NULL__null; // By one is handled by Identity call |
349 | |
350 | // Check for negative constant; if so negate the final result |
351 | bool sign_flip = false; |
352 | julong abs_con = uabs(con); |
353 | if (abs_con != (julong)con) { |
354 | sign_flip = true; |
355 | } |
356 | |
357 | // Get low bit; check for being the only bit |
358 | Node *res = NULL__null; |
359 | julong bit1 = abs_con & (0-abs_con); // Extract low bit |
360 | if (bit1 == abs_con) { // Found a power of 2? |
361 | res = new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1))); |
362 | } else { |
363 | |
364 | // Check for constant with 2 bits set |
365 | julong bit2 = abs_con-bit1; |
366 | bit2 = bit2 & (0-bit2); // Extract 2nd bit |
367 | if (bit2 + bit1 == abs_con) { // Found all bits in con? |
368 | Node *n1 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit1)))); |
369 | Node *n2 = phase->transform(new LShiftLNode(in(1), phase->intcon(log2i_exact(bit2)))); |
370 | res = new AddLNode(n2, n1); |
371 | |
372 | } else if (is_power_of_2(abs_con+1)) { |
373 | // Sleezy: power-of-2 -1. Next time be generic. |
374 | julong temp = abs_con + 1; |
375 | Node *n1 = phase->transform( new LShiftLNode(in(1), phase->intcon(log2i_exact(temp)))); |
376 | res = new SubLNode(n1, in(1)); |
377 | } else { |
378 | return MulNode::Ideal(phase, can_reshape); |
379 | } |
380 | } |
381 | |
382 | if (sign_flip) { // Need to negate result? |
383 | res = phase->transform(res);// Transform, before making the zero con |
384 | res = new SubLNode(phase->longcon(0),res); |
385 | } |
386 | |
387 | return res; // Return final result |
388 | } |
389 | |
390 | //------------------------------mul_ring--------------------------------------- |
391 | // Compute the product type of two integer ranges into this node. |
392 | const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const { |
393 | const TypeLong *r0 = t0->is_long(); // Handy access |
394 | const TypeLong *r1 = t1->is_long(); |
395 | |
396 | // Fetch endpoints of all ranges |
397 | jlong lo0 = r0->_lo; |
398 | double a = (double)lo0; |
399 | jlong hi0 = r0->_hi; |
400 | double b = (double)hi0; |
401 | jlong lo1 = r1->_lo; |
402 | double c = (double)lo1; |
403 | jlong hi1 = r1->_hi; |
404 | double d = (double)hi1; |
405 | |
406 | // Compute all endpoints & check for overflow |
407 | jlong A = java_multiply(lo0, lo1); |
408 | if( (double)A != a*c ) return TypeLong::LONG; // Overflow? |
409 | jlong B = java_multiply(lo0, hi1); |
410 | if( (double)B != a*d ) return TypeLong::LONG; // Overflow? |
411 | jlong C = java_multiply(hi0, lo1); |
412 | if( (double)C != b*c ) return TypeLong::LONG; // Overflow? |
413 | jlong D = java_multiply(hi0, hi1); |
414 | if( (double)D != b*d ) return TypeLong::LONG; // Overflow? |
415 | |
416 | if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints |
417 | else { lo0 = B; hi0 = A; } |
418 | if( C < D ) { |
419 | if( C < lo0 ) lo0 = C; |
420 | if( D > hi0 ) hi0 = D; |
421 | } else { |
422 | if( D < lo0 ) lo0 = D; |
423 | if( C > hi0 ) hi0 = C; |
424 | } |
425 | return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); |
426 | } |
427 | |
428 | //============================================================================= |
429 | //------------------------------mul_ring--------------------------------------- |
430 | // Compute the product type of two double ranges into this node. |
431 | const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const { |
432 | if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT; |
433 | return TypeF::make( t0->getf() * t1->getf() ); |
434 | } |
435 | |
436 | //============================================================================= |
437 | //------------------------------mul_ring--------------------------------------- |
438 | // Compute the product type of two double ranges into this node. |
439 | const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const { |
440 | if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE; |
441 | // We must be multiplying 2 double constants. |
442 | return TypeD::make( t0->getd() * t1->getd() ); |
443 | } |
444 | |
445 | //============================================================================= |
446 | //------------------------------Value------------------------------------------ |
447 | const Type* MulHiLNode::Value(PhaseGVN* phase) const { |
448 | const Type *t1 = phase->type( in(1) ); |
449 | const Type *t2 = phase->type( in(2) ); |
450 | const Type *bot = bottom_type(); |
451 | return MulHiValue(t1, t2, bot); |
452 | } |
453 | |
454 | const Type* UMulHiLNode::Value(PhaseGVN* phase) const { |
455 | const Type *t1 = phase->type( in(1) ); |
456 | const Type *t2 = phase->type( in(2) ); |
457 | const Type *bot = bottom_type(); |
458 | return MulHiValue(t1, t2, bot); |
459 | } |
460 | |
461 | // A common routine used by UMulHiLNode and MulHiLNode |
462 | const Type* MulHiValue(const Type *t1, const Type *t2, const Type *bot) { |
463 | // Either input is TOP ==> the result is TOP |
464 | if( t1 == Type::TOP ) return Type::TOP; |
465 | if( t2 == Type::TOP ) return Type::TOP; |
466 | |
467 | // Either input is BOTTOM ==> the result is the local BOTTOM |
468 | if( (t1 == bot) || (t2 == bot) || |
469 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
470 | return bot; |
471 | |
472 | // It is not worth trying to constant fold this stuff! |
473 | return TypeLong::LONG; |
474 | } |
475 | |
476 | //============================================================================= |
477 | //------------------------------mul_ring--------------------------------------- |
478 | // Supplied function returns the product of the inputs IN THE CURRENT RING. |
479 | // For the logical operations the ring's MUL is really a logical AND function. |
480 | // This also type-checks the inputs for sanity. Guaranteed never to |
481 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
482 | const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const { |
483 | const TypeInt *r0 = t0->is_int(); // Handy access |
484 | const TypeInt *r1 = t1->is_int(); |
485 | int widen = MAX2(r0->_widen,r1->_widen); |
486 | |
487 | // If either input is a constant, might be able to trim cases |
488 | if( !r0->is_con() && !r1->is_con() ) |
489 | return TypeInt::INT; // No constants to be had |
490 | |
491 | // Both constants? Return bits |
492 | if( r0->is_con() && r1->is_con() ) |
493 | return TypeInt::make( r0->get_con() & r1->get_con() ); |
494 | |
495 | if( r0->is_con() && r0->get_con() > 0 ) |
496 | return TypeInt::make(0, r0->get_con(), widen); |
497 | |
498 | if( r1->is_con() && r1->get_con() > 0 ) |
499 | return TypeInt::make(0, r1->get_con(), widen); |
500 | |
501 | if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) { |
502 | return TypeInt::BOOL; |
503 | } |
504 | |
505 | return TypeInt::INT; // No constants to be had |
506 | } |
507 | |
508 | const Type* AndINode::Value(PhaseGVN* phase) const { |
509 | // patterns similar to (v << 2) & 3 |
510 | if (AndIL_shift_and_mask(phase, in(2), in(1), T_INT)) { |
511 | return TypeInt::ZERO; |
512 | } |
513 | |
514 | return MulNode::Value(phase); |
515 | } |
516 | |
517 | //------------------------------Identity--------------------------------------- |
518 | // Masking off the high bits of an unsigned load is not required |
519 | Node* AndINode::Identity(PhaseGVN* phase) { |
520 | |
521 | // x & x => x |
522 | if (in(1) == in(2)) { |
523 | return in(1); |
524 | } |
525 | |
526 | Node* in1 = in(1); |
527 | uint op = in1->Opcode(); |
528 | const TypeInt* t2 = phase->type(in(2))->isa_int(); |
529 | if (t2 && t2->is_con()) { |
530 | int con = t2->get_con(); |
531 | // Masking off high bits which are always zero is useless. |
532 | const TypeInt* t1 = phase->type(in(1))->isa_int(); |
533 | if (t1 != NULL__null && t1->_lo >= 0) { |
534 | jint t1_support = right_n_bits(1 + log2i_graceful(t1->_hi))((((1 + log2i_graceful(t1->_hi)) >= BitsPerWord) ? 0 : ( OneBit << (1 + log2i_graceful(t1->_hi)))) - 1); |
