File: | jdk/src/hotspot/share/runtime/objectMonitor.cpp |
Warning: | line 1959, column 7 Value stored to 'prv' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/vmSymbols.hpp" |
27 | #include "gc/shared/oopStorage.hpp" |
28 | #include "gc/shared/oopStorageSet.hpp" |
29 | #include "jfr/jfrEvents.hpp" |
30 | #include "jfr/support/jfrThreadId.hpp" |
31 | #include "logging/log.hpp" |
32 | #include "logging/logStream.hpp" |
33 | #include "memory/allocation.inline.hpp" |
34 | #include "memory/resourceArea.hpp" |
35 | #include "oops/markWord.hpp" |
36 | #include "oops/oop.inline.hpp" |
37 | #include "oops/oopHandle.inline.hpp" |
38 | #include "oops/weakHandle.inline.hpp" |
39 | #include "prims/jvmtiDeferredUpdates.hpp" |
40 | #include "prims/jvmtiExport.hpp" |
41 | #include "runtime/atomic.hpp" |
42 | #include "runtime/handles.inline.hpp" |
43 | #include "runtime/interfaceSupport.inline.hpp" |
44 | #include "runtime/mutexLocker.hpp" |
45 | #include "runtime/objectMonitor.hpp" |
46 | #include "runtime/objectMonitor.inline.hpp" |
47 | #include "runtime/orderAccess.hpp" |
48 | #include "runtime/osThread.hpp" |
49 | #include "runtime/perfData.hpp" |
50 | #include "runtime/safefetch.inline.hpp" |
51 | #include "runtime/safepointMechanism.inline.hpp" |
52 | #include "runtime/sharedRuntime.hpp" |
53 | #include "runtime/thread.inline.hpp" |
54 | #include "services/threadService.hpp" |
55 | #include "utilities/dtrace.hpp" |
56 | #include "utilities/macros.hpp" |
57 | #include "utilities/preserveException.hpp" |
58 | #if INCLUDE_JFR1 |
59 | #include "jfr/support/jfrFlush.hpp" |
60 | #endif |
61 | |
62 | #ifdef DTRACE_ENABLED |
63 | |
64 | // Only bother with this argument setup if dtrace is available |
65 | // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. |
66 | |
67 | |
68 | #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ |
69 | char* bytes = NULL__null; \ |
70 | int len = 0; \ |
71 | jlong jtid = SharedRuntime::get_java_tid(thread); \ |
72 | Symbol* klassname = obj->klass()->name(); \ |
73 | if (klassname != NULL__null) { \ |
74 | bytes = (char*)klassname->bytes(); \ |
75 | len = klassname->utf8_length(); \ |
76 | } |
77 | |
78 | #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis){;} \ |
79 | { \ |
80 | if (DTraceMonitorProbes) { \ |
81 | DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
82 | HOTSPOT_MONITOR_WAIT(jtid, \ |
83 | (monitor), bytes, len, (millis)); \ |
84 | } \ |
85 | } |
86 | |
87 | #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER |
88 | #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED |
89 | #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT |
90 | #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY |
91 | #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL |
92 | |
93 | #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread){;} \ |
94 | { \ |
95 | if (DTraceMonitorProbes) { \ |
96 | DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
97 | HOTSPOT_MONITOR_##probe(jtid, \ |
98 | (uintptr_t)(monitor), bytes, len); \ |
99 | } \ |
100 | } |
101 | |
102 | #else // ndef DTRACE_ENABLED |
103 | |
104 | #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon){;} {;} |
105 | #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon){;} {;} |
106 | |
107 | #endif // ndef DTRACE_ENABLED |
108 | |
109 | // Tunables ... |
110 | // The knob* variables are effectively final. Once set they should |
111 | // never be modified hence. Consider using __read_mostly with GCC. |
112 | |
113 | int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool - |
114 | |
115 | static int Knob_Bonus = 100; // spin success bonus |
116 | static int Knob_BonusB = 100; // spin success bonus |
117 | static int Knob_Penalty = 200; // spin failure penalty |
118 | static int Knob_Poverty = 1000; |
119 | static int Knob_FixedSpin = 0; |
120 | static int Knob_PreSpin = 10; // 20-100 likely better |
121 | |
122 | DEBUG_ONLY(static volatile bool InitDone = false;)static volatile bool InitDone = false; |
123 | |
124 | OopStorage* ObjectMonitor::_oop_storage = NULL__null; |
125 | |
126 | // ----------------------------------------------------------------------------- |
127 | // Theory of operations -- Monitors lists, thread residency, etc: |
128 | // |
129 | // * A thread acquires ownership of a monitor by successfully |
130 | // CAS()ing the _owner field from null to non-null. |
131 | // |
132 | // * Invariant: A thread appears on at most one monitor list -- |
133 | // cxq, EntryList or WaitSet -- at any one time. |
134 | // |
135 | // * Contending threads "push" themselves onto the cxq with CAS |
136 | // and then spin/park. |
137 | // |
138 | // * After a contending thread eventually acquires the lock it must |
139 | // dequeue itself from either the EntryList or the cxq. |
140 | // |
141 | // * The exiting thread identifies and unparks an "heir presumptive" |
142 | // tentative successor thread on the EntryList. Critically, the |
143 | // exiting thread doesn't unlink the successor thread from the EntryList. |
144 | // After having been unparked, the wakee will recontend for ownership of |
145 | // the monitor. The successor (wakee) will either acquire the lock or |
146 | // re-park itself. |
147 | // |
148 | // Succession is provided for by a policy of competitive handoff. |
149 | // The exiting thread does _not_ grant or pass ownership to the |
150 | // successor thread. (This is also referred to as "handoff" succession"). |
151 | // Instead the exiting thread releases ownership and possibly wakes |
152 | // a successor, so the successor can (re)compete for ownership of the lock. |
153 | // If the EntryList is empty but the cxq is populated the exiting |
154 | // thread will drain the cxq into the EntryList. It does so by |
155 | // by detaching the cxq (installing null with CAS) and folding |
156 | // the threads from the cxq into the EntryList. The EntryList is |
157 | // doubly linked, while the cxq is singly linked because of the |
158 | // CAS-based "push" used to enqueue recently arrived threads (RATs). |
159 | // |
160 | // * Concurrency invariants: |
161 | // |
162 | // -- only the monitor owner may access or mutate the EntryList. |
163 | // The mutex property of the monitor itself protects the EntryList |
164 | // from concurrent interference. |
165 | // -- Only the monitor owner may detach the cxq. |
166 | // |
167 | // * The monitor entry list operations avoid locks, but strictly speaking |
168 | // they're not lock-free. Enter is lock-free, exit is not. |
169 | // For a description of 'Methods and apparatus providing non-blocking access |
170 | // to a resource,' see U.S. Pat. No. 7844973. |
171 | // |
172 | // * The cxq can have multiple concurrent "pushers" but only one concurrent |
173 | // detaching thread. This mechanism is immune from the ABA corruption. |
174 | // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. |
175 | // |
176 | // * Taken together, the cxq and the EntryList constitute or form a |
177 | // single logical queue of threads stalled trying to acquire the lock. |
178 | // We use two distinct lists to improve the odds of a constant-time |
179 | // dequeue operation after acquisition (in the ::enter() epilogue) and |
180 | // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). |
181 | // A key desideratum is to minimize queue & monitor metadata manipulation |
182 | // that occurs while holding the monitor lock -- that is, we want to |
183 | // minimize monitor lock holds times. Note that even a small amount of |
184 | // fixed spinning will greatly reduce the # of enqueue-dequeue operations |
185 | // on EntryList|cxq. That is, spinning relieves contention on the "inner" |
186 | // locks and monitor metadata. |
187 | // |
188 | // Cxq points to the set of Recently Arrived Threads attempting entry. |
189 | // Because we push threads onto _cxq with CAS, the RATs must take the form of |
190 | // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when |
191 | // the unlocking thread notices that EntryList is null but _cxq is != null. |
192 | // |
193 | // The EntryList is ordered by the prevailing queue discipline and |
194 | // can be organized in any convenient fashion, such as a doubly-linked list or |
195 | // a circular doubly-linked list. Critically, we want insert and delete operations |
196 | // to operate in constant-time. If we need a priority queue then something akin |
197 | // to Solaris' sleepq would work nicely. Viz., |
198 | // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. |
199 | // Queue discipline is enforced at ::exit() time, when the unlocking thread |
200 | // drains the cxq into the EntryList, and orders or reorders the threads on the |
201 | // EntryList accordingly. |
202 | // |
203 | // Barring "lock barging", this mechanism provides fair cyclic ordering, |
204 | // somewhat similar to an elevator-scan. |
205 | // |
206 | // * The monitor synchronization subsystem avoids the use of native |
207 | // synchronization primitives except for the narrow platform-specific |
208 | // park-unpark abstraction. See the comments in os_solaris.cpp regarding |
209 | // the semantics of park-unpark. Put another way, this monitor implementation |
210 | // depends only on atomic operations and park-unpark. The monitor subsystem |
211 | // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the |
212 | // underlying OS manages the READY<->RUN transitions. |
213 | // |
214 | // * Waiting threads reside on the WaitSet list -- wait() puts |
215 | // the caller onto the WaitSet. |
216 | // |
217 | // * notify() or notifyAll() simply transfers threads from the WaitSet to |
218 | // either the EntryList or cxq. Subsequent exit() operations will |
219 | // unpark the notifyee. Unparking a notifee in notify() is inefficient - |
220 | // it's likely the notifyee would simply impale itself on the lock held |
221 | // by the notifier. |
222 | // |
223 | // * An interesting alternative is to encode cxq as (List,LockByte) where |
224 | // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary |
225 | // variable, like _recursions, in the scheme. The threads or Events that form |
226 | // the list would have to be aligned in 256-byte addresses. A thread would |
227 | // try to acquire the lock or enqueue itself with CAS, but exiting threads |
228 | // could use a 1-0 protocol and simply STB to set the LockByte to 0. |
229 | // Note that is is *not* word-tearing, but it does presume that full-word |
230 | // CAS operations are coherent with intermix with STB operations. That's true |
231 | // on most common processors. |
232 | // |
233 | // * See also http://blogs.sun.com/dave |
234 | |
235 | |
236 | void* ObjectMonitor::operator new (size_t size) throw() { |
237 | return AllocateHeap(size, mtInternal); |
238 | } |
239 | void* ObjectMonitor::operator new[] (size_t size) throw() { |
240 | return operator new (size); |
241 | } |
242 | void ObjectMonitor::operator delete(void* p) { |
243 | FreeHeap(p); |
244 | } |
245 | void ObjectMonitor::operator delete[] (void *p) { |
246 | operator delete(p); |
247 | } |
248 | |
249 | // Check that object() and set_object() are called from the right context: |
250 | static void check_object_context() { |
251 | #ifdef ASSERT1 |
252 | Thread* self = Thread::current(); |
253 | if (self->is_Java_thread()) { |
254 | // Mostly called from JavaThreads so sanity check the thread state. |
255 | JavaThread* jt = JavaThread::cast(self); |
256 | switch (jt->thread_state()) { |
257 | case _thread_in_vm: // the usual case |
258 | case _thread_in_Java: // during deopt |
259 | break; |
260 | default: |
261 | fatal("called from an unsafe thread state")do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 261, "called from an unsafe thread state"); ::breakpoint(); } while (0); |
262 | } |
263 | assert(jt->is_active_Java_thread(), "must be active JavaThread")do { if (!(jt->is_active_Java_thread())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 263, "assert(" "jt->is_active_Java_thread()" ") failed", "must be active JavaThread"); ::breakpoint(); } } while (0); |
264 | } else { |
265 | // However, ThreadService::get_current_contended_monitor() |
266 | // can call here via the VMThread so sanity check it. |
267 | assert(self->is_VM_thread(), "must be")do { if (!(self->is_VM_thread())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 267, "assert(" "self->is_VM_thread()" ") failed", "must be" ); ::breakpoint(); } } while (0); |
268 | } |
269 | #endif // ASSERT |
270 | } |
271 | |
272 | ObjectMonitor::ObjectMonitor(oop object) : |
273 | _header(markWord::zero()), |
274 | _object(_oop_storage, object), |
275 | _owner(NULL__null), |
276 | _previous_owner_tid(0), |
277 | _next_om(NULL__null), |
278 | _recursions(0), |
279 | _EntryList(NULL__null), |
280 | _cxq(NULL__null), |
281 | _succ(NULL__null), |
282 | _Responsible(NULL__null), |
283 | _Spinner(0), |
284 | _SpinDuration(ObjectMonitor::Knob_SpinLimit), |
285 | _contentions(0), |
286 | _WaitSet(NULL__null), |
287 | _waiters(0), |
288 | _WaitSetLock(0) |
289 | { } |
290 | |
291 | ObjectMonitor::~ObjectMonitor() { |
292 | _object.release(_oop_storage); |
293 | } |
294 | |
295 | oop ObjectMonitor::object() const { |
296 | check_object_context(); |
297 | if (_object.is_null()) { |
298 | return NULL__null; |
299 | } |
300 | return _object.resolve(); |
301 | } |
302 | |
303 | oop ObjectMonitor::object_peek() const { |
304 | if (_object.is_null()) { |
305 | return NULL__null; |
306 | } |
307 | return _object.peek(); |
308 | } |
309 | |
310 | void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { |
311 | if (current->is_suspended()) { |
312 | _om->_recursions = 0; |
313 | _om->_succ = NULL__null; |
314 | // Don't need a full fence after clearing successor here because of the call to exit(). |
315 | _om->exit(current, false /* not_suspended */); |
316 | _om_exited = true; |
317 | |
318 | current->set_current_pending_monitor(_om); |
319 | } |
320 | } |
321 | |
322 | void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { |
323 | if (current->is_suspended()) { |
324 | if (_om->_succ == current) { |
325 | _om->_succ = NULL__null; |
326 | OrderAccess::fence(); // always do a full fence when successor is cleared |
327 | } |
328 | } |
329 | } |
330 | |
331 | // ----------------------------------------------------------------------------- |
332 | // Enter support |
333 | |
334 | bool ObjectMonitor::enter(JavaThread* current) { |
335 | // The following code is ordered to check the most common cases first |
336 | // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. |
337 | |
338 | void* cur = try_set_owner_from(NULL__null, current); |
339 | if (cur == NULL__null) { |
340 | assert(_recursions == 0, "invariant")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 340, "assert(" "_recursions == 0" ") failed", "invariant"); ::breakpoint(); } } while (0); |
341 | return true; |
342 | } |
343 | |
344 | if (cur == current) { |
345 | // TODO-FIXME: check for integer overflow! BUGID 6557169. |
346 | _recursions++; |
347 | return true; |
348 | } |
349 | |
350 | if (current->is_lock_owned((address)cur)) { |
351 | assert(_recursions == 0, "internal state error")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 351, "assert(" "_recursions == 0" ") failed", "internal state error" ); ::breakpoint(); } } while (0); |
352 | _recursions = 1; |
