| File: | jdk/src/java.desktop/share/native/libawt/java2d/loops/ProcessPath.c |
| Warning: | line 1298, column 20 The left operand of '>' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. | |||
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
| 4 | * | |||
| 5 | * This code is free software; you can redistribute it and/or modify it | |||
| 6 | * under the terms of the GNU General Public License version 2 only, as | |||
| 7 | * published by the Free Software Foundation. Oracle designates this | |||
| 8 | * particular file as subject to the "Classpath" exception as provided | |||
| 9 | * by Oracle in the LICENSE file that accompanied this code. | |||
| 10 | * | |||
| 11 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
| 13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
| 14 | * version 2 for more details (a copy is included in the LICENSE file that | |||
| 15 | * accompanied this code). | |||
| 16 | * | |||
| 17 | * You should have received a copy of the GNU General Public License version | |||
| 18 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
| 19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
| 20 | * | |||
| 21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
| 22 | * or visit www.oracle.com if you need additional information or have any | |||
| 23 | * questions. | |||
| 24 | */ | |||
| 25 | ||||
| 26 | #include <math.h> | |||
| 27 | #include <assert.h> | |||
| 28 | #include <stdlib.h> | |||
| 29 | #include <string.h> | |||
| 30 | ||||
| 31 | #include "jni.h" | |||
| 32 | #include "j2d_md.h" | |||
| 33 | #include "java_awt_geom_PathIterator.h" | |||
| 34 | ||||
| 35 | #include "ProcessPath.h" | |||
| 36 | ||||
| 37 | /* | |||
| 38 | * This framework performs filling and drawing of paths with sub-pixel | |||
| 39 | * precision. Also, it performs clipping by the specified view area. | |||
| 40 | * | |||
| 41 | * Drawing of the shapes is performed not pixel by pixel but segment by segment | |||
| 42 | * except several pixels near endpoints of the drawn line. This approach saves | |||
| 43 | * lot's of cpu cycles especially in case of large primitives (like ovals with | |||
| 44 | * sizes more than 50) and helps in achieving appropriate visual quality. Also, | |||
| 45 | * such method of drawing is useful for the accelerated pipelines where | |||
| 46 | * overhead of the per-pixel drawing could eliminate all benefits of the | |||
| 47 | * hardware acceleration. | |||
| 48 | * | |||
| 49 | * Filling of the path was taken from | |||
| 50 | * | |||
| 51 | * [Graphics Gems, edited by Andrew S Glassner. Academic Press 1990, | |||
| 52 | * ISBN 0-12-286165-5 (Concave polygon scan conversion), 87-91] | |||
| 53 | * | |||
| 54 | * and modified to work with sub-pixel precision and non-continuous paths. | |||
| 55 | * It's also speeded up by using hash table by rows of the filled objects. | |||
| 56 | * | |||
| 57 | * Here is high level scheme showing the rendering process: | |||
| 58 | * | |||
| 59 | * doDrawPath doFillPath | |||
| 60 | * \ / | |||
| 61 | * ProcessPath | |||
| 62 | * | | |||
| 63 | * CheckPathSegment | |||
| 64 | * | | |||
| 65 | * --------+------ | |||
| 66 | * | | | |||
| 67 | * | | | |||
| 68 | * | | | |||
| 69 | * _->ProcessCurve | | |||
| 70 | * / / | | | |||
| 71 | * \___/ | | | |||
| 72 | * | | | |||
| 73 | * DrawCurve ProcessLine | |||
| 74 | * \ / | |||
| 75 | * \ / | |||
| 76 | * \ / | |||
| 77 | * \ / | |||
| 78 | * ------+------ | |||
| 79 | * (filling) / \ (drawing) | |||
| 80 | * / \ | |||
| 81 | * Clipping and Clipping | |||
| 82 | * clamping \ | |||
| 83 | * | \ | |||
| 84 | * StoreFixedLine ProcessFixedLine | |||
| 85 | * | / \ | |||
| 86 | * | / \ | |||
| 87 | * FillPolygon PROCESS_LINE PROCESS_POINT | |||
| 88 | * | |||
| 89 | * | |||
| 90 | * | |||
| 91 | * CheckPathSegment - rough checking and skipping path's segments in case of | |||
| 92 | * invalid or huge coordinates of the control points to | |||
| 93 | * avoid calculation problems with NaNs and values close | |||
| 94 | * to the FLT_MAX | |||
| 95 | * | |||
| 96 | * ProcessCurve - (ProcessQuad, ProcessCubic) Splitting the curve into | |||
| 97 | * monotonic parts having appropriate size (calculated as | |||
| 98 | * boundary box of the control points) | |||
| 99 | * | |||
| 100 | * DrawMonotonicCurve - (DrawMonotonicQuad, DrawMonotonicCubic) flattening | |||
| 101 | * monotonic curve using adaptive forward differencing | |||
| 102 | * | |||
| 103 | * StoreFixedLine - storing segment from the flattened path to the | |||
| 104 | * FillData structure. Performing clipping and clamping if | |||
| 105 | * necessary. | |||
| 106 | * | |||
| 107 | * PROCESS_LINE, PROCESS_POINT - Helpers for calling appropriate primitive from | |||
| 108 | * DrawHandler structure | |||
| 109 | * | |||
| 110 | * ProcessFixedLine - Drawing line segment with subpixel precision. | |||
| 111 | * | |||
| 112 | */ | |||
| 113 | ||||
| 114 | #define PROCESS_LINE(hnd, fX0, fY0, fX1, fY1, checkBounds, pixelInfo)do { jint X0 = (fX0) >> 10; jint Y0 = (fY0) >> 10 ; jint X1 = (fX1) >> 10; jint Y1 = (fY1) >> 10; jint res; if (checkBounds) { jfloat xMinf = hnd->dhnd->xMinf + 0.5f; jfloat yMinf = hnd->dhnd->yMinf + 0.5f; jfloat xMaxf = hnd->dhnd->xMaxf + 0.5f; jfloat yMaxf = hnd-> dhnd->yMaxf + 0.5f; do { jdouble t; res = CRES_NOT_CLIPPED ; if (Y0 < (yMinf) || Y0 > (yMaxf)) { if (Y0 < (yMinf )) { if (Y1 < (yMinf)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (yMinf); } else { if (Y1 > (yMaxf )) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED; t = (yMaxf); } X0 = (jint)(X0 + ((jdouble)(t - Y0)*(X1 - X0)) / (Y1 - Y0)); Y0 = (jint)t; } } while (0); if (res == CRES_INVISIBLE ) break; do { jdouble t; res = CRES_NOT_CLIPPED; if (Y1 < ( yMinf) || Y1 > (yMaxf)) { if (Y1 < (yMinf)) { if (Y0 < (yMinf)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (yMinf); } else { if (Y0 > (yMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (yMaxf); } X1 = (jint )(X1 + ((jdouble)(t - Y1)*(X0 - X1)) / (Y0 - Y1)); Y1 = (jint )t; } } while (0); if (res == CRES_INVISIBLE) break; do { jdouble t; res = CRES_NOT_CLIPPED; if (X0 < (xMinf) || X0 > (xMaxf )) { if (X0 < (xMinf)) { if (X1 < (xMinf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MIN_CLIPPED; t = (xMinf); } else { if ( X1 > (xMaxf)) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED ; t = (xMaxf); } Y0 = (jint)(Y0 + ((jdouble)(t - X0)*(Y1 - Y0 )) / (X1 - X0)); X0 = (jint)t; } } while (0); if (res == CRES_INVISIBLE ) break; do { jdouble t; res = CRES_NOT_CLIPPED; if (X1 < ( xMinf) || X1 > (xMaxf)) { if (X1 < (xMinf)) { if (X0 < (xMinf)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (xMinf); } else { if (X0 > (xMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (xMaxf); } Y1 = (jint )(Y1 + ((jdouble)(t - X1)*(Y0 - Y1)) / (X0 - X1)); X1 = (jint )t; } } while (0); if (res == CRES_INVISIBLE) break; } if ((( X0^X1) | (Y0^Y1)) == 0) { if (pixelInfo[0] == 0) { pixelInfo[ 0] = 1; pixelInfo[1] = X0; pixelInfo[2] = Y0; pixelInfo[3] = X0 ; pixelInfo[4] = Y0; hnd->dhnd->pDrawPixel(hnd->dhnd , X0, Y0); } else if ((X0 != pixelInfo[3] || Y0 != pixelInfo[ 4]) && (X0 != pixelInfo[1] || Y0 != pixelInfo[2])) { hnd ->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); pixelInfo[3] = X0; pixelInfo[4] = Y0; } break; } if (pixelInfo[0] && ((pixelInfo[1] == X0 && pixelInfo[2] == Y0) || (pixelInfo [3] == X0 && pixelInfo[4] == Y0))) { hnd->dhnd-> pDrawPixel(hnd->dhnd, X0, Y0); } hnd->dhnd->pDrawLine (hnd->dhnd, X0, Y0, X1, Y1); if (pixelInfo[0] == 0) { pixelInfo [0] = 1; pixelInfo[1] = X0; pixelInfo[2] = Y0; pixelInfo[3] = X0; pixelInfo[4] = Y0; } if ((pixelInfo[1] == X1 && pixelInfo [2] == Y1) || (pixelInfo[3] == X1 && pixelInfo[4] == Y1 )) { hnd->dhnd->pDrawPixel(hnd->dhnd, X1, Y1); } pixelInfo [3] = X1; pixelInfo[4] = Y1; } while(0) \ | |||
| 115 | do { \ | |||
| 116 | jint X0 = (fX0) >> MDP_PREC10; \ | |||
| 117 | jint Y0 = (fY0) >> MDP_PREC10; \ | |||
| 118 | jint X1 = (fX1) >> MDP_PREC10; \ | |||
| 119 | jint Y1 = (fY1) >> MDP_PREC10; \ | |||
| 120 | jint res; \ | |||
| 121 | \ | |||
| 122 | /* Checking bounds and clipping if necessary. \ | |||
| 123 | * REMIND: It's temporary solution to avoid OOB in rendering code. \ | |||
| 124 | * Current approach uses float equations which are unreliable for \ | |||
| 125 | * clipping and makes assumptions about the line biases of the \ | |||
| 126 | * rendering algorithm. Also, clipping code should be moved down \ | |||
| 127 | * into only those output renderers that need it. \ | |||
| 128 | */ \ | |||
| 129 | if (checkBounds) { \ | |||
| 130 | jfloat xMinf = hnd->dhnd->xMinf + 0.5f; \ | |||
| 131 | jfloat yMinf = hnd->dhnd->yMinf + 0.5f; \ | |||
| 132 | jfloat xMaxf = hnd->dhnd->xMaxf + 0.5f; \ | |||
| 133 | jfloat yMaxf = hnd->dhnd->yMaxf + 0.5f; \ | |||
| 134 | TESTANDCLIP(yMinf, yMaxf, Y0, X0, Y1, X1, jint, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (Y0 < (yMinf) || Y0 > (yMaxf)) { if (Y0 < (yMinf)) { if (Y1 < (yMinf )) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (yMinf); } else { if (Y1 > (yMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (yMaxf); } X0 = (jint )(X0 + ((jdouble)(t - Y0)*(X1 - X0)) / (Y1 - Y0)); Y0 = (jint )t; } } while (0); \ | |||
| 135 | if (res == CRES_INVISIBLE) break; \ | |||
| 136 | TESTANDCLIP(yMinf, yMaxf, Y1, X1, Y0, X0, jint, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (Y1 < (yMinf) || Y1 > (yMaxf)) { if (Y1 < (yMinf)) { if (Y0 < (yMinf )) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (yMinf); } else { if (Y0 > (yMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (yMaxf); } X1 = (jint )(X1 + ((jdouble)(t - Y1)*(X0 - X1)) / (Y0 - Y1)); Y1 = (jint )t; } } while (0); \ | |||
| 137 | if (res == CRES_INVISIBLE) break; \ | |||
| 138 | TESTANDCLIP(xMinf, xMaxf, X0, Y0, X1, Y1, jint, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (X0 < (xMinf) || X0 > (xMaxf)) { if (X0 < (xMinf)) { if (X1 < (xMinf )) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (xMinf); } else { if (X1 > (xMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (xMaxf); } Y0 = (jint )(Y0 + ((jdouble)(t - X0)*(Y1 - Y0)) / (X1 - X0)); X0 = (jint )t; } } while (0); \ | |||
| 139 | if (res == CRES_INVISIBLE) break; \ | |||
| 140 | TESTANDCLIP(xMinf, xMaxf, X1, Y1, X0, Y0, jint, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (X1 < (xMinf) || X1 > (xMaxf)) { if (X1 < (xMinf)) { if (X0 < (xMinf )) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (xMinf); } else { if (X0 > (xMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (xMaxf); } Y1 = (jint )(Y1 + ((jdouble)(t - X1)*(Y0 - Y1)) / (X0 - X1)); X1 = (jint )t; } } while (0); \ | |||
| 141 | if (res == CRES_INVISIBLE) break; \ | |||
| 142 | } \ | |||
| 143 | \ | |||
| 144 | /* Handling lines having just one pixel */ \ | |||
| 145 | if (((X0^X1) | (Y0^Y1)) == 0) { \ | |||
| 146 | if (pixelInfo[0] == 0) { \ | |||
| 147 | pixelInfo[0] = 1; \ | |||
| 148 | pixelInfo[1] = X0; \ | |||
| 149 | pixelInfo[2] = Y0; \ | |||
| 150 | pixelInfo[3] = X0; \ | |||
| 151 | pixelInfo[4] = Y0; \ | |||
| 152 | hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \ | |||
| 153 | } else if ((X0 != pixelInfo[3] || Y0 != pixelInfo[4]) && \ | |||
| 154 | (X0 != pixelInfo[1] || Y0 != pixelInfo[2])) { \ | |||
| 155 | hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \ | |||
| 156 | pixelInfo[3] = X0; \ | |||
| 157 | pixelInfo[4] = Y0; \ | |||
| 158 | } \ | |||
| 159 | break; \ | |||
| 160 | } \ | |||
| 161 | \ | |||
| 162 | if (pixelInfo[0] && \ | |||
| 163 | ((pixelInfo[1] == X0 && pixelInfo[2] == Y0) || \ | |||
| 164 | (pixelInfo[3] == X0 && pixelInfo[4] == Y0))) \ | |||
| 165 | { \ | |||
| 166 | hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \ | |||
| 167 | } \ | |||
| 168 | \ | |||
| 169 | hnd->dhnd->pDrawLine(hnd->dhnd, X0, Y0, X1, Y1); \ | |||
| 170 | \ | |||
| 171 | if (pixelInfo[0] == 0) { \ | |||
| 172 | pixelInfo[0] = 1; \ | |||
| 173 | pixelInfo[1] = X0; \ | |||
| 174 | pixelInfo[2] = Y0; \ | |||
| 175 | pixelInfo[3] = X0; \ | |||
| 176 | pixelInfo[4] = Y0; \ | |||
| 177 | } \ | |||
| 178 | \ | |||
| 179 | /* Switch on last pixel of the line if it was already \ | |||
| 180 | * drawn during rendering of the previous segments \ | |||
| 181 | */ \ | |||
| 182 | if ((pixelInfo[1] == X1 && pixelInfo[2] == Y1) || \ | |||
| 183 | (pixelInfo[3] == X1 && pixelInfo[4] == Y1)) \ | |||
| 184 | { \ | |||
| 185 | hnd->dhnd->pDrawPixel(hnd->dhnd, X1, Y1); \ | |||
| 186 | } \ | |||
| 187 | pixelInfo[3] = X1; \ | |||
| 188 | pixelInfo[4] = Y1; \ | |||
| 189 | } while(0) | |||
| 190 | ||||
| 191 | #define PROCESS_POINT(hnd, fX, fY, checkBounds, pixelInfo)do { jint X_ = (fX)>> 10; jint Y_ = (fY)>> 10; if (checkBounds && (hnd->dhnd->yMin > Y_ || hnd ->dhnd->yMax <= Y_ || hnd->dhnd->xMin > X_ || hnd->dhnd->xMax <= X_)) break; if (pixelInfo[0] == 0 ) { pixelInfo[0] = 1; pixelInfo[1] = X_; pixelInfo[2] = Y_; pixelInfo [3] = X_; pixelInfo[4] = Y_; hnd->dhnd->pDrawPixel(hnd-> dhnd, X_, Y_); } else if ((X_ != pixelInfo[3] || Y_ != pixelInfo [4]) && (X_ != pixelInfo[1] || Y_ != pixelInfo[2])) { hnd->dhnd->pDrawPixel(hnd->dhnd, X_, Y_); pixelInfo [3] = X_; pixelInfo[4] = Y_; } } while(0) \ | |||
| 192 | do { \ | |||
| 193 | jint X_ = (fX)>> MDP_PREC10; \ | |||
| 194 | jint Y_ = (fY)>> MDP_PREC10; \ | |||
| 195 | if (checkBounds && \ | |||
| 196 | (hnd->dhnd->yMin > Y_ || \ | |||
| 197 | hnd->dhnd->yMax <= Y_ || \ | |||
| 198 | hnd->dhnd->xMin > X_ || \ | |||
| 199 | hnd->dhnd->xMax <= X_)) break; \ | |||
| 200 | /* \ | |||
| 201 | * (X_,Y_) should be inside boundaries \ | |||
| 202 | * \ | |||
| 203 | * assert(hnd->dhnd->yMin <= Y_ && \ | |||
| 204 | * hnd->dhnd->yMax > Y_ && \ | |||
| 205 | * hnd->dhnd->xMin <= X_ && \ | |||
| 206 | * hnd->dhnd->xMax > X_); \ | |||
| 207 | * \ | |||
| 208 | */ \ | |||
| 209 | if (pixelInfo[0] == 0) { \ | |||
| 210 | pixelInfo[0] = 1; \ | |||
| 211 | pixelInfo[1] = X_; \ | |||
| 212 | pixelInfo[2] = Y_; \ | |||
| 213 | pixelInfo[3] = X_; \ | |||
| 214 | pixelInfo[4] = Y_; \ | |||
| 215 | hnd->dhnd->pDrawPixel(hnd->dhnd, X_, Y_); \ | |||
| 216 | } else if ((X_ != pixelInfo[3] || Y_ != pixelInfo[4]) && \ | |||
| 217 | (X_ != pixelInfo[1] || Y_ != pixelInfo[2])) { \ | |||
| 218 | hnd->dhnd->pDrawPixel(hnd->dhnd, X_, Y_); \ | |||
| 219 | pixelInfo[3] = X_; \ | |||
| 220 | pixelInfo[4] = Y_; \ | |||
| 221 | } \ | |||
| 222 | } while(0) | |||
| 223 | ||||
| 224 | ||||
| 225 | /* | |||
| 226 | * Constants for the forward differencing | |||
| 227 | * of the cubic and quad curves | |||
| 228 | */ | |||
| 229 | ||||
| 230 | /* Maximum size of the cubic curve (calculated as the size of the bounding box | |||
| 231 | * of the control points) which could be rendered without splitting | |||
| 232 | */ | |||
| 233 | #define MAX_CUB_SIZE256 256 | |||
| 234 | ||||
| 235 | /* Maximum size of the quad curve (calculated as the size of the bounding box | |||