535 | if ((t1_support & con) == t1_support) |
536 | return in1; |
537 | } |
538 | // Masking off the high bits of a unsigned-shift-right is not |
539 | // needed either. |
540 | if (op == Op_URShiftI) { |
541 | const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); |
542 | if (t12 && t12->is_con()) { // Shift is by a constant |
543 | int shift = t12->get_con(); |
544 | shift &= BitsPerJavaInteger - 1; // semantics of Java shifts |
545 | int mask = max_juint >> shift; |
546 | if ((mask & con) == mask) // If AND is useless, skip it |
547 | return in1; |
548 | } |
549 | } |
550 | } |
551 | return MulNode::Identity(phase); |
552 | } |
553 | |
554 | //------------------------------Ideal------------------------------------------ |
555 | Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
556 | // Special case constant AND mask |
557 | const TypeInt *t2 = phase->type( in(2) )->isa_int(); |
558 | if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); |
559 | const int mask = t2->get_con(); |
560 | Node *load = in(1); |
561 | uint lop = load->Opcode(); |
562 | |
563 | // Masking bits off of a Character? Hi bits are already zero. |
564 | if( lop == Op_LoadUS && |
565 | (mask & 0xFFFF0000) ) // Can we make a smaller mask? |
566 | return new AndINode(load,phase->intcon(mask&0xFFFF)); |
567 | |
568 | // Masking bits off of a Short? Loading a Character does some masking |
569 | if (can_reshape && |
570 | load->outcnt() == 1 && load->unique_out() == this) { |
571 | if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) { |
572 | Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase); |
573 | ldus = phase->transform(ldus); |
574 | return new AndINode(ldus, phase->intcon(mask & 0xFFFF)); |
575 | } |
576 | |
577 | // Masking sign bits off of a Byte? Do an unsigned byte load plus |
578 | // an and. |
579 | if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) { |
580 | Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase); |
581 | ldub = phase->transform(ldub); |
582 | return new AndINode(ldub, phase->intcon(mask)); |
583 | } |
584 | } |
585 | |
586 | // Masking off sign bits? Dont make them! |
587 | if( lop == Op_RShiftI ) { |
588 | const TypeInt *t12 = phase->type(load->in(2))->isa_int(); |
589 | if( t12 && t12->is_con() ) { // Shift is by a constant |
590 | int shift = t12->get_con(); |
591 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
592 | const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift)((((BitsPerJavaInteger - shift) >= BitsPerWord) ? 0 : (OneBit << (BitsPerJavaInteger - shift))) - 1); |
593 | // If the AND'ing of the 2 masks has no bits, then only original shifted |
594 | // bits survive. NO sign-extension bits survive the maskings. |
595 | if( (sign_bits_mask & mask) == 0 ) { |
596 | // Use zero-fill shift instead |
597 | Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2))); |
598 | return new AndINode( zshift, in(2) ); |
599 | } |
600 | } |
601 | } |
602 | |
603 | // Check for 'negate/and-1', a pattern emitted when someone asks for |
604 | // 'mod 2'. Negate leaves the low order bit unchanged (think: complement |
605 | // plus 1) and the mask is of the low order bit. Skip the negate. |
606 | if( lop == Op_SubI && mask == 1 && load->in(1) && |
607 | phase->type(load->in(1)) == TypeInt::ZERO ) |
608 | return new AndINode( load->in(2), in(2) ); |
609 | |
610 | // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3 |
611 | Node* progress = AndIL_add_shift_and_mask(phase, T_INT); |
612 | if (progress != NULL__null) { |
613 | return progress; |
614 | } |
615 | |
616 | return MulNode::Ideal(phase, can_reshape); |
617 | } |
618 | |
619 | //============================================================================= |
620 | //------------------------------mul_ring--------------------------------------- |
621 | // Supplied function returns the product of the inputs IN THE CURRENT RING. |
622 | // For the logical operations the ring's MUL is really a logical AND function. |
623 | // This also type-checks the inputs for sanity. Guaranteed never to |
624 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
625 | const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const { |
626 | const TypeLong *r0 = t0->is_long(); // Handy access |
627 | const TypeLong *r1 = t1->is_long(); |
628 | int widen = MAX2(r0->_widen,r1->_widen); |
629 | |
630 | // If either input is a constant, might be able to trim cases |
631 | if( !r0->is_con() && !r1->is_con() ) |
632 | return TypeLong::LONG; // No constants to be had |
633 | |
634 | // Both constants? Return bits |
635 | if( r0->is_con() && r1->is_con() ) |
636 | return TypeLong::make( r0->get_con() & r1->get_con() ); |
637 | |
638 | if( r0->is_con() && r0->get_con() > 0 ) |
639 | return TypeLong::make(CONST64(0)(0LL), r0->get_con(), widen); |
640 | |
641 | if( r1->is_con() && r1->get_con() > 0 ) |
642 | return TypeLong::make(CONST64(0)(0LL), r1->get_con(), widen); |
643 | |
644 | return TypeLong::LONG; // No constants to be had |
645 | } |
646 | |
647 | const Type* AndLNode::Value(PhaseGVN* phase) const { |
648 | // patterns similar to (v << 2) & 3 |
649 | if (AndIL_shift_and_mask(phase, in(2), in(1), T_LONG)) { |
650 | return TypeLong::ZERO; |
651 | } |
652 | |
653 | return MulNode::Value(phase); |
654 | } |
655 | |
656 | //------------------------------Identity--------------------------------------- |
657 | // Masking off the high bits of an unsigned load is not required |
658 | Node* AndLNode::Identity(PhaseGVN* phase) { |
659 | |
660 | // x & x => x |
661 | if (in(1) == in(2)) { |
662 | return in(1); |
663 | } |
664 | |
665 | Node *usr = in(1); |
666 | const TypeLong *t2 = phase->type( in(2) )->isa_long(); |
667 | if( t2 && t2->is_con() ) { |
668 | jlong con = t2->get_con(); |
669 | // Masking off high bits which are always zero is useless. |
670 | const TypeLong* t1 = phase->type( in(1) )->isa_long(); |
671 | if (t1 != NULL__null && t1->_lo >= 0) { |
672 | int bit_count = log2i_graceful(t1->_hi) + 1; |
673 | jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count)); |
674 | if ((t1_support & con) == t1_support) |
675 | return usr; |
676 | } |
677 | uint lop = usr->Opcode(); |
678 | // Masking off the high bits of a unsigned-shift-right is not |
679 | // needed either. |
680 | if( lop == Op_URShiftL ) { |
681 | const TypeInt *t12 = phase->type( usr->in(2) )->isa_int(); |
682 | if( t12 && t12->is_con() ) { // Shift is by a constant |
683 | int shift = t12->get_con(); |
684 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
685 | jlong mask = max_julong >> shift; |
686 | if( (mask&con) == mask ) // If AND is useless, skip it |
687 | return usr; |
688 | } |
689 | } |
690 | } |
691 | return MulNode::Identity(phase); |
692 | } |
693 | |
694 | //------------------------------Ideal------------------------------------------ |
695 | Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
696 | // Special case constant AND mask |
697 | const TypeLong *t2 = phase->type( in(2) )->isa_long(); |
698 | if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); |
699 | const jlong mask = t2->get_con(); |
700 | |
701 | Node* in1 = in(1); |
702 | int op = in1->Opcode(); |
703 | |
704 | // Are we masking a long that was converted from an int with a mask |
705 | // that fits in 32-bits? Commute them and use an AndINode. Don't |
706 | // convert masks which would cause a sign extension of the integer |
707 | // value. This check includes UI2L masks (0x00000000FFFFFFFF) which |
708 | // would be optimized away later in Identity. |
709 | if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)(0xFFFFFFFF80000000ULL)) == 0) { |
710 | Node* andi = new AndINode(in1->in(1), phase->intcon(mask)); |
711 | andi = phase->transform(andi); |
712 | return new ConvI2LNode(andi); |
713 | } |
714 | |
715 | // Masking off sign bits? Dont make them! |
716 | if (op == Op_RShiftL) { |
717 | const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); |
718 | if( t12 && t12->is_con() ) { // Shift is by a constant |
