Bug Summary

File:jdk/src/hotspot/share/opto/subnode.cpp
Warning:line 1627, column 11
Value stored to 'l' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name subnode.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -mthread-model posix -fno-delete-null-pointer-checks -mframe-pointer=all -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/libjvm/objs/precompiled -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D _GNU_SOURCE -D _REENTRANT -D LIBC=gnu -D LINUX -D VM_LITTLE_ENDIAN -D _LP64=1 -D ASSERT -D CHECK_UNHANDLED_OOPS -D TARGET_ARCH_x86 -D INCLUDE_SUFFIX_OS=_linux -D INCLUDE_SUFFIX_CPU=_x86 -D INCLUDE_SUFFIX_COMPILER=_gcc -D TARGET_COMPILER_gcc -D AMD64 -D HOTSPOT_LIB_ARCH="amd64" -D COMPILER1 -D COMPILER2 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -I /home/daniel/Projects/java/jdk/src/hotspot/share/precompiled -I /home/daniel/Projects/java/jdk/src/hotspot/share/include -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix/include -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base/linux -I /home/daniel/Projects/java/jdk/src/java.base/share/native/libjimage -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -D _FORTIFY_SOURCE=2 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-format-zero-length -Wno-unused-parameter -Wno-unused -Wno-parentheses -Wno-comment -Wno-unknown-pragmas -Wno-address -Wno-delete-non-virtual-dtor -Wno-char-subscripts -Wno-array-bounds -Wno-int-in-bool-context -Wno-ignored-qualifiers -Wno-missing-field-initializers -Wno-implicit-fallthrough -Wno-empty-body -Wno-strict-overflow -Wno-sequence-point -Wno-maybe-uninitialized -Wno-misleading-indentation -Wno-cast-function-type -Wno-shift-negative-value -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /home/daniel/Projects/java/jdk/make/hotspot -ferror-limit 19 -fmessage-length 0 -fvisibility hidden -stack-protector 1 -fno-rtti -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /home/daniel/Projects/java/scan/2021-12-21-193737-8510-1 -x c++ /home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp
1/*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "gc/shared/barrierSet.hpp"
28#include "gc/shared/c2/barrierSetC2.hpp"
29#include "memory/allocation.inline.hpp"
30#include "opto/addnode.hpp"
31#include "opto/callnode.hpp"
32#include "opto/cfgnode.hpp"
33#include "opto/loopnode.hpp"
34#include "opto/matcher.hpp"
35#include "opto/movenode.hpp"
36#include "opto/mulnode.hpp"
37#include "opto/opcodes.hpp"
38#include "opto/phaseX.hpp"
39#include "opto/subnode.hpp"
40#include "runtime/sharedRuntime.hpp"
41
42// Portions of code courtesy of Clifford Click
43
44// Optimization - Graph Style
45
46#include "math.h"
47
48//=============================================================================
49//------------------------------Identity---------------------------------------
50// If right input is a constant 0, return the left input.
51Node* SubNode::Identity(PhaseGVN* phase) {
52 assert(in(1) != this, "Must already have called Value")do { if (!(in(1) != this)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 52, "assert(" "in(1) != this" ") failed", "Must already have called Value"
); ::breakpoint(); } } while (0)
;
53 assert(in(2) != this, "Must already have called Value")do { if (!(in(2) != this)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 53, "assert(" "in(2) != this" ") failed", "Must already have called Value"
); ::breakpoint(); } } while (0)
;
54
55 // Remove double negation
56 const Type *zero = add_id();
57 if( phase->type( in(1) )->higher_equal( zero ) &&
58 in(2)->Opcode() == Opcode() &&
59 phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
60 return in(2)->in(2);
61 }
62
63 // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
64 if (in(1)->Opcode() == Op_AddI) {
65 if (in(1)->in(2) == in(2)) {
66 return in(1)->in(1);
67 }
68 if (in(1)->in(1) == in(2)) {
69 return in(1)->in(2);
70 }
71
72 // Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying
73 // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
74 // are originally used, although the optimizer sometimes jiggers things).
75 // This folding through an O2 removes a loop-exit use of a loop-varying
76 // value and generally lowers register pressure in and around the loop.
77 if (in(1)->in(2)->Opcode() == Op_Opaque2 && in(1)->in(2)->in(1) == in(2)) {
78 return in(1)->in(1);
79 }
80 }
81
82 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
83}
84
85//------------------------------Value------------------------------------------
86// A subtract node differences it's two inputs.
87const Type* SubNode::Value_common(PhaseTransform *phase) const {
88 const Node* in1 = in(1);
89 const Node* in2 = in(2);
90 // Either input is TOP ==> the result is TOP
91 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
92 if( t1 == Type::TOP ) return Type::TOP;
93 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
94 if( t2 == Type::TOP ) return Type::TOP;
95
96 // Not correct for SubFnode and AddFNode (must check for infinity)
97 // Equal? Subtract is zero
98 if (in1->eqv_uncast(in2)) return add_id();
99
100 // Either input is BOTTOM ==> the result is the local BOTTOM
101 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
102 return bottom_type();
103
104 return NULL__null;
105}
106
107const Type* SubNode::Value(PhaseGVN* phase) const {
108 const Type* t = Value_common(phase);
109 if (t != NULL__null) {
110 return t;
111 }
112 const Type* t1 = phase->type(in(1));
113 const Type* t2 = phase->type(in(2));
114 return sub(t1,t2); // Local flavor of type subtraction
115
116}
117
118SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) {
119 switch (bt) {
120 case T_INT:
121 return new SubINode(in1, in2);
122 case T_LONG:
123 return new SubLNode(in1, in2);
124 default:
125 fatal("Not implemented for %s", type2name(bt))do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 125, "Not implemented for %s", type2name(bt)); ::breakpoint
(); } while (0)
;
126 }
127 return NULL__null;
128}
129
130//=============================================================================
131//------------------------------Helper function--------------------------------
132
133static bool is_cloop_increment(Node* inc) {
134 precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL)do { if (!(inc->Opcode() == Op_AddI || inc->Opcode() ==
Op_AddL)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 134, "assert(" "inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL"
") failed", "precond"); ::breakpoint(); } } while (0)
;
135
136 if (!inc->in(1)->is_Phi()) {
137 return false;
138 }
139 const PhiNode* phi = inc->in(1)->as_Phi();
140
141 if (!phi->region()->is_CountedLoop()) {
142 return false;
143 }
144
145 return inc == phi->region()->as_CountedLoop()->incr();
146}
147
148// Given the expression '(x + C) - v', or
149// 'v - (x + C)', we examine nodes '+' and 'v':
150//
151// 1. Do not convert if '+' is a counted-loop increment, because the '-' is
152// loop invariant and converting extends the live-range of 'x' to overlap
153// with the '+', forcing another register to be used in the loop.
154//
155// 2. Do not convert if 'v' is a counted-loop induction variable, because
156// 'x' might be invariant.
157//
158static bool ok_to_convert(Node* inc, Node* var) {
159 return !(is_cloop_increment(inc) || var->is_cloop_ind_var());
160}
161
162//------------------------------Ideal------------------------------------------
163Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
164 Node *in1 = in(1);
165 Node *in2 = in(2);
166 uint op1 = in1->Opcode();
167 uint op2 = in2->Opcode();
168
169#ifdef ASSERT1
170 // Check for dead loop
171 if ((in1 == this) || (in2 == this) ||
172 ((op1 == Op_AddI || op1 == Op_SubI) &&
173 ((in1->in(1) == this) || (in1->in(2) == this) ||
174 (in1->in(1) == in1) || (in1->in(2) == in1)))) {
175 assert(false, "dead loop in SubINode::Ideal")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 175, "assert(" "false" ") failed", "dead loop in SubINode::Ideal"
); ::breakpoint(); } } while (0)
;
176 }
177#endif
178
179 const Type *t2 = phase->type( in2 );
180 if( t2 == Type::TOP ) return NULL__null;
181 // Convert "x-c0" into "x+ -c0".
182 if( t2->base() == Type::Int ){ // Might be bottom or top...
183 const TypeInt *i = t2->is_int();
184 if( i->is_con() )
185 return new AddINode(in1, phase->intcon(-i->get_con()));
186 }
187
188 // Convert "(x+c0) - y" into (x-y) + c0"
189 // Do not collapse (x+c0)-y if "+" is a loop increment or
190 // if "y" is a loop induction variable.
191 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
192 const Type *tadd = phase->type( in1->in(2) );
193 if( tadd->singleton() && tadd != Type::TOP ) {
194 Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
195 return new AddINode( sub2, in1->in(2) );
196 }
197 }
198
199 // Convert "x - (y+c0)" into "(x-y) - c0" AND
200 // Convert "c1 - (y+c0)" into "(c1-c0) - y"
201 // Need the same check as in above optimization but reversed.