| 236 | * of the control points) which could be rendered without splitting | |||
| 237 | */ | |||
| 238 | #define MAX_QUAD_SIZE1024 1024 | |||
| 239 | ||||
| 240 | /* Default power of 2 steps used in the forward differencing. Here DF prefix | |||
| 241 | * stands for DeFault. Constants below are used as initial values for the | |||
| 242 | * adaptive forward differencing algorithm. | |||
| 243 | */ | |||
| 244 | #define DF_CUB_STEPS3 3 | |||
| 245 | #define DF_QUAD_STEPS2 2 | |||
| 246 | ||||
| 247 | /* Shift of the current point of the curve for preparing to the midpoint | |||
| 248 | * rounding | |||
| 249 | */ | |||
| 250 | #define DF_CUB_SHIFT(7 + 3*3 - 10) (FWD_PREC7 + DF_CUB_STEPS3*3 - MDP_PREC10) | |||
| 251 | #define DF_QUAD_SHIFT(7 + 2*2 - 10) (FWD_PREC7 + DF_QUAD_STEPS2*2 - MDP_PREC10) | |||
| 252 | ||||
| 253 | /* Default amount of steps of the forward differencing */ | |||
| 254 | #define DF_CUB_COUNT(1<<3) (1<<DF_CUB_STEPS3) | |||
| 255 | #define DF_QUAD_COUNT(1<<2) (1<<DF_QUAD_STEPS2) | |||
| 256 | ||||
| 257 | /* Default boundary constants used to check the necessity of the restepping */ | |||
| 258 | #define DF_CUB_DEC_BND(1<<(3*3 + 7 + 2)) (1<<(DF_CUB_STEPS3*3 + FWD_PREC7 + 2)) | |||
| 259 | #define DF_CUB_INC_BND(1<<(3*3 + 7 - 1)) (1<<(DF_CUB_STEPS3*3 + FWD_PREC7 - 1)) | |||
| 260 | #define DF_QUAD_DEC_BND(1<<(2*2 + 7 + 2)) (1<<(DF_QUAD_STEPS2*2 + FWD_PREC7 + 2)) | |||
| 261 | ||||
| 262 | /* Multiplyers for the coefficients of the polynomial form of the cubic and | |||
| 263 | * quad curves representation | |||
| 264 | */ | |||
| 265 | #define CUB_A_SHIFT7 FWD_PREC7 | |||
| 266 | #define CUB_B_SHIFT(3 + 7 + 1) (DF_CUB_STEPS3 + FWD_PREC7 + 1) | |||
| 267 | #define CUB_C_SHIFT(3*2 + 7) (DF_CUB_STEPS3*2 + FWD_PREC7) | |||
| 268 | ||||
| 269 | #define CUB_A_MDP_MULT(1<<7) (1<<CUB_A_SHIFT7) | |||
| 270 | #define CUB_B_MDP_MULT(1<<(3 + 7 + 1)) (1<<CUB_B_SHIFT(3 + 7 + 1)) | |||
| 271 | #define CUB_C_MDP_MULT(1<<(3*2 + 7)) (1<<CUB_C_SHIFT(3*2 + 7)) | |||
| 272 | ||||
| 273 | #define QUAD_A_SHIFT7 FWD_PREC7 | |||
| 274 | #define QUAD_B_SHIFT(2 + 7) (DF_QUAD_STEPS2 + FWD_PREC7) | |||
| 275 | ||||
| 276 | #define QUAD_A_MDP_MULT(1<<7) (1<<QUAD_A_SHIFT7) | |||
| 277 | #define QUAD_B_MDP_MULT(1<<(2 + 7)) (1<<QUAD_B_SHIFT(2 + 7)) | |||
| 278 | ||||
| 279 | #define CALC_MAX(MAX, X)((MAX)=((X)>(MAX))?(X):(MAX)) ((MAX)=((X)>(MAX))?(X):(MAX)) | |||
| 280 | #define CALC_MIN(MIN, X)((MIN)=((X)<(MIN))?(X):(MIN)) ((MIN)=((X)<(MIN))?(X):(MIN)) | |||
| 281 | #define MAX(MAX, X)(((X)>(MAX))?(X):(MAX)) (((X)>(MAX))?(X):(MAX)) | |||
| 282 | #define MIN(MIN, X)(((X)<(MIN))?(X):(MIN)) (((X)<(MIN))?(X):(MIN)) | |||
| 283 | #define ABS32(X)(((X)^((X)>>31))-((X)>>31)) (((X)^((X)>>31))-((X)>>31)) | |||
| 284 | #define SIGN32(X)((X) >> 31) | ((juint)(-(X)) >> 31) ((X) >> 31) | ((juint)(-(X)) >> 31) | |||
| 285 | ||||
| 286 | /* Boundaries used for clipping large path segments (those are inside | |||
| 287 | * [UPPER/LOWER]_BND boundaries) | |||
| 288 | */ | |||
| 289 | #define UPPER_OUT_BND(1 << (30 - 10)) (1 << (30 - MDP_PREC10)) | |||
| 290 | #define LOWER_OUT_BND(-(1 << (30 - 10))) (-UPPER_OUT_BND(1 << (30 - 10))) | |||
| 291 | ||||
| 292 | #define ADJUST(X, LBND, UBND)do { if ((X) < (LBND)) { (X) = (LBND); } else if ((X) > UBND) { (X) = (UBND); } } while(0) \ | |||
| 293 | do { \ | |||
| 294 | if ((X) < (LBND)) { \ | |||
| 295 | (X) = (LBND); \ | |||
| 296 | } else if ((X) > UBND) { \ | |||
| 297 | (X) = (UBND); \ | |||
| 298 | } \ | |||
| 299 | } while(0) | |||
| 300 | ||||
| 301 | /* Following constants are used for providing open boundaries of the intervals | |||
| 302 | */ | |||
| 303 | #define EPSFX1 1 | |||
| 304 | #define EPSF(((jfloat)1)/(1<<10)) (((jfloat)EPSFX1)/MDP_MULT(1<<10)) | |||
| 305 | ||||
| 306 | /* Calculation boundary. It is used for switching to the more slow but allowing | |||
| 307 | * larger input values method of calculation of the initial values of the scan | |||
| 308 | * converted line segments inside the FillPolygon. | |||
| 309 | */ | |||
| 310 | #define CALC_BND(1 << (30 - 10)) (1 << (30 - MDP_PREC10)) | |||
| 311 | ||||
| 312 | /* Clipping macros for drawing and filling algorithms */ | |||
| 313 | ||||
| 314 | #define CLIP(a1, b1, a2, b2, t)(b1 + ((jdouble)(t - a1)*(b2 - b1)) / (a2 - a1)) \ | |||
| 315 | (b1 + ((jdouble)(t - a1)*(b2 - b1)) / (a2 - a1)) | |||
| 316 | ||||
| 317 | enum { | |||
| 318 | CRES_MIN_CLIPPED, | |||
| 319 | CRES_MAX_CLIPPED, | |||
| 320 | CRES_NOT_CLIPPED, | |||
| 321 | CRES_INVISIBLE | |||
| 322 | }; | |||
| 323 | ||||
| 324 | #define IS_CLIPPED(res)(res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED) (res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED) | |||
| 325 | ||||
| 326 | #define TESTANDCLIP(LINE_MIN, LINE_MAX, a1, b1, a2, b2, TYPE, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (a1 < (LINE_MIN ) || a1 > (LINE_MAX)) { if (a1 < (LINE_MIN)) { if (a2 < (LINE_MIN)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (LINE_MIN); } else { if (a2 > (LINE_MAX)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (LINE_MAX); } b1 = (TYPE )(b1 + ((jdouble)(t - a1)*(b2 - b1)) / (a2 - a1)); a1 = (TYPE )t; } } while (0) \ | |||
| 327 | do { \ | |||
| 328 | jdouble t; \ | |||
| 329 | res = CRES_NOT_CLIPPED; \ | |||
| 330 | if (a1 < (LINE_MIN) || a1 > (LINE_MAX)) { \ | |||
| 331 | if (a1 < (LINE_MIN)) { \ | |||
| 332 | if (a2 < (LINE_MIN)) { \ | |||
| 333 | res = CRES_INVISIBLE; \ | |||
| 334 | break; \ | |||
| 335 | }; \ | |||
| 336 | res = CRES_MIN_CLIPPED; \ | |||
| 337 | t = (LINE_MIN); \ | |||
| 338 | } else { \ | |||
| 339 | if (a2 > (LINE_MAX)) { \ | |||
| 340 | res = CRES_INVISIBLE; \ | |||
| 341 | break; \ | |||
| 342 | }; \ | |||
| 343 | res = CRES_MAX_CLIPPED; \ | |||
| 344 | t = (LINE_MAX); \ | |||
| 345 | } \ | |||
| 346 | b1 = (TYPE)CLIP(a1, b1, a2, b2, t)(b1 + ((jdouble)(t - a1)*(b2 - b1)) / (a2 - a1)); \ | |||
| 347 | a1 = (TYPE)t; \ | |||
| 348 | } \ | |||
| 349 | } while (0) | |||
| 350 | ||||
| 351 | /* Following macro is used for clipping and clumping filled shapes. | |||
| 352 | * An example of this process is shown on the picture below: | |||
| 353 | * ----+ ----+ | |||
| 354 | * |/ | |/ | | |||
| 355 | * + | + | | |||
| 356 | * /| | I | | |||
| 357 | * / | | I | | |||
| 358 | * | | | ===> I | | |||
| 359 | * \ | | I | | |||
| 360 | * \| | I | | |||
| 361 | * + | + | | |||
| 362 | * |\ | |\ | | |||
| 363 | * | ----+ | ----+ | |||
| 364 | * boundary boundary | |||
| 365 | * | |||
| 366 | * We can only perform clipping in case of right side of the output area | |||
| 367 | * because all segments passed out the right boundary don't influence on the | |||
| 368 | * result of scan conversion algorithm (it correctly handles half open | |||
| 369 | * contours). | |||
| 370 | * | |||
| 371 | */ | |||
| 372 | #define CLIPCLAMP(LINE_MIN, LINE_MAX, a1, b1, a2, b2, a3, b3, TYPE, res)do { a3 = a1; b3 = b1; do { jdouble t; res = CRES_NOT_CLIPPED ; if (a1 < (LINE_MIN) || a1 > (LINE_MAX)) { if (a1 < (LINE_MIN)) { if (a2 < (LINE_MIN)) { res = CRES_INVISIBLE ; break; }; res = CRES_MIN_CLIPPED; t = (LINE_MIN); } else { if (a2 > (LINE_MAX)) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED; t = (LINE_MAX); } b1 = (TYPE)(b1 + ((jdouble )(t - a1)*(b2 - b1)) / (a2 - a1)); a1 = (TYPE)t; } } while (0 ); if (res == CRES_MIN_CLIPPED) { a3 = a1; } else if (res == CRES_MAX_CLIPPED ) { a3 = a1; res = CRES_MAX_CLIPPED; } else if (res == CRES_INVISIBLE ) { if (a1 > LINE_MAX) { res = CRES_INVISIBLE; } else { a1 = (TYPE)LINE_MIN; a2 = (TYPE)LINE_MIN; res = CRES_NOT_CLIPPED ; } } } while (0) \ | |||
| 373 | do { \ | |||
| 374 | a3 = a1; \ | |||
| 375 | b3 = b1; \ | |||
| 376 | TESTANDCLIP(LINE_MIN, LINE_MAX, a1, b1, a2, b2, TYPE, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (a1 < (LINE_MIN ) || a1 > (LINE_MAX)) { if (a1 < (LINE_MIN)) { if (a2 < (LINE_MIN)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (LINE_MIN); } else { if (a2 > (LINE_MAX)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (LINE_MAX); } b1 = (TYPE )(b1 + ((jdouble)(t - a1)*(b2 - b1)) / (a2 - a1)); a1 = (TYPE )t; } } while (0); \ | |||
| 377 | if (res == CRES_MIN_CLIPPED) { \ | |||
| 378 | a3 = a1; \ | |||
| 379 | } else if (res == CRES_MAX_CLIPPED) { \ | |||
| 380 | a3 = a1; \ | |||
| 381 | res = CRES_MAX_CLIPPED; \ | |||
| 382 | } else if (res == CRES_INVISIBLE) { \ | |||
| 383 | if (a1 > LINE_MAX) { \ | |||
| 384 | res = CRES_INVISIBLE; \ | |||
| 385 | } else { \ | |||
| 386 | a1 = (TYPE)LINE_MIN; \ | |||
| 387 | a2 = (TYPE)LINE_MIN; \ | |||
| 388 | res = CRES_NOT_CLIPPED; \ | |||
| 389 | } \ | |||
| 390 | } \ | |||
| 391 | } while (0) | |||
| 392 | ||||
| 393 | /* Following macro is used for solving quadratic equations: | |||
| 394 | * A*t^2 + B*t + C = 0 | |||
| 395 | * in (0,1) range. That means we put to the RES the only roots which | |||
| 396 | * belongs to the (0,1) range. Note: 0 and 1 are not included. | |||
| 397 | * See solveQuadratic method in | |||
| 398 | * src/share/classes/java/awt/geom/QuadCurve2D.java | |||
| 399 | * for more info about calculations | |||
| 400 | */ | |||
| 401 | #define SOLVEQUADINRANGE(A,B,C,RES,RCNT)do { double param; if ((A) != 0) { double d = (B)*(B) - 4*(A) *(C); double q; if (d < 0) { break; } d = sqrt(d); if ((B) < 0) { d = -d; } q = ((B) + d) / -2.0; param = q/(A); if ( param < 1.0 && param > 0.0) { (RES)[(RCNT)++] = param; } if (d == 0 || q == 0) { break; } param = (C)/q; if ( param < 1.0 && param > 0.0) { (RES)[(RCNT)++] = param; } } else { if ((B) == 0) { break; } param = -(C)/(B); if (param < 1.0 && param > 0.0) { (RES)[(RCNT) ++] = param; } } } while(0) \ | |||
| 402 | do { \ | |||
| 403 | double param; \ | |||
| 404 | if ((A) != 0) { \ | |||
| 405 | /* Calculating roots of the following equation \ | |||
| 406 | * A*t^2 + B*t + C = 0 \ | |||
| 407 | */ \ | |||
| 408 | double d = (B)*(B) - 4*(A)*(C); \ | |||
| 409 | double q; \ | |||
| 410 | if (d < 0) { \ | |||
| 411 | break; \ | |||
| 412 | } \ | |||
| 413 | d = sqrt(d); \ | |||
| 414 | /* For accuracy, calculate one root using: \ | |||
| 415 | * (-B +/- d) / 2*A \ | |||
| 416 | * and the other using: \ | |||
| 417 | * 2*C / (-B +/- d) \ | |||
| 418 | * Choose the sign of the +/- so that B+D gets larger \ | |||
| 419 | * in magnitude \ | |||
| 420 | */ \ | |||
| 421 | if ((B) < 0) { \ | |||
| 422 | d = -d; \ | |||
| 423 | } \ | |||
| 424 | q = ((B) + d) / -2.0; \ | |||
| 425 | param = q/(A); \ | |||
| 426 | if (param < 1.0 && param > 0.0) { \ | |||
| 427 | (RES)[(RCNT)++] = param; \ | |||
| 428 | } \ | |||
| 429 | if (d == 0 || q == 0) { \ | |||
| 430 | break; \ | |||
| 431 | } \ | |||
| 432 | param = (C)/q; \ | |||
| 433 | if (param < 1.0 && param > 0.0) { \ | |||
| 434 | (RES)[(RCNT)++] = param; \ | |||
| 435 | } \ | |||
| 436 | } else { \ | |||
| 437 | /* Calculating root of the following equation \ | |||
| 438 | * B*t + C = 0 \ | |||
| 439 | */ \ | |||
| 440 | if ((B) == 0) { \ | |||
| 441 | break; \ | |||
| 442 | } \ | |||
| 443 | param = -(C)/(B); \ | |||
| 444 | if (param < 1.0 && param > 0.0) { \ | |||
| 445 | (RES)[(RCNT)++] = param; \ | |||
| 446 | } \ | |||
| 447 | } \ | |||
| 448 | } while(0) | |||
| 449 | ||||
| 450 | /* Drawing line with subpixel endpoints | |||
| 451 | * | |||
| 452 | * (x1, y1), (x2, y2) - fixed point coordinates of the endpoints | |||
| 453 | * with MDP_PREC bits for the fractional part | |||
| 454 | * | |||
| 455 | * pixelInfo - structure which keeps drawing info for avoiding | |||
| 456 | * multiple drawing at the same position on the | |||
| 457 | * screen (required for the XOR mode of drawing) | |||
| 458 | * | |||
| 459 | * pixelInfo[0] - state of the drawing | |||
| 460 | * 0 - no pixel drawn between | |||
| 461 | * moveTo/close of the path | |||
| 462 | * 1 - there are drawn pixels | |||
| 463 | * | |||
| 464 | * pixelInfo[1,2] - first pixel of the path | |||
| 465 | * between moveTo/close of the | |||
| 466 | * path | |||
| 467 | * | |||
| 468 | * pixelInfo[3,4] - last drawn pixel between | |||
| 469 | * moveTo/close of the path | |||
| 470 | * | |||
| 471 | * checkBounds - flag showing necessity of checking the clip | |||
| 472 | * | |||
| 473 | */ | |||
| 474 | void ProcessFixedLine(ProcessHandler* hnd,jint x1,jint y1,jint x2,jint y2, | |||
| 475 | jint* pixelInfo,jboolean checkBounds, | |||
| 476 | jboolean endSubPath) | |||
| 477 | { | |||
| 478 | /* Checking if line is inside a (X,Y),(X+MDP_MULT,Y+MDP_MULT) box */ | |||
| 479 | jint c = ((x1 ^ x2) | (y1 ^ y2)); | |||
| 480 | jint rx1, ry1, rx2, ry2; | |||
| 481 | if ((c & MDP_W_MASK(-(1<<10))) == 0) { | |||
| 482 | /* Checking for the segments with integer coordinates having | |||
| 483 | * the same start and end points | |||
| 484 | */ | |||
| 485 | if (c == 0) { | |||
| 486 | PROCESS_POINT(hnd, x1 + MDP_HALF_MULT, y1 + MDP_HALF_MULT,do { jint X_ = (x1 + ((1<<10) >> 1))>> 10; jint Y_ = (y1 + ((1<<10) >> 1))>> 10; if (checkBounds && (hnd->dhnd->yMin > Y_ || hnd->dhnd-> yMax <= Y_ || hnd->dhnd->xMin > X_ || hnd->dhnd ->xMax <= X_)) break; if (pixelInfo[0] == 0) { pixelInfo [0] = 1; pixelInfo[1] = X_; pixelInfo[2] = Y_; pixelInfo[3] = X_; pixelInfo[4] = Y_; hnd->dhnd->pDrawPixel(hnd->dhnd , X_, Y_); } else if ((X_ != pixelInfo[3] || Y_ != pixelInfo[ 4]) && (X_ != pixelInfo[1] || Y_ != pixelInfo[2])) { hnd ->dhnd->pDrawPixel(hnd->dhnd, X_, Y_); pixelInfo[3] = X_; pixelInfo[4] = Y_; } } while(0) | |||
| 487 | checkBounds, pixelInfo)do { jint X_ = (x1 + ((1<<10) >> 1))>> 10; jint Y_ = (y1 + ((1<<10) >> 1))>> 10; if (checkBounds && (hnd->dhnd->yMin > Y_ || hnd->dhnd-> yMax <= Y_ || hnd->dhnd->xMin > X_ || hnd->dhnd ->xMax <= X_)) break; if (pixelInfo[0] == 0) { pixelInfo [0] = 1; pixelInfo[1] = X_; pixelInfo[2] = Y_; pixelInfo[3] = X_; pixelInfo[4] = Y_; hnd->dhnd->pDrawPixel(hnd->dhnd , X_, Y_); } else if ((X_ != pixelInfo[3] || Y_ != pixelInfo[ 4]) && (X_ != pixelInfo[1] || Y_ != pixelInfo[2])) { hnd ->dhnd->pDrawPixel(hnd->dhnd, X_, Y_); pixelInfo[3] = X_; pixelInfo[4] = Y_; } } while(0); | |||
| 488 | } | |||
| 489 | return; | |||
| 490 | } | |||
| 491 | ||||
| 492 | if (x1 == x2 || y1 == y2) { | |||
| 493 | rx1 = x1 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 494 | rx2 = x2 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 495 | ry1 = y1 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 496 | ry2 = y2 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 497 | } else { | |||
| 498 | /* Neither dx nor dy can be zero because of the check above */ | |||
| 499 | jint dx = x2 - x1; | |||
| 500 | jint dy = y2 - y1; | |||
| 501 | ||||
| 502 | /* Floor of x1, y1, x2, y2 */ | |||
| 503 | jint fx1 = x1 & MDP_W_MASK(-(1<<10)); | |||
| 504 | jint fy1 = y1 & MDP_W_MASK(-(1<<10)); | |||
| 505 | jint fx2 = x2 & MDP_W_MASK(-(1<<10)); | |||
| 506 | jint fy2 = y2 & MDP_W_MASK(-(1<<10)); | |||
| 507 | ||||
| 508 | /* Processing first endpoint */ | |||
| 509 | if (fx1 == x1 || fy1 == y1) { | |||