719 | int shift = t12->get_con(); |
720 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
721 | const jlong sign_bits_mask = ~(((jlong)CONST64(1)(1LL) << (jlong)(BitsPerJavaLong - shift)) -1); |
722 | // If the AND'ing of the 2 masks has no bits, then only original shifted |
723 | // bits survive. NO sign-extension bits survive the maskings. |
724 | if( (sign_bits_mask & mask) == 0 ) { |
725 | // Use zero-fill shift instead |
726 | Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2))); |
727 | return new AndLNode(zshift, in(2)); |
728 | } |
729 | } |
730 | } |
731 | |
732 | // pattern similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3 |
733 | Node* progress = AndIL_add_shift_and_mask(phase, T_LONG); |
734 | if (progress != NULL__null) { |
735 | return progress; |
736 | } |
737 | |
738 | return MulNode::Ideal(phase, can_reshape); |
739 | } |
740 | |
741 | //============================================================================= |
742 | |
743 | static bool const_shift_count(PhaseGVN* phase, Node* shiftNode, int* count) { |
744 | const TypeInt* tcount = phase->type(shiftNode->in(2))->isa_int(); |
745 | if (tcount != NULL__null && tcount->is_con()) { |
746 | *count = tcount->get_con(); |
747 | return true; |
748 | } |
749 | return false; |
750 | } |
751 | |
752 | static int maskShiftAmount(PhaseGVN* phase, Node* shiftNode, int nBits) { |
753 | int count = 0; |
754 | if (const_shift_count(phase, shiftNode, &count)) { |
755 | int maskedShift = count & (nBits - 1); |
756 | if (maskedShift == 0) { |
757 | // Let Identity() handle 0 shift count. |
758 | return 0; |
759 | } |
760 | |
761 | if (count != maskedShift) { |
762 | shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value. |
763 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
764 | if (igvn) { |
765 | igvn->rehash_node_delayed(shiftNode); |
766 | } |
767 | } |
768 | return maskedShift; |
769 | } |
770 | return 0; |
771 | } |
772 | |
773 | //------------------------------Identity--------------------------------------- |
774 | Node* LShiftINode::Identity(PhaseGVN* phase) { |
775 | int count = 0; |
776 | if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) { |
777 | // Shift by a multiple of 32 does nothing |
778 | return in(1); |
779 | } |
780 | return this; |
781 | } |
782 | |
783 | //------------------------------Ideal------------------------------------------ |
784 | // If the right input is a constant, and the left input is an add of a |
785 | // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 |
786 | Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
787 | int con = maskShiftAmount(phase, this, BitsPerJavaInteger); |
788 | if (con == 0) { |
789 | return NULL__null; |
790 | } |
791 | |
792 | // Left input is an add of a constant? |
793 | Node *add1 = in(1); |
794 | int add1_op = add1->Opcode(); |
795 | if( add1_op == Op_AddI ) { // Left input is an add? |
796 | assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" )do { if (!(add1 != add1->in(1))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 796, "assert(" "add1 != add1->in(1)" ") failed", "dead loop in LShiftINode::Ideal" ); ::breakpoint(); } } while (0); |
797 | const TypeInt *t12 = phase->type(add1->in(2))->isa_int(); |
798 | if( t12 && t12->is_con() ){ // Left input is an add of a con? |
799 | // Transform is legal, but check for profit. Avoid breaking 'i2s' |
800 | // and 'i2b' patterns which typically fold into 'StoreC/StoreB'. |
801 | if( con < 16 ) { |
802 | // Compute X << con0 |
803 | Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) ); |
804 | // Compute X<<con0 + (con1<<con0) |
805 | return new AddINode( lsh, phase->intcon(t12->get_con() << con)); |
806 | } |
807 | } |
808 | } |
809 | |
810 | // Check for "(x>>c0)<<c0" which just masks off low bits |
811 | if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) && |
812 | add1->in(2) == in(2) ) |
813 | // Convert to "(x & -(1<<c0))" |
814 | return new AndINode(add1->in(1),phase->intcon( -(1<<con))); |
815 | |
816 | // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits |
817 | if( add1_op == Op_AndI ) { |
818 | Node *add2 = add1->in(1); |
819 | int add2_op = add2->Opcode(); |
820 | if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) && |
821 | add2->in(2) == in(2) ) { |
822 | // Convert to "(x & (Y<<c0))" |
823 | Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) ); |
824 | return new AndINode( add2->in(1), y_sh ); |
825 | } |
826 | } |
827 | |
828 | // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits |
829 | // before shifting them away. |
830 | const jint bits_mask = right_n_bits(BitsPerJavaInteger-con)((((BitsPerJavaInteger-con) >= BitsPerWord) ? 0 : (OneBit << (BitsPerJavaInteger-con))) - 1); |
831 | if( add1_op == Op_AndI && |
832 | phase->type(add1->in(2)) == TypeInt::make( bits_mask ) ) |
833 | return new LShiftINode( add1->in(1), in(2) ); |
834 | |
835 | return NULL__null; |
836 | } |
837 | |
838 | //------------------------------Value------------------------------------------ |
839 | // A LShiftINode shifts its input2 left by input1 amount. |
840 | const Type* LShiftINode::Value(PhaseGVN* phase) const { |
841 | const Type *t1 = phase->type( in(1) ); |
842 | const Type *t2 = phase->type( in(2) ); |
843 | // Either input is TOP ==> the result is TOP |
844 | if( t1 == Type::TOP ) return Type::TOP; |
845 | if( t2 == Type::TOP ) return Type::TOP; |
846 | |
847 | // Left input is ZERO ==> the result is ZERO. |
848 | if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
849 | // Shift by zero does nothing |
850 | if( t2 == TypeInt::ZERO ) return t1; |
851 | |
852 | // Either input is BOTTOM ==> the result is BOTTOM |
853 | if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) || |
854 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
855 | return TypeInt::INT; |
856 | |
857 | const TypeInt *r1 = t1->is_int(); // Handy access |
858 | const TypeInt *r2 = t2->is_int(); // Handy access |
859 | |
860 | if (!r2->is_con()) |
861 | return TypeInt::INT; |
862 | |
863 | uint shift = r2->get_con(); |
864 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
865 | // Shift by a multiple of 32 does nothing: |
866 | if (shift == 0) return t1; |
867 | |
868 | // If the shift is a constant, shift the bounds of the type, |
869 | // unless this could lead to an overflow. |
870 | if (!r1->is_con()) { |
871 | jint lo = r1->_lo, hi = r1->_hi; |
872 | if (((lo << shift) >> shift) == lo && |
873 | ((hi << shift) >> shift) == hi) { |
874 | // No overflow. The range shifts up cleanly. |
875 | return TypeInt::make((jint)lo << (jint)shift, |
876 | (jint)hi << (jint)shift, |
877 | MAX2(r1->_widen,r2->_widen)); |
878 | } |
879 | return TypeInt::INT; |
880 | } |
881 | |
882 | return TypeInt::make( (jint)r1->get_con() << (jint)shift ); |
883 | } |
884 | |
885 | //============================================================================= |
886 | //------------------------------Identity--------------------------------------- |
887 | Node* LShiftLNode::Identity(PhaseGVN* phase) { |
888 | int count = 0; |
889 | if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) { |
890 | // Shift by a multiple of 64 does nothing |
891 | return in(1); |
892 | } |
893 | return this; |
894 | } |
895 | |
896 | //------------------------------Ideal------------------------------------------ |
897 | // If the right input is a constant, and the left input is an add of a |
898 | // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 |
899 | Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
900 | int con = maskShiftAmount(phase, this, BitsPerJavaLong); |
901 | if (con == 0) { |
902 | return NULL__null; |
903 | } |
904 | |
905 | // Left input is an add of a constant? |
906 | Node *add1 = in(1); |
907 | int add1_op = add1->Opcode(); |
908 | if( add1_op == Op_AddL ) { // Left input is an add? |
909 | // Avoid dead data cycles from dead loops |