353 | set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. |
354 | return true; |
355 | } |
356 | |
357 | // We've encountered genuine contention. |
358 | assert(current->_Stalled == 0, "invariant")do { if (!(current->_Stalled == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 358, "assert(" "current->_Stalled == 0" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
359 | current->_Stalled = intptr_t(this); |
360 | |
361 | // Try one round of spinning *before* enqueueing current |
362 | // and before going through the awkward and expensive state |
363 | // transitions. The following spin is strictly optional ... |
364 | // Note that if we acquire the monitor from an initial spin |
365 | // we forgo posting JVMTI events and firing DTRACE probes. |
366 | if (TrySpin(current) > 0) { |
367 | assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()))do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 367, "assert(" "owner_raw() == current" ") failed", "must be current: owner=" "0x%016" "l" "x", p2i(owner_raw())); ::breakpoint(); } } while (0); |
368 | assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions)do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 368, "assert(" "_recursions == 0" ") failed", "must be 0: recursions=" "%" "l" "d", _recursions); ::breakpoint(); } } while (0); |
369 | assert(object()->mark() == markWord::encode(this),do { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 372, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "object mark must match encoded this: mark=" "0x%016" "l" "x" ", encoded this=" "0x%016" "l" "x", object()->mark ().value(), markWord::encode(this).value()); ::breakpoint(); } } while (0) |
370 | "object mark must match encoded this: mark=" INTPTR_FORMATdo { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 372, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "object mark must match encoded this: mark=" "0x%016" "l" "x" ", encoded this=" "0x%016" "l" "x", object()->mark ().value(), markWord::encode(this).value()); ::breakpoint(); } } while (0) |
371 | ", encoded this=" INTPTR_FORMAT, object()->mark().value(),do { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 372, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "object mark must match encoded this: mark=" "0x%016" "l" "x" ", encoded this=" "0x%016" "l" "x", object()->mark ().value(), markWord::encode(this).value()); ::breakpoint(); } } while (0) |
372 | markWord::encode(this).value())do { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 372, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "object mark must match encoded this: mark=" "0x%016" "l" "x" ", encoded this=" "0x%016" "l" "x", object()->mark ().value(), markWord::encode(this).value()); ::breakpoint(); } } while (0); |
373 | current->_Stalled = 0; |
374 | return true; |
375 | } |
376 | |
377 | assert(owner_raw() != current, "invariant")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 377, "assert(" "owner_raw() != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
378 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 378, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
379 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant")do { if (!(!SafepointSynchronize::is_at_safepoint())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 379, "assert(" "!SafepointSynchronize::is_at_safepoint()" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
380 | assert(current->thread_state() != _thread_blocked, "invariant")do { if (!(current->thread_state() != _thread_blocked)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 380, "assert(" "current->thread_state() != _thread_blocked" ") failed", "invariant"); ::breakpoint(); } } while (0); |
381 | |
382 | // Keep track of contention for JVM/TI and M&M queries. |
383 | add_to_contentions(1); |
384 | if (is_being_async_deflated()) { |
385 | // Async deflation is in progress and our contentions increment |
386 | // above lost the race to async deflation. Undo the work and |
387 | // force the caller to retry. |
388 | const oop l_object = object(); |
389 | if (l_object != NULL__null) { |
390 | // Attempt to restore the header/dmw to the object's header so that |
391 | // we only retry once if the deflater thread happens to be slow. |
392 | install_displaced_markword_in_object(l_object); |
393 | } |
394 | current->_Stalled = 0; |
395 | add_to_contentions(-1); |
396 | return false; |
397 | } |
398 | |
399 | JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(current);)JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(current); |
400 | EventJavaMonitorEnter event; |
401 | if (event.is_started()) { |
402 | event.set_monitorClass(object()->klass()); |
403 | // Set an address that is 'unique enough', such that events close in |
404 | // time and with the same address are likely (but not guaranteed) to |
405 | // belong to the same object. |
406 | event.set_address((uintptr_t)this); |
407 | } |
408 | |
409 | { // Change java thread status to indicate blocked on monitor enter. |
410 | JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); |
411 | |
412 | assert(current->current_pending_monitor() == NULL, "invariant")do { if (!(current->current_pending_monitor() == __null)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 412, "assert(" "current->current_pending_monitor() == __null" ") failed", "invariant"); ::breakpoint(); } } while (0); |
413 | current->set_current_pending_monitor(this); |
414 | |
415 | DTRACE_MONITOR_PROBE(contended__enter, this, object(), current){;}; |
416 | if (JvmtiExport::should_post_monitor_contended_enter()) { |
417 | JvmtiExport::post_monitor_contended_enter(current, this); |
418 | |
419 | // The current thread does not yet own the monitor and does not |
420 | // yet appear on any queues that would get it made the successor. |
421 | // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event |
422 | // handler cannot accidentally consume an unpark() meant for the |
423 | // ParkEvent associated with this ObjectMonitor. |
424 | } |
425 | |
426 | OSThreadContendState osts(current->osthread()); |
427 | |
428 | assert(current->thread_state() == _thread_in_vm, "invariant")do { if (!(current->thread_state() == _thread_in_vm)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 428, "assert(" "current->thread_state() == _thread_in_vm" ") failed", "invariant"); ::breakpoint(); } } while (0); |
429 | |
430 | for (;;) { |
431 | ExitOnSuspend eos(this); |
432 | { |
433 | ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */); |
434 | EnterI(current); |
435 | current->set_current_pending_monitor(NULL__null); |
436 | // We can go to a safepoint at the end of this block. If we |
437 | // do a thread dump during that safepoint, then this thread will show |
438 | // as having "-locked" the monitor, but the OS and java.lang.Thread |
439 | // states will still report that the thread is blocked trying to |
440 | // acquire it. |
441 | // If there is a suspend request, ExitOnSuspend will exit the OM |
442 | // and set the OM as pending. |
443 | } |
444 | if (!eos.exited()) { |
445 | // ExitOnSuspend did not exit the OM |
446 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 446, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
447 | break; |
448 | } |
449 | } |
450 | |
451 | // We've just gotten past the enter-check-for-suspend dance and we now own |
452 | // the monitor free and clear. |
453 | } |
454 | |
455 | add_to_contentions(-1); |
456 | assert(contentions() >= 0, "must not be negative: contentions=%d", contentions())do { if (!(contentions() >= 0)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 456, "assert(" "contentions() >= 0" ") failed", "must not be negative: contentions=%d" , contentions()); ::breakpoint(); } } while (0); |
457 | current->_Stalled = 0; |
458 | |
459 | // Must either set _recursions = 0 or ASSERT _recursions == 0. |
460 | assert(_recursions == 0, "invariant")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 460, "assert(" "_recursions == 0" ") failed", "invariant"); ::breakpoint(); } } while (0); |
461 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 461, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
462 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 462, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
463 | assert(object()->mark() == markWord::encode(this), "invariant")do { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 463, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "invariant"); ::breakpoint(); } } while (0); |
464 | |
465 | // The thread -- now the owner -- is back in vm mode. |
466 | // Report the glorious news via TI,DTrace and jvmstat. |
467 | // The probe effect is non-trivial. All the reportage occurs |
468 | // while we hold the monitor, increasing the length of the critical |
469 | // section. Amdahl's parallel speedup law comes vividly into play. |
470 | // |
471 | // Another option might be to aggregate the events (thread local or |
472 | // per-monitor aggregation) and defer reporting until a more opportune |
473 | // time -- such as next time some thread encounters contention but has |
474 | // yet to acquire the lock. While spinning that thread could |
475 | // spinning we could increment JVMStat counters, etc. |
476 | |
477 | DTRACE_MONITOR_PROBE(contended__entered, this, object(), current){;}; |
478 | if (JvmtiExport::should_post_monitor_contended_entered()) { |
479 | JvmtiExport::post_monitor_contended_entered(current, this); |
480 | |
481 | // The current thread already owns the monitor and is not going to |
482 | // call park() for the remainder of the monitor enter protocol. So |
483 | // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED |
484 | // event handler consumed an unpark() issued by the thread that |
485 | // just exited the monitor. |
486 | } |
487 | if (event.should_commit()) { |
488 | event.set_previousOwner(_previous_owner_tid); |
489 | event.commit(); |
490 | } |
491 | OM_PERFDATA_OP(ContendedLockAttempts, inc())do { if (ObjectMonitor::_sync_ContendedLockAttempts != __null && PerfDataManager::has_PerfData()) { ObjectMonitor:: _sync_ContendedLockAttempts->inc(); } } while (0); |
492 | return true; |
493 | } |
494 | |
495 | // Caveat: TryLock() is not necessarily serializing if it returns failure. |
496 | // Callers must compensate as needed. |
497 | |
498 | int ObjectMonitor::TryLock(JavaThread* current) { |
499 | void* own = owner_raw(); |
500 | if (own != NULL__null) return 0; |
501 | if (try_set_owner_from(NULL__null, current) == NULL__null) { |
502 | assert(_recursions == 0, "invariant")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 502, "assert(" "_recursions == 0" ") failed", "invariant"); ::breakpoint(); } } while (0); |
503 | return 1; |
504 | } |
505 | // The lock had been free momentarily, but we lost the race to the lock. |
506 | // Interference -- the CAS failed. |
507 | // We can either return -1 or retry. |
508 | // Retry doesn't make as much sense because the lock was just acquired. |
509 | return -1; |
510 | } |
511 | |
512 | // Deflate the specified ObjectMonitor if not in-use. Returns true if it |
513 | // was deflated and false otherwise. |
514 | // |
515 | // The async deflation protocol sets owner to DEFLATER_MARKER and |
516 | // makes contentions negative as signals to contending threads that |
517 | // an async deflation is in progress. There are a number of checks |
518 | // as part of the protocol to make sure that the calling thread has |
519 | // not lost the race to a contending thread. |
520 | // |
521 | // The ObjectMonitor has been successfully async deflated when: |
522 | // (contentions < 0) |
523 | // Contending threads that see that condition know to retry their operation. |
524 | // |
525 | bool ObjectMonitor::deflate_monitor() { |
526 | if (is_busy()) { |
527 | // Easy checks are first - the ObjectMonitor is busy so no deflation. |
528 | return false; |
529 | } |
530 | |
531 | if (ObjectSynchronizer::is_final_audit() && owner_is_DEFLATER_MARKER()) { |
532 | // The final audit can see an already deflated ObjectMonitor on the |
533 | // in-use list because MonitorList::unlink_deflated() might have |
534 | // blocked for the final safepoint before unlinking all the deflated |
535 | // monitors. |
536 | assert(contentions() < 0, "must be negative: contentions=%d", contentions())do { if (!(contentions() < 0)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 536, "assert(" "contentions() < 0" ") failed", "must be negative: contentions=%d" , contentions()); ::breakpoint(); } } while (0); |
537 | // Already returned 'true' when it was originally deflated. |
538 | return false; |
539 | } |
540 | |
541 | const oop obj = object_peek(); |
542 | |
543 | if (obj == NULL__null) { |
544 | // If the object died, we can recycle the monitor without racing with |
545 | // Java threads. The GC already broke the association with the object. |
546 | set_owner_from(NULL__null, DEFLATER_MARKERreinterpret_cast<void*>(-1)); |
547 | assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions())do { if (!(contentions() >= 0)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 547, "assert(" "contentions() >= 0" ") failed", "must be non-negative: contentions=%d" , contentions()); ::breakpoint(); } } while (0); |
548 | _contentions = INT_MIN(-2147483647 -1); // minimum negative int |
549 | } else { |
550 | // Attempt async deflation protocol. |
551 | |
552 | // Set a NULL owner to DEFLATER_MARKER to force any contending thread |
553 | // through the slow path. This is just the first part of the async |
554 | // deflation dance. |
555 | if (try_set_owner_from(NULL__null, DEFLATER_MARKERreinterpret_cast<void*>(-1)) != NULL__null) { |
556 | // The owner field is no longer NULL so we lost the race since the |
557 | // ObjectMonitor is now busy. |
558 | return false; |
559 | } |
560 | |
561 | if (contentions() > 0 || _waiters != 0) { |
562 | // Another thread has raced to enter the ObjectMonitor after |
563 | // is_busy() above or has already entered and waited on |
564 | // it which makes it busy so no deflation. Restore owner to |
565 | // NULL if it is still DEFLATER_MARKER. |
566 | if (try_set_owner_from(DEFLATER_MARKERreinterpret_cast<void*>(-1), NULL__null) != DEFLATER_MARKERreinterpret_cast<void*>(-1)) { |
567 | // Deferred decrement for the JT EnterI() that cancelled the async deflation. |
568 | add_to_contentions(-1); |
569 | } |
570 | return false; |
571 | } |
572 | |
573 | // Make a zero contentions field negative to force any contending threads |
574 | // to retry. This is the second part of the async deflation dance. |
575 | if (Atomic::cmpxchg(&_contentions, 0, INT_MIN(-2147483647 -1)) != 0) { |
576 | // Contentions was no longer 0 so we lost the race since the |
577 | // ObjectMonitor is now busy. Restore owner to NULL if it is |
578 | // still DEFLATER_MARKER: |
579 | if (try_set_owner_from(DEFLATER_MARKERreinterpret_cast<void*>(-1), NULL__null) != DEFLATER_MARKERreinterpret_cast<void*>(-1)) { |
580 | // Deferred decrement for the JT EnterI() that cancelled the async deflation. |
581 | add_to_contentions(-1); |
582 | } |
583 | return false; |
584 | } |
585 | } |
586 | |
587 | // Sanity checks for the races: |