| 510 | /* Adding MDP_HALF_MULT to the [xy]1 if f[xy]1 == [xy]1 will not | |||
| 511 | * affect the result | |||
| 512 | */ | |||
| 513 | rx1 = x1 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 514 | ry1 = y1 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 515 | } else { | |||
| 516 | /* Boundary at the direction from (x1,y1) to (x2,y2) */ | |||
| 517 | jint bx1 = (x1 < x2) ? fx1 + MDP_MULT(1<<10) : fx1; | |||
| 518 | jint by1 = (y1 < y2) ? fy1 + MDP_MULT(1<<10) : fy1; | |||
| 519 | ||||
| 520 | /* intersection with column bx1 */ | |||
| 521 | jint cross = y1 + ((bx1 - x1)*dy)/dx; | |||
| 522 | if (cross >= fy1 && cross <= fy1 + MDP_MULT(1<<10)) { | |||
| 523 | rx1 = bx1; | |||
| 524 | ry1 = cross + MDP_HALF_MULT((1<<10) >> 1); | |||
| 525 | } else { | |||
| 526 | /* intersection with row by1 */ | |||
| 527 | cross = x1 + ((by1 - y1)*dx)/dy; | |||
| 528 | rx1 = cross + MDP_HALF_MULT((1<<10) >> 1); | |||
| 529 | ry1 = by1; | |||
| 530 | } | |||
| 531 | } | |||
| 532 | ||||
| 533 | /* Processing second endpoint */ | |||
| 534 | if (fx2 == x2 || fy2 == y2) { | |||
| 535 | /* Adding MDP_HALF_MULT to the [xy]2 if f[xy]2 == [xy]2 will not | |||
| 536 | * affect the result | |||
| 537 | */ | |||
| 538 | rx2 = x2 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 539 | ry2 = y2 + MDP_HALF_MULT((1<<10) >> 1); | |||
| 540 | } else { | |||
| 541 | /* Boundary at the direction from (x2,y2) to (x1,y1) */ | |||
| 542 | jint bx2 = (x1 > x2) ? fx2 + MDP_MULT(1<<10) : fx2; | |||
| 543 | jint by2 = (y1 > y2) ? fy2 + MDP_MULT(1<<10) : fy2; | |||
| 544 | ||||
| 545 | /* intersection with column bx2 */ | |||
| 546 | jint cross = y2 + ((bx2 - x2)*dy)/dx; | |||
| 547 | if (cross >= fy2 && cross <= fy2 + MDP_MULT(1<<10)) { | |||
| 548 | rx2 = bx2; | |||
| 549 | ry2 = cross + MDP_HALF_MULT((1<<10) >> 1); | |||
| 550 | } else { | |||
| 551 | /* intersection with row by2 */ | |||
| 552 | cross = x2 + ((by2 - y2)*dx)/dy; | |||
| 553 | rx2 = cross + MDP_HALF_MULT((1<<10) >> 1); | |||
| 554 | ry2 = by2; | |||
| 555 | } | |||
| 556 | } | |||
| 557 | } | |||
| 558 | ||||
| 559 | PROCESS_LINE(hnd, rx1, ry1, rx2, ry2, checkBounds, pixelInfo)do { jint X0 = (rx1) >> 10; jint Y0 = (ry1) >> 10 ; jint X1 = (rx2) >> 10; jint Y1 = (ry2) >> 10; jint res; if (checkBounds) { jfloat xMinf = hnd->dhnd->xMinf + 0.5f; jfloat yMinf = hnd->dhnd->yMinf + 0.5f; jfloat xMaxf = hnd->dhnd->xMaxf + 0.5f; jfloat yMaxf = hnd-> dhnd->yMaxf + 0.5f; do { jdouble t; res = CRES_NOT_CLIPPED ; if (Y0 < (yMinf) || Y0 > (yMaxf)) { if (Y0 < (yMinf )) { if (Y1 < (yMinf)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (yMinf); } else { if (Y1 > (yMaxf )) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED; t = (yMaxf); } X0 = (jint)(X0 + ((jdouble)(t - Y0)*(X1 - X0)) / (Y1 - Y0)); Y0 = (jint)t; } } while (0); if (res == CRES_INVISIBLE ) break; do { jdouble t; res = CRES_NOT_CLIPPED; if (Y1 < ( yMinf) || Y1 > (yMaxf)) { if (Y1 < (yMinf)) { if (Y0 < (yMinf)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (yMinf); } else { if (Y0 > (yMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (yMaxf); } X1 = (jint )(X1 + ((jdouble)(t - Y1)*(X0 - X1)) / (Y0 - Y1)); Y1 = (jint )t; } } while (0); if (res == CRES_INVISIBLE) break; do { jdouble t; res = CRES_NOT_CLIPPED; if (X0 < (xMinf) || X0 > (xMaxf )) { if (X0 < (xMinf)) { if (X1 < (xMinf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MIN_CLIPPED; t = (xMinf); } else { if ( X1 > (xMaxf)) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED ; t = (xMaxf); } Y0 = (jint)(Y0 + ((jdouble)(t - X0)*(Y1 - Y0 )) / (X1 - X0)); X0 = (jint)t; } } while (0); if (res == CRES_INVISIBLE ) break; do { jdouble t; res = CRES_NOT_CLIPPED; if (X1 < ( xMinf) || X1 > (xMaxf)) { if (X1 < (xMinf)) { if (X0 < (xMinf)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (xMinf); } else { if (X0 > (xMaxf)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (xMaxf); } Y1 = (jint )(Y1 + ((jdouble)(t - X1)*(Y0 - Y1)) / (X0 - X1)); X1 = (jint )t; } } while (0); if (res == CRES_INVISIBLE) break; } if ((( X0^X1) | (Y0^Y1)) == 0) { if (pixelInfo[0] == 0) { pixelInfo[ 0] = 1; pixelInfo[1] = X0; pixelInfo[2] = Y0; pixelInfo[3] = X0 ; pixelInfo[4] = Y0; hnd->dhnd->pDrawPixel(hnd->dhnd , X0, Y0); } else if ((X0 != pixelInfo[3] || Y0 != pixelInfo[ 4]) && (X0 != pixelInfo[1] || Y0 != pixelInfo[2])) { hnd ->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); pixelInfo[3] = X0; pixelInfo[4] = Y0; } break; } if (pixelInfo[0] && ((pixelInfo[1] == X0 && pixelInfo[2] == Y0) || (pixelInfo [3] == X0 && pixelInfo[4] == Y0))) { hnd->dhnd-> pDrawPixel(hnd->dhnd, X0, Y0); } hnd->dhnd->pDrawLine (hnd->dhnd, X0, Y0, X1, Y1); if (pixelInfo[0] == 0) { pixelInfo [0] = 1; pixelInfo[1] = X0; pixelInfo[2] = Y0; pixelInfo[3] = X0; pixelInfo[4] = Y0; } if ((pixelInfo[1] == X1 && pixelInfo [2] == Y1) || (pixelInfo[3] == X1 && pixelInfo[4] == Y1 )) { hnd->dhnd->pDrawPixel(hnd->dhnd, X1, Y1); } pixelInfo [3] = X1; pixelInfo[4] = Y1; } while(0); | |||
| 560 | } | |||
| 561 | ||||
| 562 | /* Performing drawing of the monotonic in X and Y quadratic curves with sizes | |||
| 563 | * less than MAX_QUAD_SIZE by using forward differencing method of calculation. | |||
| 564 | * See comments to the DrawMonotonicCubic. | |||
| 565 | */ | |||
| 566 | static void DrawMonotonicQuad(ProcessHandler* hnd, | |||
| 567 | jfloat *coords, | |||
| 568 | jboolean checkBounds, | |||
| 569 | jint* pixelInfo) | |||
| 570 | { | |||
| 571 | jint x0 = (jint)(coords[0]*MDP_MULT(1<<10)); | |||
| 572 | jint y0 = (jint)(coords[1]*MDP_MULT(1<<10)); | |||
| 573 | ||||
| 574 | jint xe = (jint)(coords[4]*MDP_MULT(1<<10)); | |||
| 575 | jint ye = (jint)(coords[5]*MDP_MULT(1<<10)); | |||
| 576 | ||||
| 577 | /* Extracting fractional part of coordinates of first control point */ | |||
| 578 | jint px = (x0 & (~MDP_W_MASK(-(1<<10)))) << DF_QUAD_SHIFT(7 + 2*2 - 10); | |||
| 579 | jint py = (y0 & (~MDP_W_MASK(-(1<<10)))) << DF_QUAD_SHIFT(7 + 2*2 - 10); | |||
| 580 | ||||
| 581 | /* Setting default amount of steps */ | |||
| 582 | jint count = DF_QUAD_COUNT(1<<2); | |||
| 583 | ||||
| 584 | /* Setting default shift for preparing to the midpoint rounding */ | |||
| 585 | jint shift = DF_QUAD_SHIFT(7 + 2*2 - 10); | |||
| 586 | ||||
| 587 | jint ax = (jint)((coords[0] - 2*coords[2] + | |||
| 588 | coords[4])*QUAD_A_MDP_MULT(1<<7)); | |||
| 589 | jint ay = (jint)((coords[1] - 2*coords[3] + | |||
| 590 | coords[5])*QUAD_A_MDP_MULT(1<<7)); | |||
| 591 | ||||
| 592 | jint bx = (jint)((-2*coords[0] + 2*coords[2])*QUAD_B_MDP_MULT(1<<(2 + 7))); | |||
| 593 | jint by = (jint)((-2*coords[1] + 2*coords[3])*QUAD_B_MDP_MULT(1<<(2 + 7))); | |||
| 594 | ||||
| 595 | jint ddpx = 2*ax; | |||
| 596 | jint ddpy = 2*ay; | |||
| 597 | ||||
| 598 | jint dpx = ax + bx; | |||
| 599 | jint dpy = ay + by; | |||
| 600 | ||||
| 601 | jint x1, y1; | |||
| 602 | ||||
| 603 | jint x2 = x0; | |||
| 604 | jint y2 = y0; | |||
| 605 | ||||
| 606 | jint maxDD = MAX(ABS32(ddpx),ABS32(ddpy))((((((ddpy)^((ddpy)>>31))-((ddpy)>>31)))>((((ddpx )^((ddpx)>>31))-((ddpx)>>31))))?((((ddpy)^((ddpy) >>31))-((ddpy)>>31))):((((ddpx)^((ddpx)>>31 ))-((ddpx)>>31)))); | |||
| 607 | jint x0w = x0 & MDP_W_MASK(-(1<<10)); | |||
| 608 | jint y0w = y0 & MDP_W_MASK(-(1<<10)); | |||
| 609 | ||||
| 610 | jint dx = xe - x0; | |||
| 611 | jint dy = ye - y0; | |||
| 612 | ||||
| 613 | /* Perform decreasing step in 2 times if slope of the second forward | |||
| 614 | * difference changes too quickly (more than a pixel per step in X or Y | |||
| 615 | * direction). We can perform adjusting of the step size before the | |||
| 616 | * rendering loop because the curvature of the quad curve remains the same | |||
| 617 | * along all the curve | |||
| 618 | */ | |||
| 619 | while (maxDD > DF_QUAD_DEC_BND(1<<(2*2 + 7 + 2))) { | |||
| 620 | dpx = (dpx<<1) - ax; | |||
| 621 | dpy = (dpy<<1) - ay; | |||
| 622 | count <<= 1; | |||
| 623 | maxDD >>= 2; | |||
| 624 | px <<=2; | |||
| 625 | py <<=2; | |||
| 626 | shift += 2; | |||
| 627 | } | |||
| 628 | ||||
| 629 | while(count-- > 1) { | |||
| 630 | ||||
| 631 | px += dpx; | |||
| 632 | py += dpy; | |||
| 633 | ||||
| 634 | dpx += ddpx; | |||
| 635 | dpy += ddpy; | |||
| 636 | ||||
| 637 | x1 = x2; | |||
| 638 | y1 = y2; | |||
| 639 | ||||
| 640 | x2 = x0w + (px >> shift); | |||
| 641 | y2 = y0w + (py >> shift); | |||
| 642 | ||||
| 643 | /* Checking that we are not running out of the endpoint and bounding | |||
| 644 | * violating coordinate. The check is pretty simple because the curve | |||
| 645 | * passed to the DrawMonotonicQuad already split into the monotonic | |||
| 646 | * in X and Y pieces | |||
| 647 | */ | |||
| 648 | ||||
| 649 | /* Bounding x2 by xe */ | |||
| 650 | if (((xe-x2)^dx) < 0) { | |||
| 651 | x2 = xe; | |||
| 652 | } | |||
| 653 | ||||
| 654 | /* Bounding y2 by ye */ | |||
| 655 | if (((ye-y2)^dy) < 0) { | |||
| 656 | y2 = ye; | |||
| 657 | } | |||
| 658 | ||||
| 659 | hnd->pProcessFixedLine(hnd, x1, y1, x2, y2, pixelInfo, checkBounds, | |||
| 660 | JNI_FALSE0); | |||
| 661 | } | |||
| 662 | ||||
| 663 | /* We are performing one step less than necessary and use actual (xe,ye) | |||
| 664 | * curve's endpoint instead of calculated. This prevent us from accumulated | |||
| 665 | * errors at the last point. | |||
| 666 | */ | |||
| 667 | ||||
| 668 | hnd->pProcessFixedLine(hnd, x2, y2, xe, ye, pixelInfo, checkBounds, | |||
| 669 | JNI_FALSE0); | |||
| 670 | } | |||
| 671 | ||||
| 672 | /* | |||
| 673 | * Checking size of the quad curves and split them if necessary. | |||
| 674 | * Calling DrawMonotonicQuad for the curves of the appropriate size. | |||
| 675 | * Note: coords array could be changed | |||
| 676 | */ | |||
| 677 | static void ProcessMonotonicQuad(ProcessHandler* hnd, | |||
| 678 | jfloat *coords, | |||
| 679 | jint* pixelInfo) { | |||
| 680 | ||||
| 681 | jfloat coords1[6]; | |||
| 682 | jfloat xMin, xMax; | |||
| 683 | jfloat yMin, yMax; | |||
| 684 | ||||
| 685 | xMin = xMax = coords[0]; | |||
| 686 | yMin = yMax = coords[1]; | |||
| 687 | ||||
| 688 | CALC_MIN(xMin, coords[2])((xMin)=((coords[2])<(xMin))?(coords[2]):(xMin)); | |||
| 689 | CALC_MAX(xMax, coords[2])((xMax)=((coords[2])>(xMax))?(coords[2]):(xMax)); | |||
| 690 | CALC_MIN(yMin, coords[3])((yMin)=((coords[3])<(yMin))?(coords[3]):(yMin)); | |||
| 691 | CALC_MAX(yMax, coords[3])((yMax)=((coords[3])>(yMax))?(coords[3]):(yMax)); | |||
| 692 | CALC_MIN(xMin, coords[4])((xMin)=((coords[4])<(xMin))?(coords[4]):(xMin)); | |||
| 693 | CALC_MAX(xMax, coords[4])((xMax)=((coords[4])>(xMax))?(coords[4]):(xMax)); | |||
| 694 | CALC_MIN(yMin, coords[5])((yMin)=((coords[5])<(yMin))?(coords[5]):(yMin)); | |||
| 695 | CALC_MAX(yMax, coords[5])((yMax)=((coords[5])>(yMax))?(coords[5]):(yMax)); | |||
| 696 | ||||
| 697 | ||||
| 698 | if (hnd->clipMode == PH_MODE_DRAW_CLIP) { | |||
| 699 | ||||
| 700 | /* In case of drawing we could just skip curves which are completely | |||
| 701 | * out of bounds | |||
| 702 | */ | |||
| 703 | if (hnd->dhnd->xMaxf < xMin || hnd->dhnd->xMinf > xMax || | |||
| 704 | hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax) { | |||
| 705 | return; | |||
| 706 | } | |||
| 707 | } else { | |||
| 708 | ||||
| 709 | /* In case of filling we could skip curves which are above, | |||
| 710 | * below and behind the right boundary of the visible area | |||
| 711 | */ | |||
| 712 | ||||
| 713 | if (hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax || | |||
| 714 | hnd->dhnd->xMaxf < xMin) | |||
| 715 | { | |||
| 716 | return; | |||
| 717 | } | |||
| 718 | ||||
| 719 | /* We could clamp x coordinates to the corresponding boundary | |||
| 720 | * if the curve is completely behind the left one | |||
| 721 | */ | |||
| 722 | ||||
| 723 | if (hnd->dhnd->xMinf > xMax) { | |||
| 724 | coords[0] = coords[2] = coords[4] = hnd->dhnd->xMinf; | |||
| 725 | } | |||
| 726 | } | |||
| 727 | ||||
| 728 | if (xMax - xMin > MAX_QUAD_SIZE1024 || yMax - yMin > MAX_QUAD_SIZE1024) { | |||
| 729 | coords1[4] = coords[4]; | |||
| 730 | coords1[5] = coords[5]; | |||
| 731 | coords1[2] = (coords[2] + coords[4])/2.0f; | |||
| 732 | coords1[3] = (coords[3] + coords[5])/2.0f; | |||
| 733 | coords[2] = (coords[0] + coords[2])/2.0f; | |||
| 734 | coords[3] = (coords[1] + coords[3])/2.0f; | |||
| 735 | coords[4] = coords1[0] = (coords[2] + coords1[2])/2.0f; | |||
| 736 | coords[5] = coords1[1] = (coords[3] + coords1[3])/2.0f; | |||
| 737 | ||||
| 738 | ProcessMonotonicQuad(hnd, coords, pixelInfo); | |||
| 739 | ||||
| 740 | ProcessMonotonicQuad(hnd, coords1, pixelInfo); | |||
| 741 | } else { | |||
| 742 | DrawMonotonicQuad(hnd, coords, | |||
| 743 | /* Set checkBounds parameter if curve intersects | |||
| 744 | * boundary of the visible area. We know that the | |||
| 745 | * curve is visible, so the check is pretty simple | |||
| 746 | */ | |||
| 747 | hnd->dhnd->xMinf >= xMin || hnd->dhnd->xMaxf <= xMax || | |||
| 748 | hnd->dhnd->yMinf >= yMin || hnd->dhnd->yMaxf <= yMax, | |||
| 749 | pixelInfo); | |||
| 750 | } | |||
| 751 | } | |||
| 752 | ||||
| 753 | /* | |||
| 754 | * Bite the piece of the quadratic curve from start point till the point | |||
| 755 | * corresponding to the specified parameter then call ProcessQuad for the | |||
| 756 | * bitten part. | |||
| 757 | * Note: coords array will be changed | |||
| 758 | */ | |||
| 759 | static void ProcessFirstMonotonicPartOfQuad(ProcessHandler* hnd, jfloat* coords, | |||
| 760 | jint* pixelInfo, jfloat t) | |||
| 761 | { | |||
| 762 | jfloat coords1[6]; | |||
| 763 | ||||
| 764 | coords1[0] = coords[0]; | |||
| 765 | coords1[1] = coords[1]; | |||
| 766 | coords1[2] = coords[0] + t*(coords[2] - coords[0]); | |||
| 767 | coords1[3] = coords[1] + t*(coords[3] - coords[1]); | |||
| 768 | coords[2] = coords[2] + t*(coords[4] - coords[2]); | |||
| 769 | coords[3] = coords[3] + t*(coords[5] - coords[3]); | |||
| 770 | coords[0] = coords1[4] = coords1[2] + t*(coords[2] - coords1[2]); | |||
| 771 | coords[1] = coords1[5] = coords1[3] + t*(coords[3] - coords1[3]); | |||
| 772 | ||||
| 773 | ProcessMonotonicQuad(hnd, coords1, pixelInfo); | |||
| 774 | } | |||
| 775 | ||||
| 776 | /* | |||
| 777 | * Split quadratic curve into monotonic in X and Y parts. Calling | |||
| 778 | * ProcessMonotonicQuad for each monotonic piece of the curve. | |||
| 779 | * Note: coords array could be changed | |||
| 780 | */ | |||
| 781 | static void ProcessQuad(ProcessHandler* hnd, jfloat* coords, jint* pixelInfo) { | |||
| 782 | ||||
| 783 | /* Temporary array for holding parameters corresponding to the extreme in X | |||
| 784 | * and Y points. The values are inside the (0,1) range (0 and 1 excluded) | |||
| 785 | * and in ascending order. | |||
| 786 | */ | |||
| 787 | double params[2]; | |||
| 788 | ||||
| 789 | jint cnt = 0; | |||
| 790 | double param; | |||
| 791 | ||||