202 if (op2 == Op_AddI
203 && ok_to_convert(in2, in1)
204 && in2->in(2)->Opcode() == Op_ConI) {
205 jint c0 = phase->type(in2->in(2))->isa_int()->get_con();
206 Node* in21 = in2->in(1);
207 if (in1->Opcode() == Op_ConI) {
208 // Match c1
209 jint c1 = phase->type(in1)->isa_int()->get_con();
210 Node* sub2 = phase->intcon(java_subtract(c1, c0));
211 return new SubINode(sub2, in21);
212 } else {
213 // Match x
214 Node* sub2 = phase->transform(new SubINode(in1, in21));
215 Node* neg_c0 = phase->intcon(-c0);
216 return new AddINode(sub2, neg_c0);
217 }
218 }
219
220 const Type *t1 = phase->type( in1 );
221 if( t1 == Type::TOP ) return NULL__null;
222
223#ifdef ASSERT1
224 // Check for dead loop
225 if ((op2 == Op_AddI || op2 == Op_SubI) &&
226 ((in2->in(1) == this) || (in2->in(2) == this) ||
227 (in2->in(1) == in2) || (in2->in(2) == in2))) {
228 assert(false, "dead loop in SubINode::Ideal")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 228, "assert(" "false" ") failed", "dead loop in SubINode::Ideal"
); ::breakpoint(); } } while (0)
;
229 }
230#endif
231
232 // Convert "x - (x+y)" into "-y"
233 if (op2 == Op_AddI && in1 == in2->in(1)) {
234 return new SubINode(phase->intcon(0), in2->in(2));
235 }
236 // Convert "(x-y) - x" into "-y"
237 if (op1 == Op_SubI && in1->in(1) == in2) {
238 return new SubINode(phase->intcon(0), in1->in(2));
239 }
240 // Convert "x - (y+x)" into "-y"
241 if (op2 == Op_AddI && in1 == in2->in(2)) {
242 return new SubINode(phase->intcon(0), in2->in(1));
243 }
244
245 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity().
246 if (t1 == TypeInt::ZERO && op2 == Op_SubI && phase->type(in2->in(1)) != TypeInt::ZERO) {
247 return new SubINode(in2->in(2), in2->in(1));
248 }
249
250 // Convert "0 - (x+con)" into "-con-x"
251 jint con;
252 if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
253 (con = in2->in(2)->find_int_con(0)) != 0 )
254 return new SubINode( phase->intcon(-con), in2->in(1) );
255
256 // Convert "(X+A) - (X+B)" into "A - B"
257 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
258 return new SubINode( in1->in(2), in2->in(2) );
259
260 // Convert "(A+X) - (B+X)" into "A - B"
261 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
262 return new SubINode( in1->in(1), in2->in(1) );
263
264 // Convert "(A+X) - (X+B)" into "A - B"
265 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
266 return new SubINode( in1->in(1), in2->in(2) );
267
268 // Convert "(X+A) - (B+X)" into "A - B"
269 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
270 return new SubINode( in1->in(2), in2->in(1) );
271
272 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
273 // nicer to optimize than subtract.
274 if( op2 == Op_SubI && in2->outcnt() == 1) {
275 Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
276 return new SubINode( add1, in2->in(1) );
277 }
278
279 // Associative
280 if (op1 == Op_MulI && op2 == Op_MulI) {
281 Node* sub_in1 = NULL__null;
282 Node* sub_in2 = NULL__null;
283 Node* mul_in = NULL__null;
284
285 if (in1->in(1) == in2->in(1)) {
286 // Convert "a*b-a*c into a*(b-c)
287 sub_in1 = in1->in(2);
288 sub_in2 = in2->in(2);
289 mul_in = in1->in(1);
290 } else if (in1->in(2) == in2->in(1)) {
291 // Convert a*b-b*c into b*(a-c)
292 sub_in1 = in1->in(1);
293 sub_in2 = in2->in(2);
294 mul_in = in1->in(2);
295 } else if (in1->in(2) == in2->in(2)) {
296 // Convert a*c-b*c into (a-b)*c
297 sub_in1 = in1->in(1);
298 sub_in2 = in2->in(1);
299 mul_in = in1->in(2);
300 } else if (in1->in(1) == in2->in(2)) {
301 // Convert a*b-c*a into a*(b-c)
302 sub_in1 = in1->in(2);
303 sub_in2 = in2->in(1);
304 mul_in = in1->in(1);
305 }
306
307 if (mul_in != NULL__null) {
308 Node* sub = phase->transform(new SubINode(sub_in1, sub_in2));
309 return new MulINode(mul_in, sub);
310 }
311 }
312
313 // Convert "0-(A>>31)" into "(A>>>31)"
314 if ( op2 == Op_RShiftI ) {
315 Node *in21 = in2->in(1);
316 Node *in22 = in2->in(2);
317 const TypeInt *zero = phase->type(in1)->isa_int();
318 const TypeInt *t21 = phase->type(in21)->isa_int();
319 const TypeInt *t22 = phase->type(in22)->isa_int();
320 if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) {
321 return new URShiftINode(in21, in22);
322 }
323 }
324
325 return NULL__null;
326}
327
328//------------------------------sub--------------------------------------------
329// A subtract node differences it's two inputs.
330const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
331 const TypeInt *r0 = t1->is_int(); // Handy access
332 const TypeInt *r1 = t2->is_int();
333 int32_t lo = java_subtract(r0->_lo, r1->_hi);
334 int32_t hi = java_subtract(r0->_hi, r1->_lo);
335
336 // We next check for 32-bit overflow.
337 // If that happens, we just assume all integers are possible.
338 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
339 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
340 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
341 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
342 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
343 else // Overflow; assume all integers
344 return TypeInt::INT;
345}
346
347//=============================================================================
348//------------------------------Ideal------------------------------------------
349Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
350 Node *in1 = in(1);
351 Node *in2 = in(2);
352 uint op1 = in1->Opcode();
353 uint op2 = in2->Opcode();
354
355#ifdef ASSERT1
356 // Check for dead loop
357 if ((in1 == this) || (in2 == this) ||
358 ((op1 == Op_AddL || op1 == Op_SubL) &&
359 ((in1->in(1) == this) || (in1->in(2) == this) ||
360 (in1->in(1) == in1) || (in1->in(2) == in1)))) {
361 assert(false, "dead loop in SubLNode::Ideal")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 361, "assert(" "false" ") failed", "dead loop in SubLNode::Ideal"
); ::breakpoint(); } } while (0)
;
362 }
363#endif
364
365 if( phase->type( in2 ) == Type::TOP ) return NULL__null;
366 const TypeLong *i = phase->type( in2 )->isa_long();
367 // Convert "x-c0" into "x+ -c0".
368 if( i && // Might be bottom or top...
369 i->is_con() )
370 return new AddLNode(in1, phase->longcon(-i->get_con()));
371
372 // Convert "(x+c0) - y" into (x-y) + c0"
373 // Do not collapse (x+c0)-y if "+" is a loop increment or
374 // if "y" is a loop induction variable.
375 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
376 Node *in11 = in1->in(1);
377 const Type *tadd = phase->type( in1->in(2) );
378 if( tadd->singleton() && tadd != Type::TOP ) {
379 Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
380 return new AddLNode( sub2, in1->in(2) );
381 }
382 }
383
384 // Convert "x - (y+c0)" into "(x-y) - c0" AND
385 // Convert "c1 - (y+c0)" into "(c1-c0) - y"
386 // Need the same check as in above optimization but reversed.
387 if (op2 == Op_AddL
388 && ok_to_convert(in2, in1)
389 && in2->in(2)->Opcode() == Op_ConL) {
390 jlong c0 = phase->type(in2->in(2))->isa_long()->get_con();
391 Node* in21 = in2->in(1);
392 if (in1->Opcode() == Op_ConL) {
393 // Match c1
394 jlong c1 = phase->type(in1)->isa_long()->get_con();
395 Node* sub2 = phase->longcon(java_subtract(c1, c0));
396 return new SubLNode(sub2, in21);
397 } else {
398 Node* sub2 = phase->transform(new SubLNode(in1, in21));
399 Node* neg_c0 = phase->longcon(-c0);
400 return new AddLNode(sub2, neg_c0);
401 }
402 }
403
404 const Type *t1 = phase->type( in1 );
405 if( t1 == Type::TOP ) return NULL__null;
406
407#ifdef ASSERT1
408 // Check for dead loop
409 if ((op2 == Op_AddL || op2 == Op_SubL) &&
410 ((in2->in(1) == this) || (in2->in(2) == this) ||
411 (in2->in(1) == in2) || (in2->in(2) == in2))) {
412 assert(false, "dead loop in SubLNode::Ideal")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 412, "assert(" "false" ") failed", "dead loop in SubLNode::Ideal"
); ::breakpoint(); } } while (0)
;
413 }
414#endif
415
416 // Convert "x - (x+y)" into "-y"
417 if (op2 == Op_AddL && in1 == in2->in(1)) {
418 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2));
419 }
420 // Convert "x - (y+x)" into "-y"
421 if (op2 == Op_AddL && in1 == in2->in(2)) {
422 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1));
423 }
424
425 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity.