910 | assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" )do { if (!(add1 != add1->in(1))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 910, "assert(" "add1 != add1->in(1)" ") failed", "dead loop in LShiftLNode::Ideal" ); ::breakpoint(); } } while (0); |
911 | const TypeLong *t12 = phase->type(add1->in(2))->isa_long(); |
912 | if( t12 && t12->is_con() ){ // Left input is an add of a con? |
913 | // Compute X << con0 |
914 | Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) ); |
915 | // Compute X<<con0 + (con1<<con0) |
916 | return new AddLNode( lsh, phase->longcon(t12->get_con() << con)); |
917 | } |
918 | } |
919 | |
920 | // Check for "(x>>c0)<<c0" which just masks off low bits |
921 | if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) && |
922 | add1->in(2) == in(2) ) |
923 | // Convert to "(x & -(1<<c0))" |
924 | return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)(1LL)<<con))); |
925 | |
926 | // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits |
927 | if( add1_op == Op_AndL ) { |
928 | Node *add2 = add1->in(1); |
929 | int add2_op = add2->Opcode(); |
930 | if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) && |
931 | add2->in(2) == in(2) ) { |
932 | // Convert to "(x & (Y<<c0))" |
933 | Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) ); |
934 | return new AndLNode( add2->in(1), y_sh ); |
935 | } |
936 | } |
937 | |
938 | // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits |
939 | // before shifting them away. |
940 | const jlong bits_mask = jlong(max_julong >> con); |
941 | if( add1_op == Op_AndL && |
942 | phase->type(add1->in(2)) == TypeLong::make( bits_mask ) ) |
943 | return new LShiftLNode( add1->in(1), in(2) ); |
944 | |
945 | return NULL__null; |
946 | } |
947 | |
948 | //------------------------------Value------------------------------------------ |
949 | // A LShiftLNode shifts its input2 left by input1 amount. |
950 | const Type* LShiftLNode::Value(PhaseGVN* phase) const { |
951 | const Type *t1 = phase->type( in(1) ); |
952 | const Type *t2 = phase->type( in(2) ); |
953 | // Either input is TOP ==> the result is TOP |
954 | if( t1 == Type::TOP ) return Type::TOP; |
955 | if( t2 == Type::TOP ) return Type::TOP; |
956 | |
957 | // Left input is ZERO ==> the result is ZERO. |
958 | if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
959 | // Shift by zero does nothing |
960 | if( t2 == TypeInt::ZERO ) return t1; |
961 | |
962 | // Either input is BOTTOM ==> the result is BOTTOM |
963 | if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) || |
964 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
965 | return TypeLong::LONG; |
966 | |
967 | const TypeLong *r1 = t1->is_long(); // Handy access |
968 | const TypeInt *r2 = t2->is_int(); // Handy access |
969 | |
970 | if (!r2->is_con()) |
971 | return TypeLong::LONG; |
972 | |
973 | uint shift = r2->get_con(); |
974 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
975 | // Shift by a multiple of 64 does nothing: |
976 | if (shift == 0) return t1; |
977 | |
978 | // If the shift is a constant, shift the bounds of the type, |
979 | // unless this could lead to an overflow. |
980 | if (!r1->is_con()) { |
981 | jlong lo = r1->_lo, hi = r1->_hi; |
982 | if (((lo << shift) >> shift) == lo && |
983 | ((hi << shift) >> shift) == hi) { |
984 | // No overflow. The range shifts up cleanly. |
985 | return TypeLong::make((jlong)lo << (jint)shift, |
986 | (jlong)hi << (jint)shift, |
987 | MAX2(r1->_widen,r2->_widen)); |
988 | } |
989 | return TypeLong::LONG; |
990 | } |
991 | |
992 | return TypeLong::make( (jlong)r1->get_con() << (jint)shift ); |
993 | } |
994 | |
995 | //============================================================================= |
996 | //------------------------------Identity--------------------------------------- |
997 | Node* RShiftINode::Identity(PhaseGVN* phase) { |
998 | int count = 0; |
999 | if (const_shift_count(phase, this, &count)) { |
1000 | if ((count & (BitsPerJavaInteger - 1)) == 0) { |
1001 | // Shift by a multiple of 32 does nothing |
1002 | return in(1); |
1003 | } |
1004 | // Check for useless sign-masking |
1005 | if (in(1)->Opcode() == Op_LShiftI && |
1006 | in(1)->req() == 3 && |
1007 | in(1)->in(2) == in(2)) { |
1008 | count &= BitsPerJavaInteger-1; // semantics of Java shifts |
1009 | // Compute masks for which this shifting doesn't change |
1010 | int lo = (-1 << (BitsPerJavaInteger - ((uint)count)-1)); // FFFF8000 |
1011 | int hi = ~lo; // 00007FFF |
1012 | const TypeInt* t11 = phase->type(in(1)->in(1))->isa_int(); |
1013 | if (t11 == NULL__null) { |
1014 | return this; |
1015 | } |
1016 | // Does actual value fit inside of mask? |
1017 | if (lo <= t11->_lo && t11->_hi <= hi) { |
1018 | return in(1)->in(1); // Then shifting is a nop |
1019 | } |
1020 | } |
1021 | } |
1022 | return this; |
1023 | } |
1024 | |
1025 | //------------------------------Ideal------------------------------------------ |
1026 | Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1027 | // Inputs may be TOP if they are dead. |
1028 | const TypeInt *t1 = phase->type(in(1))->isa_int(); |
1029 | if (!t1) return NULL__null; // Left input is an integer |
1030 | const TypeInt *t3; // type of in(1).in(2) |
1031 | int shift = maskShiftAmount(phase, this, BitsPerJavaInteger); |
1032 | if (shift == 0) { |
1033 | return NULL__null; |
1034 | } |
1035 | |
1036 | // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller. |
1037 | // Such expressions arise normally from shift chains like (byte)(x >> 24). |
1038 | const Node *mask = in(1); |
1039 | if( mask->Opcode() == Op_AndI && |
1040 | (t3 = phase->type(mask->in(2))->isa_int()) && |
1041 | t3->is_con() ) { |
1042 | Node *x = mask->in(1); |
Value stored to 'x' during its initialization is never read | |
1043 | jint maskbits = t3->get_con(); |
1044 | // Convert to "(x >> shift) & (mask >> shift)" |
1045 | Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) ); |
1046 | return new AndINode(shr_nomask, phase->intcon( maskbits >> shift)); |
1047 | } |
1048 | |
1049 | // Check for "(short[i] <<16)>>16" which simply sign-extends |
1050 | const Node *shl = in(1); |
1051 | if( shl->Opcode() != Op_LShiftI ) return NULL__null; |
1052 | |
1053 | if( shift == 16 && |
1054 | (t3 = phase->type(shl->in(2))->isa_int()) && |
1055 | t3->is_con(16) ) { |
1056 | Node *ld = shl->in(1); |
1057 | if( ld->Opcode() == Op_LoadS ) { |
1058 | // Sign extension is just useless here. Return a RShiftI of zero instead |
1059 | // returning 'ld' directly. We cannot return an old Node directly as |
1060 | // that is the job of 'Identity' calls and Identity calls only work on |
1061 | // direct inputs ('ld' is an extra Node removed from 'this'). The |
1062 | // combined optimization requires Identity only return direct inputs. |
1063 | set_req_X(1, ld, phase); |
1064 | set_req_X(2, phase->intcon(0), phase); |
1065 | return this; |
1066 | } |
1067 | else if (can_reshape && |
1068 | ld->Opcode() == Op_LoadUS && |
1069 | ld->outcnt() == 1 && ld->unique_out() == shl) |
1070 | // Replace zero-extension-load with sign-extension-load |
1071 | return ld->as_Load()->convert_to_signed_load(*phase); |
1072 | } |
1073 | |
1074 | // Check for "(byte[i] <<24)>>24" which simply sign-extends |
1075 | if( shift == 24 && |
1076 | (t3 = phase->type(shl->in(2))->isa_int()) && |
1077 | t3->is_con(24) ) { |
1078 | Node *ld = shl->in(1); |
1079 | if (ld->Opcode() == Op_LoadB) { |
1080 | // Sign extension is just useless here |
1081 | set_req_X(1, ld, phase); |
1082 | set_req_X(2, phase->intcon(0), phase); |
1083 | return this; |
1084 | } |
1085 | } |
1086 | |
1087 | return NULL__null; |
1088 | } |
1089 | |
1090 | //------------------------------Value------------------------------------------ |
1091 | // A RShiftINode shifts its input2 right by input1 amount. |
1092 | const Type* RShiftINode::Value(PhaseGVN* phase) const { |
1093 | const Type *t1 = phase->type( in(1) ); |
1094 | const Type *t2 = phase->type( in(2) ); |
1095 | // Either input is TOP ==> the result is TOP |
1096 | if( t1 == Type::TOP ) return Type::TOP; |