| 792 | /* Simple check for monotonicity in X before searching for the extreme | |||
| 793 | * points of the X(t) function. We first check if the curve is monotonic | |||
| 794 | * in X by seeing if all of the X coordinates are strongly ordered. | |||
| 795 | */ | |||
| 796 | if ((coords[0] > coords[2] || coords[2] > coords[4]) && | |||
| 797 | (coords[0] < coords[2] || coords[2] < coords[4])) | |||
| 798 | { | |||
| 799 | /* Searching for extreme points of the X(t) function by solving | |||
| 800 | * dX(t) | |||
| 801 | * ---- = 0 equation | |||
| 802 | * dt | |||
| 803 | */ | |||
| 804 | double ax = coords[0] - 2*coords[2] + coords[4]; | |||
| 805 | if (ax != 0) { | |||
| 806 | /* Calculating root of the following equation | |||
| 807 | * ax*t + bx = 0 | |||
| 808 | */ | |||
| 809 | double bx = coords[0] - coords[2]; | |||
| 810 | ||||
| 811 | param = bx/ax; | |||
| 812 | if (param < 1.0 && param > 0.0) { | |||
| 813 | params[cnt++] = param; | |||
| 814 | } | |||
| 815 | } | |||
| 816 | } | |||
| 817 | ||||
| 818 | /* Simple check for monotonicity in Y before searching for the extreme | |||
| 819 | * points of the Y(t) function. We first check if the curve is monotonic | |||
| 820 | * in Y by seeing if all of the Y coordinates are strongly ordered. | |||
| 821 | */ | |||
| 822 | if ((coords[1] > coords[3] || coords[3] > coords[5]) && | |||
| 823 | (coords[1] < coords[3] || coords[3] < coords[5])) | |||
| 824 | { | |||
| 825 | /* Searching for extreme points of the Y(t) function by solving | |||
| 826 | * dY(t) | |||
| 827 | * ----- = 0 equation | |||
| 828 | * dt | |||
| 829 | */ | |||
| 830 | double ay = coords[1] - 2*coords[3] + coords[5]; | |||
| 831 | ||||
| 832 | if (ay != 0) { | |||
| 833 | /* Calculating root of the following equation | |||
| 834 | * ay*t + by = 0 | |||
| 835 | */ | |||
| 836 | double by = coords[1] - coords[3]; | |||
| 837 | ||||
| 838 | param = by/ay; | |||
| 839 | if (param < 1.0 && param > 0.0) { | |||
| 840 | if (cnt > 0) { | |||
| 841 | /* Inserting parameter only if it differs from | |||
| 842 | * already stored | |||
| 843 | */ | |||
| 844 | if (params[0] > param) { | |||
| 845 | params[cnt++] = params[0]; | |||
| 846 | params[0] = param; | |||
| 847 | } else if (params[0] < param) { | |||
| 848 | params[cnt++] = param; | |||
| 849 | } | |||
| 850 | } else { | |||
| 851 | params[cnt++] = param; | |||
| 852 | } | |||
| 853 | } | |||
| 854 | } | |||
| 855 | } | |||
| 856 | ||||
| 857 | /* Processing obtained monotonic parts */ | |||
| 858 | switch(cnt) { | |||
| 859 | case 0: | |||
| 860 | break; | |||
| 861 | case 1: | |||
| 862 | ProcessFirstMonotonicPartOfQuad(hnd, coords, pixelInfo, | |||
| 863 | (jfloat)params[0]); | |||
| 864 | break; | |||
| 865 | case 2: | |||
| 866 | ProcessFirstMonotonicPartOfQuad(hnd, coords, pixelInfo, | |||
| 867 | (jfloat)params[0]); | |||
| 868 | param = params[1] - params[0]; | |||
| 869 | if (param > 0) { | |||
| 870 | ProcessFirstMonotonicPartOfQuad(hnd, coords, pixelInfo, | |||
| 871 | /* Scale parameter to match with rest of the curve */ | |||
| 872 | (jfloat)(param/(1.0 - params[0]))); | |||
| 873 | } | |||
| 874 | break; | |||
| 875 | } | |||
| 876 | ||||
| 877 | ProcessMonotonicQuad(hnd,coords,pixelInfo); | |||
| 878 | } | |||
| 879 | ||||
| 880 | /* | |||
| 881 | * Performing drawing of the monotonic in X and Y cubic curves with sizes less | |||
| 882 | * than MAX_CUB_SIZE by using forward differencing method of calculation. | |||
| 883 | * | |||
| 884 | * Here is some math used in the code below. | |||
| 885 | * | |||
| 886 | * If we express the parametric equation for the coordinates as | |||
| 887 | * simple polynomial: | |||
| 888 | * | |||
| 889 | * V(t) = a * t^3 + b * t^2 + c * t + d | |||
| 890 | * | |||
| 891 | * The equations for how we derive these polynomial coefficients | |||
| 892 | * from the Bezier control points can be found in the method comments | |||
| 893 | * for the CubicCurve.fillEqn Java method. | |||
| 894 | * | |||
| 895 | * From this polynomial, we can derive the forward differences to | |||
| 896 | * allow us to calculate V(t+K) from V(t) as follows: | |||
| 897 | * | |||
| 898 | * 1) V1(0) | |||
| 899 | * = V(K)-V(0) | |||
| 900 | * = aK^3 + bK^2 + cK + d - d | |||
| 901 | * = aK^3 + bK^2 + cK | |||
| 902 | * | |||
| 903 | * 2) V1(K) | |||
| 904 | * = V(2K)-V(K) | |||
| 905 | * = 8aK^3 + 4bK^2 + 2cK + d - aK^3 - bK^2 - cK - d | |||
| 906 | * = 7aK^3 + 3bK^2 + cK | |||
| 907 | * | |||
| 908 | * 3) V1(2K) | |||
| 909 | * = V(3K)-V(2K) | |||
| 910 | * = 27aK^3 + 9bK^2 + 3cK + d - 8aK^3 - 4bK^2 - 2cK - d | |||
| 911 | * = 19aK^3 + 5bK^2 + cK | |||
| 912 | * | |||
| 913 | * 4) V2(0) | |||
| 914 | * = V1(K) - V1(0) | |||
| 915 | * = 7aK^3 + 3bK^2 + cK - aK^3 - bK^2 - cK | |||
| 916 | * = 6aK^3 + 2bK^2 | |||
| 917 | * | |||
| 918 | * 5) V2(K) | |||
| 919 | * = V1(2K) - V1(K) | |||
| 920 | * = 19aK^3 + 5bK^2 + cK - 7aK^3 - 3bK^2 - cK | |||
| 921 | * = 12aK^3 + 2bK^2 | |||
| 922 | * | |||
| 923 | * 6) V3(0) | |||
| 924 | * = V2(K) - V2(0) | |||
| 925 | * = 12aK^3 + 2bK^2 - 6aK^3 - 2bK^2 | |||
| 926 | * = 6aK^3 | |||
| 927 | * | |||
| 928 | * Note that if we continue on to calculate V1(3K), V2(2K) and | |||
| 929 | * V3(K) we will see that V3(K) == V3(0) so we need at most | |||
| 930 | * 3 cascading forward differences to step through the cubic | |||
| 931 | * curve. | |||
| 932 | * | |||
| 933 | * Note, b coefficient calculating in the DrawCubic is actually twice the b | |||
| 934 | * coefficient seen above. It's been done for the better accuracy. | |||
| 935 | * | |||
| 936 | * In our case, initialy K is chosen as 1/(2^DF_CUB_STEPS) this value is taken | |||
| 937 | * with FWD_PREC bits precision. This means that we should do 2^DF_CUB_STEPS | |||
| 938 | * steps to pass through all the curve. | |||
| 939 | * | |||
| 940 | * On each step we examine how far we are stepping by examining our first(V1) | |||
| 941 | * and second (V2) order derivatives and verifying that they are met following | |||
| 942 | * conditions: | |||
| 943 | * | |||
| 944 | * abs(V2) <= DF_CUB_DEC_BND | |||
| 945 | * abs(V1) > DF_CUB_INC_BND | |||
| 946 | * | |||
| 947 | * So, ensures that we step through the curve more slowly when its curvature is | |||
| 948 | * high and faster when its curvature is lower. If the step size needs | |||
| 949 | * adjustment we adjust it so that we step either twice as fast, or twice as | |||
| 950 | * slow until our step size is within range. This modifies our stepping | |||
| 951 | * variables as follows: | |||
| 952 | * | |||
| 953 | * Decreasing step size | |||
| 954 | * (See Graphics Gems/by A.Glassner,(Tutorial on forward differencing),601-602) | |||
| 955 | * | |||
| 956 | * V3 = oV3/8 | |||
| 957 | * V2 = oV2/4 - V3 | |||
| 958 | * V1 = (oV1 - V2)/2 | |||
| 959 | * | |||
| 960 | * Here V1-V3 stands for new values of the forward differencies and oV1 - oV3 | |||
| 961 | * for the old ones | |||
| 962 | * | |||
| 963 | * Using the equations above it's easy to calculating stepping variables for | |||
| 964 | * the increasing step size: | |||
| 965 | * | |||
| 966 | * V1 = 2*oV1 + oV2 | |||
| 967 | * V2 = 4*oV2 + 4*oV3 | |||
| 968 | * V3 = 8*oV3 | |||
| 969 | * | |||
| 970 | * And then for not to running out of 32 bit precision we are performing 3 bit | |||
| 971 | * shift of the forward differencing precision (keeping in shift variable) in | |||
| 972 | * left or right direction depending on what is happening (decreasing or | |||
| 973 | * increasing). So, all oV1 - oV3 variables should be thought as appropriately | |||
| 974 | * shifted in regard to the V1 - V3. | |||
| 975 | * | |||
| 976 | * Taking all of the above into account we will have following: | |||
| 977 | * | |||
| 978 | * Decreasing step size: | |||
| 979 | * | |||
| 980 | * shift = shift + 3 | |||
| 981 | * V3 keeps the same | |||
| 982 | * V2 = 2*oV2 - V3 | |||
| 983 | * V1 = 4*oV1 - V2/2 | |||
| 984 | * | |||
| 985 | * Increasing step size: | |||
| 986 | * | |||
| 987 | * shift = shift - 3 | |||
| 988 | * V1 = oV1/4 + oV2/8 | |||
| 989 | * V2 = oV2/2 + oV3/2 | |||
| 990 | * V3 keeps the same | |||
| 991 | * | |||
| 992 | */ | |||
| 993 | ||||
| 994 | static void DrawMonotonicCubic(ProcessHandler* hnd, | |||
| 995 | jfloat *coords, | |||
| 996 | jboolean checkBounds, | |||
| 997 | jint* pixelInfo) | |||
| 998 | { | |||
| 999 | jint x0 = (jint)(coords[0]*MDP_MULT(1<<10)); | |||
| 1000 | jint y0 = (jint)(coords[1]*MDP_MULT(1<<10)); | |||
| 1001 | ||||
| 1002 | jint xe = (jint)(coords[6]*MDP_MULT(1<<10)); | |||
| 1003 | jint ye = (jint)(coords[7]*MDP_MULT(1<<10)); | |||
| 1004 | ||||
| 1005 | /* Extracting fractional part of coordinates of first control point */ | |||
| 1006 | jint px = (x0 & (~MDP_W_MASK(-(1<<10)))) << DF_CUB_SHIFT(7 + 3*3 - 10); | |||
| 1007 | jint py = (y0 & (~MDP_W_MASK(-(1<<10)))) << DF_CUB_SHIFT(7 + 3*3 - 10); | |||
| 1008 | ||||
| 1009 | /* Setting default boundary values for checking first and second forward | |||
| 1010 | * difference for the necessity of the restepping. See comments to the | |||
| 1011 | * boundary values in ProcessQuad for more info. | |||
| 1012 | */ | |||
| 1013 | jint incStepBnd1 = DF_CUB_INC_BND(1<<(3*3 + 7 - 1)); | |||
| 1014 | jint incStepBnd2 = DF_CUB_INC_BND(1<<(3*3 + 7 - 1)) << 1; | |||
| 1015 | jint decStepBnd1 = DF_CUB_DEC_BND(1<<(3*3 + 7 + 2)); | |||
| 1016 | jint decStepBnd2 = DF_CUB_DEC_BND(1<<(3*3 + 7 + 2)) << 1; | |||
| 1017 | ||||
| 1018 | /* Setting default amount of steps */ | |||
| 1019 | jint count = DF_CUB_COUNT(1<<3); | |||
| 1020 | ||||
| 1021 | /* Setting default shift for preparing to the midpoint rounding */ | |||
| 1022 | jint shift = DF_CUB_SHIFT(7 + 3*3 - 10); | |||
| 1023 | ||||
| 1024 | jint ax = (jint)((-coords[0] + 3*coords[2] - 3*coords[4] + | |||
| 1025 | coords[6])*CUB_A_MDP_MULT(1<<7)); | |||
| 1026 | jint ay = (jint)((-coords[1] + 3*coords[3] - 3*coords[5] + | |||
| 1027 | coords[7])*CUB_A_MDP_MULT(1<<7)); | |||
| 1028 | ||||
| 1029 | jint bx = (jint)((3*coords[0] - 6*coords[2] + | |||
| 1030 | 3*coords[4])*CUB_B_MDP_MULT(1<<(3 + 7 + 1))); | |||
| 1031 | jint by = (jint)((3*coords[1] - 6*coords[3] + | |||
| 1032 | 3*coords[5])*CUB_B_MDP_MULT(1<<(3 + 7 + 1))); | |||
| 1033 | ||||
| 1034 | jint cx = (jint)((-3*coords[0] + 3*coords[2])*(CUB_C_MDP_MULT(1<<(3*2 + 7)))); | |||
| 1035 | jint cy = (jint)((-3*coords[1] + 3*coords[3])*(CUB_C_MDP_MULT(1<<(3*2 + 7)))); | |||
| 1036 | ||||
| 1037 | jint dddpx = 6*ax; | |||
| 1038 | jint dddpy = 6*ay; | |||
| 1039 | ||||
| 1040 | jint ddpx = dddpx + bx; | |||
| 1041 | jint ddpy = dddpy + by; | |||
| 1042 | ||||
| 1043 | jint dpx = ax + (bx>>1) + cx; | |||
| 1044 | jint dpy = ay + (by>>1) + cy; | |||
| 1045 | ||||
| 1046 | jint x1, y1; | |||
| 1047 | ||||
| 1048 | jint x2 = x0; | |||
| 1049 | jint y2 = y0; | |||
| 1050 | ||||
| 1051 | /* Calculating whole part of the first point of the curve */ | |||
| 1052 | jint x0w = x0 & MDP_W_MASK(-(1<<10)); | |||
| 1053 | jint y0w = y0 & MDP_W_MASK(-(1<<10)); | |||
| 1054 | ||||
| 1055 | jint dx = xe - x0; | |||
| 1056 | jint dy = ye - y0; | |||
| 1057 | ||||
| 1058 | while (count > 0) { | |||
| 1059 | /* Perform decreasing step in 2 times if necessary */ | |||
| 1060 | while ( | |||
| 1061 | /* The code below is an optimized version of the checks: | |||
| 1062 | * abs(ddpx) > decStepBnd1 || | |||
| 1063 | * abs(ddpy) > decStepBnd1 | |||
| 1064 | */ | |||
| 1065 | (juint)(ddpx + decStepBnd1) > (juint)decStepBnd2 || | |||
| 1066 | (juint)(ddpy + decStepBnd1) > (juint)decStepBnd2) | |||
| 1067 | { | |||
| 1068 | ddpx = (ddpx<<1) - dddpx; | |||
| 1069 | ddpy = (ddpy<<1) - dddpy; | |||
| 1070 | dpx = (dpx<<2) - (ddpx>>1); | |||
| 1071 | dpy = (dpy<<2) - (ddpy>>1); | |||
| 1072 | count <<=1; | |||
| 1073 | decStepBnd1 <<=3; | |||
| 1074 | decStepBnd2 <<=3; | |||
| 1075 | incStepBnd1 <<=3; | |||
| 1076 | incStepBnd2 <<=3; | |||
| 1077 | px <<=3; | |||
| 1078 | py <<=3; | |||
| 1079 | shift += 3; | |||
| 1080 | } | |||
| 1081 | ||||
| 1082 | /* Perform increasing step in 2 times if necessary. | |||
| 1083 | * Note: we could do it only in even steps | |||
| 1084 | */ | |||
| 1085 | ||||
| 1086 | while (((count & 1) ^ 1) && shift > DF_CUB_SHIFT(7 + 3*3 - 10) && | |||
| 1087 | /* The code below is an optimized version of the check: | |||
| 1088 | * abs(dpx) <= incStepBnd1 && | |||
| 1089 | * abs(dpy) <= incStepBnd1 | |||
| 1090 | */ | |||
| 1091 | (juint)(dpx + incStepBnd1) <= (juint)incStepBnd2 && | |||
| 1092 | (juint)(dpy + incStepBnd1) <= (juint)incStepBnd2) | |||
| 1093 | { | |||
| 1094 | dpx = (dpx>>2) + (ddpx>>3); | |||
| 1095 | dpy = (dpy>>2) + (ddpy>>3); | |||
| 1096 | ddpx = (ddpx + dddpx)>>1; | |||
| 1097 | ddpy = (ddpy + dddpy)>>1; | |||
| 1098 | count >>=1; | |||
| 1099 | decStepBnd1 >>=3; | |||
| 1100 | decStepBnd2 >>=3; | |||
| 1101 | incStepBnd1 >>=3; | |||
| 1102 | incStepBnd2 >>=3; | |||
| 1103 | px >>=3; | |||
| 1104 | py >>=3; | |||
| 1105 | shift -= 3; | |||
| 1106 | } | |||
| 1107 | ||||
| 1108 | count--; | |||
| 1109 | ||||
| 1110 | /* We are performing one step less than necessary and use actual | |||
| 1111 | * (xe,ye) endpoint of the curve instead of calculated. This prevent | |||
| 1112 | * us from accumulated errors at the last point. | |||
| 1113 | */ | |||
| 1114 | if (count) { | |||
| 1115 | ||||
| 1116 | px += dpx; | |||
| 1117 | py += dpy; | |||
| 1118 | ||||
| 1119 | dpx += ddpx; | |||
| 1120 | dpy += ddpy; | |||
| 1121 | ddpx += dddpx; | |||
| 1122 | ddpy += dddpy; | |||
| 1123 | ||||
| 1124 | x1 = x2; | |||
| 1125 | y1 = y2; | |||
| 1126 | ||||
| 1127 | x2 = x0w + (px >> shift); | |||
| 1128 | y2 = y0w + (py >> shift); | |||
| 1129 | ||||
| 1130 | /* Checking that we are not running out of the endpoint and | |||
| 1131 | * bounding violating coordinate. The check is pretty simple | |||
| 1132 | * because the curve passed to the DrawMonotonicCubic already | |||
| 1133 | * split into the monotonic in X and Y pieces | |||
| 1134 | */ | |||
| 1135 | ||||
| 1136 | /* Bounding x2 by xe */ | |||
| 1137 | if (((xe-x2)^dx) < 0) { | |||
| 1138 | x2 = xe; | |||
| 1139 | } | |||
| 1140 | ||||
| 1141 | /* Bounding y2 by ye */ | |||
| 1142 | if (((ye-y2)^dy) < 0) { | |||
| 1143 | y2 = ye; | |||
| 1144 | } | |||
| 1145 | ||||
| 1146 | hnd->pProcessFixedLine(hnd, x1, y1, x2, y2, pixelInfo, checkBounds, | |||
| 1147 | JNI_FALSE0); | |||
| 1148 | } else { | |||
| 1149 | hnd->pProcessFixedLine(hnd, x2, y2, xe, ye, pixelInfo, checkBounds, | |||
| 1150 | JNI_FALSE0); | |||
| 1151 | } | |||
| 1152 | } | |||
| 1153 | } | |||
| 1154 | ||||
| 1155 | /* | |||
| 1156 | * Checking size of the cubic curves and split them if necessary. | |||
| 1157 | * Calling DrawMonotonicCubic for the curves of the appropriate size. | |||
| 1158 | * Note: coords array could be changed | |||
| 1159 | */ | |||
| 1160 | static void ProcessMonotonicCubic(ProcessHandler* hnd, | |||
| 1161 | jfloat *coords, | |||
| 1162 | jint* pixelInfo) { | |||