426 if (t1 == TypeLong::ZERO && op2 == Op_SubL && phase->type(in2->in(1)) != TypeLong::ZERO) {
427 return new SubLNode(in2->in(2), in2->in(1));
428 }
429
430 // Convert "(X+A) - (X+B)" into "A - B"
431 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
432 return new SubLNode( in1->in(2), in2->in(2) );
433
434 // Convert "(A+X) - (B+X)" into "A - B"
435 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
436 return new SubLNode( in1->in(1), in2->in(1) );
437
438 // Convert "(A+X) - (X+B)" into "A - B"
439 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(1) )
440 return new SubLNode( in1->in(1), in2->in(2) );
441
442 // Convert "(X+A) - (B+X)" into "A - B"
443 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(2) )
444 return new SubLNode( in1->in(2), in2->in(1) );
445
446 // Convert "A-(B-C)" into (A+C)-B"
447 if( op2 == Op_SubL && in2->outcnt() == 1) {
448 Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
449 return new SubLNode( add1, in2->in(1) );
450 }
451
452 // Associative
453 if (op1 == Op_MulL && op2 == Op_MulL) {
454 Node* sub_in1 = NULL__null;
455 Node* sub_in2 = NULL__null;
456 Node* mul_in = NULL__null;
457
458 if (in1->in(1) == in2->in(1)) {
459 // Convert "a*b-a*c into a*(b+c)
460 sub_in1 = in1->in(2);
461 sub_in2 = in2->in(2);
462 mul_in = in1->in(1);
463 } else if (in1->in(2) == in2->in(1)) {
464 // Convert a*b-b*c into b*(a-c)
465 sub_in1 = in1->in(1);
466 sub_in2 = in2->in(2);
467 mul_in = in1->in(2);
468 } else if (in1->in(2) == in2->in(2)) {
469 // Convert a*c-b*c into (a-b)*c
470 sub_in1 = in1->in(1);
471 sub_in2 = in2->in(1);
472 mul_in = in1->in(2);
473 } else if (in1->in(1) == in2->in(2)) {
474 // Convert a*b-c*a into a*(b-c)
475 sub_in1 = in1->in(2);
476 sub_in2 = in2->in(1);
477 mul_in = in1->in(1);
478 }
479
480 if (mul_in != NULL__null) {
481 Node* sub = phase->transform(new SubLNode(sub_in1, sub_in2));
482 return new MulLNode(mul_in, sub);
483 }
484 }
485
486 // Convert "0L-(A>>63)" into "(A>>>63)"
487 if ( op2 == Op_RShiftL ) {
488 Node *in21 = in2->in(1);
489 Node *in22 = in2->in(2);
490 const TypeLong *zero = phase->type(in1)->isa_long();
491 const TypeLong *t21 = phase->type(in21)->isa_long();
492 const TypeInt *t22 = phase->type(in22)->isa_int();
493 if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) {
494 return new URShiftLNode(in21, in22);
495 }
496 }
497
498 return NULL__null;
499}
500
501//------------------------------sub--------------------------------------------
502// A subtract node differences it's two inputs.
503const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
504 const TypeLong *r0 = t1->is_long(); // Handy access
505 const TypeLong *r1 = t2->is_long();
506 jlong lo = java_subtract(r0->_lo, r1->_hi);
507 jlong hi = java_subtract(r0->_hi, r1->_lo);
508
509 // We next check for 32-bit overflow.
510 // If that happens, we just assume all integers are possible.
511 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
512 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
513 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
514 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
515 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
516 else // Overflow; assume all integers
517 return TypeLong::LONG;
518}
519
520//=============================================================================
521//------------------------------Value------------------------------------------
522// A subtract node differences its two inputs.
523const Type* SubFPNode::Value(PhaseGVN* phase) const {
524 const Node* in1 = in(1);
525 const Node* in2 = in(2);
526 // Either input is TOP ==> the result is TOP
527 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
528 if( t1 == Type::TOP ) return Type::TOP;
529 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
530 if( t2 == Type::TOP ) return Type::TOP;
531
532 // if both operands are infinity of same sign, the result is NaN; do
533 // not replace with zero
534 if (t1->is_finite() && t2->is_finite() && in1 == in2) {
535 return add_id();
536 }
537
538 // Either input is BOTTOM ==> the result is the local BOTTOM
539 const Type *bot = bottom_type();
540 if( (t1 == bot) || (t2 == bot) ||
541 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
542 return bot;
543
544 return sub(t1,t2); // Local flavor of type subtraction
545}
546
547
548//=============================================================================
549//------------------------------Ideal------------------------------------------
550Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
551 const Type *t2 = phase->type( in(2) );
552 // Convert "x-c0" into "x+ -c0".
553 if( t2->base() == Type::FloatCon ) { // Might be bottom or top...
554 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
555 }
556
557 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
558 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
559 //if( phase->type(in(1)) == TypeF::ZERO )
560 //return new (phase->C, 2) NegFNode(in(2));
561
562 return NULL__null;
563}
564
565//------------------------------sub--------------------------------------------
566// A subtract node differences its two inputs.
567const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
568 // no folding if one of operands is infinity or NaN, do not do constant folding
569 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
570 return TypeF::make( t1->getf() - t2->getf() );
571 }
572 else if( g_isnan(t1->getf()) ) {
573 return t1;
574 }
575 else if( g_isnan(t2->getf()) ) {
576 return t2;
577 }
578 else {
579 return Type::FLOAT;
580 }
581}
582
583//=============================================================================
584//------------------------------Ideal------------------------------------------
585Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
586 const Type *t2 = phase->type( in(2) );
587 // Convert "x-c0" into "x+ -c0".
588 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
589 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
590 }
591
592 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
593 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
594 //if( phase->type(in(1)) == TypeD::ZERO )
595 //return new (phase->C, 2) NegDNode(in(2));
596
597 return NULL__null;
598}
599
600//------------------------------sub--------------------------------------------
601// A subtract node differences its two inputs.
602const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
603 // no folding if one of operands is infinity or NaN, do not do constant folding
604 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
605 return TypeD::make( t1->getd() - t2->getd() );
606 }
607 else if( g_isnan(t1->getd()) ) {
608 return t1;
609 }
610 else if( g_isnan(t2->getd()) ) {
611 return t2;
612 }
613 else {
614 return Type::DOUBLE;
615 }
616}
617
618//=============================================================================
619//------------------------------Idealize---------------------------------------
620// Unlike SubNodes, compare must still flatten return value to the
621// range -1, 0, 1.
622// And optimizations like those for (X + Y) - X fail if overflow happens.
623Node* CmpNode::Identity(PhaseGVN* phase) {
624 return this;
625}
626
627#ifndef PRODUCT
628//----------------------------related------------------------------------------
629// Related nodes of comparison nodes include all data inputs (until hitting a
630// control boundary) as well as all outputs until and including control nodes
631// as well as their projections. In compact mode, data inputs till depth 1 and
632// all outputs till depth 1 are considered.
633void CmpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
634 if (compact) {
635 this->collect_nodes(in_rel, 1, false, true);
636 this->collect_nodes(out_rel, -1, false, false);
637 } else {
638 this->collect_nodes_in_all_data(in_rel, false);
639 this->collect_nodes_out_all_ctrl_boundary(out_rel);
640 // Now, find all control nodes in out_rel, and include their projections
641 // and projection targets (if any) in the result.
642 GrowableArray<Node*> proj(Compile::current()->unique());
643 for (GrowableArrayIterator<Node*> it = out_rel->begin(); it != out_rel->end(); ++it) {
644 Node* n = *it;
645 if (n->is_CFG() && !n->is_Proj()) {
646 // Assume projections and projection targets are found at levels 1 and 2.
647 n->collect_nodes(&proj, -2, false, false);
648 for (GrowableArrayIterator<Node*> p = proj.begin(); p != proj.end(); ++p) {
649 out_rel->append_if_missing(*p);
650 }
651 proj.clear();
652 }
653 }
654 }
655}
656
657#endif
658
659CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) {
660 switch (bt) {
661 case T_INT:
662 if (unsigned_comp) {
663 return new CmpUNode(in1, in2);
664 }
665 return new CmpINode(in1, in2);
666 case T_LONG:
667 if (unsigned_comp) {
668 return new CmpULNode(in1, in2);
669 }
670 return new CmpLNode(in1, in2);
671 default:
672 fatal("Not implemented for %s", type2name(bt))do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 672, "Not implemented for %s", type2name(bt)); ::breakpoint
(); } while (0)
;
673 }
674 return NULL__null;
675}
676
677//=============================================================================
678//------------------------------cmp--------------------------------------------
679// Simplify a CmpI (compare 2 integers) node, based on local information.
680// If both inputs are constants, compare them.
681const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
682 const TypeInt *r0 = t1->is_int(); // Handy access
683 const TypeInt *r1 = t2->is_int();
684
685 if( r0->_hi < r1->_lo ) // Range is always low?
686 return TypeInt::CC_LT;
687 else if( r0->_lo > r1->_hi ) // Range is always high?
688 return TypeInt::CC_GT;
689
690 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
691 assert(r0->get_con() == r1->get_con(), "must be equal")do { if (!(r0->get_con() == r1->get_con())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 691, "assert(" "r0->get_con() == r1->get_con()" ") failed"
, "must be equal"); ::breakpoint(); } } while (0)
;
692 return TypeInt::CC_EQ; // Equal results.
693 } else if( r0->_hi == r1->_lo ) // Range is never high?
694 return TypeInt::CC_LE;
695 else if( r0->_lo == r1->_hi ) // Range is never low?
696 return TypeInt::CC_GE;
697 return TypeInt::CC; // else use worst case results
698}
699
700// Simplify a CmpU (compare 2 integers) node, based on local information.
701// If both inputs are constants, compare them.
702const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
703 assert(!t1->isa_ptr(), "obsolete usage of CmpU")do { if (!(!t1->isa_ptr())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 703, "assert(" "!t1->isa_ptr()" ") failed", "obsolete usage of CmpU"
); ::breakpoint(); } } while (0)
;
704
705 // comparing two unsigned ints
706 const TypeInt *r0 = t1->is_int(); // Handy access
707 const TypeInt *r1 = t2->is_int();
708
709 // Current installed version
710 // Compare ranges for non-overlap
711 juint lo0 = r0->_lo;
712 juint hi0 = r0->_hi;
713 juint lo1 = r1->_lo;
714 juint hi1 = r1->_hi;
715
716 // If either one has both negative and positive values,
717 // it therefore contains both 0 and -1, and since [0..-1] is the
718 // full unsigned range, the type must act as an unsigned bottom.
719 bool bot0 = ((jint)(lo0 ^ hi0) < 0);
720 bool bot1 = ((jint)(lo1 ^ hi1) < 0);
721
722 if (bot0 || bot1) {
723 // All unsigned values are LE -1 and GE 0.