588 | guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker")do { if (!(owner_is_DEFLATER_MARKER())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 588, "guarantee(" "owner_is_DEFLATER_MARKER()" ") failed", "must be deflater marker" ); ::breakpoint(); } } while (0); |
589 | guarantee(contentions() < 0, "must be negative: contentions=%d",do { if (!(contentions() < 0)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 590, "guarantee(" "contentions() < 0" ") failed", "must be negative: contentions=%d" , contentions()); ::breakpoint(); } } while (0) |
590 | contentions())do { if (!(contentions() < 0)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 590, "guarantee(" "contentions() < 0" ") failed", "must be negative: contentions=%d" , contentions()); ::breakpoint(); } } while (0); |
591 | guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters)do { if (!(_waiters == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 591, "guarantee(" "_waiters == 0" ") failed", "must be 0: waiters=%d" , _waiters); ::breakpoint(); } } while (0); |
592 | guarantee(_cxq == NULL, "must be no contending threads: cxq="do { if (!(_cxq == __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 593, "guarantee(" "_cxq == NULL" ") failed", "must be no contending threads: cxq=" "0x%016" "l" "x", p2i(_cxq)); ::breakpoint(); } } while (0) |
593 | INTPTR_FORMAT, p2i(_cxq))do { if (!(_cxq == __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 593, "guarantee(" "_cxq == NULL" ") failed", "must be no contending threads: cxq=" "0x%016" "l" "x", p2i(_cxq)); ::breakpoint(); } } while (0); |
594 | guarantee(_EntryList == NULL,do { if (!(_EntryList == __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 596, "guarantee(" "_EntryList == NULL" ") failed", "must be no entering threads: EntryList=" "0x%016" "l" "x", p2i(_EntryList)); ::breakpoint(); } } while (0) |
595 | "must be no entering threads: EntryList=" INTPTR_FORMAT,do { if (!(_EntryList == __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 596, "guarantee(" "_EntryList == NULL" ") failed", "must be no entering threads: EntryList=" "0x%016" "l" "x", p2i(_EntryList)); ::breakpoint(); } } while (0) |
596 | p2i(_EntryList))do { if (!(_EntryList == __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 596, "guarantee(" "_EntryList == NULL" ") failed", "must be no entering threads: EntryList=" "0x%016" "l" "x", p2i(_EntryList)); ::breakpoint(); } } while (0); |
597 | |
598 | if (obj != NULL__null) { |
599 | if (log_is_enabled(Trace, monitorinflation)(LogImpl<(LogTag::_monitorinflation), (LogTag::__NO_TAG), ( LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag ::__NO_TAG)>::is_level(LogLevel::Trace))) { |
600 | ResourceMark rm; |
601 | log_trace(monitorinflation)(!(LogImpl<(LogTag::_monitorinflation), (LogTag::__NO_TAG) , (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG)>::is_level(LogLevel::Trace))) ? (void) 0 : LogImpl<(LogTag::_monitorinflation), (LogTag::__NO_TAG ), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG) , (LogTag::__NO_TAG)>::write<LogLevel::Trace>("deflate_monitor: object=" INTPTR_FORMAT"0x%016" "l" "x" |
602 | ", mark=" INTPTR_FORMAT"0x%016" "l" "x" ", type='%s'", |
603 | p2i(obj), obj->mark().value(), |
604 | obj->klass()->external_name()); |
605 | } |
606 | |
607 | // Install the old mark word if nobody else has already done it. |
608 | install_displaced_markword_in_object(obj); |
609 | } |
610 | |
611 | // We leave owner == DEFLATER_MARKER and contentions < 0 |
612 | // to force any racing threads to retry. |
613 | return true; // Success, ObjectMonitor has been deflated. |
614 | } |
615 | |
616 | // Install the displaced mark word (dmw) of a deflating ObjectMonitor |
617 | // into the header of the object associated with the monitor. This |
618 | // idempotent method is called by a thread that is deflating a |
619 | // monitor and by other threads that have detected a race with the |
620 | // deflation process. |
621 | void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { |
622 | // This function must only be called when (owner == DEFLATER_MARKER |
623 | // && contentions <= 0), but we can't guarantee that here because |
624 | // those values could change when the ObjectMonitor gets moved from |
625 | // the global free list to a per-thread free list. |
626 | |
627 | guarantee(obj != NULL, "must be non-NULL")do { if (!(obj != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 627, "guarantee(" "obj != NULL" ") failed", "must be non-NULL" ); ::breakpoint(); } } while (0); |
628 | |
629 | // Separate loads in is_being_async_deflated(), which is almost always |
630 | // called before this function, from the load of dmw/header below. |
631 | |
632 | // _contentions and dmw/header may get written by different threads. |
633 | // Make sure to observe them in the same order when having several observers. |
634 | OrderAccess::loadload_for_IRIW(); |
635 | |
636 | const oop l_object = object_peek(); |
637 | if (l_object == NULL__null) { |
638 | // ObjectMonitor's object ref has already been cleared by async |
639 | // deflation or GC so we're done here. |
640 | return; |
641 | } |
642 | assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="do { if (!(l_object == obj)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 643, "assert(" "l_object == obj" ") failed", "object=" "0x%016" "l" "x" " must equal obj=" "0x%016" "l" "x", p2i(l_object), p2i (obj)); ::breakpoint(); } } while (0) |
643 | INTPTR_FORMAT, p2i(l_object), p2i(obj))do { if (!(l_object == obj)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 643, "assert(" "l_object == obj" ") failed", "object=" "0x%016" "l" "x" " must equal obj=" "0x%016" "l" "x", p2i(l_object), p2i (obj)); ::breakpoint(); } } while (0); |
644 | |
645 | markWord dmw = header(); |
646 | // The dmw has to be neutral (not NULL, not locked and not marked). |
647 | assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value())do { if (!(dmw.is_neutral())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 647, "assert(" "dmw.is_neutral()" ") failed", "must be neutral: dmw=" "0x%016" "l" "x", dmw.value()); ::breakpoint(); } } while (0 ); |
648 | |
649 | // Install displaced mark word if the object's header still points |
650 | // to this ObjectMonitor. More than one racing caller to this function |
651 | // can rarely reach this point, but only one can win. |
652 | markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); |
653 | if (res != markWord::encode(this)) { |
654 | // This should be rare so log at the Info level when it happens. |
655 | log_info(monitorinflation)(!(LogImpl<(LogTag::_monitorinflation), (LogTag::__NO_TAG) , (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG)>::is_level(LogLevel::Info))) ? (void)0 : LogImpl<(LogTag::_monitorinflation), (LogTag::__NO_TAG) , (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG)>::write<LogLevel::Info>("install_displaced_markword_in_object: " |
656 | "failed cas_set_mark: new_mark=" INTPTR_FORMAT"0x%016" "l" "x" |
657 | ", old_mark=" INTPTR_FORMAT"0x%016" "l" "x" ", res=" INTPTR_FORMAT"0x%016" "l" "x", |
658 | dmw.value(), markWord::encode(this).value(), |
659 | res.value()); |
660 | } |
661 | |
662 | // Note: It does not matter which thread restored the header/dmw |
663 | // into the object's header. The thread deflating the monitor just |
664 | // wanted the object's header restored and it is. The threads that |
665 | // detected a race with the deflation process also wanted the |
666 | // object's header restored before they retry their operation and |
667 | // because it is restored they will only retry once. |
668 | } |
669 | |
670 | // Convert the fields used by is_busy() to a string that can be |
671 | // used for diagnostic output. |
672 | const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { |
673 | ss->print("is_busy: waiters=%d, ", _waiters); |
674 | if (contentions() > 0) { |
675 | ss->print("contentions=%d, ", contentions()); |
676 | } else { |
677 | ss->print("contentions=0"); |
678 | } |
679 | if (!owner_is_DEFLATER_MARKER()) { |
680 | ss->print("owner=" INTPTR_FORMAT"0x%016" "l" "x", p2i(owner_raw())); |
681 | } else { |
682 | // We report NULL instead of DEFLATER_MARKER here because is_busy() |
683 | // ignores DEFLATER_MARKER values. |
684 | ss->print("owner=" INTPTR_FORMAT"0x%016" "l" "x", NULL__null); |
685 | } |
686 | ss->print(", cxq=" INTPTR_FORMAT"0x%016" "l" "x" ", EntryList=" INTPTR_FORMAT"0x%016" "l" "x", p2i(_cxq), |
687 | p2i(_EntryList)); |
688 | return ss->base(); |
689 | } |
690 | |
691 | #define MAX_RECHECK_INTERVAL1000 1000 |
692 | |
693 | void ObjectMonitor::EnterI(JavaThread* current) { |
694 | assert(current->thread_state() == _thread_blocked, "invariant")do { if (!(current->thread_state() == _thread_blocked)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 694, "assert(" "current->thread_state() == _thread_blocked" ") failed", "invariant"); ::breakpoint(); } } while (0); |
695 | |
696 | // Try the lock - TATAS |
697 | if (TryLock (current) > 0) { |
698 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 698, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
699 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 699, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
700 | assert(_Responsible != current, "invariant")do { if (!(_Responsible != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 700, "assert(" "_Responsible != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
701 | return; |
702 | } |
703 | |
704 | if (try_set_owner_from(DEFLATER_MARKERreinterpret_cast<void*>(-1), current) == DEFLATER_MARKERreinterpret_cast<void*>(-1)) { |
705 | // Cancelled the in-progress async deflation by changing owner from |
706 | // DEFLATER_MARKER to current. As part of the contended enter protocol, |
707 | // contentions was incremented to a positive value before EnterI() |
708 | // was called and that prevents the deflater thread from winning the |
709 | // last part of the 2-part async deflation protocol. After EnterI() |
710 | // returns to enter(), contentions is decremented because the caller |
711 | // now owns the monitor. We bump contentions an extra time here to |
712 | // prevent the deflater thread from winning the last part of the |
713 | // 2-part async deflation protocol after the regular decrement |
714 | // occurs in enter(). The deflater thread will decrement contentions |
715 | // after it recognizes that the async deflation was cancelled. |
716 | add_to_contentions(1); |
717 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 717, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
718 | assert(_Responsible != current, "invariant")do { if (!(_Responsible != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 718, "assert(" "_Responsible != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
719 | return; |
720 | } |
721 | |
722 | assert(InitDone, "Unexpectedly not initialized")do { if (!(InitDone)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 722, "assert(" "InitDone" ") failed", "Unexpectedly not initialized" ); ::breakpoint(); } } while (0); |
723 | |
724 | // We try one round of spinning *before* enqueueing current. |
725 | // |
726 | // If the _owner is ready but OFFPROC we could use a YieldTo() |
727 | // operation to donate the remainder of this thread's quantum |
728 | // to the owner. This has subtle but beneficial affinity |
729 | // effects. |
730 | |
731 | if (TrySpin(current) > 0) { |
732 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 732, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
733 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 733, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
734 | assert(_Responsible != current, "invariant")do { if (!(_Responsible != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 734, "assert(" "_Responsible != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
735 | return; |
736 | } |
737 | |
738 | // The Spin failed -- Enqueue and park the thread ... |
739 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 739, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
740 | assert(owner_raw() != current, "invariant")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 740, "assert(" "owner_raw() != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
741 | assert(_Responsible != current, "invariant")do { if (!(_Responsible != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 741, "assert(" "_Responsible != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
742 | |
743 | // Enqueue "current" on ObjectMonitor's _cxq. |
744 | // |
745 | // Node acts as a proxy for current. |
746 | // As an aside, if were to ever rewrite the synchronization code mostly |
747 | // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class |
748 | // Java objects. This would avoid awkward lifecycle and liveness issues, |
749 | // as well as eliminate a subset of ABA issues. |
750 | // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. |
751 | |
752 | ObjectWaiter node(current); |
753 | current->_ParkEvent->reset(); |
754 | node._prev = (ObjectWaiter*) 0xBAD; |
755 | node.TState = ObjectWaiter::TS_CXQ; |
756 | |
757 | // Push "current" onto the front of the _cxq. |
758 | // Once on cxq/EntryList, current stays on-queue until it acquires the lock. |
759 | // Note that spinning tends to reduce the rate at which threads |
760 | // enqueue and dequeue on EntryList|cxq. |
761 | ObjectWaiter* nxt; |
762 | for (;;) { |
763 | node._next = nxt = _cxq; |
764 | if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; |
765 | |
766 | // Interference - the CAS failed because _cxq changed. Just retry. |
767 | // As an optional optimization we retry the lock. |
768 | if (TryLock (current) > 0) { |
769 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 769, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
770 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 770, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
771 | assert(_Responsible != current, "invariant")do { if (!(_Responsible != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 771, "assert(" "_Responsible != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
772 | return; |
773 | } |
774 | } |
775 | |
776 | // Check for cxq|EntryList edge transition to non-null. This indicates |
777 | // the onset of contention. While contention persists exiting threads |
778 | // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit |
779 | // operations revert to the faster 1-0 mode. This enter operation may interleave |
780 | // (race) a concurrent 1-0 exit operation, resulting in stranding, so we |
781 | // arrange for one of the contending thread to use a timed park() operations |
782 | // to detect and recover from the race. (Stranding is form of progress failure |
783 | // where the monitor is unlocked but all the contending threads remain parked). |
784 | // That is, at least one of the contended threads will periodically poll _owner. |
785 | // One of the contending threads will become the designated "Responsible" thread. |
786 | // The Responsible thread uses a timed park instead of a normal indefinite park |
787 | // operation -- it periodically wakes and checks for and recovers from potential |
788 | // strandings admitted by 1-0 exit operations. We need at most one Responsible |
789 | // thread per-monitor at any given moment. Only threads on cxq|EntryList may |
790 | // be responsible for a monitor. |
791 | // |