1097 | if( t2 == Type::TOP ) return Type::TOP; |
1098 | |
1099 | // Left input is ZERO ==> the result is ZERO. |
1100 | if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
1101 | // Shift by zero does nothing |
1102 | if( t2 == TypeInt::ZERO ) return t1; |
1103 | |
1104 | // Either input is BOTTOM ==> the result is BOTTOM |
1105 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
1106 | return TypeInt::INT; |
1107 | |
1108 | if (t2 == TypeInt::INT) |
1109 | return TypeInt::INT; |
1110 | |
1111 | const TypeInt *r1 = t1->is_int(); // Handy access |
1112 | const TypeInt *r2 = t2->is_int(); // Handy access |
1113 | |
1114 | // If the shift is a constant, just shift the bounds of the type. |
1115 | // For example, if the shift is 31, we just propagate sign bits. |
1116 | if (r2->is_con()) { |
1117 | uint shift = r2->get_con(); |
1118 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
1119 | // Shift by a multiple of 32 does nothing: |
1120 | if (shift == 0) return t1; |
1121 | // Calculate reasonably aggressive bounds for the result. |
1122 | // This is necessary if we are to correctly type things |
1123 | // like (x<<24>>24) == ((byte)x). |
1124 | jint lo = (jint)r1->_lo >> (jint)shift; |
1125 | jint hi = (jint)r1->_hi >> (jint)shift; |
1126 | assert(lo <= hi, "must have valid bounds")do { if (!(lo <= hi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1126, "assert(" "lo <= hi" ") failed", "must have valid bounds" ); ::breakpoint(); } } while (0); |
1127 | const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
1128 | #ifdef ASSERT1 |
1129 | // Make sure we get the sign-capture idiom correct. |
1130 | if (shift == BitsPerJavaInteger-1) { |
1131 | if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0")do { if (!(ti == TypeInt::ZERO)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1131, "assert(" "ti == TypeInt::ZERO" ") failed", ">>31 of + is 0" ); ::breakpoint(); } } while (0); |
1132 | if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1")do { if (!(ti == TypeInt::MINUS_1)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1132, "assert(" "ti == TypeInt::MINUS_1" ") failed", ">>31 of - is -1" ); ::breakpoint(); } } while (0); |
1133 | } |
1134 | #endif |
1135 | return ti; |
1136 | } |
1137 | |
1138 | if( !r1->is_con() || !r2->is_con() ) |
1139 | return TypeInt::INT; |
1140 | |
1141 | // Signed shift right |
1142 | return TypeInt::make( r1->get_con() >> (r2->get_con()&31) ); |
1143 | } |
1144 | |
1145 | //============================================================================= |
1146 | //------------------------------Identity--------------------------------------- |
1147 | Node* RShiftLNode::Identity(PhaseGVN* phase) { |
1148 | const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int. |
1149 | return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this; |
1150 | } |
1151 | |
1152 | //------------------------------Value------------------------------------------ |
1153 | // A RShiftLNode shifts its input2 right by input1 amount. |
1154 | const Type* RShiftLNode::Value(PhaseGVN* phase) const { |
1155 | const Type *t1 = phase->type( in(1) ); |
1156 | const Type *t2 = phase->type( in(2) ); |
1157 | // Either input is TOP ==> the result is TOP |
1158 | if( t1 == Type::TOP ) return Type::TOP; |
1159 | if( t2 == Type::TOP ) return Type::TOP; |
1160 | |
1161 | // Left input is ZERO ==> the result is ZERO. |
1162 | if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
1163 | // Shift by zero does nothing |
1164 | if( t2 == TypeInt::ZERO ) return t1; |
1165 | |
1166 | // Either input is BOTTOM ==> the result is BOTTOM |
1167 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
1168 | return TypeLong::LONG; |
1169 | |
1170 | if (t2 == TypeInt::INT) |
1171 | return TypeLong::LONG; |
1172 | |
1173 | const TypeLong *r1 = t1->is_long(); // Handy access |
1174 | const TypeInt *r2 = t2->is_int (); // Handy access |
1175 | |
1176 | // If the shift is a constant, just shift the bounds of the type. |
1177 | // For example, if the shift is 63, we just propagate sign bits. |
1178 | if (r2->is_con()) { |
1179 | uint shift = r2->get_con(); |
1180 | shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts |
1181 | // Shift by a multiple of 64 does nothing: |
1182 | if (shift == 0) return t1; |
1183 | // Calculate reasonably aggressive bounds for the result. |
1184 | // This is necessary if we are to correctly type things |
1185 | // like (x<<24>>24) == ((byte)x). |
1186 | jlong lo = (jlong)r1->_lo >> (jlong)shift; |
1187 | jlong hi = (jlong)r1->_hi >> (jlong)shift; |
1188 | assert(lo <= hi, "must have valid bounds")do { if (!(lo <= hi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1188, "assert(" "lo <= hi" ") failed", "must have valid bounds" ); ::breakpoint(); } } while (0); |
1189 | const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
1190 | #ifdef ASSERT1 |
1191 | // Make sure we get the sign-capture idiom correct. |
1192 | if (shift == (2*BitsPerJavaInteger)-1) { |
1193 | if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0")do { if (!(tl == TypeLong::ZERO)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1193, "assert(" "tl == TypeLong::ZERO" ") failed", ">>63 of + is 0" ); ::breakpoint(); } } while (0); |
1194 | if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1")do { if (!(tl == TypeLong::MINUS_1)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1194, "assert(" "tl == TypeLong::MINUS_1" ") failed", ">>63 of - is -1" ); ::breakpoint(); } } while (0); |
1195 | } |
1196 | #endif |
1197 | return tl; |
1198 | } |
1199 | |
1200 | return TypeLong::LONG; // Give up |
1201 | } |
1202 | |
1203 | //============================================================================= |
1204 | //------------------------------Identity--------------------------------------- |
1205 | Node* URShiftINode::Identity(PhaseGVN* phase) { |
1206 | int count = 0; |
1207 | if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaInteger - 1)) == 0) { |
1208 | // Shift by a multiple of 32 does nothing |
1209 | return in(1); |
1210 | } |
1211 | |
1212 | // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x". |
1213 | // Happens during new-array length computation. |
1214 | // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)] |
1215 | Node *add = in(1); |
1216 | if (add->Opcode() == Op_AddI) { |
1217 | const TypeInt *t2 = phase->type(add->in(2))->isa_int(); |
1218 | if (t2 && t2->is_con(wordSize - 1) && |
1219 | add->in(1)->Opcode() == Op_LShiftI) { |
1220 | // Check that shift_counts are LogBytesPerWord. |
1221 | Node *lshift_count = add->in(1)->in(2); |
1222 | const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int(); |
1223 | if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) && |
1224 | t_lshift_count == phase->type(in(2))) { |
1225 | Node *x = add->in(1)->in(1); |
1226 | const TypeInt *t_x = phase->type(x)->isa_int(); |
1227 | if (t_x != NULL__null && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) { |
1228 | return x; |
1229 | } |
1230 | } |
1231 | } |
1232 | } |
1233 | |
1234 | return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this; |
1235 | } |
1236 | |
1237 | //------------------------------Ideal------------------------------------------ |
1238 | Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1239 | int con = maskShiftAmount(phase, this, BitsPerJavaInteger); |
1240 | if (con == 0) { |
1241 | return NULL__null; |
1242 | } |
1243 | |
1244 | // We'll be wanting the right-shift amount as a mask of that many bits |
1245 | const int mask = right_n_bits(BitsPerJavaInteger - con)((((BitsPerJavaInteger - con) >= BitsPerWord) ? 0 : (OneBit << (BitsPerJavaInteger - con))) - 1); |
1246 | |
1247 | int in1_op = in(1)->Opcode(); |
1248 | |
1249 | // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32 |
1250 | if( in1_op == Op_URShiftI ) { |
1251 | const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int(); |
1252 | if( t12 && t12->is_con() ) { // Right input is a constant |