724 if (lo0 == 0 && hi0 == 0) {
725 return TypeInt::CC_LE; // 0 <= bot
726 } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
727 return TypeInt::CC_GE; // -1 >= bot
728 } else if (lo1 == 0 && hi1 == 0) {
729 return TypeInt::CC_GE; // bot >= 0
730 } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
731 return TypeInt::CC_LE; // bot <= -1
732 }
733 } else {
734 // We can use ranges of the form [lo..hi] if signs are the same.
735 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid")do { if (!(lo0 <= hi0 && lo1 <= hi1)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 735, "assert(" "lo0 <= hi0 && lo1 <= hi1" ") failed"
, "unsigned ranges are valid"); ::breakpoint(); } } while (0)
;
736 // results are reversed, '-' > '+' for unsigned compare
737 if (hi0 < lo1) {
738 return TypeInt::CC_LT; // smaller
739 } else if (lo0 > hi1) {
740 return TypeInt::CC_GT; // greater
741 } else if (hi0 == lo1 && lo0 == hi1) {
742 return TypeInt::CC_EQ; // Equal results
743 } else if (lo0 >= hi1) {
744 return TypeInt::CC_GE;
745 } else if (hi0 <= lo1) {
746 // Check for special case in Hashtable::get. (See below.)
747 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
748 return TypeInt::CC_LT;
749 return TypeInt::CC_LE;
750 }
751 }
752 // Check for special case in Hashtable::get - the hash index is
753 // mod'ed to the table size so the following range check is useless.
754 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
755 // to be positive.
756 // (This is a gross hack, since the sub method never
757 // looks at the structure of the node in any other case.)
758 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
759 return TypeInt::CC_LT;
760 return TypeInt::CC; // else use worst case results
761}
762
763const Type* CmpUNode::Value(PhaseGVN* phase) const {
764 const Type* t = SubNode::Value_common(phase);
765 if (t != NULL__null) {
766 return t;
767 }
768 const Node* in1 = in(1);
769 const Node* in2 = in(2);
770 const Type* t1 = phase->type(in1);
771 const Type* t2 = phase->type(in2);
772 assert(t1->isa_int(), "CmpU has only Int type inputs")do { if (!(t1->isa_int())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 772, "assert(" "t1->isa_int()" ") failed", "CmpU has only Int type inputs"
); ::breakpoint(); } } while (0)
;
773 if (t2 == TypeInt::INT) { // Compare to bottom?
774 return bottom_type();
775 }
776 uint in1_op = in1->Opcode();
777 if (in1_op == Op_AddI || in1_op == Op_SubI) {
778 // The problem rise when result of AddI(SubI) may overflow
779 // signed integer value. Let say the input type is
780 // [256, maxint] then +128 will create 2 ranges due to
781 // overflow: [minint, minint+127] and [384, maxint].
782 // But C2 type system keep only 1 type range and as result
783 // it use general [minint, maxint] for this case which we
784 // can't optimize.
785 //
786 // Make 2 separate type ranges based on types of AddI(SubI) inputs
787 // and compare results of their compare. If results are the same
788 // CmpU node can be optimized.
789 const Node* in11 = in1->in(1);
790 const Node* in12 = in1->in(2);
791 const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
792 const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
793 // Skip cases when input types are top or bottom.
794 if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
795 (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
796 const TypeInt *r0 = t11->is_int();
797 const TypeInt *r1 = t12->is_int();
798 jlong lo_r0 = r0->_lo;
799 jlong hi_r0 = r0->_hi;
800 jlong lo_r1 = r1->_lo;
801 jlong hi_r1 = r1->_hi;
802 if (in1_op == Op_SubI) {
803 jlong tmp = hi_r1;
804 hi_r1 = -lo_r1;
805 lo_r1 = -tmp;
806 // Note, for substructing [minint,x] type range
807 // long arithmetic provides correct overflow answer.
808 // The confusion come from the fact that in 32-bit
809 // -minint == minint but in 64-bit -minint == maxint+1.
810 }
811 jlong lo_long = lo_r0 + lo_r1;
812 jlong hi_long = hi_r0 + hi_r1;
813 int lo_tr1 = min_jint;
814 int hi_tr1 = (int)hi_long;
815 int lo_tr2 = (int)lo_long;
816 int hi_tr2 = max_jint;
817 bool underflow = lo_long != (jlong)lo_tr2;
818 bool overflow = hi_long != (jlong)hi_tr1;
819 // Use sub(t1, t2) when there is no overflow (one type range)
820 // or when both overflow and underflow (too complex).
821 if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
822 // Overflow only on one boundary, compare 2 separate type ranges.
823 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
824 const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
825 const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
826 const Type* cmp1 = sub(tr1, t2);
827 const Type* cmp2 = sub(tr2, t2);
828 if (cmp1 == cmp2) {
829 return cmp1; // Hit!
830 }
831 }
832 }
833 }
834
835 return sub(t1, t2); // Local flavor of type subtraction
836}
837
838bool CmpUNode::is_index_range_check() const {
839 // Check for the "(X ModI Y) CmpU Y" shape
840 return (in(1)->Opcode() == Op_ModI &&
841 in(1)->in(2)->eqv_uncast(in(2)));
842}
843
844//------------------------------Idealize---------------------------------------
845Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
846 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
847 switch (in(1)->Opcode()) {
848 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL
849 return new CmpLNode(in(1)->in(1),in(1)->in(2));
850 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF
851 return new CmpFNode(in(1)->in(1),in(1)->in(2));
852 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD
853 return new CmpDNode(in(1)->in(1),in(1)->in(2));
854 //case Op_SubI:
855 // If (x - y) cannot overflow, then ((x - y) <?> 0)
856 // can be turned into (x <?> y).
857 // This is handled (with more general cases) by Ideal_sub_algebra.
858 }
859 }
860 return NULL__null; // No change
861}
862
863Node *CmpLNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
864 const TypeLong *t2 = phase->type(in(2))->isa_long();
865 if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) {
866 const jlong con = t2->get_con();
867 if (con >= min_jint && con <= max_jint) {
868 return new CmpINode(in(1)->in(1), phase->intcon((jint)con));
869 }
870 }
871 return NULL__null;
872}
873
874//=============================================================================
875// Simplify a CmpL (compare 2 longs ) node, based on local information.
876// If both inputs are constants, compare them.
877const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
878 const TypeLong *r0 = t1->is_long(); // Handy access
879 const TypeLong *r1 = t2->is_long();
880
881 if( r0->_hi < r1->_lo ) // Range is always low?
882 return TypeInt::CC_LT;
883 else if( r0->_lo > r1->_hi ) // Range is always high?
884 return TypeInt::CC_GT;
885
886 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
887 assert(r0->get_con() == r1->get_con(), "must be equal")do { if (!(r0->get_con() == r1->get_con())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 887, "assert(" "r0->get_con() == r1->get_con()" ") failed"
, "must be equal"); ::breakpoint(); } } while (0)
;
888 return TypeInt::CC_EQ; // Equal results.
889 } else if( r0->_hi == r1->_lo ) // Range is never high?
890 return TypeInt::CC_LE;
891 else if( r0->_lo == r1->_hi ) // Range is never low?
892 return TypeInt::CC_GE;
893 return TypeInt::CC; // else use worst case results
894}
895
896
897// Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
898// If both inputs are constants, compare them.
899const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
900 assert(!t1->isa_ptr(), "obsolete usage of CmpUL")do { if (!(!t1->isa_ptr())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 900, "assert(" "!t1->isa_ptr()" ") failed", "obsolete usage of CmpUL"
); ::breakpoint(); } } while (0)
;
901
902 // comparing two unsigned longs
903 const TypeLong* r0 = t1->is_long(); // Handy access
904 const TypeLong* r1 = t2->is_long();
905
906 // Current installed version
907 // Compare ranges for non-overlap
908 julong lo0 = r0->_lo;
909 julong hi0 = r0->_hi;
910 julong lo1 = r1->_lo;
911 julong hi1 = r1->_hi;
912
913 // If either one has both negative and positive values,
914 // it therefore contains both 0 and -1, and since [0..-1] is the
915 // full unsigned range, the type must act as an unsigned bottom.
916 bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
917 bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
918
919 if (bot0 || bot1) {
920 // All unsigned values are LE -1 and GE 0.
921 if (lo0 == 0 && hi0 == 0) {
922 return TypeInt::CC_LE; // 0 <= bot
923 } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
924 return TypeInt::CC_GE; // -1 >= bot
925 } else if (lo1 == 0 && hi1 == 0) {
926 return TypeInt::CC_GE; // bot >= 0
927 } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
928 return TypeInt::CC_LE; // bot <= -1
929 }
930 } else {
931 // We can use ranges of the form [lo..hi] if signs are the same.
932 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid")do { if (!(lo0 <= hi0 && lo1 <= hi1)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 932, "assert(" "lo0 <= hi0 && lo1 <= hi1" ") failed"
, "unsigned ranges are valid"); ::breakpoint(); } } while (0)
;
933 // results are reversed, '-' > '+' for unsigned compare
934 if (hi0 < lo1) {
935 return TypeInt::CC_LT; // smaller
936 } else if (lo0 > hi1) {
937 return TypeInt::CC_GT; // greater
938 } else if (hi0 == lo1 && lo0 == hi1) {
939 return TypeInt::CC_EQ; // Equal results
940 } else if (lo0 >= hi1) {
941 return TypeInt::CC_GE;
942 } else if (hi0 <= lo1) {
943 return TypeInt::CC_LE;
944 }
945 }
946
947 return TypeInt::CC; // else use worst case results
948}
949
950//=============================================================================
951//------------------------------sub--------------------------------------------
952// Simplify an CmpP (compare 2 pointers) node, based on local information.