792 | // Currently, one of the contended threads takes on the added role of "Responsible". |
793 | // A viable alternative would be to use a dedicated "stranding checker" thread |
794 | // that periodically iterated over all the threads (or active monitors) and unparked |
795 | // successors where there was risk of stranding. This would help eliminate the |
796 | // timer scalability issues we see on some platforms as we'd only have one thread |
797 | // -- the checker -- parked on a timer. |
798 | |
799 | if (nxt == NULL__null && _EntryList == NULL__null) { |
800 | // Try to assume the role of responsible thread for the monitor. |
801 | // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=current } |
802 | Atomic::replace_if_null(&_Responsible, current); |
803 | } |
804 | |
805 | // The lock might have been released while this thread was occupied queueing |
806 | // itself onto _cxq. To close the race and avoid "stranding" and |
807 | // progress-liveness failure we must resample-retry _owner before parking. |
808 | // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. |
809 | // In this case the ST-MEMBAR is accomplished with CAS(). |
810 | // |
811 | // TODO: Defer all thread state transitions until park-time. |
812 | // Since state transitions are heavy and inefficient we'd like |
813 | // to defer the state transitions until absolutely necessary, |
814 | // and in doing so avoid some transitions ... |
815 | |
816 | int nWakeups = 0; |
817 | int recheckInterval = 1; |
818 | |
819 | for (;;) { |
820 | |
821 | if (TryLock(current) > 0) break; |
822 | assert(owner_raw() != current, "invariant")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 822, "assert(" "owner_raw() != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
823 | |
824 | // park self |
825 | if (_Responsible == current) { |
826 | current->_ParkEvent->park((jlong) recheckInterval); |
827 | // Increase the recheckInterval, but clamp the value. |
828 | recheckInterval *= 8; |
829 | if (recheckInterval > MAX_RECHECK_INTERVAL1000) { |
830 | recheckInterval = MAX_RECHECK_INTERVAL1000; |
831 | } |
832 | } else { |
833 | current->_ParkEvent->park(); |
834 | } |
835 | |
836 | if (TryLock(current) > 0) break; |
837 | |
838 | if (try_set_owner_from(DEFLATER_MARKERreinterpret_cast<void*>(-1), current) == DEFLATER_MARKERreinterpret_cast<void*>(-1)) { |
839 | // Cancelled the in-progress async deflation by changing owner from |
840 | // DEFLATER_MARKER to current. As part of the contended enter protocol, |
841 | // contentions was incremented to a positive value before EnterI() |
842 | // was called and that prevents the deflater thread from winning the |
843 | // last part of the 2-part async deflation protocol. After EnterI() |
844 | // returns to enter(), contentions is decremented because the caller |
845 | // now owns the monitor. We bump contentions an extra time here to |
846 | // prevent the deflater thread from winning the last part of the |
847 | // 2-part async deflation protocol after the regular decrement |
848 | // occurs in enter(). The deflater thread will decrement contentions |
849 | // after it recognizes that the async deflation was cancelled. |
850 | add_to_contentions(1); |
851 | break; |
852 | } |
853 | |
854 | // The lock is still contested. |
855 | // Keep a tally of the # of futile wakeups. |
856 | // Note that the counter is not protected by a lock or updated by atomics. |
857 | // That is by design - we trade "lossy" counters which are exposed to |
858 | // races during updates for a lower probe effect. |
859 | |
860 | // This PerfData object can be used in parallel with a safepoint. |
861 | // See the work around in PerfDataManager::destroy(). |
862 | OM_PERFDATA_OP(FutileWakeups, inc())do { if (ObjectMonitor::_sync_FutileWakeups != __null && PerfDataManager::has_PerfData()) { ObjectMonitor::_sync_FutileWakeups ->inc(); } } while (0); |
863 | ++nWakeups; |
864 | |
865 | // Assuming this is not a spurious wakeup we'll normally find _succ == current. |
866 | // We can defer clearing _succ until after the spin completes |
867 | // TrySpin() must tolerate being called with _succ == current. |
868 | // Try yet another round of adaptive spinning. |
869 | if (TrySpin(current) > 0) break; |
870 | |
871 | // We can find that we were unpark()ed and redesignated _succ while |
872 | // we were spinning. That's harmless. If we iterate and call park(), |
873 | // park() will consume the event and return immediately and we'll |
874 | // just spin again. This pattern can repeat, leaving _succ to simply |
875 | // spin on a CPU. |
876 | |
877 | if (_succ == current) _succ = NULL__null; |
878 | |
879 | // Invariant: after clearing _succ a thread *must* retry _owner before parking. |
880 | OrderAccess::fence(); |
881 | } |
882 | |
883 | // Egress : |
884 | // current has acquired the lock -- Unlink current from the cxq or EntryList. |
885 | // Normally we'll find current on the EntryList . |
886 | // From the perspective of the lock owner (this thread), the |
887 | // EntryList is stable and cxq is prepend-only. |
888 | // The head of cxq is volatile but the interior is stable. |
889 | // In addition, current.TState is stable. |
890 | |
891 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 891, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
892 | |
893 | UnlinkAfterAcquire(current, &node); |
894 | if (_succ == current) _succ = NULL__null; |
895 | |
896 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 896, "assert(" "_succ != current" ") failed", "invariant"); ::breakpoint(); } } while (0); |
897 | if (_Responsible == current) { |
898 | _Responsible = NULL__null; |
899 | OrderAccess::fence(); // Dekker pivot-point |
900 | |
901 | // We may leave threads on cxq|EntryList without a designated |
902 | // "Responsible" thread. This is benign. When this thread subsequently |
903 | // exits the monitor it can "see" such preexisting "old" threads -- |
904 | // threads that arrived on the cxq|EntryList before the fence, above -- |
905 | // by LDing cxq|EntryList. Newly arrived threads -- that is, threads |
906 | // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible |
907 | // non-null and elect a new "Responsible" timer thread. |
908 | // |
909 | // This thread executes: |
910 | // ST Responsible=null; MEMBAR (in enter epilogue - here) |
911 | // LD cxq|EntryList (in subsequent exit) |
912 | // |
913 | // Entering threads in the slow/contended path execute: |
914 | // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) |
915 | // The (ST cxq; MEMBAR) is accomplished with CAS(). |
916 | // |
917 | // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent |
918 | // exit operation from floating above the ST Responsible=null. |
919 | } |
920 | |
921 | // We've acquired ownership with CAS(). |
922 | // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. |
923 | // But since the CAS() this thread may have also stored into _succ, |
924 | // EntryList, cxq or Responsible. These meta-data updates must be |
925 | // visible __before this thread subsequently drops the lock. |
926 | // Consider what could occur if we didn't enforce this constraint -- |
927 | // STs to monitor meta-data and user-data could reorder with (become |
928 | // visible after) the ST in exit that drops ownership of the lock. |
929 | // Some other thread could then acquire the lock, but observe inconsistent |
930 | // or old monitor meta-data and heap data. That violates the JMM. |
931 | // To that end, the 1-0 exit() operation must have at least STST|LDST |
932 | // "release" barrier semantics. Specifically, there must be at least a |
933 | // STST|LDST barrier in exit() before the ST of null into _owner that drops |
934 | // the lock. The barrier ensures that changes to monitor meta-data and data |
935 | // protected by the lock will be visible before we release the lock, and |
936 | // therefore before some other thread (CPU) has a chance to acquire the lock. |
937 | // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. |
938 | // |
939 | // Critically, any prior STs to _succ or EntryList must be visible before |
940 | // the ST of null into _owner in the *subsequent* (following) corresponding |
941 | // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily |
942 | // execute a serializing instruction. |
943 | |
944 | return; |
945 | } |
946 | |
947 | // ReenterI() is a specialized inline form of the latter half of the |
948 | // contended slow-path from EnterI(). We use ReenterI() only for |
949 | // monitor reentry in wait(). |
950 | // |
951 | // In the future we should reconcile EnterI() and ReenterI(). |
952 | |
953 | void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { |
954 | assert(current != NULL, "invariant")do { if (!(current != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 954, "assert(" "current != __null" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
955 | assert(currentNode != NULL, "invariant")do { if (!(currentNode != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 955, "assert(" "currentNode != __null" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
956 | assert(currentNode->_thread == current, "invariant")do { if (!(currentNode->_thread == current)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 956, "assert(" "currentNode->_thread == current" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
957 | assert(_waiters > 0, "invariant")do { if (!(_waiters > 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 957, "assert(" "_waiters > 0" ") failed", "invariant"); :: breakpoint(); } } while (0); |
958 | assert(object()->mark() == markWord::encode(this), "invariant")do { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 958, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "invariant"); ::breakpoint(); } } while (0); |
959 | |
960 | assert(current->thread_state() != _thread_blocked, "invariant")do { if (!(current->thread_state() != _thread_blocked)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 960, "assert(" "current->thread_state() != _thread_blocked" ") failed", "invariant"); ::breakpoint(); } } while (0); |
961 | |
962 | int nWakeups = 0; |
963 | for (;;) { |
964 | ObjectWaiter::TStates v = currentNode->TState; |
965 | guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant")do { if (!(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter:: TS_CXQ)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 965, "guarantee(" "v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ" ") failed", "invariant"); ::breakpoint(); } } while (0); |
966 | assert(owner_raw() != current, "invariant")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 966, "assert(" "owner_raw() != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
967 | |
968 | if (TryLock(current) > 0) break; |
969 | if (TrySpin(current) > 0) break; |
970 | |
971 | { |
972 | OSThreadContendState osts(current->osthread()); |
973 | |
974 | assert(current->thread_state() == _thread_in_vm, "invariant")do { if (!(current->thread_state() == _thread_in_vm)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 974, "assert(" "current->thread_state() == _thread_in_vm" ") failed", "invariant"); ::breakpoint(); } } while (0); |
975 | |
976 | { |
977 | ClearSuccOnSuspend csos(this); |
978 | ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); |
979 | current->_ParkEvent->park(); |
980 | } |
981 | } |
982 | |
983 | // Try again, but just so we distinguish between futile wakeups and |
984 | // successful wakeups. The following test isn't algorithmically |
985 | // necessary, but it helps us maintain sensible statistics. |
986 | if (TryLock(current) > 0) break; |
987 | |
988 | // The lock is still contested. |
989 | // Keep a tally of the # of futile wakeups. |
990 | // Note that the counter is not protected by a lock or updated by atomics. |
991 | // That is by design - we trade "lossy" counters which are exposed to |
992 | // races during updates for a lower probe effect. |
993 | ++nWakeups; |
994 | |
995 | // Assuming this is not a spurious wakeup we'll normally |
996 | // find that _succ == current. |
997 | if (_succ == current) _succ = NULL__null; |
998 | |
999 | // Invariant: after clearing _succ a contending thread |
1000 | // *must* retry _owner before parking. |
1001 | OrderAccess::fence(); |
1002 | |
1003 | // This PerfData object can be used in parallel with a safepoint. |
1004 | // See the work around in PerfDataManager::destroy(). |
1005 | OM_PERFDATA_OP(FutileWakeups, inc())do { if (ObjectMonitor::_sync_FutileWakeups != __null && PerfDataManager::has_PerfData()) { ObjectMonitor::_sync_FutileWakeups ->inc(); } } while (0); |
1006 | } |
1007 | |
1008 | // current has acquired the lock -- Unlink current from the cxq or EntryList . |
1009 | // Normally we'll find current on the EntryList. |
1010 | // Unlinking from the EntryList is constant-time and atomic-free. |
1011 | // From the perspective of the lock owner (this thread), the |
1012 | // EntryList is stable and cxq is prepend-only. |
1013 | // The head of cxq is volatile but the interior is stable. |
1014 | // In addition, current.TState is stable. |
1015 | |
1016 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1016, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1017 | assert(object()->mark() == markWord::encode(this), "invariant")do { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1017, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1018 | UnlinkAfterAcquire(current, currentNode); |
1019 | if (_succ == current) _succ = NULL__null; |
1020 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1020, "assert(" "_succ != current" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
1021 | currentNode->TState = ObjectWaiter::TS_RUN; |
1022 | OrderAccess::fence(); // see comments at the end of EnterI() |
1023 | } |
1024 | |
1025 | // By convention we unlink a contending thread from EntryList|cxq immediately |
1026 | // after the thread acquires the lock in ::enter(). Equally, we could defer |
1027 | // unlinking the thread until ::exit()-time. |
1028 | |
1029 | void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { |
1030 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1030, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1031 | assert(currentNode->_thread == current, "invariant")do { if (!(currentNode->_thread == current)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1031, "assert(" "currentNode->_thread == current" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
1032 | |
1033 | if (currentNode->TState == ObjectWaiter::TS_ENTER) { |
1034 | // Normal case: remove current from the DLL EntryList . |
1035 | // This is a constant-time operation. |
1036 | ObjectWaiter* nxt = currentNode->_next; |
1037 | ObjectWaiter* prv = currentNode->_prev; |
1038 | if (nxt != NULL__null) nxt->_prev = prv; |
1039 | if (prv != NULL__null) prv->_next = nxt; |
1040 | if (currentNode == _EntryList) _EntryList = nxt; |
1041 | assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant")do { if (!(nxt == __null || nxt->TState == ObjectWaiter::TS_ENTER )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1041, "assert(" "nxt == __null || nxt->TState == ObjectWaiter::TS_ENTER" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1042 | assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant")do { if (!(prv == __null || prv->TState == ObjectWaiter::TS_ENTER )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1042, "assert(" "prv == __null || prv->TState == ObjectWaiter::TS_ENTER" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1043 | } else { |