1253 | assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" )do { if (!(in(1) != in(1)->in(1))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1253, "assert(" "in(1) != in(1)->in(1)" ") failed", "dead loop in URShiftINode::Ideal" ); ::breakpoint(); } } while (0); |
1254 | const int con2 = t12->get_con() & 31; // Shift count is always masked |
1255 | const int con3 = con+con2; |
1256 | if( con3 < 32 ) // Only merge shifts if total is < 32 |
1257 | return new URShiftINode( in(1)->in(1), phase->intcon(con3) ); |
1258 | } |
1259 | } |
1260 | |
1261 | // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z |
1262 | // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". |
1263 | // If Q is "X << z" the rounding is useless. Look for patterns like |
1264 | // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. |
1265 | Node *add = in(1); |
1266 | const TypeInt *t2 = phase->type(in(2))->isa_int(); |
1267 | if (in1_op == Op_AddI) { |
1268 | Node *lshl = add->in(1); |
1269 | if( lshl->Opcode() == Op_LShiftI && |
1270 | phase->type(lshl->in(2)) == t2 ) { |
1271 | Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) ); |
1272 | Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) ); |
1273 | return new AndINode( sum, phase->intcon(mask) ); |
1274 | } |
1275 | } |
1276 | |
1277 | // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) |
1278 | // This shortens the mask. Also, if we are extracting a high byte and |
1279 | // storing it to a buffer, the mask will be removed completely. |
1280 | Node *andi = in(1); |
1281 | if( in1_op == Op_AndI ) { |
1282 | const TypeInt *t3 = phase->type( andi->in(2) )->isa_int(); |
1283 | if( t3 && t3->is_con() ) { // Right input is a constant |
1284 | jint mask2 = t3->get_con(); |
1285 | mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) |
1286 | Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) ); |
1287 | return new AndINode(newshr, phase->intcon(mask2)); |
1288 | // The negative values are easier to materialize than positive ones. |
1289 | // A typical case from address arithmetic is ((x & ~15) >> 4). |
1290 | // It's better to change that to ((x >> 4) & ~0) versus |
1291 | // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64. |
1292 | } |
1293 | } |
1294 | |
1295 | // Check for "(X << z ) >>> z" which simply zero-extends |
1296 | Node *shl = in(1); |
1297 | if( in1_op == Op_LShiftI && |
1298 | phase->type(shl->in(2)) == t2 ) |
1299 | return new AndINode( shl->in(1), phase->intcon(mask) ); |
1300 | |
1301 | // Check for (x >> n) >>> 31. Replace with (x >>> 31) |
1302 | Node *shr = in(1); |
1303 | if ( in1_op == Op_RShiftI ) { |
1304 | Node *in11 = shr->in(1); |
1305 | Node *in12 = shr->in(2); |
1306 | const TypeInt *t11 = phase->type(in11)->isa_int(); |
1307 | const TypeInt *t12 = phase->type(in12)->isa_int(); |
1308 | if ( t11 && t2 && t2->is_con(31) && t12 && t12->is_con() ) { |
1309 | return new URShiftINode(in11, phase->intcon(31)); |
1310 | } |
1311 | } |
1312 | |
1313 | return NULL__null; |
1314 | } |
1315 | |
1316 | //------------------------------Value------------------------------------------ |
1317 | // A URShiftINode shifts its input2 right by input1 amount. |
1318 | const Type* URShiftINode::Value(PhaseGVN* phase) const { |
1319 | // (This is a near clone of RShiftINode::Value.) |
1320 | const Type *t1 = phase->type( in(1) ); |
1321 | const Type *t2 = phase->type( in(2) ); |
1322 | // Either input is TOP ==> the result is TOP |
1323 | if( t1 == Type::TOP ) return Type::TOP; |
1324 | if( t2 == Type::TOP ) return Type::TOP; |
1325 | |
1326 | // Left input is ZERO ==> the result is ZERO. |
1327 | if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
1328 | // Shift by zero does nothing |
1329 | if( t2 == TypeInt::ZERO ) return t1; |
1330 | |
1331 | // Either input is BOTTOM ==> the result is BOTTOM |
1332 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
1333 | return TypeInt::INT; |
1334 | |
1335 | if (t2 == TypeInt::INT) |
1336 | return TypeInt::INT; |
1337 | |
1338 | const TypeInt *r1 = t1->is_int(); // Handy access |
1339 | const TypeInt *r2 = t2->is_int(); // Handy access |
1340 | |
1341 | if (r2->is_con()) { |
1342 | uint shift = r2->get_con(); |
1343 | shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
1344 | // Shift by a multiple of 32 does nothing: |
1345 | if (shift == 0) return t1; |
1346 | // Calculate reasonably aggressive bounds for the result. |
1347 | jint lo = (juint)r1->_lo >> (juint)shift; |
1348 | jint hi = (juint)r1->_hi >> (juint)shift; |
1349 | if (r1->_hi >= 0 && r1->_lo < 0) { |
1350 | // If the type has both negative and positive values, |
1351 | // there are two separate sub-domains to worry about: |
1352 | // The positive half and the negative half. |
1353 | jint neg_lo = lo; |
1354 | jint neg_hi = (juint)-1 >> (juint)shift; |
1355 | jint pos_lo = (juint) 0 >> (juint)shift; |
1356 | jint pos_hi = hi; |
1357 | lo = MIN2(neg_lo, pos_lo); // == 0 |
1358 | hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; |
1359 | } |
1360 | assert(lo <= hi, "must have valid bounds")do { if (!(lo <= hi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1360, "assert(" "lo <= hi" ") failed", "must have valid bounds" ); ::breakpoint(); } } while (0); |
1361 | const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
1362 | #ifdef ASSERT1 |
1363 | // Make sure we get the sign-capture idiom correct. |
1364 | if (shift == BitsPerJavaInteger-1) { |
1365 | if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0")do { if (!(ti == TypeInt::ZERO)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1365, "assert(" "ti == TypeInt::ZERO" ") failed", ">>>31 of + is 0" ); ::breakpoint(); } } while (0); |
1366 | if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1")do { if (!(ti == TypeInt::ONE)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1366, "assert(" "ti == TypeInt::ONE" ") failed", ">>>31 of - is +1" ); ::breakpoint(); } } while (0); |
1367 | } |
1368 | #endif |
1369 | return ti; |
1370 | } |
1371 | |
1372 | // |
1373 | // Do not support shifted oops in info for GC |
1374 | // |
1375 | // else if( t1->base() == Type::InstPtr ) { |
1376 | // |
1377 | // const TypeInstPtr *o = t1->is_instptr(); |
1378 | // if( t1->singleton() ) |
1379 | // return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift ); |
1380 | // } |
1381 | // else if( t1->base() == Type::KlassPtr ) { |
1382 | // const TypeKlassPtr *o = t1->is_klassptr(); |
1383 | // if( t1->singleton() ) |
1384 | // return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift ); |
1385 | // } |
1386 | |
1387 | return TypeInt::INT; |
1388 | } |
1389 | |
1390 | //============================================================================= |
1391 | //------------------------------Identity--------------------------------------- |
1392 | Node* URShiftLNode::Identity(PhaseGVN* phase) { |
1393 | int count = 0; |
1394 | if (const_shift_count(phase, this, &count) && (count & (BitsPerJavaLong - 1)) == 0) { |
1395 | // Shift by a multiple of 64 does nothing |
1396 | return in(1); |
1397 | } |
1398 | return this; |
1399 | } |
1400 | |
1401 | //------------------------------Ideal------------------------------------------ |
1402 | Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1403 | int con = maskShiftAmount(phase, this, BitsPerJavaLong); |
1404 | if (con == 0) { |
1405 | return NULL__null; |
1406 | } |
1407 | |
1408 | // We'll be wanting the right-shift amount as a mask of that many bits |
1409 | const jlong mask = jlong(max_julong >> con); |
1410 | |
1411 | // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z |
1412 | // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". |
1413 | // If Q is "X << z" the rounding is useless. Look for patterns like |
1414 | // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. |
1415 | Node *add = in(1); |
1416 | const TypeInt *t2 = phase->type(in(2))->isa_int(); |
1417 | if (add->Opcode() == Op_AddL) { |
1418 | Node *lshl = add->in(1); |