953// If both inputs are constants, compare them.
954const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
955 const TypePtr *r0 = t1->is_ptr(); // Handy access
956 const TypePtr *r1 = t2->is_ptr();
957
958 // Undefined inputs makes for an undefined result
959 if( TypePtr::above_centerline(r0->_ptr) ||
960 TypePtr::above_centerline(r1->_ptr) )
961 return Type::TOP;
962
963 if (r0 == r1 && r0->singleton()) {
964 // Equal pointer constants (klasses, nulls, etc.)
965 return TypeInt::CC_EQ;
966 }
967
968 // See if it is 2 unrelated classes.
969 const TypeOopPtr* oop_p0 = r0->isa_oopptr();
970 const TypeOopPtr* oop_p1 = r1->isa_oopptr();
971 bool both_oop_ptr = oop_p0 && oop_p1;
972
973 if (both_oop_ptr) {
974 Node* in1 = in(1)->uncast();
975 Node* in2 = in(2)->uncast();
976 AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL__null);
977 AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL__null);
978 if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL__null)) {
979 return TypeInt::CC_GT; // different pointers
980 }
981 }
982
983 const TypeKlassPtr* klass_p0 = r0->isa_klassptr();
984 const TypeKlassPtr* klass_p1 = r1->isa_klassptr();
985
986 if (both_oop_ptr || (klass_p0 && klass_p1)) { // both or neither are klass pointers
987 ciKlass* klass0 = NULL__null;
988 bool xklass0 = false;
989 ciKlass* klass1 = NULL__null;
990 bool xklass1 = false;
991
992 if (oop_p0) {
993 klass0 = oop_p0->klass();
994 xklass0 = oop_p0->klass_is_exact();
995 } else {
996 assert(klass_p0, "must be non-null if oop_p0 is null")do { if (!(klass_p0)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 996, "assert(" "klass_p0" ") failed", "must be non-null if oop_p0 is null"
); ::breakpoint(); } } while (0)
;
997 klass0 = klass_p0->klass();
998 xklass0 = klass_p0->klass_is_exact();
999 }
1000
1001 if (oop_p1) {
1002 klass1 = oop_p1->klass();
1003 xklass1 = oop_p1->klass_is_exact();
1004 } else {
1005 assert(klass_p1, "must be non-null if oop_p1 is null")do { if (!(klass_p1)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 1005, "assert(" "klass_p1" ") failed", "must be non-null if oop_p1 is null"
); ::breakpoint(); } } while (0)
;
1006 klass1 = klass_p1->klass();
1007 xklass1 = klass_p1->klass_is_exact();
1008 }
1009
1010 if (klass0 && klass1 &&
1011 klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
1012 klass1->is_loaded() && !klass1->is_interface() &&
1013 (!klass0->is_obj_array_klass() ||
1014 !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
1015 (!klass1->is_obj_array_klass() ||
1016 !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
1017 bool unrelated_classes = false;
1018 // See if neither subclasses the other, or if the class on top
1019 // is precise. In either of these cases, the compare is known
1020 // to fail if at least one of the pointers is provably not null.
1021 if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
1022 // Do nothing; we know nothing for imprecise types
1023 } else if (klass0->is_subtype_of(klass1)) {
1024 // If klass1's type is PRECISE, then classes are unrelated.
1025 unrelated_classes = xklass1;
1026 } else if (klass1->is_subtype_of(klass0)) {
1027 // If klass0's type is PRECISE, then classes are unrelated.
1028 unrelated_classes = xklass0;
1029 } else { // Neither subtypes the other
1030 unrelated_classes = true;
1031 }
1032 if (unrelated_classes) {
1033 // The oops classes are known to be unrelated. If the joined PTRs of
1034 // two oops is not Null and not Bottom, then we are sure that one
1035 // of the two oops is non-null, and the comparison will always fail.
1036 TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
1037 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
1038 return TypeInt::CC_GT;
1039 }
1040 }
1041 }
1042 }
1043
1044 // Known constants can be compared exactly
1045 // Null can be distinguished from any NotNull pointers
1046 // Unknown inputs makes an unknown result
1047 if( r0->singleton() ) {
1048 intptr_t bits0 = r0->get_con();
1049 if( r1->singleton() )
1050 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
1051 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1052 } else if( r1->singleton() ) {
1053 intptr_t bits1 = r1->get_con();
1054 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1055 } else
1056 return TypeInt::CC;
1057}
1058
1059static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
1060 // Return the klass node for (indirect load from OopHandle)
1061 // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
1062 // or NULL if not matching.
1063 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1064 n = bs->step_over_gc_barrier(n);
1065
1066 if (n->Opcode() != Op_LoadP) return NULL__null;
1067
1068 const TypeInstPtr* tp = phase->type(n)->isa_instptr();
1069 if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL__null;
1070
1071 Node* adr = n->in(MemNode::Address);
1072 // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier.
1073 if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return NULL__null;
1074 adr = adr->in(MemNode::Address);
1075
1076 intptr_t off = 0;
1077 Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
1078 if (k == NULL__null) return NULL__null;
1079 const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
1080 if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL__null;
1081
1082 // We've found the klass node of a Java mirror load.
1083 return k;
1084}
1085
1086static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
1087 // for ConP(Foo.class) return ConP(Foo.klass)
1088 // otherwise return NULL
1089 if (!n->is_Con()) return NULL__null;
1090
1091 const TypeInstPtr* tp = phase->type(n)->isa_instptr();
1092 if (!tp) return NULL__null;
1093
1094 ciType* mirror_type = tp->java_mirror_type();
1095 // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
1096 // time Class constants only.
1097 if (!mirror_type) return NULL__null;
1098
1099 // x.getClass() == int.class can never be true (for all primitive types)
1100 // Return a ConP(NULL) node for this case.
1101 if (mirror_type->is_classless()) {
1102 return phase->makecon(TypePtr::NULL_PTR);
1103 }
1104
1105 // return the ConP(Foo.klass)
1106 assert(mirror_type->is_klass(), "mirror_type should represent a Klass*")do { if (!(mirror_type->is_klass())) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 1106, "assert(" "mirror_type->is_klass()" ") failed", "mirror_type should represent a Klass*"
); ::breakpoint(); } } while (0)
;
1107 return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
1108}
1109
1110//------------------------------Ideal------------------------------------------
1111// Normalize comparisons between Java mirror loads to compare the klass instead.
1112//
1113// Also check for the case of comparing an unknown klass loaded from the primary
1114// super-type array vs a known klass with no subtypes. This amounts to
1115// checking to see an unknown klass subtypes a known klass with no subtypes;
1116// this only happens on an exact match. We can shorten this test by 1 load.
1117Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1118 // Normalize comparisons between Java mirrors into comparisons of the low-
1119 // level klass, where a dependent load could be shortened.
1120 //
1121 // The new pattern has a nice effect of matching the same pattern used in the
1122 // fast path of instanceof/checkcast/Class.isInstance(), which allows
1123 // redundant exact type check be optimized away by GVN.
1124 // For example, in
1125 // if (x.getClass() == Foo.class) {
1126 // Foo foo = (Foo) x;
1127 // // ... use a ...
1128 // }
1129 // a CmpPNode could be shared between if_acmpne and checkcast
1130 {
1131 Node* k1 = isa_java_mirror_load(phase, in(1));
1132 Node* k2 = isa_java_mirror_load(phase, in(2));
1133 Node* conk2 = isa_const_java_mirror(phase, in(2));
1134
1135 if (k1 && (k2 || conk2)) {
1136 Node* lhs = k1;
1137 Node* rhs = (k2 != NULL__null) ? k2 : conk2;
1138 set_req_X(1, lhs, phase);
1139 set_req_X(2, rhs, phase);
1140 return this;
1141 }
1142 }
1143
1144 // Constant pointer on right?
1145 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
1146 if (t2 == NULL__null || !t2->klass_is_exact())
1147 return NULL__null;
1148 // Get the constant klass we are comparing to.
1149 ciKlass* superklass = t2->klass();
1150
1151 // Now check for LoadKlass on left.
1152 Node* ldk1 = in(1);
1153 if (ldk1->is_DecodeNKlass()) {
1154 ldk1 = ldk1->in(1);
1155 if (ldk1->Opcode() != Op_LoadNKlass )
1156 return NULL__null;
1157 } else if (ldk1->Opcode() != Op_LoadKlass )
1158 return NULL__null;
1159 // Take apart the address of the LoadKlass:
1160 Node* adr1 = ldk1->in(MemNode::Address);
1161 intptr_t con2 = 0;
1162 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
1163 if (ldk2 == NULL__null)
1164 return NULL__null;
1165 if (con2 == oopDesc::klass_offset_in_bytes()) {
1166 // We are inspecting an object's concrete class.
1167 // Short-circuit the check if the query is abstract.
1168 if (superklass->is_interface() ||
1169 superklass->is_abstract()) {
1170 // Make it come out always false:
1171 this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
1172 return this;
1173 }
1174 }
1175
1176 // Check for a LoadKlass from primary supertype array.
1177 // Any nested loadklass from loadklass+con must be from the p.s. array.
1178 if (ldk2->is_DecodeNKlass()) {
1179 // Keep ldk2 as DecodeN since it could be used in CmpP below.