1044 | assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant")do { if (!(currentNode->TState == ObjectWaiter::TS_CXQ)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1044, "assert(" "currentNode->TState == ObjectWaiter::TS_CXQ" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1045 | // Inopportune interleaving -- current is still on the cxq. |
1046 | // This usually means the enqueue of self raced an exiting thread. |
1047 | // Normally we'll find current near the front of the cxq, so |
1048 | // dequeueing is typically fast. If needbe we can accelerate |
1049 | // this with some MCS/CHL-like bidirectional list hints and advisory |
1050 | // back-links so dequeueing from the interior will normally operate |
1051 | // in constant-time. |
1052 | // Dequeue current from either the head (with CAS) or from the interior |
1053 | // with a linear-time scan and normal non-atomic memory operations. |
1054 | // CONSIDER: if current is on the cxq then simply drain cxq into EntryList |
1055 | // and then unlink current from EntryList. We have to drain eventually, |
1056 | // so it might as well be now. |
1057 | |
1058 | ObjectWaiter* v = _cxq; |
1059 | assert(v != NULL, "invariant")do { if (!(v != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1059, "assert(" "v != __null" ") failed", "invariant"); ::breakpoint (); } } while (0); |
1060 | if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { |
1061 | // The CAS above can fail from interference IFF a "RAT" arrived. |
1062 | // In that case current must be in the interior and can no longer be |
1063 | // at the head of cxq. |
1064 | if (v == currentNode) { |
1065 | assert(_cxq != v, "invariant")do { if (!(_cxq != v)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1065, "assert(" "_cxq != v" ") failed", "invariant"); ::breakpoint (); } } while (0); |
1066 | v = _cxq; // CAS above failed - start scan at head of list |
1067 | } |
1068 | ObjectWaiter* p; |
1069 | ObjectWaiter* q = NULL__null; |
1070 | for (p = v; p != NULL__null && p != currentNode; p = p->_next) { |
1071 | q = p; |
1072 | assert(p->TState == ObjectWaiter::TS_CXQ, "invariant")do { if (!(p->TState == ObjectWaiter::TS_CXQ)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1072, "assert(" "p->TState == ObjectWaiter::TS_CXQ" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
1073 | } |
1074 | assert(v != currentNode, "invariant")do { if (!(v != currentNode)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1074, "assert(" "v != currentNode" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
1075 | assert(p == currentNode, "Node not found on cxq")do { if (!(p == currentNode)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1075, "assert(" "p == currentNode" ") failed", "Node not found on cxq" ); ::breakpoint(); } } while (0); |
1076 | assert(p != _cxq, "invariant")do { if (!(p != _cxq)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1076, "assert(" "p != _cxq" ") failed", "invariant"); ::breakpoint (); } } while (0); |
1077 | assert(q != NULL, "invariant")do { if (!(q != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1077, "assert(" "q != __null" ") failed", "invariant"); ::breakpoint (); } } while (0); |
1078 | assert(q->_next == p, "invariant")do { if (!(q->_next == p)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1078, "assert(" "q->_next == p" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
1079 | q->_next = p->_next; |
1080 | } |
1081 | } |
1082 | |
1083 | #ifdef ASSERT1 |
1084 | // Diagnostic hygiene ... |
1085 | currentNode->_prev = (ObjectWaiter*) 0xBAD; |
1086 | currentNode->_next = (ObjectWaiter*) 0xBAD; |
1087 | currentNode->TState = ObjectWaiter::TS_RUN; |
1088 | #endif |
1089 | } |
1090 | |
1091 | // ----------------------------------------------------------------------------- |
1092 | // Exit support |
1093 | // |
1094 | // exit() |
1095 | // ~~~~~~ |
1096 | // Note that the collector can't reclaim the objectMonitor or deflate |
1097 | // the object out from underneath the thread calling ::exit() as the |
1098 | // thread calling ::exit() never transitions to a stable state. |
1099 | // This inhibits GC, which in turn inhibits asynchronous (and |
1100 | // inopportune) reclamation of "this". |
1101 | // |
1102 | // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; |
1103 | // There's one exception to the claim above, however. EnterI() can call |
1104 | // exit() to drop a lock if the acquirer has been externally suspended. |
1105 | // In that case exit() is called with _thread_state == _thread_blocked, |
1106 | // but the monitor's _contentions field is > 0, which inhibits reclamation. |
1107 | // |
1108 | // 1-0 exit |
1109 | // ~~~~~~~~ |
1110 | // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of |
1111 | // the fast-path operators have been optimized so the common ::exit() |
1112 | // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). |
1113 | // The code emitted by fast_unlock() elides the usual MEMBAR. This |
1114 | // greatly improves latency -- MEMBAR and CAS having considerable local |
1115 | // latency on modern processors -- but at the cost of "stranding". Absent the |
1116 | // MEMBAR, a thread in fast_unlock() can race a thread in the slow |
1117 | // ::enter() path, resulting in the entering thread being stranding |
1118 | // and a progress-liveness failure. Stranding is extremely rare. |
1119 | // We use timers (timed park operations) & periodic polling to detect |
1120 | // and recover from stranding. Potentially stranded threads periodically |
1121 | // wake up and poll the lock. See the usage of the _Responsible variable. |
1122 | // |
1123 | // The CAS() in enter provides for safety and exclusion, while the CAS or |
1124 | // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking |
1125 | // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. |
1126 | // We detect and recover from stranding with timers. |
1127 | // |
1128 | // If a thread transiently strands it'll park until (a) another |
1129 | // thread acquires the lock and then drops the lock, at which time the |
1130 | // exiting thread will notice and unpark the stranded thread, or, (b) |
1131 | // the timer expires. If the lock is high traffic then the stranding latency |
1132 | // will be low due to (a). If the lock is low traffic then the odds of |
1133 | // stranding are lower, although the worst-case stranding latency |
1134 | // is longer. Critically, we don't want to put excessive load in the |
1135 | // platform's timer subsystem. We want to minimize both the timer injection |
1136 | // rate (timers created/sec) as well as the number of timers active at |
1137 | // any one time. (more precisely, we want to minimize timer-seconds, which is |
1138 | // the integral of the # of active timers at any instant over time). |
1139 | // Both impinge on OS scalability. Given that, at most one thread parked on |
1140 | // a monitor will use a timer. |
1141 | // |
1142 | // There is also the risk of a futile wake-up. If we drop the lock |
1143 | // another thread can reacquire the lock immediately, and we can |
1144 | // then wake a thread unnecessarily. This is benign, and we've |
1145 | // structured the code so the windows are short and the frequency |
1146 | // of such futile wakups is low. |
1147 | |
1148 | void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { |
1149 | void* cur = owner_raw(); |
1150 | if (current != cur) { |
1151 | if (current->is_lock_owned((address)cur)) { |
1152 | assert(_recursions == 0, "invariant")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1152, "assert(" "_recursions == 0" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
1153 | set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. |
1154 | _recursions = 0; |
1155 | } else { |
1156 | // Apparent unbalanced locking ... |
1157 | // Naively we'd like to throw IllegalMonitorStateException. |
1158 | // As a practical matter we can neither allocate nor throw an |
1159 | // exception as ::exit() can be called from leaf routines. |
1160 | // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. |
1161 | // Upon deeper reflection, however, in a properly run JVM the only |
1162 | // way we should encounter this situation is in the presence of |
1163 | // unbalanced JNI locking. TODO: CheckJNICalls. |
1164 | // See also: CR4414101 |
1165 | #ifdef ASSERT1 |
1166 | LogStreamHandle(Error, monitorinflation)LogStreamTemplate<LogLevel::Error, (LogTag::_monitorinflation ), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG) , (LogTag::__NO_TAG), (LogTag::__NO_TAG)> lsh; |
1167 | lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT"0x%016" "l" "x" |
1168 | " is exiting an ObjectMonitor it does not own.", p2i(current)); |
1169 | lsh.print_cr("The imbalance is possibly caused by JNI locking."); |
1170 | print_debug_style_on(&lsh); |
1171 | assert(false, "Non-balanced monitor enter/exit!")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1171, "assert(" "false" ") failed", "Non-balanced monitor enter/exit!" ); ::breakpoint(); } } while (0); |
1172 | #endif |
1173 | return; |
1174 | } |
1175 | } |
1176 | |
1177 | if (_recursions != 0) { |
1178 | _recursions--; // this is simple recursive enter |
1179 | return; |
1180 | } |
1181 | |
1182 | // Invariant: after setting Responsible=null an thread must execute |
1183 | // a MEMBAR or other serializing instruction before fetching EntryList|cxq. |
1184 | _Responsible = NULL__null; |
1185 | |
1186 | #if INCLUDE_JFR1 |
1187 | // get the owner's thread id for the MonitorEnter event |
1188 | // if it is enabled and the thread isn't suspended |
1189 | if (not_suspended && EventJavaMonitorEnter::is_enabled()) { |
1190 | _previous_owner_tid = JFR_THREAD_ID(current)((current)->jfr_thread_local()->thread_id()); |
1191 | } |
1192 | #endif |
1193 | |
1194 | for (;;) { |
1195 | assert(current == owner_raw(), "invariant")do { if (!(current == owner_raw())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1195, "assert(" "current == owner_raw()" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1196 | |
1197 | // Drop the lock. |
1198 | // release semantics: prior loads and stores from within the critical section |
1199 | // must not float (reorder) past the following store that drops the lock. |
1200 | // Uses a storeload to separate release_store(owner) from the |
1201 | // successor check. The try_set_owner() below uses cmpxchg() so |
1202 | // we get the fence down there. |
1203 | release_clear_owner(current); |
1204 | OrderAccess::storeload(); |
1205 | |
1206 | if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL__null) { |
1207 | return; |
1208 | } |
1209 | // Other threads are blocked trying to acquire the lock. |
1210 | |
1211 | // Normally the exiting thread is responsible for ensuring succession, |
1212 | // but if other successors are ready or other entering threads are spinning |
1213 | // then this thread can simply store NULL into _owner and exit without |
1214 | // waking a successor. The existence of spinners or ready successors |
1215 | // guarantees proper succession (liveness). Responsibility passes to the |
1216 | // ready or running successors. The exiting thread delegates the duty. |
1217 | // More precisely, if a successor already exists this thread is absolved |
1218 | // of the responsibility of waking (unparking) one. |
1219 | // |
1220 | // The _succ variable is critical to reducing futile wakeup frequency. |
1221 | // _succ identifies the "heir presumptive" thread that has been made |
1222 | // ready (unparked) but that has not yet run. We need only one such |
1223 | // successor thread to guarantee progress. |
1224 | // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf |
1225 | // section 3.3 "Futile Wakeup Throttling" for details. |
1226 | // |
1227 | // Note that spinners in Enter() also set _succ non-null. |
1228 | // In the current implementation spinners opportunistically set |
1229 | // _succ so that exiting threads might avoid waking a successor. |
1230 | // Another less appealing alternative would be for the exiting thread |
1231 | // to drop the lock and then spin briefly to see if a spinner managed |
1232 | // to acquire the lock. If so, the exiting thread could exit |
1233 | // immediately without waking a successor, otherwise the exiting |
1234 | // thread would need to dequeue and wake a successor. |
1235 | // (Note that we'd need to make the post-drop spin short, but no |
1236 | // shorter than the worst-case round-trip cache-line migration time. |
1237 | // The dropped lock needs to become visible to the spinner, and then |
1238 | // the acquisition of the lock by the spinner must become visible to |
1239 | // the exiting thread). |
1240 | |
1241 | // It appears that an heir-presumptive (successor) must be made ready. |
1242 | // Only the current lock owner can manipulate the EntryList or |
1243 | // drain _cxq, so we need to reacquire the lock. If we fail |
1244 | // to reacquire the lock the responsibility for ensuring succession |
1245 | // falls to the new owner. |
1246 | // |
1247 | if (try_set_owner_from(NULL__null, current) != NULL__null) { |
1248 | return; |
1249 | } |
1250 | |
1251 | guarantee(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1251, "guarantee(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1252 | |
1253 | ObjectWaiter* w = NULL__null; |
1254 | |
1255 | w = _EntryList; |
1256 | if (w != NULL__null) { |
1257 | // I'd like to write: guarantee (w->_thread != current). |
1258 | // But in practice an exiting thread may find itself on the EntryList. |
1259 | // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and |
1260 | // then calls exit(). Exit release the lock by setting O._owner to NULL. |
1261 | // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The |
1262 | // notify() operation moves T1 from O's waitset to O's EntryList. T2 then |
1263 | // release the lock "O". T2 resumes immediately after the ST of null into |
1264 | // _owner, above. T2 notices that the EntryList is populated, so it |
1265 | // reacquires the lock and then finds itself on the EntryList. |
1266 | // Given all that, we have to tolerate the circumstance where "w" is |
1267 | // associated with current. |
1268 | assert(w->TState == ObjectWaiter::TS_ENTER, "invariant")do { if (!(w->TState == ObjectWaiter::TS_ENTER)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1268, "assert(" "w->TState == ObjectWaiter::TS_ENTER" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
1269 | ExitEpilog(current, w); |
1270 | return; |
1271 | } |
1272 | |
1273 | // If we find that both _cxq and EntryList are null then just |
1274 | // re-run the exit protocol from the top. |
1275 | w = _cxq; |
1276 | if (w == NULL__null) continue; |
1277 | |
1278 | // Drain _cxq into EntryList - bulk transfer. |
1279 | // First, detach _cxq. |
1280 | // The following loop is tantamount to: w = swap(&cxq, NULL) |
1281 | for (;;) { |
1282 | assert(w != NULL, "Invariant")do { if (!(w != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1282, "assert(" "w != __null" ") failed", "Invariant"); ::breakpoint (); } } while (0); |