| 1163 | ||||
| 1164 | jfloat coords1[8]; | |||
| 1165 | jfloat tx, ty; | |||
| 1166 | jfloat xMin, xMax; | |||
| 1167 | jfloat yMin, yMax; | |||
| 1168 | ||||
| 1169 | xMin = xMax = coords[0]; | |||
| 1170 | yMin = yMax = coords[1]; | |||
| 1171 | ||||
| 1172 | CALC_MIN(xMin, coords[2])((xMin)=((coords[2])<(xMin))?(coords[2]):(xMin)); | |||
| 1173 | CALC_MAX(xMax, coords[2])((xMax)=((coords[2])>(xMax))?(coords[2]):(xMax)); | |||
| 1174 | CALC_MIN(yMin, coords[3])((yMin)=((coords[3])<(yMin))?(coords[3]):(yMin)); | |||
| 1175 | CALC_MAX(yMax, coords[3])((yMax)=((coords[3])>(yMax))?(coords[3]):(yMax)); | |||
| 1176 | CALC_MIN(xMin, coords[4])((xMin)=((coords[4])<(xMin))?(coords[4]):(xMin)); | |||
| 1177 | CALC_MAX(xMax, coords[4])((xMax)=((coords[4])>(xMax))?(coords[4]):(xMax)); | |||
| 1178 | CALC_MIN(yMin, coords[5])((yMin)=((coords[5])<(yMin))?(coords[5]):(yMin)); | |||
| 1179 | CALC_MAX(yMax, coords[5])((yMax)=((coords[5])>(yMax))?(coords[5]):(yMax)); | |||
| 1180 | CALC_MIN(xMin, coords[6])((xMin)=((coords[6])<(xMin))?(coords[6]):(xMin)); | |||
| 1181 | CALC_MAX(xMax, coords[6])((xMax)=((coords[6])>(xMax))?(coords[6]):(xMax)); | |||
| 1182 | CALC_MIN(yMin, coords[7])((yMin)=((coords[7])<(yMin))?(coords[7]):(yMin)); | |||
| 1183 | CALC_MAX(yMax, coords[7])((yMax)=((coords[7])>(yMax))?(coords[7]):(yMax)); | |||
| 1184 | ||||
| 1185 | if (hnd->clipMode == PH_MODE_DRAW_CLIP) { | |||
| 1186 | ||||
| 1187 | /* In case of drawing we could just skip curves which are completely | |||
| 1188 | * out of bounds | |||
| 1189 | */ | |||
| 1190 | if (hnd->dhnd->xMaxf < xMin || hnd->dhnd->xMinf > xMax || | |||
| 1191 | hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax) { | |||
| 1192 | return; | |||
| 1193 | } | |||
| 1194 | } else { | |||
| 1195 | ||||
| 1196 | /* In case of filling we could skip curves which are above, | |||
| 1197 | * below and behind the right boundary of the visible area | |||
| 1198 | */ | |||
| 1199 | ||||
| 1200 | if (hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax || | |||
| 1201 | hnd->dhnd->xMaxf < xMin) | |||
| 1202 | { | |||
| 1203 | return; | |||
| 1204 | } | |||
| 1205 | ||||
| 1206 | /* We could clamp x coordinates to the corresponding boundary | |||
| 1207 | * if the curve is completely behind the left one | |||
| 1208 | */ | |||
| 1209 | ||||
| 1210 | if (hnd->dhnd->xMinf > xMax) { | |||
| 1211 | coords[0] = coords[2] = coords[4] = coords[6] = | |||
| 1212 | hnd->dhnd->xMinf; | |||
| 1213 | } | |||
| 1214 | } | |||
| 1215 | ||||
| 1216 | if (xMax - xMin > MAX_CUB_SIZE256 || yMax - yMin > MAX_CUB_SIZE256) { | |||
| 1217 | coords1[6] = coords[6]; | |||
| 1218 | coords1[7] = coords[7]; | |||
| 1219 | coords1[4] = (coords[4] + coords[6])/2.0f; | |||
| 1220 | coords1[5] = (coords[5] + coords[7])/2.0f; | |||
| 1221 | tx = (coords[2] + coords[4])/2.0f; | |||
| 1222 | ty = (coords[3] + coords[5])/2.0f; | |||
| 1223 | coords1[2] = (tx + coords1[4])/2.0f; | |||
| 1224 | coords1[3] = (ty + coords1[5])/2.0f; | |||
| 1225 | coords[2] = (coords[0] + coords[2])/2.0f; | |||
| 1226 | coords[3] = (coords[1] + coords[3])/2.0f; | |||
| 1227 | coords[4] = (coords[2] + tx)/2.0f; | |||
| 1228 | coords[5] = (coords[3] + ty)/2.0f; | |||
| 1229 | coords[6]=coords1[0]=(coords[4] + coords1[2])/2.0f; | |||
| 1230 | coords[7]=coords1[1]=(coords[5] + coords1[3])/2.0f; | |||
| 1231 | ||||
| 1232 | ProcessMonotonicCubic(hnd, coords, pixelInfo); | |||
| 1233 | ||||
| 1234 | ProcessMonotonicCubic(hnd, coords1, pixelInfo); | |||
| 1235 | ||||
| 1236 | } else { | |||
| 1237 | DrawMonotonicCubic(hnd, coords, | |||
| 1238 | /* Set checkBounds parameter if curve intersects | |||
| 1239 | * boundary of the visible area. We know that the | |||
| 1240 | * curve is visible, so the check is pretty simple | |||
| 1241 | */ | |||
| 1242 | hnd->dhnd->xMinf > xMin || hnd->dhnd->xMaxf < xMax || | |||
| 1243 | hnd->dhnd->yMinf > yMin || hnd->dhnd->yMaxf < yMax, | |||
| 1244 | pixelInfo); | |||
| 1245 | } | |||
| 1246 | } | |||
| 1247 | ||||
| 1248 | /* | |||
| 1249 | * Bite the piece of the cubic curve from start point till the point | |||
| 1250 | * corresponding to the specified parameter then call ProcessMonotonicCubic for | |||
| 1251 | * the bitten part. | |||
| 1252 | * Note: coords array will be changed | |||
| 1253 | */ | |||
| 1254 | static void ProcessFirstMonotonicPartOfCubic(ProcessHandler* hnd, | |||
| 1255 | jfloat* coords, jint* pixelInfo, | |||
| 1256 | jfloat t) | |||
| 1257 | { | |||
| 1258 | jfloat coords1[8]; | |||
| 1259 | jfloat tx, ty; | |||
| 1260 | ||||
| 1261 | coords1[0] = coords[0]; | |||
| 1262 | coords1[1] = coords[1]; | |||
| 1263 | tx = coords[2] + t*(coords[4] - coords[2]); | |||
| 1264 | ty = coords[3] + t*(coords[5] - coords[3]); | |||
| 1265 | coords1[2] = coords[0] + t*(coords[2] - coords[0]); | |||
| 1266 | coords1[3] = coords[1] + t*(coords[3] - coords[1]); | |||
| 1267 | coords1[4] = coords1[2] + t*(tx - coords1[2]); | |||
| 1268 | coords1[5] = coords1[3] + t*(ty - coords1[3]); | |||
| 1269 | coords[4] = coords[4] + t*(coords[6] - coords[4]); | |||
| 1270 | coords[5] = coords[5] + t*(coords[7] - coords[5]); | |||
| 1271 | coords[2] = tx + t*(coords[4] - tx); | |||
| 1272 | coords[3] = ty + t*(coords[5] - ty); | |||
| 1273 | coords[0]=coords1[6]=coords1[4] + t*(coords[2] - coords1[4]); | |||
| 1274 | coords[1]=coords1[7]=coords1[5] + t*(coords[3] - coords1[5]); | |||
| 1275 | ||||
| 1276 | ProcessMonotonicCubic(hnd, coords1, pixelInfo); | |||
| 1277 | } | |||
| 1278 | ||||
| 1279 | /* | |||
| 1280 | * Split cubic curve into monotonic in X and Y parts. Calling ProcessCubic for | |||
| 1281 | * each monotonic piece of the curve. | |||
| 1282 | * | |||
| 1283 | * Note: coords array could be changed | |||
| 1284 | */ | |||
| 1285 | static void ProcessCubic(ProcessHandler* hnd, jfloat* coords, jint* pixelInfo) | |||
| 1286 | { | |||
| 1287 | /* Temporary array for holding parameters corresponding to the extreme in X | |||
| 1288 | * and Y points. The values are inside the (0,1) range (0 and 1 excluded) | |||
| 1289 | * and in ascending order. | |||
| 1290 | */ | |||
| 1291 | double params[4]; | |||
| 1292 | jint cnt = 0, i; | |||
| 1293 | ||||
| 1294 | /* Simple check for monotonicity in X before searching for the extreme | |||
| 1295 | * points of the X(t) function. We first check if the curve is monotonic in | |||
| 1296 | * X by seeing if all of the X coordinates are strongly ordered. | |||
| 1297 | */ | |||
| 1298 | if ((coords[0] > coords[2] || coords[2] > coords[4] || | |||
| ||||
| 1299 | coords[4] > coords[6]) && | |||
| 1300 | (coords[0] < coords[2] || coords[2] < coords[4] || | |||
| 1301 | coords[4] < coords[6])) | |||
| 1302 | { | |||
| 1303 | /* Searching for extreme points of the X(t) function by solving | |||
| 1304 | * dX(t) | |||
| 1305 | * ---- = 0 equation | |||
| 1306 | * dt | |||
| 1307 | */ | |||
| 1308 | double ax = -coords[0] + 3*coords[2] - 3*coords[4] + coords[6]; | |||
| 1309 | double bx = 2*(coords[0] - 2*coords[2] + coords[4]); | |||
| 1310 | double cx = -coords[0] + coords[2]; | |||
| 1311 | ||||
| 1312 | SOLVEQUADINRANGE(ax,bx,cx,params,cnt)do { double param; if ((ax) != 0) { double d = (bx)*(bx) - 4* (ax)*(cx); double q; if (d < 0) { break; } d = sqrt(d); if ((bx) < 0) { d = -d; } q = ((bx) + d) / -2.0; param = q/( ax); if (param < 1.0 && param > 0.0) { (params) [(cnt)++] = param; } if (d == 0 || q == 0) { break; } param = (cx)/q; if (param < 1.0 && param > 0.0) { (params )[(cnt)++] = param; } } else { if ((bx) == 0) { break; } param = -(cx)/(bx); if (param < 1.0 && param > 0.0) { (params)[(cnt)++] = param; } } } while(0); | |||
| 1313 | } | |||
| 1314 | ||||
| 1315 | /* Simple check for monotonicity in Y before searching for the extreme | |||
| 1316 | * points of the Y(t) function. We first check if the curve is monotonic in | |||
| 1317 | * Y by seeing if all of the Y coordinates are strongly ordered. | |||
| 1318 | */ | |||
| 1319 | if ((coords[1] > coords[3] || coords[3] > coords[5] || | |||
| 1320 | coords[5] > coords[7]) && | |||
| 1321 | (coords[1] < coords[3] || coords[3] < coords[5] || | |||
| 1322 | coords[5] < coords[7])) | |||
| 1323 | { | |||
| 1324 | /* Searching for extreme points of the Y(t) function by solving | |||
| 1325 | * dY(t) | |||
| 1326 | * ----- = 0 equation | |||
| 1327 | * dt | |||
| 1328 | */ | |||
| 1329 | double ay = -coords[1] + 3*coords[3] - 3*coords[5] + coords[7]; | |||
| 1330 | double by = 2*(coords[1] - 2*coords[3] + coords[5]); | |||
| 1331 | double cy = -coords[1] + coords[3]; | |||
| 1332 | ||||
| 1333 | SOLVEQUADINRANGE(ay,by,cy,params,cnt)do { double param; if ((ay) != 0) { double d = (by)*(by) - 4* (ay)*(cy); double q; if (d < 0) { break; } d = sqrt(d); if ((by) < 0) { d = -d; } q = ((by) + d) / -2.0; param = q/( ay); if (param < 1.0 && param > 0.0) { (params) [(cnt)++] = param; } if (d == 0 || q == 0) { break; } param = (cy)/q; if (param < 1.0 && param > 0.0) { (params )[(cnt)++] = param; } } else { if ((by) == 0) { break; } param = -(cy)/(by); if (param < 1.0 && param > 0.0) { (params)[(cnt)++] = param; } } } while(0); | |||
| 1334 | } | |||
| 1335 | ||||
| 1336 | if (cnt > 0) { | |||
| 1337 | /* Sorting parameter values corresponding to the extremum points of | |||
| 1338 | * the curve. We are using insertion sort because of tiny size of the | |||
| 1339 | * array. | |||
| 1340 | */ | |||
| 1341 | jint j; | |||
| 1342 | ||||
| 1343 | for(i = 1; i < cnt; i++) { | |||
| 1344 | double value = params[i]; | |||
| 1345 | for (j = i - 1; j >= 0 && params[j] > value; j--) { | |||
| 1346 | params[j + 1] = params[j]; | |||
| 1347 | } | |||
| 1348 | params[j + 1] = value; | |||
| 1349 | } | |||
| 1350 | ||||
| 1351 | /* Processing obtained monotonic parts */ | |||
| 1352 | ProcessFirstMonotonicPartOfCubic(hnd, coords, pixelInfo, | |||
| 1353 | (jfloat)params[0]); | |||
| 1354 | for (i = 1; i < cnt; i++) { | |||
| 1355 | double param = params[i] - params[i-1]; | |||
| 1356 | if (param > 0) { | |||
| 1357 | ProcessFirstMonotonicPartOfCubic(hnd, coords, pixelInfo, | |||
| 1358 | /* Scale parameter to match with rest of the curve */ | |||
| 1359 | (float)(param/(1.0 - params[i - 1]))); | |||
| 1360 | } | |||
| 1361 | } | |||
| 1362 | } | |||
| 1363 | ||||
| 1364 | ProcessMonotonicCubic(hnd,coords,pixelInfo); | |||
| 1365 | } | |||
| 1366 | ||||
| 1367 | static void ProcessLine(ProcessHandler* hnd, | |||
| 1368 | jfloat *coord1, jfloat *coord2, jint* pixelInfo) { | |||
| 1369 | ||||
| 1370 | jfloat xMin, yMin, xMax, yMax; | |||
| 1371 | jint X1, Y1, X2, Y2, X3, Y3, res; | |||
| 1372 | jboolean clipped = JNI_FALSE0; | |||
| 1373 | jfloat x1 = coord1[0]; | |||
| 1374 | jfloat y1 = coord1[1]; | |||
| 1375 | jfloat x2 = coord2[0]; | |||
| 1376 | jfloat y2 = coord2[1]; | |||
| 1377 | jfloat x3,y3; | |||
| 1378 | ||||
| 1379 | jboolean lastClipped; | |||
| 1380 | ||||
| 1381 | xMin = hnd->dhnd->xMinf; | |||
| 1382 | yMin = hnd->dhnd->yMinf; | |||
| 1383 | xMax = hnd->dhnd->xMaxf; | |||
| 1384 | yMax = hnd->dhnd->yMaxf; | |||
| 1385 | ||||
| 1386 | TESTANDCLIP(yMin, yMax, y1, x1, y2, x2, jfloat, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (y1 < (yMin) || y1 > (yMax)) { if (y1 < (yMin)) { if (y2 < (yMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = ( yMin); } else { if (y2 > (yMax)) { res = CRES_INVISIBLE; break ; }; res = CRES_MAX_CLIPPED; t = (yMax); } x1 = (jfloat)(x1 + ((jdouble)(t - y1)*(x2 - x1)) / (y2 - y1)); y1 = (jfloat)t; } } while (0); | |||
| 1387 | if (res == CRES_INVISIBLE) return; | |||
| 1388 | clipped = IS_CLIPPED(res)(res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED); | |||
| 1389 | TESTANDCLIP(yMin, yMax, y2, x2, y1, x1, jfloat, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (y2 < (yMin) || y2 > (yMax)) { if (y2 < (yMin)) { if (y1 < (yMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = ( yMin); } else { if (y1 > (yMax)) { res = CRES_INVISIBLE; break ; }; res = CRES_MAX_CLIPPED; t = (yMax); } x2 = (jfloat)(x2 + ((jdouble)(t - y2)*(x1 - x2)) / (y1 - y2)); y2 = (jfloat)t; } } while (0); | |||
| 1390 | if (res == CRES_INVISIBLE) return; | |||
| 1391 | lastClipped = IS_CLIPPED(res)(res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED); | |||
| 1392 | clipped = clipped || lastClipped; | |||
| 1393 | ||||
| 1394 | if (hnd->clipMode == PH_MODE_DRAW_CLIP) { | |||
| 1395 | TESTANDCLIP(xMin, xMax,do { jdouble t; res = CRES_NOT_CLIPPED; if (x1 < (xMin) || x1 > (xMax)) { if (x1 < (xMin)) { if (x2 < (xMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = ( xMin); } else { if (x2 > (xMax)) { res = CRES_INVISIBLE; break ; }; res = CRES_MAX_CLIPPED; t = (xMax); } y1 = (jfloat)(y1 + ((jdouble)(t - x1)*(y2 - y1)) / (x2 - x1)); x1 = (jfloat)t; } } while (0) | |||
| 1396 | x1, y1, x2, y2, jfloat, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (x1 < (xMin) || x1 > (xMax)) { if (x1 < (xMin)) { if (x2 < (xMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = ( xMin); } else { if (x2 > (xMax)) { res = CRES_INVISIBLE; break ; }; res = CRES_MAX_CLIPPED; t = (xMax); } y1 = (jfloat)(y1 + ((jdouble)(t - x1)*(y2 - y1)) / (x2 - x1)); x1 = (jfloat)t; } } while (0); | |||
| 1397 | if (res == CRES_INVISIBLE) return; | |||
| 1398 | clipped = clipped || IS_CLIPPED(res)(res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED); | |||
| 1399 | TESTANDCLIP(xMin, xMax,do { jdouble t; res = CRES_NOT_CLIPPED; if (x2 < (xMin) || x2 > (xMax)) { if (x2 < (xMin)) { if (x1 < (xMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = ( xMin); } else { if (x1 > (xMax)) { res = CRES_INVISIBLE; break ; }; res = CRES_MAX_CLIPPED; t = (xMax); } y2 = (jfloat)(y2 + ((jdouble)(t - x2)*(y1 - y2)) / (x1 - x2)); x2 = (jfloat)t; } } while (0) | |||
| 1400 | x2, y2, x1, y1, jfloat, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (x2 < (xMin) || x2 > (xMax)) { if (x2 < (xMin)) { if (x1 < (xMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = ( xMin); } else { if (x1 > (xMax)) { res = CRES_INVISIBLE; break ; }; res = CRES_MAX_CLIPPED; t = (xMax); } y2 = (jfloat)(y2 + ((jdouble)(t - x2)*(y1 - y2)) / (x1 - x2)); x2 = (jfloat)t; } } while (0); | |||
| 1401 | if (res == CRES_INVISIBLE) return; | |||
| 1402 | lastClipped = lastClipped || IS_CLIPPED(res)(res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED); | |||
| 1403 | clipped = clipped || lastClipped; | |||
| 1404 | X1 = (jint)(x1*MDP_MULT(1<<10)); | |||
| 1405 | Y1 = (jint)(y1*MDP_MULT(1<<10)); | |||
| 1406 | X2 = (jint)(x2*MDP_MULT(1<<10)); | |||
| 1407 | Y2 = (jint)(y2*MDP_MULT(1<<10)); | |||
| 1408 | ||||
| 1409 | hnd->pProcessFixedLine(hnd, X1, Y1, X2, Y2, pixelInfo, | |||
| 1410 | clipped, /* enable boundary checking in case | |||
| 1411 | of clipping to avoid entering | |||
| 1412 | out of bounds which could | |||
| 1413 | happens during rounding | |||
| 1414 | */ | |||
| 1415 | lastClipped /* Notify pProcessFixedLine that | |||