1180 if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
1181 return NULL__null;
1182 } else if (ldk2->Opcode() != Op_LoadKlass)
1183 return NULL__null;
1184
1185 // Verify that we understand the situation
1186 if (con2 != (intptr_t) superklass->super_check_offset())
1187 return NULL__null; // Might be element-klass loading from array klass
1188
1189 // If 'superklass' has no subklasses and is not an interface, then we are
1190 // assured that the only input which will pass the type check is
1191 // 'superklass' itself.
1192 //
1193 // We could be more liberal here, and allow the optimization on interfaces
1194 // which have a single implementor. This would require us to increase the
1195 // expressiveness of the add_dependency() mechanism.
1196 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now.
1197
1198 // Object arrays must have their base element have no subtypes
1199 while (superklass->is_obj_array_klass()) {
1200 ciType* elem = superklass->as_obj_array_klass()->element_type();
1201 superklass = elem->as_klass();
1202 }
1203 if (superklass->is_instance_klass()) {
1204 ciInstanceKlass* ik = superklass->as_instance_klass();
1205 if (ik->has_subklass() || ik->is_interface()) return NULL__null;
1206 // Add a dependency if there is a chance that a subclass will be added later.
1207 if (!ik->is_final()) {
1208 phase->C->dependencies()->assert_leaf_type(ik);
1209 }
1210 }
1211
1212 // Bypass the dependent load, and compare directly
1213 this->set_req(1,ldk2);
1214
1215 return this;
1216}
1217
1218//=============================================================================
1219//------------------------------sub--------------------------------------------
1220// Simplify an CmpN (compare 2 pointers) node, based on local information.
1221// If both inputs are constants, compare them.
1222const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1223 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 1223); ::breakpoint(); } while (0)
;
1224 return bottom_type();
1225}
1226
1227//------------------------------Ideal------------------------------------------
1228Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1229 return NULL__null;
1230}
1231
1232//=============================================================================
1233//------------------------------Value------------------------------------------
1234// Simplify an CmpF (compare 2 floats ) node, based on local information.
1235// If both inputs are constants, compare them.
1236const Type* CmpFNode::Value(PhaseGVN* phase) const {
1237 const Node* in1 = in(1);
1238 const Node* in2 = in(2);
1239 // Either input is TOP ==> the result is TOP
1240 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1241 if( t1 == Type::TOP ) return Type::TOP;
1242 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1243 if( t2 == Type::TOP ) return Type::TOP;
1244
1245 // Not constants? Don't know squat - even if they are the same
1246 // value! If they are NaN's they compare to LT instead of EQ.
1247 const TypeF *tf1 = t1->isa_float_constant();
1248 const TypeF *tf2 = t2->isa_float_constant();
1249 if( !tf1 || !tf2 ) return TypeInt::CC;
1250
1251 // This implements the Java bytecode fcmpl, so unordered returns -1.
1252 if( tf1->is_nan() || tf2->is_nan() )
1253 return TypeInt::CC_LT;
1254
1255 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1256 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1257 assert( tf1->_f == tf2->_f, "do not understand FP behavior" )do { if (!(tf1->_f == tf2->_f)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 1257, "assert(" "tf1->_f == tf2->_f" ") failed", "do not understand FP behavior"
); ::breakpoint(); } } while (0)
;
1258 return TypeInt::CC_EQ;
1259}
1260
1261
1262//=============================================================================
1263//------------------------------Value------------------------------------------
1264// Simplify an CmpD (compare 2 doubles ) node, based on local information.
1265// If both inputs are constants, compare them.
1266const Type* CmpDNode::Value(PhaseGVN* phase) const {
1267 const Node* in1 = in(1);
1268 const Node* in2 = in(2);
1269 // Either input is TOP ==> the result is TOP
1270 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1271 if( t1 == Type::TOP ) return Type::TOP;
1272 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1273 if( t2 == Type::TOP ) return Type::TOP;
1274
1275 // Not constants? Don't know squat - even if they are the same
1276 // value! If they are NaN's they compare to LT instead of EQ.
1277 const TypeD *td1 = t1->isa_double_constant();
1278 const TypeD *td2 = t2->isa_double_constant();
1279 if( !td1 || !td2 ) return TypeInt::CC;
1280
1281 // This implements the Java bytecode dcmpl, so unordered returns -1.
1282 if( td1->is_nan() || td2->is_nan() )
1283 return TypeInt::CC_LT;
1284
1285 if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1286 if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1287 assert( td1->_d == td2->_d, "do not understand FP behavior" )do { if (!(td1->_d == td2->_d)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/subnode.cpp"
, 1287, "assert(" "td1->_d == td2->_d" ") failed", "do not understand FP behavior"
); ::breakpoint(); } } while (0)
;
1288 return TypeInt::CC_EQ;
1289}
1290
1291//------------------------------Ideal------------------------------------------
1292Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1293 // Check if we can change this to a CmpF and remove a ConvD2F operation.
1294 // Change (CMPD (F2D (float)) (ConD value))
1295 // To (CMPF (float) (ConF value))
1296 // Valid when 'value' does not lose precision as a float.
1297 // Benefits: eliminates conversion, does not require 24-bit mode
1298
1299 // NaNs prevent commuting operands. This transform works regardless of the
1300 // order of ConD and ConvF2D inputs by preserving the original order.
1301 int idx_f2d = 1; // ConvF2D on left side?
1302 if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1303 idx_f2d = 2; // No, swap to check for reversed args
1304 int idx_con = 3-idx_f2d; // Check for the constant on other input
1305
1306 if( ConvertCmpD2CmpF &&
1307 in(idx_f2d)->Opcode() == Op_ConvF2D &&
1308 in(idx_con)->Opcode() == Op_ConD ) {
1309 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1310 double t2_value_as_double = t2->_d;
1311 float t2_value_as_float = (float)t2_value_as_double;
1312 if( t2_value_as_double == (double)t2_value_as_float ) {
1313 // Test value can be represented as a float
1314 // Eliminate the conversion to double and create new comparison
1315 Node *new_in1 = in(idx_f2d)->in(1);
1316 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1317 if( idx_f2d != 1 ) { // Must flip args to match original order
1318 Node *tmp = new_in1;
1319 new_in1 = new_in2;
1320 new_in2 = tmp;
1321 }
1322 CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1323 ? new CmpF3Node( new_in1, new_in2 )
1324 : new CmpFNode ( new_in1, new_in2 ) ;
1325 return new_cmp; // Changed to CmpFNode
1326 }
1327 // Testing value required the precision of a double
1328 }
1329 return NULL__null; // No change
1330}
1331
1332
1333//=============================================================================
1334//------------------------------cc2logical-------------------------------------
1335// Convert a condition code type to a logical type
1336const Type *BoolTest::cc2logical( const Type *CC ) const {
1337 if( CC == Type::TOP ) return Type::TOP;
1338 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1339 const TypeInt *ti = CC->is_int();
1340 if( ti->is_con() ) { // Only 1 kind of condition codes set?
1341 // Match low order 2 bits
1342 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1343 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result
1344 return TypeInt::make(tmp); // Boolean result
1345 }
1346
1347 if( CC == TypeInt::CC_GE ) {
1348 if( _test == ge ) return TypeInt::ONE;
1349 if( _test == lt ) return TypeInt::ZERO;
1350 }
1351 if( CC == TypeInt::CC_LE ) {
1352 if( _test == le ) return TypeInt::ONE;
1353 if( _test == gt ) return TypeInt::ZERO;
1354 }
1355
1356 return TypeInt::BOOL;
1357}
1358
1359//------------------------------dump_spec-------------------------------------
1360// Print special per-node info
1361void BoolTest::dump_on(outputStream *st) const {
1362 const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1363 st->print("%s", msg[_test]);
1364}
1365
1366// Returns the logical AND of two tests (or 'never' if both tests can never be true).
1367// For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'.
1368BoolTest::mask BoolTest::merge(BoolTest other) const {
1369 const mask res[illegal+1][illegal+1] = {
1370 // eq, gt, of, lt, ne, le, nof, ge, never, illegal
1371 {eq, never, illegal, never, never, eq, illegal, eq, never, illegal}, // eq
1372 {never, gt, illegal, never, gt, never, illegal, gt, never, illegal}, // gt
1373 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // of
1374 {never, never, illegal, lt, lt, lt, illegal, never, never, illegal}, // lt
1375 {never, gt, illegal, lt, ne, lt, illegal, gt, never, illegal}, // ne
1376 {eq, never, illegal, lt, lt, le, illegal, eq, never, illegal}, // le
1377 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // nof
1378 {eq, gt, illegal, never, gt, eq, illegal, ge, never, illegal}, // ge
1379 {never, never, never, never, never, never, never, never, never, illegal}, // never
1380 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal
1381 return res[_test][other._test];
1382}
1383
1384//=============================================================================
1385uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1386uint BoolNode::size_of() const { return sizeof(BoolNode); }
1387
1388//------------------------------operator==-------------------------------------
1389bool BoolNode::cmp( const Node &n ) const {
1390 const BoolNode *b = (const BoolNode *)&n; // Cast up
1391 return (_test._test == b->_test._test);
1392}
1393
1394//-------------------------------make_predicate--------------------------------
1395Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1396 if (test_value->is_Con()) return test_value;
1397 if (test_value->is_Bool()) return test_value;
1398 if (test_value->is_CMove() &&
1399 test_value->in(CMoveNode::Condition)->is_Bool()) {
1400 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool();
1401 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1402 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1403 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1404 return bol;
1405 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1406 return phase->transform( bol->negate(phase) );
1407 }
1408 // Else fall through. The CMove gets in the way of the test.