1283 | ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL__null); |
1284 | if (u == w) break; |
1285 | w = u; |
1286 | } |
1287 | |
1288 | assert(w != NULL, "invariant")do { if (!(w != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1288, "assert(" "w != __null" ") failed", "invariant"); ::breakpoint (); } } while (0); |
1289 | assert(_EntryList == NULL, "invariant")do { if (!(_EntryList == __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1289, "assert(" "_EntryList == __null" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1290 | |
1291 | // Convert the LIFO SLL anchored by _cxq into a DLL. |
1292 | // The list reorganization step operates in O(LENGTH(w)) time. |
1293 | // It's critical that this step operate quickly as |
1294 | // "current" still holds the outer-lock, restricting parallelism |
1295 | // and effectively lengthening the critical section. |
1296 | // Invariant: s chases t chases u. |
1297 | // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so |
1298 | // we have faster access to the tail. |
1299 | |
1300 | _EntryList = w; |
1301 | ObjectWaiter* q = NULL__null; |
1302 | ObjectWaiter* p; |
1303 | for (p = w; p != NULL__null; p = p->_next) { |
1304 | guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant")do { if (!(p->TState == ObjectWaiter::TS_CXQ)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1304, "guarantee(" "p->TState == ObjectWaiter::TS_CXQ" ") failed" , "Invariant"); ::breakpoint(); } } while (0); |
1305 | p->TState = ObjectWaiter::TS_ENTER; |
1306 | p->_prev = q; |
1307 | q = p; |
1308 | } |
1309 | |
1310 | // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL |
1311 | // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). |
1312 | |
1313 | // See if we can abdicate to a spinner instead of waking a thread. |
1314 | // A primary goal of the implementation is to reduce the |
1315 | // context-switch rate. |
1316 | if (_succ != NULL__null) continue; |
1317 | |
1318 | w = _EntryList; |
1319 | if (w != NULL__null) { |
1320 | guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant")do { if (!(w->TState == ObjectWaiter::TS_ENTER)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1320, "guarantee(" "w->TState == ObjectWaiter::TS_ENTER" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1321 | ExitEpilog(current, w); |
1322 | return; |
1323 | } |
1324 | } |
1325 | } |
1326 | |
1327 | void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { |
1328 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1328, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1329 | |
1330 | // Exit protocol: |
1331 | // 1. ST _succ = wakee |
1332 | // 2. membar #loadstore|#storestore; |
1333 | // 2. ST _owner = NULL |
1334 | // 3. unpark(wakee) |
1335 | |
1336 | _succ = Wakee->_thread; |
1337 | ParkEvent * Trigger = Wakee->_event; |
1338 | |
1339 | // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again. |
1340 | // The thread associated with Wakee may have grabbed the lock and "Wakee" may be |
1341 | // out-of-scope (non-extant). |
1342 | Wakee = NULL__null; |
1343 | |
1344 | // Drop the lock. |
1345 | // Uses a fence to separate release_store(owner) from the LD in unpark(). |
1346 | release_clear_owner(current); |
1347 | OrderAccess::fence(); |
1348 | |
1349 | DTRACE_MONITOR_PROBE(contended__exit, this, object(), current){;}; |
1350 | Trigger->unpark(); |
1351 | |
1352 | // Maintain stats and report events to JVMTI |
1353 | OM_PERFDATA_OP(Parks, inc())do { if (ObjectMonitor::_sync_Parks != __null && PerfDataManager ::has_PerfData()) { ObjectMonitor::_sync_Parks->inc(); } } while (0); |
1354 | } |
1355 | |
1356 | |
1357 | // ----------------------------------------------------------------------------- |
1358 | // Class Loader deadlock handling. |
1359 | // |
1360 | // complete_exit exits a lock returning recursion count |
1361 | // complete_exit/reenter operate as a wait without waiting |
1362 | // complete_exit requires an inflated monitor |
1363 | // The _owner field is not always the Thread addr even with an |
1364 | // inflated monitor, e.g. the monitor can be inflated by a non-owning |
1365 | // thread due to contention. |
1366 | intx ObjectMonitor::complete_exit(JavaThread* current) { |
1367 | assert(InitDone, "Unexpectedly not initialized")do { if (!(InitDone)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1367, "assert(" "InitDone" ") failed", "Unexpectedly not initialized" ); ::breakpoint(); } } while (0); |
1368 | |
1369 | void* cur = owner_raw(); |
1370 | if (current != cur) { |
1371 | if (current->is_lock_owned((address)cur)) { |
1372 | assert(_recursions == 0, "internal state error")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1372, "assert(" "_recursions == 0" ") failed", "internal state error" ); ::breakpoint(); } } while (0); |
1373 | set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. |
1374 | _recursions = 0; |
1375 | } |
1376 | } |
1377 | |
1378 | guarantee(current == owner_raw(), "complete_exit not owner")do { if (!(current == owner_raw())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1378, "guarantee(" "current == owner_raw()" ") failed", "complete_exit not owner" ); ::breakpoint(); } } while (0); |
1379 | intx save = _recursions; // record the old recursion count |
1380 | _recursions = 0; // set the recursion level to be 0 |
1381 | exit(current); // exit the monitor |
1382 | guarantee(owner_raw() != current, "invariant")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1382, "guarantee(" "owner_raw() != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1383 | return save; |
1384 | } |
1385 | |
1386 | // reenter() enters a lock and sets recursion count |
1387 | // complete_exit/reenter operate as a wait without waiting |
1388 | bool ObjectMonitor::reenter(intx recursions, JavaThread* current) { |
1389 | |
1390 | guarantee(owner_raw() != current, "reenter already owner")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1390, "guarantee(" "owner_raw() != current" ") failed", "reenter already owner" ); ::breakpoint(); } } while (0); |
1391 | if (!enter(current)) { |
1392 | return false; |
1393 | } |
1394 | // Entered the monitor. |
1395 | guarantee(_recursions == 0, "reenter recursion")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1395, "guarantee(" "_recursions == 0" ") failed", "reenter recursion" ); ::breakpoint(); } } while (0); |
1396 | _recursions = recursions; |
1397 | return true; |
1398 | } |
1399 | |
1400 | // Checks that the current THREAD owns this monitor and causes an |
1401 | // immediate return if it doesn't. We don't use the CHECK macro |
1402 | // because we want the IMSE to be the only exception that is thrown |
1403 | // from the call site when false is returned. Any other pending |
1404 | // exception is ignored. |
1405 | #define CHECK_OWNER()do { if (!check_owner(__the_thread__)) { do { if (!((((ThreadShadow *)__the_thread__)->has_pending_exception()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1405, "assert(" "(((ThreadShadow*)__the_thread__)->has_pending_exception())" ") failed", "expected a pending IMSE here."); ::breakpoint() ; } } while (0); return; } } while (false) \ |
1406 | do { \ |
1407 | if (!check_owner(THREAD__the_thread__)) { \ |
1408 | assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here.")do { if (!((((ThreadShadow*)__the_thread__)->has_pending_exception ()))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1408, "assert(" "(((ThreadShadow*)__the_thread__)->has_pending_exception())" ") failed", "expected a pending IMSE here."); ::breakpoint() ; } } while (0); \ |
1409 | return; \ |
1410 | } \ |
1411 | } while (false) |
1412 | |
1413 | // Returns true if the specified thread owns the ObjectMonitor. |
1414 | // Otherwise returns false and throws IllegalMonitorStateException |
1415 | // (IMSE). If there is a pending exception and the specified thread |
1416 | // is not the owner, that exception will be replaced by the IMSE. |
1417 | bool ObjectMonitor::check_owner(TRAPSJavaThread* __the_thread__) { |
1418 | JavaThread* current = THREAD__the_thread__; |
1419 | void* cur = owner_raw(); |
1420 | if (cur == current) { |
1421 | return true; |
1422 | } |
1423 | if (current->is_lock_owned((address)cur)) { |
1424 | set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. |
1425 | _recursions = 0; |
1426 | return true; |
1427 | } |
1428 | THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),{ Exceptions::_throw_msg(__the_thread__, "/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1429, vmSymbols::java_lang_IllegalMonitorStateException(), "current thread is not owner" ); return false; } |
1429 | "current thread is not owner", false){ Exceptions::_throw_msg(__the_thread__, "/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1429, vmSymbols::java_lang_IllegalMonitorStateException(), "current thread is not owner" ); return false; }; |
1430 | } |
1431 | |
1432 | static void post_monitor_wait_event(EventJavaMonitorWait* event, |
1433 | ObjectMonitor* monitor, |
1434 | uint64_t notifier_tid, |
1435 | jlong timeout, |
1436 | bool timedout) { |
1437 | assert(event != NULL, "invariant")do { if (!(event != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1437, "assert(" "event != __null" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1438 | assert(monitor != NULL, "invariant")do { if (!(monitor != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1438, "assert(" "monitor != __null" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1439 | event->set_monitorClass(monitor->object()->klass()); |
1440 | event->set_timeout(timeout); |
1441 | // Set an address that is 'unique enough', such that events close in |
1442 | // time and with the same address are likely (but not guaranteed) to |
1443 | // belong to the same object. |
1444 | event->set_address((uintptr_t)monitor); |
1445 | event->set_notifier(notifier_tid); |
1446 | event->set_timedOut(timedout); |
1447 | event->commit(); |
1448 | } |
1449 | |
1450 | // ----------------------------------------------------------------------------- |
1451 | // Wait/Notify/NotifyAll |
1452 | // |
1453 | // Note: a subset of changes to ObjectMonitor::wait() |
1454 | // will need to be replicated in complete_exit |
1455 | void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPSJavaThread* __the_thread__) { |
1456 | JavaThread* current = THREAD__the_thread__; |
1457 | |
1458 | assert(InitDone, "Unexpectedly not initialized")do { if (!(InitDone)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1458, "assert(" "InitDone" ") failed", "Unexpectedly not initialized" ); ::breakpoint(); } } while (0); |
1459 | |
1460 | CHECK_OWNER()do { if (!check_owner(__the_thread__)) { do { if (!((((ThreadShadow *)__the_thread__)->has_pending_exception()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1460, "assert(" "(((ThreadShadow*)__the_thread__)->has_pending_exception())" ") failed", "expected a pending IMSE here."); ::breakpoint() ; } } while (0); return; } } while (false); // Throws IMSE if not owner. |
1461 | |
1462 | EventJavaMonitorWait event; |
1463 | |
1464 | // check for a pending interrupt |
1465 | if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION(((ThreadShadow*)__the_thread__)->has_pending_exception())) { |
1466 | // post monitor waited event. Note that this is past-tense, we are done waiting. |
1467 | if (JvmtiExport::should_post_monitor_waited()) { |
1468 | // Note: 'false' parameter is passed here because the |
1469 | // wait was not timed out due to thread interrupt. |
1470 | JvmtiExport::post_monitor_waited(current, this, false); |
1471 | |
1472 | // In this short circuit of the monitor wait protocol, the |
1473 | // current thread never drops ownership of the monitor and |
1474 | // never gets added to the wait queue so the current thread |
1475 | // cannot be made the successor. This means that the |
1476 | // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally |
1477 | // consume an unpark() meant for the ParkEvent associated with |
1478 | // this ObjectMonitor. |
1479 | } |
1480 | if (event.should_commit()) { |
1481 | post_monitor_wait_event(&event, this, 0, millis, false); |
1482 | } |
1483 | THROW(vmSymbols::java_lang_InterruptedException()){ Exceptions::_throw_msg(__the_thread__, "/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1483, vmSymbols::java_lang_InterruptedException(), __null); return; }; |
1484 | return; |
1485 | } |
1486 | |
1487 | assert(current->_Stalled == 0, "invariant")do { if (!(current->_Stalled == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1487, "assert(" "current->_Stalled == 0" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1488 | current->_Stalled = intptr_t(this); |
1489 | current->set_current_waiting_monitor(this); |
1490 | |
1491 | // create a node to be put into the queue |
1492 | // Critically, after we reset() the event but prior to park(), we must check |
1493 | // for a pending interrupt. |
1494 | ObjectWaiter node(current); |
1495 | node.TState = ObjectWaiter::TS_WAIT; |
1496 | current->_ParkEvent->reset(); |
1497 | OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag |
1498 | |
1499 | // Enter the waiting queue, which is a circular doubly linked list in this case |
1500 | // but it could be a priority queue or any data structure. |
1501 | // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only |
1502 | // by the the owner of the monitor *except* in the case where park() |
1503 | // returns because of a timeout of interrupt. Contention is exceptionally rare |
1504 | // so we use a simple spin-lock instead of a heavier-weight blocking lock. |
1505 | |
1506 | Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); |
1507 | AddWaiter(&node); |
1508 | Thread::SpinRelease(&_WaitSetLock); |
1509 | |
1510 | _Responsible = NULL__null; |
1511 | |
1512 | intx save = _recursions; // record the old recursion count |
1513 | _waiters++; // increment the number of waiters |
1514 | _recursions = 0; // set the recursion level to be 1 |
1515 | exit(current); // exit the monitor |
1516 | guarantee(owner_raw() != current, "invariant")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1516, "guarantee(" "owner_raw() != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1517 | |
1518 | // The thread is on the WaitSet list - now park() it. |
1519 | // On MP systems it's conceivable that a brief spin before we park |
1520 | // could be profitable. |
1521 | // |
1522 | // TODO-FIXME: change the following logic to a loop of the form |
1523 | // while (!timeout && !interrupted && _notified == 0) park() |
1524 | |
1525 | int ret = OS_OK; |
1526 | int WasNotified = 0; |
1527 | |
1528 | // Need to check interrupt state whilst still _thread_in_vm |
1529 | bool interrupted = interruptible && current->is_interrupted(false); |
1530 | |
1531 | { // State transition wrappers |
1532 | OSThread* osthread = current->osthread(); |
1533 | OSThreadWaitState osts(osthread, true); |
1534 | |
1535 | assert(current->thread_state() == _thread_in_vm, "invariant")do { if (!(current->thread_state() == _thread_in_vm)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1535, "assert(" "current->thread_state() == _thread_in_vm" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1536 | |
1537 | { |
1538 | ClearSuccOnSuspend csos(this); |
1539 | ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); |