1419 | if( lshl->Opcode() == Op_LShiftL && |
1420 | phase->type(lshl->in(2)) == t2 ) { |
1421 | Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) ); |
1422 | Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) ); |
1423 | return new AndLNode( sum, phase->longcon(mask) ); |
1424 | } |
1425 | } |
1426 | |
1427 | // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) |
1428 | // This shortens the mask. Also, if we are extracting a high byte and |
1429 | // storing it to a buffer, the mask will be removed completely. |
1430 | Node *andi = in(1); |
1431 | if( andi->Opcode() == Op_AndL ) { |
1432 | const TypeLong *t3 = phase->type( andi->in(2) )->isa_long(); |
1433 | if( t3 && t3->is_con() ) { // Right input is a constant |
1434 | jlong mask2 = t3->get_con(); |
1435 | mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) |
1436 | Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) ); |
1437 | return new AndLNode(newshr, phase->longcon(mask2)); |
1438 | } |
1439 | } |
1440 | |
1441 | // Check for "(X << z ) >>> z" which simply zero-extends |
1442 | Node *shl = in(1); |
1443 | if( shl->Opcode() == Op_LShiftL && |
1444 | phase->type(shl->in(2)) == t2 ) |
1445 | return new AndLNode( shl->in(1), phase->longcon(mask) ); |
1446 | |
1447 | // Check for (x >> n) >>> 63. Replace with (x >>> 63) |
1448 | Node *shr = in(1); |
1449 | if ( shr->Opcode() == Op_RShiftL ) { |
1450 | Node *in11 = shr->in(1); |
1451 | Node *in12 = shr->in(2); |
1452 | const TypeLong *t11 = phase->type(in11)->isa_long(); |
1453 | const TypeInt *t12 = phase->type(in12)->isa_int(); |
1454 | if ( t11 && t2 && t2->is_con(63) && t12 && t12->is_con() ) { |
1455 | return new URShiftLNode(in11, phase->intcon(63)); |
1456 | } |
1457 | } |
1458 | return NULL__null; |
1459 | } |
1460 | |
1461 | //------------------------------Value------------------------------------------ |
1462 | // A URShiftINode shifts its input2 right by input1 amount. |
1463 | const Type* URShiftLNode::Value(PhaseGVN* phase) const { |
1464 | // (This is a near clone of RShiftLNode::Value.) |
1465 | const Type *t1 = phase->type( in(1) ); |
1466 | const Type *t2 = phase->type( in(2) ); |
1467 | // Either input is TOP ==> the result is TOP |
1468 | if( t1 == Type::TOP ) return Type::TOP; |
1469 | if( t2 == Type::TOP ) return Type::TOP; |
1470 | |
1471 | // Left input is ZERO ==> the result is ZERO. |
1472 | if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
1473 | // Shift by zero does nothing |
1474 | if( t2 == TypeInt::ZERO ) return t1; |
1475 | |
1476 | // Either input is BOTTOM ==> the result is BOTTOM |
1477 | if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
1478 | return TypeLong::LONG; |
1479 | |
1480 | if (t2 == TypeInt::INT) |
1481 | return TypeLong::LONG; |
1482 | |
1483 | const TypeLong *r1 = t1->is_long(); // Handy access |
1484 | const TypeInt *r2 = t2->is_int (); // Handy access |
1485 | |
1486 | if (r2->is_con()) { |
1487 | uint shift = r2->get_con(); |
1488 | shift &= BitsPerJavaLong - 1; // semantics of Java shifts |
1489 | // Shift by a multiple of 64 does nothing: |
1490 | if (shift == 0) return t1; |
1491 | // Calculate reasonably aggressive bounds for the result. |
1492 | jlong lo = (julong)r1->_lo >> (juint)shift; |
1493 | jlong hi = (julong)r1->_hi >> (juint)shift; |
1494 | if (r1->_hi >= 0 && r1->_lo < 0) { |
1495 | // If the type has both negative and positive values, |
1496 | // there are two separate sub-domains to worry about: |
1497 | // The positive half and the negative half. |
1498 | jlong neg_lo = lo; |
1499 | jlong neg_hi = (julong)-1 >> (juint)shift; |
1500 | jlong pos_lo = (julong) 0 >> (juint)shift; |
1501 | jlong pos_hi = hi; |
1502 | //lo = MIN2(neg_lo, pos_lo); // == 0 |
1503 | lo = neg_lo < pos_lo ? neg_lo : pos_lo; |
1504 | //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; |
1505 | hi = neg_hi > pos_hi ? neg_hi : pos_hi; |
1506 | } |
1507 | assert(lo <= hi, "must have valid bounds")do { if (!(lo <= hi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1507, "assert(" "lo <= hi" ") failed", "must have valid bounds" ); ::breakpoint(); } } while (0); |
1508 | const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
1509 | #ifdef ASSERT1 |
1510 | // Make sure we get the sign-capture idiom correct. |
1511 | if (shift == BitsPerJavaLong - 1) { |
1512 | if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0")do { if (!(tl == TypeLong::ZERO)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1512, "assert(" "tl == TypeLong::ZERO" ") failed", ">>>63 of + is 0" ); ::breakpoint(); } } while (0); |
1513 | if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1")do { if (!(tl == TypeLong::ONE)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1513, "assert(" "tl == TypeLong::ONE" ") failed", ">>>63 of - is +1" ); ::breakpoint(); } } while (0); |
1514 | } |
1515 | #endif |
1516 | return tl; |
1517 | } |
1518 | |
1519 | return TypeLong::LONG; // Give up |
1520 | } |
1521 | |
1522 | //============================================================================= |
1523 | //------------------------------Value------------------------------------------ |
1524 | const Type* FmaDNode::Value(PhaseGVN* phase) const { |
1525 | const Type *t1 = phase->type(in(1)); |
1526 | if (t1 == Type::TOP) return Type::TOP; |
1527 | if (t1->base() != Type::DoubleCon) return Type::DOUBLE; |
1528 | const Type *t2 = phase->type(in(2)); |
1529 | if (t2 == Type::TOP) return Type::TOP; |
1530 | if (t2->base() != Type::DoubleCon) return Type::DOUBLE; |
1531 | const Type *t3 = phase->type(in(3)); |
1532 | if (t3 == Type::TOP) return Type::TOP; |
1533 | if (t3->base() != Type::DoubleCon) return Type::DOUBLE; |
1534 | #ifndef __STDC_IEC_559__1 |
1535 | return Type::DOUBLE; |
1536 | #else |
1537 | double d1 = t1->getd(); |
1538 | double d2 = t2->getd(); |
1539 | double d3 = t3->getd(); |
1540 | return TypeD::make(fma(d1, d2, d3)); |
1541 | #endif |
1542 | } |
1543 | |
1544 | //============================================================================= |
1545 | //------------------------------Value------------------------------------------ |
1546 | const Type* FmaFNode::Value(PhaseGVN* phase) const { |
1547 | const Type *t1 = phase->type(in(1)); |
1548 | if (t1 == Type::TOP) return Type::TOP; |
1549 | if (t1->base() != Type::FloatCon) return Type::FLOAT; |
1550 | const Type *t2 = phase->type(in(2)); |
1551 | if (t2 == Type::TOP) return Type::TOP; |
1552 | if (t2->base() != Type::FloatCon) return Type::FLOAT; |
1553 | const Type *t3 = phase->type(in(3)); |
1554 | if (t3 == Type::TOP) return Type::TOP; |
1555 | if (t3->base() != Type::FloatCon) return Type::FLOAT; |
1556 | #ifndef __STDC_IEC_559__1 |
1557 | return Type::FLOAT; |
1558 | #else |
1559 | float f1 = t1->getf(); |
1560 | float f2 = t2->getf(); |
1561 | float f3 = t3->getf(); |
1562 | return TypeF::make(fma(f1, f2, f3)); |
1563 | #endif |
1564 | } |
1565 | |
1566 | //============================================================================= |
1567 | //------------------------------hash------------------------------------------- |
1568 | // Hash function for MulAddS2INode. Operation is commutative with commutative pairs. |
1569 | // The hash function must return the same value when edge swapping is performed. |
1570 | uint MulAddS2INode::hash() const { |
1571 | return (uintptr_t)in(1) + (uintptr_t)in(2) + (uintptr_t)in(3) + (uintptr_t)in(4) + Opcode(); |
1572 | } |
1573 | |
1574 | //------------------------------Rotate Operations ------------------------------ |
1575 | |
1576 | Node* RotateLeftNode::Identity(PhaseGVN* phase) { |
1577 | const Type* t1 = phase->type(in(1)); |
1578 | if (t1 == Type::TOP) { |
1579 | return this; |
1580 | } |
1581 | int count = 0; |
1582 | assert(t1->isa_int() || t1->isa_long(), "Unexpected type")do { if (!(t1->isa_int() || t1->isa_long())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1582, "assert(" "t1->isa_int() || t1->isa_long()" ") failed" , "Unexpected type"); ::breakpoint(); } } while (0); |