1409 // It should be the case that make_predicate(bol->as_int_value()) == bol.
1410 }
1411 Node* cmp = new CmpINode(test_value, phase->intcon(0));
1412 cmp = phase->transform(cmp);
1413 Node* bol = new BoolNode(cmp, BoolTest::ne);
1414 return phase->transform(bol);
1415}
1416
1417//--------------------------------as_int_value---------------------------------
1418Node* BoolNode::as_int_value(PhaseGVN* phase) {
1419 // Inverse to make_predicate. The CMove probably boils down to a Conv2B.
1420 Node* cmov = CMoveNode::make(NULL__null, this,
1421 phase->intcon(0), phase->intcon(1),
1422 TypeInt::BOOL);
1423 return phase->transform(cmov);
1424}
1425
1426//----------------------------------negate-------------------------------------
1427BoolNode* BoolNode::negate(PhaseGVN* phase) {
1428 return new BoolNode(in(1), _test.negate());
1429}
1430
1431// Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
1432// overflows and we can prove that C is not in the two resulting ranges.
1433// This optimization is similar to the one performed by CmpUNode::Value().
1434Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
1435 int cmp1_op, const TypeInt* cmp2_type) {
1436 // Only optimize eq/ne integer comparison of add/sub
1437 if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1438 (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
1439 // Skip cases were inputs of add/sub are not integers or of bottom type
1440 const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
1441 const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
1442 if ((r0 != NULL__null) && (r0 != TypeInt::INT) &&
1443 (r1 != NULL__null) && (r1 != TypeInt::INT) &&
1444 (cmp2_type != TypeInt::INT)) {
1445 // Compute exact (long) type range of add/sub result
1446 jlong lo_long = r0->_lo;
1447 jlong hi_long = r0->_hi;
1448 if (cmp1_op == Op_AddI) {
1449 lo_long += r1->_lo;
1450 hi_long += r1->_hi;
1451 } else {
1452 lo_long -= r1->_hi;
1453 hi_long -= r1->_lo;
1454 }
1455 // Check for over-/underflow by casting to integer
1456 int lo_int = (int)lo_long;
1457 int hi_int = (int)hi_long;
1458 bool underflow = lo_long != (jlong)lo_int;
1459 bool overflow = hi_long != (jlong)hi_int;
1460 if ((underflow != overflow) && (hi_int < lo_int)) {
1461 // Overflow on one boundary, compute resulting type ranges:
1462 // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
1463 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
1464 const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
1465 const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
1466 // Compare second input of cmp to both type ranges
1467 const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
1468 const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
1469 if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
1470 // The result of the add/sub will never equal cmp2. Replace BoolNode
1471 // by false (0) if it tests for equality and by true (1) otherwise.
1472 return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
1473 }
1474 }
1475 }
1476 }
1477 return NULL__null;
1478}
1479
1480static bool is_counted_loop_cmp(Node *cmp) {
1481 Node *n = cmp->in(1)->in(1);
1482 return n != NULL__null &&
1483 n->is_Phi() &&
1484 n->in(0) != NULL__null &&
1485 n->in(0)->is_CountedLoop() &&
1486 n->in(0)->as_CountedLoop()->phi() == n;
1487}
1488
1489//------------------------------Ideal------------------------------------------
1490Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1491 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1492 // This moves the constant to the right. Helps value-numbering.
1493 Node *cmp = in(1);
1494 if( !cmp->is_Sub() ) return NULL__null;
1495 int cop = cmp->Opcode();
1496 if( cop == Op_FastLock || cop == Op_FastUnlock || cmp->is_SubTypeCheck()) return NULL__null;
1497 Node *cmp1 = cmp->in(1);
1498 Node *cmp2 = cmp->in(2);
1499 if( !cmp1 ) return NULL__null;
1500
1501 if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1502 return NULL__null;
1503 }
1504
1505 const int cmp1_op = cmp1->Opcode();
1506 const int cmp2_op = cmp2->Opcode();
1507
1508 // Constant on left?
1509 Node *con = cmp1;
1510 // Move constants to the right of compare's to canonicalize.
1511 // Do not muck with Opaque1 nodes, as this indicates a loop
1512 // guard that cannot change shape.
1513 if( con->is_Con() && !cmp2->is_Con() && cmp2_op != Op_Opaque1 &&
1514 // Because of NaN's, CmpD and CmpF are not commutative
1515 cop != Op_CmpD && cop != Op_CmpF &&
1516 // Protect against swapping inputs to a compare when it is used by a
1517 // counted loop exit, which requires maintaining the loop-limit as in(2)
1518 !is_counted_loop_exit_test() ) {
1519 // Ok, commute the constant to the right of the cmp node.
1520 // Clone the Node, getting a new Node of the same class
1521 cmp = cmp->clone();
1522 // Swap inputs to the clone
1523 cmp->swap_edges(1, 2);
1524 cmp = phase->transform( cmp );
1525 return new BoolNode( cmp, _test.commute() );
1526 }
1527
1528 // Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1529 if (cop == Op_CmpI &&
1530 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1531 cmp1_op == Op_AndI && cmp2_op == Op_ConI &&
1532 cmp1->in(2)->Opcode() == Op_ConI) {
1533 const TypeInt *t12 = phase->type(cmp2)->isa_int();
1534 const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int();
1535 if (t12 && t12->is_con() && t112 && t112->is_con() &&
1536 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1537 Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1538 return new BoolNode(ncmp, _test.negate());
1539 }
1540 }
1541
1542 // Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1543 if (cop == Op_CmpL &&
1544 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1545 cmp1_op == Op_AndL && cmp2_op == Op_ConL &&
1546 cmp1->in(2)->Opcode() == Op_ConL) {
1547 const TypeLong *t12 = phase->type(cmp2)->isa_long();
1548 const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long();
1549 if (t12 && t12->is_con() && t112 && t112->is_con() &&
1550 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1551 Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0)));
1552 return new BoolNode(ncmp, _test.negate());
1553 }
1554 }
1555
1556 // Change "cmp (add X min_jint) (add Y min_jint)" into "cmpu X Y"
1557 // and "cmp (add X min_jint) c" into "cmpu X (c + min_jint)"
1558 if (cop == Op_CmpI &&
1559 cmp1_op == Op_AddI &&
1560 phase->type(cmp1->in(2)) == TypeInt::MIN) {
1561 if (cmp2_op == Op_ConI) {
1562 Node* ncmp2 = phase->intcon(java_add(cmp2->get_int(), min_jint));
1563 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), ncmp2));
1564 return new BoolNode(ncmp, _test._test);
1565 } else if (cmp2_op == Op_AddI &&
1566 phase->type(cmp2->in(2)) == TypeInt::MIN) {
1567 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), cmp2->in(1)));
1568 return new BoolNode(ncmp, _test._test);
1569 }
1570 }
1571
1572 // Change "cmp (add X min_jlong) (add Y min_jlong)" into "cmpu X Y"
1573 // and "cmp (add X min_jlong) c" into "cmpu X (c + min_jlong)"
1574 if (cop == Op_CmpL &&
1575 cmp1_op == Op_AddL &&
1576 phase->type(cmp1->in(2)) == TypeLong::MIN) {
1577 if (cmp2_op == Op_ConL) {
1578 Node* ncmp2 = phase->longcon(java_add(cmp2->get_long(), min_jlong));
1579 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), ncmp2));
1580 return new BoolNode(ncmp, _test._test);
1581 } else if (cmp2_op == Op_AddL &&
1582 phase->type(cmp2->in(2)) == TypeLong::MIN) {
1583 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), cmp2->in(1)));
1584 return new BoolNode(ncmp, _test._test);
1585 }
1586 }
1587
1588 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1589 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the
1590 // test instead.
1591 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1592 if (cmp2_type == NULL__null) return NULL__null;
1593 Node* j_xor = cmp1;
1594 if( cmp2_type == TypeInt::ZERO &&
1595 cmp1_op == Op_XorI &&
1596 j_xor->in(1) != j_xor && // An xor of itself is dead
1597 phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1598 phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1599 (_test._test == BoolTest::eq ||
1600 _test._test == BoolTest::ne) ) {
1601 Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
1602 return new BoolNode( ncmp, _test.negate() );
1603 }
1604
1605 // Change ((x & m) u<= m) or ((m & x) u<= m) to always true
1606 // Same with ((x & m) u< m+1) and ((m & x) u< m+1)
1607 if (cop == Op_CmpU &&
1608 cmp1_op == Op_AndI) {
1609 Node* bound = NULL__null;
1610 if (_test._test == BoolTest::le) {
1611 bound = cmp2;
1612 } else if (_test._test == BoolTest::lt &&
1613 cmp2->Opcode() == Op_AddI &&
1614 cmp2->in(2)->find_int_con(0) == 1) {
1615 bound = cmp2->in(1);
1616 }
1617 if (cmp1->in(2) == bound || cmp1->in(1) == bound) {
1618 return ConINode::make(1);
1619 }
1620 }
1621
1622 // Change ((x & (m - 1)) u< m) into (m > 0)
1623 // This is the off-by-one variant of the above
1624 if (cop == Op_CmpU &&
1625 _test._test == BoolTest::lt &&
1626 cmp1_op == Op_AndI) {
1627 Node* l = cmp1->in(1);
Value stored to 'l' during its initialization is never read
1628 Node* r = cmp1->in(2);
1629 for (int repeat = 0; repeat < 2; repeat++) {
1630 bool match = r->Opcode() == Op_AddI && r->in(2)->find_int_con(0) == -1 &&
1631 r->in(1) == cmp2;
1632 if (match) {
1633 // arraylength known to be non-negative, so a (arraylength != 0) is sufficient,
1634 // but to be compatible with the array range check pattern, use (arraylength u> 0)
1635 Node* ncmp = cmp2->Opcode() == Op_LoadRange
1636 ? phase->transform(new CmpUNode(cmp2, phase->intcon(0)))
1637 : phase->transform(new CmpINode(cmp2, phase->intcon(0)));
1638 return new BoolNode(ncmp, BoolTest::gt);
1639 } else {
1640 // commute and try again
1641 l = cmp1->in(2);
1642 r = cmp1->in(1);
1643 }
1644 }
1645 }
1646
1647 // Change x u< 1 or x u<= 0 to x == 0
1648 if (cop == Op_CmpU &&
1649 cmp1_op != Op_LoadRange &&
1650 ((_test._test == BoolTest::lt &&
1651 cmp2->find_int_con(-1) == 1) ||
1652 (_test._test == BoolTest::le &&
1653 cmp2->find_int_con(-1) == 0))) {
1654 Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1655 return new BoolNode(ncmp, BoolTest::eq);
1656 }
1657
1658 // Change (arraylength <= 0) or (arraylength == 0)
1659 // into (arraylength u<= 0)
1660 // Also change (arraylength != 0) into (arraylength u> 0)
1661 // The latter version matches the code pattern generated for
1662 // array range checks, which will more likely be optimized later.