| 1416 | this is the end of the | |||
| 1417 | subpath (because of exiting | |||
| 1418 | out of boundaries) | |||
| 1419 | */ | |||
| 1420 | ); | |||
| 1421 | } else { | |||
| 1422 | /* Clamping starting from first vertex of the processed segment | |||
| 1423 | */ | |||
| 1424 | CLIPCLAMP(xMin, xMax, x1, y1, x2, y2, x3, y3, jfloat, res)do { x3 = x1; y3 = y1; do { jdouble t; res = CRES_NOT_CLIPPED ; if (x1 < (xMin) || x1 > (xMax)) { if (x1 < (xMin)) { if (x2 < (xMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (xMin); } else { if (x2 > (xMax)) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED; t = ( xMax); } y1 = (jfloat)(y1 + ((jdouble)(t - x1)*(y2 - y1)) / ( x2 - x1)); x1 = (jfloat)t; } } while (0); if (res == CRES_MIN_CLIPPED ) { x3 = x1; } else if (res == CRES_MAX_CLIPPED) { x3 = x1; res = CRES_MAX_CLIPPED; } else if (res == CRES_INVISIBLE) { if ( x1 > xMax) { res = CRES_INVISIBLE; } else { x1 = (jfloat)xMin ; x2 = (jfloat)xMin; res = CRES_NOT_CLIPPED; } } } while (0); | |||
| 1425 | X1 = (jint)(x1*MDP_MULT(1<<10)); | |||
| 1426 | Y1 = (jint)(y1*MDP_MULT(1<<10)); | |||
| 1427 | ||||
| 1428 | /* Clamping only by left boundary */ | |||
| 1429 | if (res == CRES_MIN_CLIPPED) { | |||
| 1430 | X3 = (jint)(x3*MDP_MULT(1<<10)); | |||
| 1431 | Y3 = (jint)(y3*MDP_MULT(1<<10)); | |||
| 1432 | hnd->pProcessFixedLine(hnd, X3, Y3, X1, Y1, pixelInfo, | |||
| 1433 | JNI_FALSE0, lastClipped); | |||
| 1434 | ||||
| 1435 | } else if (res == CRES_INVISIBLE) { | |||
| 1436 | return; | |||
| 1437 | } | |||
| 1438 | ||||
| 1439 | /* Clamping starting from last vertex of the processed segment | |||
| 1440 | */ | |||
| 1441 | CLIPCLAMP(xMin, xMax, x2, y2, x1, y1, x3, y3, jfloat, res)do { x3 = x2; y3 = y2; do { jdouble t; res = CRES_NOT_CLIPPED ; if (x2 < (xMin) || x2 > (xMax)) { if (x2 < (xMin)) { if (x1 < (xMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED; t = (xMin); } else { if (x1 > (xMax)) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED; t = ( xMax); } y2 = (jfloat)(y2 + ((jdouble)(t - x2)*(y1 - y2)) / ( x1 - x2)); x2 = (jfloat)t; } } while (0); if (res == CRES_MIN_CLIPPED ) { x3 = x2; } else if (res == CRES_MAX_CLIPPED) { x3 = x2; res = CRES_MAX_CLIPPED; } else if (res == CRES_INVISIBLE) { if ( x2 > xMax) { res = CRES_INVISIBLE; } else { x2 = (jfloat)xMin ; x1 = (jfloat)xMin; res = CRES_NOT_CLIPPED; } } } while (0); | |||
| 1442 | ||||
| 1443 | /* Checking if there was a clip by right boundary */ | |||
| 1444 | lastClipped = lastClipped || (res == CRES_MAX_CLIPPED); | |||
| 1445 | ||||
| 1446 | X2 = (jint)(x2*MDP_MULT(1<<10)); | |||
| 1447 | Y2 = (jint)(y2*MDP_MULT(1<<10)); | |||
| 1448 | hnd->pProcessFixedLine(hnd, X1, Y1, X2, Y2, pixelInfo, | |||
| 1449 | JNI_FALSE0, lastClipped); | |||
| 1450 | ||||
| 1451 | /* Clamping only by left boundary */ | |||
| 1452 | if (res == CRES_MIN_CLIPPED) { | |||
| 1453 | X3 = (jint)(x3*MDP_MULT(1<<10)); | |||
| 1454 | Y3 = (jint)(y3*MDP_MULT(1<<10)); | |||
| 1455 | hnd->pProcessFixedLine(hnd, X2, Y2, X3, Y3, pixelInfo, | |||
| 1456 | JNI_FALSE0, lastClipped); | |||
| 1457 | } | |||
| 1458 | } | |||
| 1459 | } | |||
| 1460 | ||||
| 1461 | jboolean ProcessPath(ProcessHandler* hnd, | |||
| 1462 | jfloat transXf, jfloat transYf, | |||
| 1463 | jfloat* coords, jint maxCoords, | |||
| 1464 | jbyte* types, jint numTypes) | |||
| 1465 | { | |||
| 1466 | jfloat tCoords[8]; | |||
| 1467 | jfloat closeCoord[2]; | |||
| 1468 | jint pixelInfo[5]; | |||
| 1469 | jboolean skip = JNI_FALSE0; | |||
| 1470 | jboolean subpathStarted = JNI_FALSE0; | |||
| 1471 | jfloat lastX, lastY; | |||
| 1472 | int i, index = 0; | |||
| 1473 | ||||
| 1474 | pixelInfo[0] = 0; | |||
| 1475 | ||||
| 1476 | /* Adding support of the KEY_STROKE_CONTROL rendering hint. | |||
| 1477 | * Now we are supporting two modes: "pixels at centers" and | |||
| 1478 | * "pixels at corners". | |||
| 1479 | * First one is disabled by default but could be enabled by setting | |||
| 1480 | * VALUE_STROKE_PURE to the rendering hint. It means that pixel at the | |||
| 1481 | * screen (x,y) has (x + 0.5, y + 0.5) float coordinates. | |||
| 1482 | * | |||
| 1483 | * Second one is enabled by default and means straightforward mapping | |||
| 1484 | * (x,y) --> (x,y) | |||
| 1485 | * | |||
| 1486 | */ | |||
| 1487 | if (hnd->stroke == PH_STROKE_PURE) { | |||
| ||||
| 1488 | closeCoord[0] = -0.5f; | |||
| 1489 | closeCoord[1] = -0.5f; | |||
| 1490 | transXf -= 0.5; | |||
| 1491 | transYf -= 0.5; | |||
| 1492 | } else { | |||
| 1493 | closeCoord[0] = 0.0f; | |||
| 1494 | closeCoord[1] = 0.0f; | |||
| 1495 | } | |||
| 1496 | ||||
| 1497 | /* Adjusting boundaries to the capabilities of the ProcessPath code */ | |||
| 1498 | ADJUST(hnd->dhnd->xMin, LOWER_OUT_BND, UPPER_OUT_BND)do { if ((hnd->dhnd->xMin) < ((-(1 << (30 - 10 ))))) { (hnd->dhnd->xMin) = ((-(1 << (30 - 10)))) ; } else if ((hnd->dhnd->xMin) > (1 << (30 - 10 ))) { (hnd->dhnd->xMin) = ((1 << (30 - 10))); } } while(0); | |||
| 1499 | ADJUST(hnd->dhnd->yMin, LOWER_OUT_BND, UPPER_OUT_BND)do { if ((hnd->dhnd->yMin) < ((-(1 << (30 - 10 ))))) { (hnd->dhnd->yMin) = ((-(1 << (30 - 10)))) ; } else if ((hnd->dhnd->yMin) > (1 << (30 - 10 ))) { (hnd->dhnd->yMin) = ((1 << (30 - 10))); } } while(0); | |||
| 1500 | ADJUST(hnd->dhnd->xMax, LOWER_OUT_BND, UPPER_OUT_BND)do { if ((hnd->dhnd->xMax) < ((-(1 << (30 - 10 ))))) { (hnd->dhnd->xMax) = ((-(1 << (30 - 10)))) ; } else if ((hnd->dhnd->xMax) > (1 << (30 - 10 ))) { (hnd->dhnd->xMax) = ((1 << (30 - 10))); } } while(0); | |||
| 1501 | ADJUST(hnd->dhnd->yMax, LOWER_OUT_BND, UPPER_OUT_BND)do { if ((hnd->dhnd->yMax) < ((-(1 << (30 - 10 ))))) { (hnd->dhnd->yMax) = ((-(1 << (30 - 10)))) ; } else if ((hnd->dhnd->yMax) > (1 << (30 - 10 ))) { (hnd->dhnd->yMax) = ((1 << (30 - 10))); } } while(0); | |||
| 1502 | ||||
| 1503 | ||||
| 1504 | /* Setting up fractional clipping box | |||
| 1505 | * | |||
| 1506 | * We are using following float -> int mapping: | |||
| 1507 | * | |||
| 1508 | * xi = floor(xf + 0.5) | |||
| 1509 | * | |||
| 1510 | * So, fractional values that hit the [xmin, xmax) integer interval will be | |||
| 1511 | * situated inside the [xmin-0.5, xmax - 0.5) fractional interval. We are | |||
| 1512 | * using EPSF constant to provide that upper boundary is not included. | |||
| 1513 | */ | |||
| 1514 | hnd->dhnd->xMinf = hnd->dhnd->xMin - 0.5f; | |||
| 1515 | hnd->dhnd->yMinf = hnd->dhnd->yMin - 0.5f; | |||
| 1516 | hnd->dhnd->xMaxf = hnd->dhnd->xMax - 0.5f - EPSF(((jfloat)1)/(1<<10)); | |||
| 1517 | hnd->dhnd->yMaxf = hnd->dhnd->yMax - 0.5f - EPSF(((jfloat)1)/(1<<10)); | |||
| 1518 | ||||
| 1519 | ||||
| 1520 | for (i = 0; i < numTypes; i++) { | |||
| 1521 | switch (types[i]) { | |||
| 1522 | case java_awt_geom_PathIterator_SEG_MOVETO0L: | |||
| 1523 | if (index + 2 <= maxCoords) { | |||
| 1524 | /* Performing closing of the unclosed segments */ | |||
| 1525 | if (subpathStarted & !skip) { | |||
| 1526 | if (hnd->clipMode == PH_MODE_FILL_CLIP) { | |||
| 1527 | if (tCoords[0] != closeCoord[0] || | |||
| 1528 | tCoords[1] != closeCoord[1]) | |||
| 1529 | { | |||
| 1530 | ProcessLine(hnd, tCoords, closeCoord, | |||
| 1531 | pixelInfo); | |||
| 1532 | } | |||
| 1533 | } | |||
| 1534 | hnd->pProcessEndSubPath(hnd); | |||
| 1535 | } | |||
| 1536 | ||||
| 1537 | tCoords[0] = coords[index++] + transXf; | |||
| 1538 | tCoords[1] = coords[index++] + transYf; | |||
| 1539 | ||||
| 1540 | /* Checking SEG_MOVETO coordinates if they are out of the | |||
| 1541 | * [LOWER_BND, UPPER_BND] range. This check also handles | |||
| 1542 | * NaN and Infinity values. Skipping next path segment in | |||
| 1543 | * case of invalid data. | |||
| 1544 | */ | |||
| 1545 | ||||
| 1546 | if (tCoords[0] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1547 | tCoords[0] > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1548 | tCoords[1] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1549 | tCoords[1] > LOWER_BND(-(3.40282347e+38F/4.0f))) | |||
| 1550 | { | |||
| 1551 | subpathStarted = JNI_TRUE1; | |||
| 1552 | skip = JNI_FALSE0; | |||
| 1553 | closeCoord[0] = tCoords[0]; | |||
| 1554 | closeCoord[1] = tCoords[1]; | |||
| 1555 | } else { | |||
| 1556 | skip = JNI_TRUE1; | |||
| 1557 | } | |||
| 1558 | } else { | |||
| 1559 | return JNI_FALSE0; | |||
| 1560 | } | |||
| 1561 | break; | |||
| 1562 | case java_awt_geom_PathIterator_SEG_LINETO1L: | |||
| 1563 | if (index + 2 <= maxCoords) { | |||
| 1564 | lastX = tCoords[2] = coords[index++] + transXf; | |||
| 1565 | lastY = tCoords[3] = coords[index++] + transYf; | |||
| 1566 | ||||
| 1567 | /* Checking SEG_LINETO coordinates if they are out of the | |||
| 1568 | * [LOWER_BND, UPPER_BND] range. This check also handles | |||
| 1569 | * NaN and Infinity values. Ignoring current path segment | |||
| 1570 | * in case of invalid data. If segment is skipped its | |||
| 1571 | * endpoint (if valid) is used to begin new subpath. | |||
| 1572 | */ | |||
| 1573 | ||||
| 1574 | if (lastX < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1575 | lastX > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1576 | lastY < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1577 | lastY > LOWER_BND(-(3.40282347e+38F/4.0f))) | |||
| 1578 | { | |||
| 1579 | if (skip) { | |||
| 1580 | tCoords[0] = closeCoord[0] = lastX; | |||
| 1581 | tCoords[1] = closeCoord[1] = lastY; | |||
| 1582 | subpathStarted = JNI_TRUE1; | |||
| 1583 | skip = JNI_FALSE0; | |||
| 1584 | } else { | |||
| 1585 | ProcessLine(hnd, tCoords, tCoords + 2, | |||
| 1586 | pixelInfo); | |||
| 1587 | tCoords[0] = lastX; | |||
| 1588 | tCoords[1] = lastY; | |||
| 1589 | } | |||
| 1590 | } | |||
| 1591 | } else { | |||
| 1592 | return JNI_FALSE0; | |||
| 1593 | } | |||
| 1594 | break; | |||
| 1595 | case java_awt_geom_PathIterator_SEG_QUADTO2L: | |||
| 1596 | if (index + 4 <= maxCoords) { | |||
| 1597 | tCoords[2] = coords[index++] + transXf; | |||
| 1598 | tCoords[3] = coords[index++] + transYf; | |||
| 1599 | lastX = tCoords[4] = coords[index++] + transXf; | |||
| 1600 | lastY = tCoords[5] = coords[index++] + transYf; | |||
| 1601 | ||||
| 1602 | /* Checking SEG_QUADTO coordinates if they are out of the | |||
| 1603 | * [LOWER_BND, UPPER_BND] range. This check also handles | |||
| 1604 | * NaN and Infinity values. Ignoring current path segment | |||
| 1605 | * in case of invalid endpoints's data. Equivalent to | |||
| 1606 | * the SEG_LINETO if endpoint coordinates are valid but | |||
| 1607 | * there are invalid data among other coordinates | |||
| 1608 | */ | |||
| 1609 | ||||
| 1610 | if (lastX < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1611 | lastX > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1612 | lastY < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1613 | lastY > LOWER_BND(-(3.40282347e+38F/4.0f))) | |||
| 1614 | { | |||
| 1615 | if (skip) { | |||
| 1616 | tCoords[0] = closeCoord[0] = lastX; | |||
| 1617 | tCoords[1] = closeCoord[1] = lastY; | |||
| 1618 | subpathStarted = JNI_TRUE1; | |||
| 1619 | skip = JNI_FALSE0; | |||
| 1620 | } else { | |||
| 1621 | if (tCoords[2] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1622 | tCoords[2] > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1623 | tCoords[3] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1624 | tCoords[3] > LOWER_BND(-(3.40282347e+38F/4.0f))) | |||
| 1625 | { | |||
| 1626 | ProcessQuad(hnd, tCoords, pixelInfo); | |||
| 1627 | } else { | |||
| 1628 | ProcessLine(hnd, tCoords, | |||
| 1629 | tCoords + 4, pixelInfo); | |||
| 1630 | } | |||
| 1631 | tCoords[0] = lastX; | |||
| 1632 | tCoords[1] = lastY; | |||
| 1633 | } | |||
| 1634 | } | |||
| 1635 | } else { | |||
| 1636 | return JNI_FALSE0; | |||
| 1637 | } | |||
| 1638 | break; | |||
| 1639 | case java_awt_geom_PathIterator_SEG_CUBICTO3L: | |||
| 1640 | if (index + 6 <= maxCoords) { | |||
| 1641 | tCoords[2] = coords[index++] + transXf; | |||
| 1642 | tCoords[3] = coords[index++] + transYf; | |||
| 1643 | tCoords[4] = coords[index++] + transXf; | |||
| 1644 | tCoords[5] = coords[index++] + transYf; | |||
| 1645 | lastX = tCoords[6] = coords[index++] + transXf; | |||
| 1646 | lastY = tCoords[7] = coords[index++] + transYf; | |||
| 1647 | ||||
| 1648 | /* Checking SEG_CUBICTO coordinates if they are out of the | |||
| 1649 | * [LOWER_BND, UPPER_BND] range. This check also handles | |||
| 1650 | * NaN and Infinity values. Ignoring current path segment | |||
| 1651 | * in case of invalid endpoints's data. Equivalent to | |||
| 1652 | * the SEG_LINETO if endpoint coordinates are valid but | |||
| 1653 | * there are invalid data among other coordinates | |||
| 1654 | */ | |||
| 1655 | ||||
| 1656 | if (lastX < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1657 | lastX > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1658 | lastY < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1659 | lastY > LOWER_BND(-(3.40282347e+38F/4.0f))) | |||
| 1660 | { | |||
| 1661 | if (skip
| |||
| 1662 | tCoords[0] = closeCoord[0] = tCoords[6]; | |||
| 1663 | tCoords[1] = closeCoord[1] = tCoords[7]; | |||
| 1664 | subpathStarted = JNI_TRUE1; | |||
| 1665 | skip = JNI_FALSE0; | |||
| 1666 | } else { | |||
| 1667 | if (tCoords[2] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1668 | tCoords[2] > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1669 | tCoords[3] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1670 | tCoords[3] > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1671 | tCoords[4] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1672 | tCoords[4] > LOWER_BND(-(3.40282347e+38F/4.0f)) && | |||
| 1673 | tCoords[5] < UPPER_BND(3.40282347e+38F/4.0f) && | |||
| 1674 | tCoords[5] > LOWER_BND(-(3.40282347e+38F/4.0f))) | |||
| 1675 | { | |||
| 1676 | ProcessCubic(hnd, tCoords, pixelInfo); | |||
| 1677 | } else { | |||
| 1678 | ProcessLine(hnd, tCoords, tCoords + 6, | |||
| 1679 | pixelInfo); | |||
| 1680 | } | |||
| 1681 | tCoords[0] = lastX; | |||
| 1682 | tCoords[1] = lastY; | |||
| 1683 | } | |||
| 1684 | } | |||
| 1685 | } else { | |||
| 1686 | return JNI_FALSE0; | |||
| 1687 | } | |||
| 1688 | break; | |||
| 1689 | case java_awt_geom_PathIterator_SEG_CLOSE4L: | |||
| 1690 | if (subpathStarted && !skip) { | |||
| 1691 | skip = JNI_FALSE0; | |||
| 1692 | if (tCoords[0] != closeCoord[0] || | |||
| 1693 | tCoords[1] != closeCoord[1]) | |||
| 1694 | { | |||
| 1695 | ProcessLine(hnd, tCoords, closeCoord, pixelInfo); | |||
| 1696 | /* Storing last path's point for using in | |||
| 1697 | * following segments without initial moveTo | |||
| 1698 | */ | |||
| 1699 | tCoords[0] = closeCoord[0]; | |||
| 1700 | tCoords[1] = closeCoord[1]; | |||
| 1701 | } | |||
| 1702 | ||||
| 1703 | hnd->pProcessEndSubPath(hnd); | |||
| 1704 | } | |||
| 1705 | ||||
| 1706 | break; | |||
| 1707 | } | |||
| 1708 | } | |||
| 1709 | ||||
| 1710 | /* Performing closing of the unclosed segments */ | |||
| 1711 | if (subpathStarted & !skip) { | |||