1540 | if (interrupted || HAS_PENDING_EXCEPTION(((ThreadShadow*)__the_thread__)->has_pending_exception())) { |
1541 | // Intentionally empty |
1542 | } else if (node._notified == 0) { |
1543 | if (millis <= 0) { |
1544 | current->_ParkEvent->park(); |
1545 | } else { |
1546 | ret = current->_ParkEvent->park(millis); |
1547 | } |
1548 | } |
1549 | } |
1550 | |
1551 | // Node may be on the WaitSet, the EntryList (or cxq), or in transition |
1552 | // from the WaitSet to the EntryList. |
1553 | // See if we need to remove Node from the WaitSet. |
1554 | // We use double-checked locking to avoid grabbing _WaitSetLock |
1555 | // if the thread is not on the wait queue. |
1556 | // |
1557 | // Note that we don't need a fence before the fetch of TState. |
1558 | // In the worst case we'll fetch a old-stale value of TS_WAIT previously |
1559 | // written by the is thread. (perhaps the fetch might even be satisfied |
1560 | // by a look-aside into the processor's own store buffer, although given |
1561 | // the length of the code path between the prior ST and this load that's |
1562 | // highly unlikely). If the following LD fetches a stale TS_WAIT value |
1563 | // then we'll acquire the lock and then re-fetch a fresh TState value. |
1564 | // That is, we fail toward safety. |
1565 | |
1566 | if (node.TState == ObjectWaiter::TS_WAIT) { |
1567 | Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); |
1568 | if (node.TState == ObjectWaiter::TS_WAIT) { |
1569 | DequeueSpecificWaiter(&node); // unlink from WaitSet |
1570 | assert(node._notified == 0, "invariant")do { if (!(node._notified == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1570, "assert(" "node._notified == 0" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1571 | node.TState = ObjectWaiter::TS_RUN; |
1572 | } |
1573 | Thread::SpinRelease(&_WaitSetLock); |
1574 | } |
1575 | |
1576 | // The thread is now either on off-list (TS_RUN), |
1577 | // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). |
1578 | // The Node's TState variable is stable from the perspective of this thread. |
1579 | // No other threads will asynchronously modify TState. |
1580 | guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant")do { if (!(node.TState != ObjectWaiter::TS_WAIT)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1580, "guarantee(" "node.TState != ObjectWaiter::TS_WAIT" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
1581 | OrderAccess::loadload(); |
1582 | if (_succ == current) _succ = NULL__null; |
1583 | WasNotified = node._notified; |
1584 | |
1585 | // Reentry phase -- reacquire the monitor. |
1586 | // re-enter contended monitor after object.wait(). |
1587 | // retain OBJECT_WAIT state until re-enter successfully completes |
1588 | // Thread state is thread_in_vm and oop access is again safe, |
1589 | // although the raw address of the object may have changed. |
1590 | // (Don't cache naked oops over safepoints, of course). |
1591 | |
1592 | // post monitor waited event. Note that this is past-tense, we are done waiting. |
1593 | if (JvmtiExport::should_post_monitor_waited()) { |
1594 | JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); |
1595 | |
1596 | if (node._notified != 0 && _succ == current) { |
1597 | // In this part of the monitor wait-notify-reenter protocol it |
1598 | // is possible (and normal) for another thread to do a fastpath |
1599 | // monitor enter-exit while this thread is still trying to get |
1600 | // to the reenter portion of the protocol. |
1601 | // |
1602 | // The ObjectMonitor was notified and the current thread is |
1603 | // the successor which also means that an unpark() has already |
1604 | // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can |
1605 | // consume the unpark() that was done when the successor was |
1606 | // set because the same ParkEvent is shared between Java |
1607 | // monitors and JVM/TI RawMonitors (for now). |
1608 | // |
1609 | // We redo the unpark() to ensure forward progress, i.e., we |
1610 | // don't want all pending threads hanging (parked) with none |
1611 | // entering the unlocked monitor. |
1612 | node._event->unpark(); |
1613 | } |
1614 | } |
1615 | |
1616 | if (event.should_commit()) { |
1617 | post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); |
1618 | } |
1619 | |
1620 | OrderAccess::fence(); |
1621 | |
1622 | assert(current->_Stalled != 0, "invariant")do { if (!(current->_Stalled != 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1622, "assert(" "current->_Stalled != 0" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1623 | current->_Stalled = 0; |
1624 | |
1625 | assert(owner_raw() != current, "invariant")do { if (!(owner_raw() != current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1625, "assert(" "owner_raw() != current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1626 | ObjectWaiter::TStates v = node.TState; |
1627 | if (v == ObjectWaiter::TS_RUN) { |
1628 | enter(current); |
1629 | } else { |
1630 | guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant")do { if (!(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter:: TS_CXQ)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1630, "guarantee(" "v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1631 | ReenterI(current, &node); |
1632 | node.wait_reenter_end(this); |
1633 | } |
1634 | |
1635 | // current has reacquired the lock. |
1636 | // Lifecycle - the node representing current must not appear on any queues. |
1637 | // Node is about to go out-of-scope, but even if it were immortal we wouldn't |
1638 | // want residual elements associated with this thread left on any lists. |
1639 | guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant")do { if (!(node.TState == ObjectWaiter::TS_RUN)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1639, "guarantee(" "node.TState == ObjectWaiter::TS_RUN" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
1640 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1640, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1641 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1641, "assert(" "_succ != current" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
1642 | } // OSThreadWaitState() |
1643 | |
1644 | current->set_current_waiting_monitor(NULL__null); |
1645 | |
1646 | guarantee(_recursions == 0, "invariant")do { if (!(_recursions == 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1646, "guarantee(" "_recursions == 0" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1647 | _recursions = save // restore the old recursion count |
1648 | + JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); // increased by the deferred relock count |
1649 | _waiters--; // decrement the number of waiters |
1650 | |
1651 | // Verify a few postconditions |
1652 | assert(owner_raw() == current, "invariant")do { if (!(owner_raw() == current)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1652, "assert(" "owner_raw() == current" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1653 | assert(_succ != current, "invariant")do { if (!(_succ != current)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1653, "assert(" "_succ != current" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
1654 | assert(object()->mark() == markWord::encode(this), "invariant")do { if (!(object()->mark() == markWord::encode(this))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1654, "assert(" "object()->mark() == markWord::encode(this)" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1655 | |
1656 | // check if the notification happened |
1657 | if (!WasNotified) { |
1658 | // no, it could be timeout or Thread.interrupt() or both |
1659 | // check for interrupt event, otherwise it is timeout |
1660 | if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION(((ThreadShadow*)__the_thread__)->has_pending_exception())) { |
1661 | THROW(vmSymbols::java_lang_InterruptedException()){ Exceptions::_throw_msg(__the_thread__, "/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1661, vmSymbols::java_lang_InterruptedException(), __null); return; }; |
1662 | } |
1663 | } |
1664 | |
1665 | // NOTE: Spurious wake up will be consider as timeout. |
1666 | // Monitor notify has precedence over thread interrupt. |
1667 | } |
1668 | |
1669 | |
1670 | // Consider: |
1671 | // If the lock is cool (cxq == null && succ == null) and we're on an MP system |
1672 | // then instead of transferring a thread from the WaitSet to the EntryList |
1673 | // we might just dequeue a thread from the WaitSet and directly unpark() it. |
1674 | |
1675 | void ObjectMonitor::INotify(JavaThread* current) { |
1676 | Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); |
1677 | ObjectWaiter* iterator = DequeueWaiter(); |
1678 | if (iterator != NULL__null) { |
1679 | guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant")do { if (!(iterator->TState == ObjectWaiter::TS_WAIT)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1679, "guarantee(" "iterator->TState == ObjectWaiter::TS_WAIT" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1680 | guarantee(iterator->_notified == 0, "invariant")do { if (!(iterator->_notified == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1680, "guarantee(" "iterator->_notified == 0" ") failed" , "invariant"); ::breakpoint(); } } while (0); |
1681 | // Disposition - what might we do with iterator ? |
1682 | // a. add it directly to the EntryList - either tail (policy == 1) |
1683 | // or head (policy == 0). |
1684 | // b. push it onto the front of the _cxq (policy == 2). |
1685 | // For now we use (b). |
1686 | |
1687 | iterator->TState = ObjectWaiter::TS_ENTER; |
1688 | |
1689 | iterator->_notified = 1; |
1690 | iterator->_notifier_tid = JFR_THREAD_ID(current)((current)->jfr_thread_local()->thread_id()); |
1691 | |
1692 | ObjectWaiter* list = _EntryList; |
1693 | if (list != NULL__null) { |
1694 | assert(list->_prev == NULL, "invariant")do { if (!(list->_prev == __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1694, "assert(" "list->_prev == __null" ") failed", "invariant" ); ::breakpoint(); } } while (0); |
1695 | assert(list->TState == ObjectWaiter::TS_ENTER, "invariant")do { if (!(list->TState == ObjectWaiter::TS_ENTER)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1695, "assert(" "list->TState == ObjectWaiter::TS_ENTER" ") failed", "invariant"); ::breakpoint(); } } while (0); |
1696 | assert(list != iterator, "invariant")do { if (!(list != iterator)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1696, "assert(" "list != iterator" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
1697 | } |
1698 | |
1699 | // prepend to cxq |
1700 | if (list == NULL__null) { |
1701 | iterator->_next = iterator->_prev = NULL__null; |
1702 | _EntryList = iterator; |
1703 | } else { |
1704 | iterator->TState = ObjectWaiter::TS_CXQ; |
1705 | for (;;) { |
1706 | ObjectWaiter* front = _cxq; |
1707 | iterator->_next = front; |
1708 | if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { |
1709 | break; |
1710 | } |
1711 | } |
1712 | } |
1713 | |
1714 | // _WaitSetLock protects the wait queue, not the EntryList. We could |
1715 | // move the add-to-EntryList operation, above, outside the critical section |
1716 | // protected by _WaitSetLock. In practice that's not useful. With the |
1717 | // exception of wait() timeouts and interrupts the monitor owner |
1718 | // is the only thread that grabs _WaitSetLock. There's almost no contention |
1719 | // on _WaitSetLock so it's not profitable to reduce the length of the |
1720 | // critical section. |
1721 | |
1722 | iterator->wait_reenter_begin(this); |
1723 | } |
1724 | Thread::SpinRelease(&_WaitSetLock); |
1725 | } |
1726 | |
1727 | // Consider: a not-uncommon synchronization bug is to use notify() when |
1728 | // notifyAll() is more appropriate, potentially resulting in stranded |
1729 | // threads; this is one example of a lost wakeup. A useful diagnostic |
1730 | // option is to force all notify() operations to behave as notifyAll(). |
1731 | // |
1732 | // Note: We can also detect many such problems with a "minimum wait". |
1733 | // When the "minimum wait" is set to a small non-zero timeout value |
1734 | // and the program does not hang whereas it did absent "minimum wait", |
1735 | // that suggests a lost wakeup bug. |
1736 | |
1737 | void ObjectMonitor::notify(TRAPSJavaThread* __the_thread__) { |
1738 | JavaThread* current = THREAD__the_thread__; |
1739 | CHECK_OWNER()do { if (!check_owner(__the_thread__)) { do { if (!((((ThreadShadow *)__the_thread__)->has_pending_exception()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1739, "assert(" "(((ThreadShadow*)__the_thread__)->has_pending_exception())" ") failed", "expected a pending IMSE here."); ::breakpoint() ; } } while (0); return; } } while (false); // Throws IMSE if not owner. |
1740 | if (_WaitSet == NULL__null) { |
1741 | return; |
1742 | } |
1743 | DTRACE_MONITOR_PROBE(notify, this, object(), current){;}; |
1744 | INotify(current); |
1745 | OM_PERFDATA_OP(Notifications, inc(1))do { if (ObjectMonitor::_sync_Notifications != __null && PerfDataManager::has_PerfData()) { ObjectMonitor::_sync_Notifications ->inc(1); } } while (0); |
1746 | } |
1747 | |
1748 | |
1749 | // The current implementation of notifyAll() transfers the waiters one-at-a-time |
1750 | // from the waitset to the EntryList. This could be done more efficiently with a |
1751 | // single bulk transfer but in practice it's not time-critical. Beware too, |
1752 | // that in prepend-mode we invert the order of the waiters. Let's say that the |
1753 | // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend |
1754 | // mode the waitset will be empty and the EntryList will be "DCBAXYZ". |
1755 | |
1756 | void ObjectMonitor::notifyAll(TRAPSJavaThread* __the_thread__) { |
1757 | JavaThread* current = THREAD__the_thread__; |
1758 | CHECK_OWNER()do { if (!check_owner(__the_thread__)) { do { if (!((((ThreadShadow *)__the_thread__)->has_pending_exception()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 1758, "assert(" "(((ThreadShadow*)__the_thread__)->has_pending_exception())" ") failed", "expected a pending IMSE here."); ::breakpoint() ; } } while (0); return; } } while (false); // Throws IMSE if not owner. |
1759 | if (_WaitSet == NULL__null) { |
1760 | return; |
1761 | } |
1762 | |
1763 | DTRACE_MONITOR_PROBE(notifyAll, this, object(), current){;}; |
1764 | int tally = 0; |
1765 | while (_WaitSet != NULL__null) { |
1766 | tally++; |
1767 | INotify(current); |
1768 | } |
1769 | |
1770 | OM_PERFDATA_OP(Notifications, inc(tally))do { if (ObjectMonitor::_sync_Notifications != __null && PerfDataManager::has_PerfData()) { ObjectMonitor::_sync_Notifications ->inc(tally); } } while (0); |
1771 | } |
1772 | |
1773 | // ----------------------------------------------------------------------------- |
1774 | // Adaptive Spinning Support |
1775 | // |
1776 | // Adaptive spin-then-block - rational spinning |
1777 | // |
1778 | // Note that we spin "globally" on _owner with a classic SMP-polite TATAS |
1779 | // algorithm. On high order SMP systems it would be better to start with |
1780 | // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, |
1781 | // a contending thread could enqueue itself on the cxq and then spin locally |
1782 | // on a thread-specific variable such as its ParkEvent._Event flag. |
1783 | // That's left as an exercise for the reader. Note that global spinning is |