1663 if (cop == Op_CmpI &&
1664 cmp1_op == Op_LoadRange &&
1665 cmp2->find_int_con(-1) == 0) {
1666 if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
1667 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1668 return new BoolNode(ncmp, BoolTest::le);
1669 } else if (_test._test == BoolTest::ne) {
1670 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1671 return new BoolNode(ncmp, BoolTest::gt);
1672 }
1673 }
1674
1675 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1676 // This is a standard idiom for branching on a boolean value.
1677 Node *c2b = cmp1;
1678 if( cmp2_type == TypeInt::ZERO &&
1679 cmp1_op == Op_Conv2B &&
1680 (_test._test == BoolTest::eq ||
1681 _test._test == BoolTest::ne) ) {
1682 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1683 ? (Node*)new CmpINode(c2b->in(1),cmp2)
1684 : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1685 );
1686 return new BoolNode( ncmp, _test._test );
1687 }
1688
1689 // Comparing a SubI against a zero is equal to comparing the SubI
1690 // arguments directly. This only works for eq and ne comparisons
1691 // due to possible integer overflow.
1692 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1693 (cop == Op_CmpI) &&
1694 (cmp1_op == Op_SubI) &&
1695 ( cmp2_type == TypeInt::ZERO ) ) {
1696 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
1697 return new BoolNode( ncmp, _test._test );
1698 }
1699
1700 // Same as above but with and AddI of a constant
1701 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1702 cop == Op_CmpI &&
1703 cmp1_op == Op_AddI &&
1704 cmp1->in(2) != NULL__null &&
1705 phase->type(cmp1->in(2))->isa_int() &&
1706 phase->type(cmp1->in(2))->is_int()->is_con() &&
1707 cmp2_type == TypeInt::ZERO &&
1708 !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape
1709 ) {
1710 const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int();
1711 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi)));
1712 return new BoolNode( ncmp, _test._test );
1713 }
1714
1715 // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)"
1716 // since zero check of conditional negation of an integer is equal to
1717 // zero check of the integer directly.
1718 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1719 (cop == Op_CmpI) &&
1720 (cmp2_type == TypeInt::ZERO) &&
1721 (cmp1_op == Op_Phi)) {
1722 // There should be a diamond phi with true path at index 1 or 2
1723 PhiNode *phi = cmp1->as_Phi();
1724 int idx_true = phi->is_diamond_phi();
1725 if (idx_true != 0) {
1726 // True input is in(idx_true) while false input is in(3 - idx_true)
1727 Node *tin = phi->in(idx_true);
1728 Node *fin = phi->in(3 - idx_true);
1729 if ((tin->Opcode() == Op_SubI) &&
1730 (phase->type(tin->in(1)) == TypeInt::ZERO) &&
1731 (tin->in(2) == fin)) {
1732 // Found conditional negation at true path, create a new CmpINode without that
1733 Node *ncmp = phase->transform(new CmpINode(fin, cmp2));
1734 return new BoolNode(ncmp, _test._test);
1735 }
1736 if ((fin->Opcode() == Op_SubI) &&
1737 (phase->type(fin->in(1)) == TypeInt::ZERO) &&
1738 (fin->in(2) == tin)) {
1739 // Found conditional negation at false path, create a new CmpINode without that
1740 Node *ncmp = phase->transform(new CmpINode(tin, cmp2));
1741 return new BoolNode(ncmp, _test._test);
1742 }
1743 }
1744 }
1745
1746 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the
1747 // most general case because negating 0x80000000 does nothing. Needed for
1748 // the CmpF3/SubI/CmpI idiom.
1749 if( cop == Op_CmpI &&
1750 cmp1_op == Op_SubI &&
1751 cmp2_type == TypeInt::ZERO &&
1752 phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1753 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1754 Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
1755 return new BoolNode( ncmp, _test.commute() );
1756 }
1757
1758 // Try to optimize signed integer comparison
1759 return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
1760
1761 // The transformation below is not valid for either signed or unsigned
1762 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1763 // This transformation can be resurrected when we are able to
1764 // make inferences about the range of values being subtracted from
1765 // (or added to) relative to the wraparound point.
1766 //
1767 // // Remove +/-1's if possible.
1768 // // "X <= Y-1" becomes "X < Y"
1769 // // "X+1 <= Y" becomes "X < Y"
1770 // // "X < Y+1" becomes "X <= Y"
1771 // // "X-1 < Y" becomes "X <= Y"
1772 // // Do not this to compares off of the counted-loop-end. These guys are
1773 // // checking the trip counter and they want to use the post-incremented
1774 // // counter. If they use the PRE-incremented counter, then the counter has
1775 // // to be incremented in a private block on a loop backedge.
1776 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1777 // return NULL;
1778 // #ifndef PRODUCT
1779 // // Do not do this in a wash GVN pass during verification.
1780 // // Gets triggered by too many simple optimizations to be bothered with
1781 // // re-trying it again and again.
1782 // if( !phase->allow_progress() ) return NULL;
1783 // #endif
1784 // // Not valid for unsigned compare because of corner cases in involving zero.
1785 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1786 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1787 // // "0 <=u Y" is always true).
1788 // if( cmp->Opcode() == Op_CmpU ) return NULL;
1789 // int cmp2_op = cmp2->Opcode();
1790 // if( _test._test == BoolTest::le ) {
1791 // if( cmp1_op == Op_AddI &&
1792 // phase->type( cmp1->in(2) ) == TypeInt::ONE )
1793 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1794 // else if( cmp2_op == Op_AddI &&
1795 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1796 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1797 // } else if( _test._test == BoolTest::lt ) {
1798 // if( cmp1_op == Op_AddI &&
1799 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1800 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1801 // else if( cmp2_op == Op_AddI &&
1802 // phase->type( cmp2->in(2) ) == TypeInt::ONE )
1803 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1804 // }
1805}
1806
1807//------------------------------Value------------------------------------------
1808// Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1809// based on local information. If the input is constant, do it.
1810const Type* BoolNode::Value(PhaseGVN* phase) const {
1811 return _test.cc2logical( phase->type( in(1) ) );
1812}
1813
1814#ifndef PRODUCT
1815//------------------------------dump_spec--------------------------------------
1816// Dump special per-node info
1817void BoolNode::dump_spec(outputStream *st) const {
1818 st->print("[");
1819 _test.dump_on(st);
1820 st->print("]");
1821}
1822
1823//-------------------------------related---------------------------------------
1824// A BoolNode's related nodes are all of its data inputs, and all of its
1825// outputs until control nodes are hit, which are included. In compact
1826// representation, inputs till level 3 and immediate outputs are included.
1827void BoolNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1828 if (compact) {
1829 this->collect_nodes(in_rel, 3, false, true);
1830 this->collect_nodes(out_rel, -1, false, false);
1831 } else {
1832 this->collect_nodes_in_all_data(in_rel, false);
1833 this->collect_nodes_out_all_ctrl_boundary(out_rel);
1834 }
1835}
1836#endif
1837
1838//----------------------is_counted_loop_exit_test------------------------------
1839// Returns true if node is used by a counted loop node.
1840bool BoolNode::is_counted_loop_exit_test() {
1841 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1842 Node* use = fast_out(i);
1843 if (use->is_CountedLoopEnd()) {
1844 return true;
1845 }
1846 }
1847 return false;
1848}
1849
1850//=============================================================================
1851//------------------------------Value------------------------------------------
1852// Compute sqrt
1853const Type* SqrtDNode::Value(PhaseGVN* phase) const {
1854 const Type *t1 = phase->type( in(1) );
1855 if( t1 == Type::TOP ) return Type::TOP;
1856 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1857 double d = t1->getd();
1858 if( d < 0.0 ) return Type::DOUBLE;
1859 return TypeD::make( sqrt( d ) );
1860}
1861
1862const Type* SqrtFNode::Value(PhaseGVN* phase) const {
1863 const Type *t1 = phase->type( in(1) );
1864 if( t1 == Type::TOP ) return Type::TOP;
1865 if( t1->base() != Type::FloatCon ) return Type::FLOAT;
1866 float f = t1->getf();
1867 if( f < 0.0f ) return Type::FLOAT;
1868 return TypeF::make( (float)sqrt( (double)f ) );
1869}