| 1712 | if (hnd->clipMode == PH_MODE_FILL_CLIP) { | |||
| 1713 | if (tCoords[0] != closeCoord[0] || | |||
| 1714 | tCoords[1] != closeCoord[1]) | |||
| 1715 | { | |||
| 1716 | ProcessLine(hnd, tCoords, closeCoord, | |||
| 1717 | pixelInfo); | |||
| 1718 | } | |||
| 1719 | } | |||
| 1720 | hnd->pProcessEndSubPath(hnd); | |||
| 1721 | } | |||
| 1722 | ||||
| 1723 | return JNI_TRUE1; | |||
| 1724 | } | |||
| 1725 | ||||
| 1726 | /* TODO Add checking of the result of the malloc/realloc functions to handle | |||
| 1727 | * out of memory error and don't leak earlier allocated data | |||
| 1728 | */ | |||
| 1729 | ||||
| 1730 | ||||
| 1731 | #define ALLOC(ptr, type, n)ptr = (type *)malloc((n)*sizeof(type)) \ | |||
| 1732 | ptr = (type *)malloc((n)*sizeof(type)) | |||
| 1733 | #define REALLOC(ptr, type, n)ptr = (type *)realloc(ptr, (n)*sizeof(type)) \ | |||
| 1734 | ptr = (type *)realloc(ptr, (n)*sizeof(type)) | |||
| 1735 | ||||
| 1736 | ||||
| 1737 | struct _Edge; | |||
| 1738 | ||||
| 1739 | typedef struct _Point { | |||
| 1740 | jint x; | |||
| 1741 | jint y; | |||
| 1742 | jboolean lastPoint; | |||
| 1743 | struct _Point* prev; | |||
| 1744 | struct _Point* next; | |||
| 1745 | struct _Point* nextByY; | |||
| 1746 | jboolean endSL; | |||
| 1747 | struct _Edge* edge; | |||
| 1748 | } Point; | |||
| 1749 | ||||
| 1750 | ||||
| 1751 | typedef struct _Edge { | |||
| 1752 | jint x; | |||
| 1753 | jint dx; | |||
| 1754 | Point* p; | |||
| 1755 | jint dir; | |||
| 1756 | struct _Edge* prev; | |||
| 1757 | struct _Edge* next; | |||
| 1758 | } Edge; | |||
| 1759 | ||||
| 1760 | /* Size of the default buffer in the FillData structure. This buffer is | |||
| 1761 | * replaced with heap allocated in case of large paths. | |||
| 1762 | */ | |||
| 1763 | #define DF_MAX_POINT256 256 | |||
| 1764 | ||||
| 1765 | /* Following structure accumulates points of the non-continuous flattened | |||
| 1766 | * path during iteration through the origin path's segments . The end | |||
| 1767 | * of the each subpath is marked as lastPoint flag set at the last point | |||
| 1768 | */ | |||
| 1769 | ||||
| 1770 | typedef struct { | |||
| 1771 | Point *plgPnts; | |||
| 1772 | Point dfPlgPnts[DF_MAX_POINT256]; | |||
| 1773 | jint plgSize; | |||
| 1774 | jint plgMax; | |||
| 1775 | jint plgYMin; | |||
| 1776 | jint plgYMax; | |||
| 1777 | } FillData; | |||
| 1778 | ||||
| 1779 | #define FD_INIT(PTR)do { (PTR)->plgPnts = (PTR)->dfPlgPnts; (PTR)->plgSize = 0; (PTR)->plgMax = 256; } while(0) \ | |||
| 1780 | do { \ | |||
| 1781 | (PTR)->plgPnts = (PTR)->dfPlgPnts; \ | |||
| 1782 | (PTR)->plgSize = 0; \ | |||
| 1783 | (PTR)->plgMax = DF_MAX_POINT256; \ | |||
| 1784 | } while(0) | |||
| 1785 | ||||
| 1786 | #define FD_ADD_POINT(PTR, X, Y, LASTPT)do { Point* _pnts = (PTR)->plgPnts; jint _size = (PTR)-> plgSize; if (_size >= (PTR)->plgMax) { jint newMax = (PTR )->plgMax*2; if ((PTR)->plgPnts == (PTR)->dfPlgPnts) { (PTR)->plgPnts = (Point*)malloc(newMax*sizeof(Point)); memcpy ((PTR)->plgPnts, _pnts, _size*sizeof(Point)); } else { (PTR )->plgPnts = (Point*)realloc( _pnts, newMax*sizeof(Point)) ; } _pnts = (PTR)->plgPnts; (PTR)->plgMax = newMax; } _pnts += _size; _pnts->x = X; _pnts->y = Y; _pnts->lastPoint = LASTPT; if (_size) { if ((PTR)->plgYMin > Y) (PTR)-> plgYMin = Y; if ((PTR)->plgYMax < Y) (PTR)->plgYMax = Y; } else { (PTR)->plgYMin = Y; (PTR)->plgYMax = Y; } ( PTR)->plgSize = _size + 1; } while(0) \ | |||
| 1787 | do { \ | |||
| 1788 | Point* _pnts = (PTR)->plgPnts; \ | |||
| 1789 | jint _size = (PTR)->plgSize; \ | |||
| 1790 | if (_size >= (PTR)->plgMax) { \ | |||
| 1791 | jint newMax = (PTR)->plgMax*2; \ | |||
| 1792 | if ((PTR)->plgPnts == (PTR)->dfPlgPnts) { \ | |||
| 1793 | (PTR)->plgPnts = (Point*)malloc(newMax*sizeof(Point)); \ | |||
| 1794 | memcpy((PTR)->plgPnts, _pnts, _size*sizeof(Point)); \ | |||
| 1795 | } else { \ | |||
| 1796 | (PTR)->plgPnts = (Point*)realloc( \ | |||
| 1797 | _pnts, newMax*sizeof(Point)); \ | |||
| 1798 | } \ | |||
| 1799 | _pnts = (PTR)->plgPnts; \ | |||
| 1800 | (PTR)->plgMax = newMax; \ | |||
| 1801 | } \ | |||
| 1802 | _pnts += _size; \ | |||
| 1803 | _pnts->x = X; \ | |||
| 1804 | _pnts->y = Y; \ | |||
| 1805 | _pnts->lastPoint = LASTPT; \ | |||
| 1806 | if (_size) { \ | |||
| 1807 | if ((PTR)->plgYMin > Y) (PTR)->plgYMin = Y; \ | |||
| 1808 | if ((PTR)->plgYMax < Y) (PTR)->plgYMax = Y; \ | |||
| 1809 | } else { \ | |||
| 1810 | (PTR)->plgYMin = Y; \ | |||
| 1811 | (PTR)->plgYMax = Y; \ | |||
| 1812 | } \ | |||
| 1813 | (PTR)->plgSize = _size + 1; \ | |||
| 1814 | } while(0) | |||
| 1815 | ||||
| 1816 | ||||
| 1817 | #define FD_FREE_POINTS(PTR)do { if ((PTR)->plgPnts != (PTR)->dfPlgPnts) { free((PTR )->plgPnts); } } while(0) \ | |||
| 1818 | do { \ | |||
| 1819 | if ((PTR)->plgPnts != (PTR)->dfPlgPnts) { \ | |||
| 1820 | free((PTR)->plgPnts); \ | |||
| 1821 | } \ | |||
| 1822 | } while(0) | |||
| 1823 | ||||
| 1824 | #define FD_IS_EMPTY(PTR)(!((PTR)->plgSize)) (!((PTR)->plgSize)) | |||
| 1825 | ||||
| 1826 | #define FD_IS_ENDED(PTR)((PTR)->plgPnts[(PTR)->plgSize - 1].lastPoint) ((PTR)->plgPnts[(PTR)->plgSize - 1].lastPoint) | |||
| 1827 | ||||
| 1828 | #define FD_SET_ENDED(PTR)do { (PTR)->plgPnts[(PTR)->plgSize - 1].lastPoint = 1; } while(0) \ | |||
| 1829 | do { \ | |||
| 1830 | (PTR)->plgPnts[(PTR)->plgSize - 1].lastPoint = JNI_TRUE1; \ | |||
| 1831 | } while(0) | |||
| 1832 | ||||
| 1833 | #define PFD(HND)((FillData*)(HND)->pData) ((FillData*)(HND)->pData) | |||
| 1834 | ||||
| 1835 | /* Bubble sorting in the ascending order of the linked list. This | |||
| 1836 | * implementation stops processing the list if there were no changes during the | |||
| 1837 | * previous pass. | |||
| 1838 | * | |||
| 1839 | * LIST - ptr to the ptr to the first element of the list | |||
| 1840 | * ETYPE - type of the element in the list | |||
| 1841 | * NEXT - accessor to the next field in the list element | |||
| 1842 | * GET_LKEY - accessor to the key of the list element | |||
| 1843 | */ | |||
| 1844 | #define LBUBBLE_SORT(LIST, ETYPE, NEXT, GET_LKEY)do { ETYPE *p, *q, *r, *s = ((void*)0), *temp ; jint wasSwap = 1; while ( s != NEXT(*LIST) && wasSwap) { r = p = *LIST ; q = NEXT(p); wasSwap = 0; while ( p != s ) { if (GET_LKEY(p ) >= GET_LKEY(q)) { wasSwap = 1; if ( p == *LIST ) { temp = NEXT(q); NEXT(q) = p ; NEXT(p) = temp ; *LIST = q ; r = q ; } else { temp = NEXT(q); NEXT(q) = p ; NEXT(p) = temp ; NEXT(r ) = q ; r = q ; } } else { r = p ; p = NEXT(p); } q = NEXT(p) ; if ( q == s ) s = p ; } } } while(0); \ | |||
| 1845 | do { \ | |||
| 1846 | ETYPE *p, *q, *r, *s = NULL((void*)0), *temp ; \ | |||
| 1847 | jint wasSwap = 1; \ | |||
| 1848 | /* r precedes p and s points to the node up to which comparisons \ | |||
| 1849 | * are to be made */ \ | |||
| 1850 | while ( s != NEXT(*LIST) && wasSwap) { \ | |||
| 1851 | r = p = *LIST; \ | |||
| 1852 | q = NEXT(p); \ | |||
| 1853 | wasSwap = 0; \ | |||
| 1854 | while ( p != s ) { \ | |||
| 1855 | if (GET_LKEY(p) >= GET_LKEY(q)) { \ | |||
| 1856 | wasSwap = 1; \ | |||
| 1857 | if ( p == *LIST ) { \ | |||
| 1858 | temp = NEXT(q); \ | |||
| 1859 | NEXT(q) = p ; \ | |||
| 1860 | NEXT(p) = temp ; \ | |||
| 1861 | *LIST = q ; \ | |||
| 1862 | r = q ; \ | |||
| 1863 | } else { \ | |||
| 1864 | temp = NEXT(q); \ | |||
| 1865 | NEXT(q) = p ; \ | |||
| 1866 | NEXT(p) = temp ; \ | |||
| 1867 | NEXT(r) = q ; \ | |||
| 1868 | r = q ; \ | |||
| 1869 | } \ | |||
| 1870 | } else { \ | |||
| 1871 | r = p ; \ | |||
| 1872 | p = NEXT(p); \ | |||
| 1873 | } \ | |||
| 1874 | q = NEXT(p); \ | |||
| 1875 | if ( q == s ) s = p ; \ | |||
| 1876 | } \ | |||
| 1877 | } \ | |||
| 1878 | } while(0); | |||
| 1879 | ||||
| 1880 | /* Accessors for the Edge structure to work with LBUBBLE_SORT */ | |||
| 1881 | #define GET_ACTIVE_KEY(a)(a->x) (a->x) | |||
| 1882 | #define GET_ACTIVE_NEXT(a)((a)->next) ((a)->next) | |||
| 1883 | ||||
| 1884 | /* TODO: Implement stack/heap allocation technique for active edges | |||
| 1885 | */ | |||
| 1886 | #define DELETE_ACTIVE(head,pnt)do { Edge *prevp = pnt->prev; Edge *nextp = pnt->next; if (prevp) { prevp->next = nextp; } else { head = nextp; } if (nextp) { nextp->prev = prevp; } } while(0); \ | |||
| 1887 | do { \ | |||
| 1888 | Edge *prevp = pnt->prev; \ | |||
| 1889 | Edge *nextp = pnt->next; \ | |||
| 1890 | if (prevp) { \ | |||
| 1891 | prevp->next = nextp; \ | |||
| 1892 | } else { \ | |||
| 1893 | head = nextp; \ | |||
| 1894 | } \ | |||
| 1895 | if (nextp) { \ | |||
| 1896 | nextp->prev = prevp; \ | |||
| 1897 | } \ | |||
| 1898 | } while(0); | |||
| 1899 | ||||
| 1900 | #define INSERT_ACTIVE(head,pnt,cy)do { Point *np = pnt->next; Edge *ne = active + nact; if ( pnt->y == np->y) { break; } else { jint dX = np->x - pnt->x; jint dY = np->y - pnt->y; jint dy; if (pnt-> y < np->y) { ne->dir = -1; ne->p = pnt; ne->x = pnt->x; dy = cy - pnt->y; } else { ne->dir = 1; ne-> p = np; ne->x = np->x; dy = cy - np->y; } if ((((dX) ^((dX)>>31))-((dX)>>31)) > (1 << (30 - 10 ))) { ne->dx = (jint)((((jdouble)dX)*(1<<10))/dY); ne ->x += (jint)((((jdouble)dX)*dy)/dY); } else { ne->dx = ((dX)<<10)/dY; ne->x += (dX*dy)/dY; } } ne->next = head; ne->prev = ((void*)0); if (head) { head->prev = ne; } head = active + nact; pnt->edge = head; nact++; } while (0); \ | |||
| 1901 | do { \ | |||
| 1902 | Point *np = pnt->next; \ | |||
| 1903 | Edge *ne = active + nact; \ | |||
| 1904 | if (pnt->y == np->y) { \ | |||
| 1905 | /* Skipping horizontal segments */ \ | |||
| 1906 | break; \ | |||
| 1907 | } else { \ | |||
| 1908 | jint dX = np->x - pnt->x; \ | |||
| 1909 | jint dY = np->y - pnt->y; \ | |||
| 1910 | jint dy; \ | |||
| 1911 | if (pnt->y < np->y) { \ | |||
| 1912 | ne->dir = -1; \ | |||
| 1913 | ne->p = pnt; \ | |||
| 1914 | ne->x = pnt->x; \ | |||
| 1915 | dy = cy - pnt->y; \ | |||
| 1916 | } else { /* pnt->y > np->y */ \ | |||
| 1917 | ne->dir = 1; \ | |||
| 1918 | ne->p = np; \ | |||
| 1919 | ne->x = np->x; \ | |||
| 1920 | dy = cy - np->y; \ | |||
| 1921 | } \ | |||
| 1922 | \ | |||
| 1923 | /* We need to worry only about dX because dY is in */\ | |||
| 1924 | /* denominator and abs(dy) < MDP_MULT (cy is a first */\ | |||
| 1925 | /* scanline of the scan converted segment and we subtract */\ | |||
| 1926 | /* y coordinate of the nearest segment's end from it to */\ | |||
| 1927 | /* obtain dy) */\ | |||
| 1928 | if (ABS32(dX)(((dX)^((dX)>>31))-((dX)>>31)) > CALC_BND(1 << (30 - 10))) { \ | |||
| 1929 | ne->dx = (jint)((((jdouble)dX)*MDP_MULT(1<<10))/dY); \ | |||
| 1930 | ne->x += (jint)((((jdouble)dX)*dy)/dY); \ | |||
| 1931 | } else { \ | |||
| 1932 | ne->dx = ((dX)<<MDP_PREC10)/dY; \ | |||
| 1933 | ne->x += (dX*dy)/dY; \ | |||
| 1934 | } \ | |||
| 1935 | } \ | |||
| 1936 | ne->next = head; \ | |||
| 1937 | ne->prev = NULL((void*)0); \ | |||
| 1938 | if (head) { \ | |||
| 1939 | head->prev = ne; \ | |||
| 1940 | } \ | |||
| 1941 | head = active + nact; \ | |||
| 1942 | pnt->edge = head; \ | |||
| 1943 | nact++; \ | |||
| 1944 | } while(0); | |||
| 1945 | ||||
| 1946 | void FillPolygon(ProcessHandler* hnd, | |||
| 1947 | jint fillRule) { | |||
| 1948 | jint k, y, xl, xr; | |||
| 1949 | jint drawing; | |||
| 1950 | Edge* activeList, *active; | |||
| 1951 | Edge* curEdge, *prevEdge; | |||
| 1952 | jint nact; | |||
| 1953 | jint n; | |||
| 1954 | Point* pt, *curpt, *ept; | |||
| 1955 | Point** yHash; | |||
| 1956 | Point** curHash; | |||
| 1957 | jint rightBnd = hnd->dhnd->xMax - 1; | |||
| 1958 | FillData* pfd = (FillData*)(hnd->pData); | |||
| 1959 | jint yMin = pfd->plgYMin; | |||
| 1960 | jint yMax = pfd->plgYMax; | |||
| 1961 | jint hashSize = ((yMax - yMin)>>MDP_PREC10) + 4; | |||
| 1962 | ||||
| 1963 | /* Because of support of the KEY_STROKE_CONTROL hint we are performing | |||
| 1964 | * shift of the coordinates at the higher level | |||
| 1965 | */ | |||
| 1966 | jint hashOffset = ((yMin - 1) & MDP_W_MASK(-(1<<10))); | |||
| 1967 | ||||
| 1968 | // TODO creating lists using fake first element to avoid special casing of | |||
| 1969 | // the first element in the list (which otherwise should be performed in each | |||
| 1970 | // list operation) | |||
| 1971 | ||||
| 1972 | /* Winding counter */ | |||
| 1973 | jint counter; | |||
| 1974 | ||||
| 1975 | /* Calculating mask to be applied to the winding counter */ | |||
| 1976 | jint counterMask = | |||
| 1977 | (fillRule == java_awt_geom_PathIterator_WIND_NON_ZERO1L)? -1:1; | |||
| 1978 | pt = pfd->plgPnts; | |||
| 1979 | n = pfd->plgSize; | |||
| 1980 | ||||
| 1981 | if (n <=1) return; | |||
| 1982 | ||||
| 1983 | ALLOC(yHash, Point*, hashSize)yHash = (Point* *)malloc((hashSize)*sizeof(Point*)); | |||
| 1984 | for (k = 0; k < hashSize; k++) { | |||
| 1985 | yHash[k] = NULL((void*)0); | |||
| 1986 | } | |||
| 1987 | ||||
| 1988 | ALLOC(active, Edge, n)active = (Edge *)malloc((n)*sizeof(Edge)); | |||
| 1989 | ||||
| 1990 | /* Creating double linked list (prev, next links) describing path order and | |||
| 1991 | * hash table with points which fall between scanlines. nextByY link is | |||
| 1992 | * used for the points which are between same scanlines. Scanlines are | |||
| 1993 | * passed through the centers of the pixels. | |||
| 1994 | */ | |||
| 1995 | curpt = pt; | |||
| 1996 | curpt->prev = NULL((void*)0); | |||
| 1997 | ept = pt + n - 1; | |||
| 1998 | for (curpt = pt; curpt != ept; curpt++) { | |||
| 1999 | Point* nextpt = curpt + 1; | |||
| 2000 | curHash = yHash + ((curpt->y - hashOffset - 1) >> MDP_PREC10); | |||
| 2001 | curpt->nextByY = *curHash; | |||
| 2002 | *curHash = curpt; | |||
| 2003 | curpt->next = nextpt; | |||
| 2004 | nextpt->prev = curpt; | |||
| 2005 | curpt->edge = NULL((void*)0); | |||
| 2006 | } | |||
| 2007 | ||||
| 2008 | curHash = yHash + ((ept->y - hashOffset - 1) >> MDP_PREC10); | |||
| 2009 | ept->nextByY = *curHash; | |||
| 2010 | *curHash = ept; | |||
| 2011 | ept->next = NULL((void*)0); | |||
| 2012 | ept->edge = NULL((void*)0); | |||
| 2013 | nact = 0; | |||
| 2014 | ||||
| 2015 | activeList = NULL((void*)0); | |||
| 2016 | for (y=hashOffset + MDP_MULT(1<<10),k = 0; | |||
| 2017 | y<=yMax && k < hashSize; y += MDP_MULT(1<<10), k++) | |||
| 2018 | { | |||
| 2019 | for(pt = yHash[k];pt; pt=pt->nextByY) { | |||
| 2020 | /* pt->y should be inside hashed interval | |||
| 2021 | * assert(y-MDP_MULT <= pt->y && pt->y < y); | |||
| 2022 | */ | |||
| 2023 | if (pt->prev && !pt->prev->lastPoint) { | |||
| 2024 | if (pt->prev->edge && pt->prev->y <= y) { | |||
| 2025 | DELETE_ACTIVE(activeList, pt->prev->edge)do { Edge *prevp = pt->prev->edge->prev; Edge *nextp = pt->prev->edge->next; if (prevp) { prevp->next = nextp; } else { activeList = nextp; } if (nextp) { nextp-> prev = prevp; } } while(0);; | |||
| 2026 | pt->prev->edge = NULL((void*)0); | |||
| 2027 | } else if (pt->prev->y > y) { | |||