1583 | int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1; |
1584 | if (const_shift_count(phase, this, &count) && (count & mask) == 0) { |
1585 | // Rotate by a multiple of 32/64 does nothing |
1586 | return in(1); |
1587 | } |
1588 | return this; |
1589 | } |
1590 | |
1591 | const Type* RotateLeftNode::Value(PhaseGVN* phase) const { |
1592 | const Type* t1 = phase->type(in(1)); |
1593 | const Type* t2 = phase->type(in(2)); |
1594 | // Either input is TOP ==> the result is TOP |
1595 | if (t1 == Type::TOP || t2 == Type::TOP) { |
1596 | return Type::TOP; |
1597 | } |
1598 | |
1599 | if (t1->isa_int()) { |
1600 | const TypeInt* r1 = t1->is_int(); |
1601 | const TypeInt* r2 = t2->is_int(); |
1602 | |
1603 | // Left input is ZERO ==> the result is ZERO. |
1604 | if (r1 == TypeInt::ZERO) { |
1605 | return TypeInt::ZERO; |
1606 | } |
1607 | // Rotate by zero does nothing |
1608 | if (r2 == TypeInt::ZERO) { |
1609 | return r1; |
1610 | } |
1611 | if (r1->is_con() && r2->is_con()) { |
1612 | juint r1_con = (juint)r1->get_con(); |
1613 | juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts |
1614 | return TypeInt::make((r1_con << shift) | (r1_con >> (32 - shift))); |
1615 | } |
1616 | return TypeInt::INT; |
1617 | } else { |
1618 | assert(t1->isa_long(), "Type must be a long")do { if (!(t1->isa_long())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1618, "assert(" "t1->isa_long()" ") failed", "Type must be a long" ); ::breakpoint(); } } while (0); |
1619 | const TypeLong* r1 = t1->is_long(); |
1620 | const TypeInt* r2 = t2->is_int(); |
1621 | |
1622 | // Left input is ZERO ==> the result is ZERO. |
1623 | if (r1 == TypeLong::ZERO) { |
1624 | return TypeLong::ZERO; |
1625 | } |
1626 | // Rotate by zero does nothing |
1627 | if (r2 == TypeInt::ZERO) { |
1628 | return r1; |
1629 | } |
1630 | if (r1->is_con() && r2->is_con()) { |
1631 | julong r1_con = (julong)r1->get_con(); |
1632 | julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts |
1633 | return TypeLong::make((r1_con << shift) | (r1_con >> (64 - shift))); |
1634 | } |
1635 | return TypeLong::LONG; |
1636 | } |
1637 | } |
1638 | |
1639 | Node* RotateLeftNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
1640 | const Type* t1 = phase->type(in(1)); |
1641 | const Type* t2 = phase->type(in(2)); |
1642 | if (t2->isa_int() && t2->is_int()->is_con()) { |
1643 | if (t1->isa_int()) { |
1644 | int lshift = t2->is_int()->get_con() & 31; |
1645 | return new RotateRightNode(in(1), phase->intcon(32 - (lshift & 31)), TypeInt::INT); |
1646 | } else if (t1 != Type::TOP) { |
1647 | assert(t1->isa_long(), "Type must be a long")do { if (!(t1->isa_long())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1647, "assert(" "t1->isa_long()" ") failed", "Type must be a long" ); ::breakpoint(); } } while (0); |
1648 | int lshift = t2->is_int()->get_con() & 63; |
1649 | return new RotateRightNode(in(1), phase->intcon(64 - (lshift & 63)), TypeLong::LONG); |
1650 | } |
1651 | } |
1652 | return NULL__null; |
1653 | } |
1654 | |
1655 | Node* RotateRightNode::Identity(PhaseGVN* phase) { |
1656 | const Type* t1 = phase->type(in(1)); |
1657 | if (t1 == Type::TOP) { |
1658 | return this; |
1659 | } |
1660 | int count = 0; |
1661 | assert(t1->isa_int() || t1->isa_long(), "Unexpected type")do { if (!(t1->isa_int() || t1->isa_long())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1661, "assert(" "t1->isa_int() || t1->isa_long()" ") failed" , "Unexpected type"); ::breakpoint(); } } while (0); |
1662 | int mask = (t1->isa_int() ? BitsPerJavaInteger : BitsPerJavaLong) - 1; |
1663 | if (const_shift_count(phase, this, &count) && (count & mask) == 0) { |
1664 | // Rotate by a multiple of 32/64 does nothing |
1665 | return in(1); |
1666 | } |
1667 | return this; |
1668 | } |
1669 | |
1670 | const Type* RotateRightNode::Value(PhaseGVN* phase) const { |
1671 | const Type* t1 = phase->type(in(1)); |
1672 | const Type* t2 = phase->type(in(2)); |
1673 | // Either input is TOP ==> the result is TOP |
1674 | if (t1 == Type::TOP || t2 == Type::TOP) { |
1675 | return Type::TOP; |
1676 | } |
1677 | |
1678 | if (t1->isa_int()) { |
1679 | const TypeInt* r1 = t1->is_int(); |
1680 | const TypeInt* r2 = t2->is_int(); |
1681 | |
1682 | // Left input is ZERO ==> the result is ZERO. |
1683 | if (r1 == TypeInt::ZERO) { |
1684 | return TypeInt::ZERO; |
1685 | } |
1686 | // Rotate by zero does nothing |
1687 | if (r2 == TypeInt::ZERO) { |
1688 | return r1; |
1689 | } |
1690 | if (r1->is_con() && r2->is_con()) { |
1691 | juint r1_con = (juint)r1->get_con(); |
1692 | juint shift = (juint)(r2->get_con()) & (juint)(BitsPerJavaInteger - 1); // semantics of Java shifts |
1693 | return TypeInt::make((r1_con >> shift) | (r1_con << (32 - shift))); |
1694 | } |
1695 | return TypeInt::INT; |
1696 | } else { |
1697 | assert(t1->isa_long(), "Type must be a long")do { if (!(t1->isa_long())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/mulnode.cpp" , 1697, "assert(" "t1->isa_long()" ") failed", "Type must be a long" ); ::breakpoint(); } } while (0); |
1698 | const TypeLong* r1 = t1->is_long(); |
1699 | const TypeInt* r2 = t2->is_int(); |
1700 | // Left input is ZERO ==> the result is ZERO. |
1701 | if (r1 == TypeLong::ZERO) { |
1702 | return TypeLong::ZERO; |
1703 | } |
1704 | // Rotate by zero does nothing |
1705 | if (r2 == TypeInt::ZERO) { |
1706 | return r1; |
1707 | } |
1708 | if (r1->is_con() && r2->is_con()) { |
1709 | julong r1_con = (julong)r1->get_con(); |
1710 | julong shift = (julong)(r2->get_con()) & (julong)(BitsPerJavaLong - 1); // semantics of Java shifts |
1711 | return TypeLong::make((r1_con >> shift) | (r1_con << (64 - shift))); |
1712 | } |
1713 | return TypeLong::LONG; |
1714 | } |
1715 | } |
1716 | |
1717 | // Helper method to transform: |
1718 | // patterns similar to (v << 2) & 3 to 0 |
1719 | // and |
1720 | // patterns similar to (v1 + (v2 << 2)) & 3 transformed to v1 & 3 |
1721 | bool MulNode::AndIL_shift_and_mask(PhaseGVN* phase, Node* mask, Node* shift, BasicType bt) { |
1722 | if (mask == NULL__null || shift == NULL__null) { |
1723 | return false; |
1724 | } |
1725 | const TypeInteger* mask_t = phase->type(mask)->isa_integer(bt); |
1726 | const TypeInteger* shift_t = phase->type(shift)->isa_integer(bt); |
1727 | if (mask_t == NULL__null || shift_t == NULL__null) { |
1728 | return false; |
1729 | } |
1730 | if (bt == T_LONG && shift != NULL__null && shift->Opcode() == Op_ConvI2L) { |
1731 | bt = T_INT; |
1732 | shift = shift->in(1); |
1733 | if (shift == NULL__null) { |
1734 | return false; |
1735 | } |
1736 | } |
1737 | if (shift->Opcode() != Op_LShift(bt)) { |
1738 | return false; |
1739 | } |
1740 | Node* shift2 = shift->in(2); |
1741 | if (shift2 == NULL__null) { |
1742 | return false; |
1743 | } |
1744 | const Type* shift2_t = phase->type(shift2); |
1745 | if (!shift2_t->isa_int() || !shift2_t->is_int()->is_con()) { |
1746 | return false; |
1747 | } |
1748 | |
1749 | jint shift_con = shift2_t->is_int()->get_con() & ((bt == T_INT ? BitsPerJavaInteger : BitsPerJavaLong) - 1); |
1750 | if ((((jlong)1) << shift_con) > mask_t->hi_as_long() && mask_t->lo_as_long() >= 0) { |
1751 | return true; |
1752 | } |
1753 | |
1754 | return false; |
1755 | } |
1756 | |
1757 | // Helper method to transform: |
1758 | // patterns similar to (v1 + (v2 << 2)) & 3 to v1 & 3 |
1759 | Node* MulNode::AndIL_add_shift_and_mask(PhaseGVN* phase, BasicType bt) { |
1760 | Node* in1 = in(1); |
1761 | Node* in2 = in(2); |
1762 | if (in1 != NULL__null && in2 != NULL__null && in1->Opcode() == Op_Add(bt)) { |
1763 | Node* add1 = in1->in(1); |
1764 | Node* add2 = in1->in(2); |
1765 | if (add1 != NULL__null && add2 != NULL__null) { |
1766 | if (AndIL_shift_and_mask(phase, in2, add1, bt)) { |
1767 | set_req_X(1, add2, phase); |
1768 | return this; |
1769 | } else if (AndIL_shift_and_mask(phase, in2, add2, bt)) { |
1770 | set_req_X(1, add1, phase); |
1771 | return this; |
1772 | } |
1773 | } |
1774 | } |
1775 | return NULL__null; |
1776 | } |