| 2028 | INSERT_ACTIVE(activeList, pt->prev, y)do { Point *np = pt->prev->next; Edge *ne = active + nact ; if (pt->prev->y == np->y) { break; } else { jint dX = np->x - pt->prev->x; jint dY = np->y - pt-> prev->y; jint dy; if (pt->prev->y < np->y) { ne ->dir = -1; ne->p = pt->prev; ne->x = pt->prev ->x; dy = y - pt->prev->y; } else { ne->dir = 1; ne ->p = np; ne->x = np->x; dy = y - np->y; } if ((( (dX)^((dX)>>31))-((dX)>>31)) > (1 << (30 - 10))) { ne->dx = (jint)((((jdouble)dX)*(1<<10))/dY ); ne->x += (jint)((((jdouble)dX)*dy)/dY); } else { ne-> dx = ((dX)<<10)/dY; ne->x += (dX*dy)/dY; } } ne-> next = activeList; ne->prev = ((void*)0); if (activeList) { activeList->prev = ne; } activeList = active + nact; pt-> prev->edge = activeList; nact++; } while(0);; | |||
| 2029 | } | |||
| 2030 | } | |||
| 2031 | ||||
| 2032 | if (!pt->lastPoint && pt->next) { | |||
| 2033 | if (pt->edge && pt->next->y <= y) { | |||
| 2034 | DELETE_ACTIVE(activeList, pt->edge)do { Edge *prevp = pt->edge->prev; Edge *nextp = pt-> edge->next; if (prevp) { prevp->next = nextp; } else { activeList = nextp; } if (nextp) { nextp->prev = prevp; } } while(0) ;; | |||
| 2035 | pt->edge = NULL((void*)0); | |||
| 2036 | } else if (pt->next->y > y) { | |||
| 2037 | INSERT_ACTIVE(activeList, pt, y)do { Point *np = pt->next; Edge *ne = active + nact; if (pt ->y == np->y) { break; } else { jint dX = np->x - pt ->x; jint dY = np->y - pt->y; jint dy; if (pt->y < np->y) { ne->dir = -1; ne->p = pt; ne->x = pt-> x; dy = y - pt->y; } else { ne->dir = 1; ne->p = np; ne->x = np->x; dy = y - np->y; } if ((((dX)^((dX)>> 31))-((dX)>>31)) > (1 << (30 - 10))) { ne-> dx = (jint)((((jdouble)dX)*(1<<10))/dY); ne->x += (jint )((((jdouble)dX)*dy)/dY); } else { ne->dx = ((dX)<<10 )/dY; ne->x += (dX*dy)/dY; } } ne->next = activeList; ne ->prev = ((void*)0); if (activeList) { activeList->prev = ne; } activeList = active + nact; pt->edge = activeList ; nact++; } while(0);; | |||
| 2038 | } | |||
| 2039 | } | |||
| 2040 | } | |||
| 2041 | ||||
| 2042 | if (!activeList) continue; | |||
| 2043 | ||||
| 2044 | /* We could not use O(N) Radix sort here because in most cases list of | |||
| 2045 | * edges almost sorted. So, bubble sort (O(N^2))is working much | |||
| 2046 | * better. Note, in case of array of edges Shell sort is more | |||
| 2047 | * efficient. | |||
| 2048 | */ | |||
| 2049 | LBUBBLE_SORT((&activeList), Edge, GET_ACTIVE_NEXT, GET_ACTIVE_KEY)do { Edge *p, *q, *r, *s = ((void*)0), *temp ; jint wasSwap = 1; while ( s != ((*(&activeList))->next) && wasSwap ) { r = p = *(&activeList); q = ((p)->next); wasSwap = 0; while ( p != s ) { if ((p->x) >= (q->x)) { wasSwap = 1; if ( p == *(&activeList) ) { temp = ((q)->next); ((q)->next) = p ; ((p)->next) = temp ; *(&activeList ) = q ; r = q ; } else { temp = ((q)->next); ((q)->next ) = p ; ((p)->next) = temp ; ((r)->next) = q ; r = q ; } } else { r = p ; p = ((p)->next); } q = ((p)->next); if ( q == s ) s = p ; } } } while(0);; | |||
| 2050 | ||||
| 2051 | /* Correction of the back links in the double linked edge list */ | |||
| 2052 | curEdge=activeList; | |||
| 2053 | prevEdge = NULL((void*)0); | |||
| 2054 | while (curEdge) { | |||
| 2055 | curEdge->prev = prevEdge; | |||
| 2056 | prevEdge = curEdge; | |||
| 2057 | curEdge = curEdge->next; | |||
| 2058 | } | |||
| 2059 | ||||
| 2060 | xl = xr = hnd->dhnd->xMin; | |||
| 2061 | curEdge = activeList; | |||
| 2062 | counter = 0; | |||
| 2063 | drawing = 0; | |||
| 2064 | for(;curEdge; curEdge = curEdge->next) { | |||
| 2065 | counter += curEdge->dir; | |||
| 2066 | if ((counter & counterMask) && !drawing) { | |||
| 2067 | xl = (curEdge->x + MDP_MULT(1<<10) - 1)>>MDP_PREC10; | |||
| 2068 | drawing = 1; | |||
| 2069 | } | |||
| 2070 | ||||
| 2071 | if (!(counter & counterMask) && drawing) { | |||
| 2072 | xr = (curEdge->x - 1)>>MDP_PREC10; | |||
| 2073 | if (xl <= xr) { | |||
| 2074 | hnd->dhnd->pDrawScanline(hnd->dhnd, xl, xr, y >> MDP_PREC10); | |||
| 2075 | } | |||
| 2076 | drawing = 0; | |||
| 2077 | } | |||
| 2078 | ||||
| 2079 | curEdge->x += curEdge->dx; | |||
| 2080 | } | |||
| 2081 | ||||
| 2082 | /* Performing drawing till the right boundary (for correct rendering | |||
| 2083 | * shapes clipped at the right side) | |||
| 2084 | */ | |||
| 2085 | if (drawing && xl <= rightBnd) { | |||
| 2086 | hnd->dhnd->pDrawScanline(hnd->dhnd, xl, rightBnd, y >> MDP_PREC10); | |||
| 2087 | } | |||
| 2088 | } | |||
| 2089 | free(active); | |||
| 2090 | free(yHash); | |||
| 2091 | } | |||
| 2092 | ||||
| 2093 | ||||
| 2094 | ||||
| 2095 | void StoreFixedLine(ProcessHandler* hnd,jint x1,jint y1,jint x2,jint y2, | |||
| 2096 | jint* pixelInfo,jboolean checkBounds, | |||
| 2097 | jboolean endSubPath) { | |||
| 2098 | FillData* pfd; | |||
| 2099 | jint outXMin, outXMax, outYMin, outYMax; | |||
| 2100 | jint x3, y3, res; | |||
| 2101 | ||||
| 2102 | /* There is no need to round line coordinates to the forward differencing | |||
| 2103 | * precision anymore. Such a rounding was used for preventing the curve go | |||
| 2104 | * out the endpoint (this sometimes does not help). The problem was fixed | |||
| 2105 | * in the forward differencing loops. | |||
| 2106 | */ | |||
| 2107 | ||||
| 2108 | if (checkBounds) { | |||
| 2109 | jboolean lastClipped = JNI_FALSE0; | |||
| 2110 | ||||
| 2111 | /* This function is used only for filling shapes, so there is no | |||
| 2112 | * check for the type of clipping | |||
| 2113 | */ | |||
| 2114 | outXMin = (jint)(hnd->dhnd->xMinf * MDP_MULT(1<<10)); | |||
| 2115 | outXMax = (jint)(hnd->dhnd->xMaxf * MDP_MULT(1<<10)); | |||
| 2116 | outYMin = (jint)(hnd->dhnd->yMinf * MDP_MULT(1<<10)); | |||
| 2117 | outYMax = (jint)(hnd->dhnd->yMaxf * MDP_MULT(1<<10)); | |||
| 2118 | ||||
| 2119 | TESTANDCLIP(outYMin, outYMax, y1, x1, y2, x2, jint, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (y1 < (outYMin) || y1 > (outYMax)) { if (y1 < (outYMin)) { if (y2 < (outYMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (outYMin); } else { if (y2 > (outYMax)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (outYMax); } x1 = (jint )(x1 + ((jdouble)(t - y1)*(x2 - x1)) / (y2 - y1)); y1 = (jint )t; } } while (0); | |||
| 2120 | if (res == CRES_INVISIBLE) return; | |||
| 2121 | TESTANDCLIP(outYMin, outYMax, y2, x2, y1, x1, jint, res)do { jdouble t; res = CRES_NOT_CLIPPED; if (y2 < (outYMin) || y2 > (outYMax)) { if (y2 < (outYMin)) { if (y1 < (outYMin)) { res = CRES_INVISIBLE; break; }; res = CRES_MIN_CLIPPED ; t = (outYMin); } else { if (y1 > (outYMax)) { res = CRES_INVISIBLE ; break; }; res = CRES_MAX_CLIPPED; t = (outYMax); } x2 = (jint )(x2 + ((jdouble)(t - y2)*(x1 - x2)) / (y1 - y2)); y2 = (jint )t; } } while (0); | |||
| 2122 | if (res == CRES_INVISIBLE) return; | |||
| 2123 | lastClipped = IS_CLIPPED(res)(res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED); | |||
| 2124 | ||||
| 2125 | /* Clamping starting from first vertex of the processed segment */ | |||
| 2126 | CLIPCLAMP(outXMin, outXMax, x1, y1, x2, y2, x3, y3, jint, res)do { x3 = x1; y3 = y1; do { jdouble t; res = CRES_NOT_CLIPPED ; if (x1 < (outXMin) || x1 > (outXMax)) { if (x1 < ( outXMin)) { if (x2 < (outXMin)) { res = CRES_INVISIBLE; break ; }; res = CRES_MIN_CLIPPED; t = (outXMin); } else { if (x2 > (outXMax)) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED ; t = (outXMax); } y1 = (jint)(y1 + ((jdouble)(t - x1)*(y2 - y1 )) / (x2 - x1)); x1 = (jint)t; } } while (0); if (res == CRES_MIN_CLIPPED ) { x3 = x1; } else if (res == CRES_MAX_CLIPPED) { x3 = x1; res = CRES_MAX_CLIPPED; } else if (res == CRES_INVISIBLE) { if ( x1 > outXMax) { res = CRES_INVISIBLE; } else { x1 = (jint) outXMin; x2 = (jint)outXMin; res = CRES_NOT_CLIPPED; } } } while (0); | |||
| 2127 | ||||
| 2128 | /* Clamping only by left boundary */ | |||
| 2129 | if (res == CRES_MIN_CLIPPED) { | |||
| 2130 | StoreFixedLine(hnd, x3, y3, x1, y1, pixelInfo, | |||
| 2131 | JNI_FALSE0, lastClipped); | |||
| 2132 | ||||
| 2133 | } else if (res == CRES_INVISIBLE) { | |||
| 2134 | return; | |||
| 2135 | } | |||
| 2136 | ||||
| 2137 | /* Clamping starting from last vertex of the processed segment */ | |||
| 2138 | CLIPCLAMP(outXMin, outXMax, x2, y2, x1, y1, x3, y3, jint, res)do { x3 = x2; y3 = y2; do { jdouble t; res = CRES_NOT_CLIPPED ; if (x2 < (outXMin) || x2 > (outXMax)) { if (x2 < ( outXMin)) { if (x1 < (outXMin)) { res = CRES_INVISIBLE; break ; }; res = CRES_MIN_CLIPPED; t = (outXMin); } else { if (x1 > (outXMax)) { res = CRES_INVISIBLE; break; }; res = CRES_MAX_CLIPPED ; t = (outXMax); } y2 = (jint)(y2 + ((jdouble)(t - x2)*(y1 - y2 )) / (x1 - x2)); x2 = (jint)t; } } while (0); if (res == CRES_MIN_CLIPPED ) { x3 = x2; } else if (res == CRES_MAX_CLIPPED) { x3 = x2; res = CRES_MAX_CLIPPED; } else if (res == CRES_INVISIBLE) { if ( x2 > outXMax) { res = CRES_INVISIBLE; } else { x2 = (jint) outXMin; x1 = (jint)outXMin; res = CRES_NOT_CLIPPED; } } } while (0); | |||
| 2139 | ||||
| 2140 | /* Checking if there was a clip by right boundary */ | |||
| 2141 | lastClipped = lastClipped || (res == CRES_MAX_CLIPPED); | |||
| 2142 | ||||
| 2143 | StoreFixedLine(hnd, x1, y1, x2, y2, pixelInfo, | |||
| 2144 | JNI_FALSE0, lastClipped); | |||
| 2145 | ||||
| 2146 | /* Clamping only by left boundary */ | |||
| 2147 | if (res == CRES_MIN_CLIPPED) { | |||
| 2148 | StoreFixedLine(hnd, x2, y2, x3, y3, pixelInfo, | |||
| 2149 | JNI_FALSE0, lastClipped); | |||
| 2150 | } | |||
| 2151 | ||||
| 2152 | return; | |||
| 2153 | } | |||
| 2154 | pfd = (FillData*)(hnd->pData); | |||
| 2155 | ||||
| 2156 | /* Adding first point of the line only in case of empty or just finished | |||
| 2157 | * path | |||
| 2158 | */ | |||
| 2159 | if (FD_IS_EMPTY(pfd)(!((pfd)->plgSize)) || FD_IS_ENDED(pfd)((pfd)->plgPnts[(pfd)->plgSize - 1].lastPoint)) { | |||
| 2160 | FD_ADD_POINT(pfd, x1, y1, JNI_FALSE)do { Point* _pnts = (pfd)->plgPnts; jint _size = (pfd)-> plgSize; if (_size >= (pfd)->plgMax) { jint newMax = (pfd )->plgMax*2; if ((pfd)->plgPnts == (pfd)->dfPlgPnts) { (pfd)->plgPnts = (Point*)malloc(newMax*sizeof(Point)); memcpy ((pfd)->plgPnts, _pnts, _size*sizeof(Point)); } else { (pfd )->plgPnts = (Point*)realloc( _pnts, newMax*sizeof(Point)) ; } _pnts = (pfd)->plgPnts; (pfd)->plgMax = newMax; } _pnts += _size; _pnts->x = x1; _pnts->y = y1; _pnts->lastPoint = 0; if (_size) { if ((pfd)->plgYMin > y1) (pfd)->plgYMin = y1; if ((pfd)->plgYMax < y1) (pfd)->plgYMax = y1; } else { (pfd)->plgYMin = y1; (pfd)->plgYMax = y1; } ( pfd)->plgSize = _size + 1; } while(0); | |||
| 2161 | } | |||
| 2162 | ||||
| 2163 | FD_ADD_POINT(pfd, x2, y2, JNI_FALSE)do { Point* _pnts = (pfd)->plgPnts; jint _size = (pfd)-> plgSize; if (_size >= (pfd)->plgMax) { jint newMax = (pfd )->plgMax*2; if ((pfd)->plgPnts == (pfd)->dfPlgPnts) { (pfd)->plgPnts = (Point*)malloc(newMax*sizeof(Point)); memcpy ((pfd)->plgPnts, _pnts, _size*sizeof(Point)); } else { (pfd )->plgPnts = (Point*)realloc( _pnts, newMax*sizeof(Point)) ; } _pnts = (pfd)->plgPnts; (pfd)->plgMax = newMax; } _pnts += _size; _pnts->x = x2; _pnts->y = y2; _pnts->lastPoint = 0; if (_size) { if ((pfd)->plgYMin > y2) (pfd)->plgYMin = y2; if ((pfd)->plgYMax < y2) (pfd)->plgYMax = y2; } else { (pfd)->plgYMin = y2; (pfd)->plgYMax = y2; } ( pfd)->plgSize = _size + 1; } while(0); | |||
| 2164 | ||||
| 2165 | if (endSubPath) { | |||
| 2166 | FD_SET_ENDED(pfd)do { (pfd)->plgPnts[(pfd)->plgSize - 1].lastPoint = 1; } while(0); | |||
| 2167 | } | |||
| 2168 | } | |||
| 2169 | ||||
| 2170 | ||||
| 2171 | static void endSubPath(ProcessHandler* hnd) { | |||
| 2172 | FillData* pfd = (FillData*)(hnd->pData); | |||
| 2173 | if (!FD_IS_EMPTY(pfd)(!((pfd)->plgSize))) { | |||
| 2174 | FD_SET_ENDED(pfd)do { (pfd)->plgPnts[(pfd)->plgSize - 1].lastPoint = 1; } while(0); | |||
| 2175 | } | |||
| 2176 | } | |||
| 2177 | ||||
| 2178 | static void stubEndSubPath(ProcessHandler* hnd) { | |||
| 2179 | } | |||
| 2180 | ||||
| 2181 | JNIEXPORT__attribute__((visibility("default"))) jboolean JNICALL | |||
| 2182 | doFillPath(DrawHandler* dhnd, | |||
| 2183 | jint transX, jint transY, | |||
| 2184 | jfloat* coords, jint maxCoords, | |||
| 2185 | jbyte* types, jint numTypes, | |||
| 2186 | PHStroke stroke, jint fillRule) | |||
| 2187 | { | |||
| 2188 | jint res; | |||
| 2189 | ||||
| 2190 | FillData fillData; | |||
| 2191 | ||||
| 2192 | ProcessHandler hnd = | |||
| 2193 | { | |||
| 2194 | &StoreFixedLine, | |||
| 2195 | &endSubPath, | |||
| 2196 | NULL((void*)0), | |||
| 2197 | PH_STROKE_DEFAULT, | |||
| 2198 | PH_MODE_FILL_CLIP, | |||
| 2199 | NULL((void*)0) | |||
| 2200 | }; | |||
| 2201 | ||||
| 2202 | /* Initialization of the following fields in the declaration of the hnd | |||
| 2203 | * above causes warnings on sun studio compiler with -xc99=%none option | |||
| 2204 | * applied (this option means compliance with C90 standard instead of C99) | |||
| 2205 | */ | |||
| 2206 | hnd.dhnd = dhnd; | |||
| 2207 | hnd.pData = &fillData; | |||
| 2208 | hnd.stroke = stroke; | |||
| 2209 | ||||
| 2210 | FD_INIT(&fillData)do { (&fillData)->plgPnts = (&fillData)->dfPlgPnts ; (&fillData)->plgSize = 0; (&fillData)->plgMax = 256; } while(0); | |||
| 2211 | res = ProcessPath(&hnd, (jfloat)transX, (jfloat)transY, | |||
| 2212 | coords, maxCoords, types, numTypes); | |||
| 2213 | if (!res) { | |||
| 2214 | FD_FREE_POINTS(&fillData)do { if ((&fillData)->plgPnts != (&fillData)->dfPlgPnts ) { free((&fillData)->plgPnts); } } while(0); | |||
| 2215 | return JNI_FALSE0; | |||
| 2216 | } | |||
| 2217 | FillPolygon(&hnd, fillRule); | |||
| 2218 | FD_FREE_POINTS(&fillData)do { if ((&fillData)->plgPnts != (&fillData)->dfPlgPnts ) { free((&fillData)->plgPnts); } } while(0); | |||
| 2219 | return JNI_TRUE1; | |||
| 2220 | } | |||
| 2221 | ||||
| 2222 | JNIEXPORT__attribute__((visibility("default"))) jboolean JNICALL | |||
| 2223 | doDrawPath(DrawHandler* dhnd, | |||
| 2224 | void (*pProcessEndSubPath)(ProcessHandler*), | |||
| 2225 | jint transX, jint transY, | |||
| 2226 | jfloat* coords, jint maxCoords, | |||
| 2227 | jbyte* types, jint numTypes, PHStroke stroke) | |||
| 2228 | { | |||
| 2229 | ProcessHandler hnd = | |||
| 2230 | { | |||
| 2231 | &ProcessFixedLine, | |||
| 2232 | NULL((void*)0), | |||
| 2233 | NULL((void*)0), | |||
| 2234 | PH_STROKE_DEFAULT, | |||
| 2235 | PH_MODE_DRAW_CLIP, | |||
| 2236 | NULL((void*)0) | |||
| 2237 | }; | |||
| 2238 | ||||
| 2239 | /* Initialization of the following fields in the declaration of the hnd | |||
| 2240 | * above causes warnings on sun studio compiler with -xc99=%none option | |||
| 2241 | * applied (this option means compliance with C90 standard instead of C99) | |||
| 2242 | */ | |||
| 2243 | hnd.dhnd = dhnd; | |||
| 2244 | hnd.stroke = stroke; | |||
| 2245 | ||||
| 2246 | hnd.pProcessEndSubPath = (pProcessEndSubPath == NULL((void*)0))? | |||
| 2247 | stubEndSubPath : pProcessEndSubPath; | |||
| 2248 | return ProcessPath(&hnd, (jfloat)transX, (jfloat)transY, coords, maxCoords, | |||
| 2249 | types, numTypes); | |||
| 2250 | } |