1784 | // not problematic on Niagara, as the L2 cache serves the interconnect and |
1785 | // has both low latency and massive bandwidth. |
1786 | // |
1787 | // Broadly, we can fix the spin frequency -- that is, the % of contended lock |
1788 | // acquisition attempts where we opt to spin -- at 100% and vary the spin count |
1789 | // (duration) or we can fix the count at approximately the duration of |
1790 | // a context switch and vary the frequency. Of course we could also |
1791 | // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. |
1792 | // For a description of 'Adaptive spin-then-block mutual exclusion in |
1793 | // multi-threaded processing,' see U.S. Pat. No. 8046758. |
1794 | // |
1795 | // This implementation varies the duration "D", where D varies with |
1796 | // the success rate of recent spin attempts. (D is capped at approximately |
1797 | // length of a round-trip context switch). The success rate for recent |
1798 | // spin attempts is a good predictor of the success rate of future spin |
1799 | // attempts. The mechanism adapts automatically to varying critical |
1800 | // section length (lock modality), system load and degree of parallelism. |
1801 | // D is maintained per-monitor in _SpinDuration and is initialized |
1802 | // optimistically. Spin frequency is fixed at 100%. |
1803 | // |
1804 | // Note that _SpinDuration is volatile, but we update it without locks |
1805 | // or atomics. The code is designed so that _SpinDuration stays within |
1806 | // a reasonable range even in the presence of races. The arithmetic |
1807 | // operations on _SpinDuration are closed over the domain of legal values, |
1808 | // so at worst a race will install and older but still legal value. |
1809 | // At the very worst this introduces some apparent non-determinism. |
1810 | // We might spin when we shouldn't or vice-versa, but since the spin |
1811 | // count are relatively short, even in the worst case, the effect is harmless. |
1812 | // |
1813 | // Care must be taken that a low "D" value does not become an |
1814 | // an absorbing state. Transient spinning failures -- when spinning |
1815 | // is overall profitable -- should not cause the system to converge |
1816 | // on low "D" values. We want spinning to be stable and predictable |
1817 | // and fairly responsive to change and at the same time we don't want |
1818 | // it to oscillate, become metastable, be "too" non-deterministic, |
1819 | // or converge on or enter undesirable stable absorbing states. |
1820 | // |
1821 | // We implement a feedback-based control system -- using past behavior |
1822 | // to predict future behavior. We face two issues: (a) if the |
1823 | // input signal is random then the spin predictor won't provide optimal |
1824 | // results, and (b) if the signal frequency is too high then the control |
1825 | // system, which has some natural response lag, will "chase" the signal. |
1826 | // (b) can arise from multimodal lock hold times. Transient preemption |
1827 | // can also result in apparent bimodal lock hold times. |
1828 | // Although sub-optimal, neither condition is particularly harmful, as |
1829 | // in the worst-case we'll spin when we shouldn't or vice-versa. |
1830 | // The maximum spin duration is rather short so the failure modes aren't bad. |
1831 | // To be conservative, I've tuned the gain in system to bias toward |
1832 | // _not spinning. Relatedly, the system can sometimes enter a mode where it |
1833 | // "rings" or oscillates between spinning and not spinning. This happens |
1834 | // when spinning is just on the cusp of profitability, however, so the |
1835 | // situation is not dire. The state is benign -- there's no need to add |
1836 | // hysteresis control to damp the transition rate between spinning and |
1837 | // not spinning. |
1838 | |
1839 | // Spinning: Fixed frequency (100%), vary duration |
1840 | int ObjectMonitor::TrySpin(JavaThread* current) { |
1841 | // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. |
1842 | int ctr = Knob_FixedSpin; |
1843 | if (ctr != 0) { |
1844 | while (--ctr >= 0) { |
1845 | if (TryLock(current) > 0) return 1; |
1846 | SpinPause(); |
1847 | } |
1848 | return 0; |
1849 | } |
1850 | |
1851 | for (ctr = Knob_PreSpin + 1; --ctr >= 0;) { |
1852 | if (TryLock(current) > 0) { |
1853 | // Increase _SpinDuration ... |
1854 | // Note that we don't clamp SpinDuration precisely at SpinLimit. |
1855 | // Raising _SpurDuration to the poverty line is key. |
1856 | int x = _SpinDuration; |
1857 | if (x < Knob_SpinLimit) { |
1858 | if (x < Knob_Poverty) x = Knob_Poverty; |
1859 | _SpinDuration = x + Knob_BonusB; |
1860 | } |
1861 | return 1; |
1862 | } |
1863 | SpinPause(); |
1864 | } |
1865 | |
1866 | // Admission control - verify preconditions for spinning |
1867 | // |
1868 | // We always spin a little bit, just to prevent _SpinDuration == 0 from |
1869 | // becoming an absorbing state. Put another way, we spin briefly to |
1870 | // sample, just in case the system load, parallelism, contention, or lock |
1871 | // modality changed. |
1872 | // |
1873 | // Consider the following alternative: |
1874 | // Periodically set _SpinDuration = _SpinLimit and try a long/full |
1875 | // spin attempt. "Periodically" might mean after a tally of |
1876 | // the # of failed spin attempts (or iterations) reaches some threshold. |
1877 | // This takes us into the realm of 1-out-of-N spinning, where we |
1878 | // hold the duration constant but vary the frequency. |
1879 | |
1880 | ctr = _SpinDuration; |
1881 | if (ctr <= 0) return 0; |
1882 | |
1883 | if (NotRunnable(current, (JavaThread*) owner_raw())) { |
1884 | return 0; |
1885 | } |
1886 | |
1887 | // We're good to spin ... spin ingress. |
1888 | // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades |
1889 | // when preparing to LD...CAS _owner, etc and the CAS is likely |
1890 | // to succeed. |
1891 | if (_succ == NULL__null) { |
1892 | _succ = current; |
1893 | } |
1894 | Thread* prv = NULL__null; |
1895 | |
1896 | // There are three ways to exit the following loop: |
1897 | // 1. A successful spin where this thread has acquired the lock. |
1898 | // 2. Spin failure with prejudice |
1899 | // 3. Spin failure without prejudice |
1900 | |
1901 | while (--ctr >= 0) { |
1902 | |
1903 | // Periodic polling -- Check for pending GC |
1904 | // Threads may spin while they're unsafe. |
1905 | // We don't want spinning threads to delay the JVM from reaching |
1906 | // a stop-the-world safepoint or to steal cycles from GC. |
1907 | // If we detect a pending safepoint we abort in order that |
1908 | // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) |
1909 | // this thread, if safe, doesn't steal cycles from GC. |
1910 | // This is in keeping with the "no loitering in runtime" rule. |
1911 | // We periodically check to see if there's a safepoint pending. |
1912 | if ((ctr & 0xFF) == 0) { |
1913 | if (SafepointMechanism::should_process(current)) { |
1914 | goto Abort; // abrupt spin egress |
1915 | } |
1916 | SpinPause(); |
1917 | } |
1918 | |
1919 | // Probe _owner with TATAS |
1920 | // If this thread observes the monitor transition or flicker |
1921 | // from locked to unlocked to locked, then the odds that this |
1922 | // thread will acquire the lock in this spin attempt go down |
1923 | // considerably. The same argument applies if the CAS fails |
1924 | // or if we observe _owner change from one non-null value to |
1925 | // another non-null value. In such cases we might abort |
1926 | // the spin without prejudice or apply a "penalty" to the |
1927 | // spin count-down variable "ctr", reducing it by 100, say. |
1928 | |
1929 | JavaThread* ox = (JavaThread*) owner_raw(); |
1930 | if (ox == NULL__null) { |
1931 | ox = (JavaThread*)try_set_owner_from(NULL__null, current); |
1932 | if (ox == NULL__null) { |
1933 | // The CAS succeeded -- this thread acquired ownership |
1934 | // Take care of some bookkeeping to exit spin state. |
1935 | if (_succ == current) { |
1936 | _succ = NULL__null; |
1937 | } |
1938 | |
1939 | // Increase _SpinDuration : |
1940 | // The spin was successful (profitable) so we tend toward |
1941 | // longer spin attempts in the future. |
1942 | // CONSIDER: factor "ctr" into the _SpinDuration adjustment. |
1943 | // If we acquired the lock early in the spin cycle it |
1944 | // makes sense to increase _SpinDuration proportionally. |
1945 | // Note that we don't clamp SpinDuration precisely at SpinLimit. |
1946 | int x = _SpinDuration; |
1947 | if (x < Knob_SpinLimit) { |
1948 | if (x < Knob_Poverty) x = Knob_Poverty; |
1949 | _SpinDuration = x + Knob_Bonus; |
1950 | } |
1951 | return 1; |
1952 | } |
1953 | |
1954 | // The CAS failed ... we can take any of the following actions: |
1955 | // * penalize: ctr -= CASPenalty |
1956 | // * exit spin with prejudice -- goto Abort; |
1957 | // * exit spin without prejudice. |
1958 | // * Since CAS is high-latency, retry again immediately. |
1959 | prv = ox; |
Value stored to 'prv' is never read | |
1960 | goto Abort; |
1961 | } |
1962 | |
1963 | // Did lock ownership change hands ? |
1964 | if (ox != prv && prv != NULL__null) { |
1965 | goto Abort; |
1966 | } |
1967 | prv = ox; |
1968 | |
1969 | // Abort the spin if the owner is not executing. |
1970 | // The owner must be executing in order to drop the lock. |
1971 | // Spinning while the owner is OFFPROC is idiocy. |
1972 | // Consider: ctr -= RunnablePenalty ; |
1973 | if (NotRunnable(current, ox)) { |
1974 | goto Abort; |
1975 | } |
1976 | if (_succ == NULL__null) { |
1977 | _succ = current; |
1978 | } |
1979 | } |
1980 | |
1981 | // Spin failed with prejudice -- reduce _SpinDuration. |
1982 | // TODO: Use an AIMD-like policy to adjust _SpinDuration. |
1983 | // AIMD is globally stable. |
1984 | { |
1985 | int x = _SpinDuration; |
1986 | if (x > 0) { |
1987 | // Consider an AIMD scheme like: x -= (x >> 3) + 100 |
1988 | // This is globally sample and tends to damp the response. |
1989 | x -= Knob_Penalty; |
1990 | if (x < 0) x = 0; |
1991 | _SpinDuration = x; |
1992 | } |
1993 | } |
1994 | |
1995 | Abort: |
1996 | if (_succ == current) { |
1997 | _succ = NULL__null; |
1998 | // Invariant: after setting succ=null a contending thread |
1999 | // must recheck-retry _owner before parking. This usually happens |
2000 | // in the normal usage of TrySpin(), but it's safest |
2001 | // to make TrySpin() as foolproof as possible. |
2002 | OrderAccess::fence(); |
2003 | if (TryLock(current) > 0) return 1; |
2004 | } |
2005 | return 0; |
2006 | } |
2007 | |
2008 | // NotRunnable() -- informed spinning |
2009 | // |
2010 | // Don't bother spinning if the owner is not eligible to drop the lock. |
2011 | // Spin only if the owner thread is _thread_in_Java or _thread_in_vm. |
2012 | // The thread must be runnable in order to drop the lock in timely fashion. |
2013 | // If the _owner is not runnable then spinning will not likely be |
2014 | // successful (profitable). |
2015 | // |
2016 | // Beware -- the thread referenced by _owner could have died |
2017 | // so a simply fetch from _owner->_thread_state might trap. |
2018 | // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state. |
2019 | // Because of the lifecycle issues, the _thread_state values |
2020 | // observed by NotRunnable() might be garbage. NotRunnable must |
2021 | // tolerate this and consider the observed _thread_state value |
2022 | // as advisory. |
2023 | // |
2024 | // Beware too, that _owner is sometimes a BasicLock address and sometimes |
2025 | // a thread pointer. |
2026 | // Alternately, we might tag the type (thread pointer vs basiclock pointer) |
2027 | // with the LSB of _owner. Another option would be to probabilistically probe |
2028 | // the putative _owner->TypeTag value. |
2029 | // |
2030 | // Checking _thread_state isn't perfect. Even if the thread is |
2031 | // in_java it might be blocked on a page-fault or have been preempted |
2032 | // and sitting on a ready/dispatch queue. |
2033 | // |
2034 | // The return value from NotRunnable() is *advisory* -- the |
2035 | // result is based on sampling and is not necessarily coherent. |
2036 | // The caller must tolerate false-negative and false-positive errors. |
2037 | // Spinning, in general, is probabilistic anyway. |
2038 | |
2039 | |
2040 | int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) { |
2041 | // Check ox->TypeTag == 2BAD. |
2042 | if (ox == NULL__null) return 0; |
2043 | |
2044 | // Avoid transitive spinning ... |
2045 | // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L. |
2046 | // Immediately after T1 acquires L it's possible that T2, also |
2047 | // spinning on L, will see L.Owner=T1 and T1._Stalled=L. |
2048 | // This occurs transiently after T1 acquired L but before |
2049 | // T1 managed to clear T1.Stalled. T2 does not need to abort |
2050 | // its spin in this circumstance. |
2051 | intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1)); |
2052 | |
2053 | if (BlockedOn == 1) return 1; |
2054 | if (BlockedOn != 0) { |
2055 | return BlockedOn != intptr_t(this) && owner_raw() == ox; |
2056 | } |
2057 | |
2058 | assert(sizeof(ox->_thread_state == sizeof(int)), "invariant")do { if (!(sizeof(ox->_thread_state == sizeof(int)))) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2058, "assert(" "sizeof(ox->_thread_state == sizeof(int))" ") failed", "invariant"); ::breakpoint(); } } while (0); |
2059 | int jst = SafeFetch32((int *) &ox->_thread_state, -1);; |
2060 | // consider also: jst != _thread_in_Java -- but that's overspecific. |
2061 | return jst == _thread_blocked || jst == _thread_in_native; |
2062 | } |
2063 | |
2064 | |
2065 | // ----------------------------------------------------------------------------- |
2066 | // WaitSet management ... |
2067 | |
2068 | ObjectWaiter::ObjectWaiter(JavaThread* current) { |
2069 | _next = NULL__null; |
2070 | _prev = NULL__null; |
2071 | _notified = 0; |
2072 | _notifier_tid = 0; |
2073 | TState = TS_RUN; |
2074 | _thread = current; |
2075 | _event = _thread->_ParkEvent; |
2076 | _active = false; |
2077 | assert(_event != NULL, "invariant")do { if (!(_event != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2077, "assert(" "_event != __null" ") failed", "invariant") ; ::breakpoint(); } } while (0); |
2078 | } |
2079 | |
2080 | void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { |
2081 | _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); |
2082 | } |
2083 | |
2084 | void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { |
2085 | JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); |
2086 | } |
2087 | |
2088 | inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { |
2089 | assert(node != NULL, "should not add NULL node")do { if (!(node != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2089, "assert(" "node != __null" ") failed", "should not add NULL node" ); ::breakpoint(); } } while (0); |
2090 | assert(node->_prev == NULL, "node already in list")do { if (!(node->_prev == __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2090, "assert(" "node->_prev == __null" ") failed", "node already in list" ); ::breakpoint(); } } while (0); |
2091 | assert(node->_next == NULL, "node already in list")do { if (!(node->_next == __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2091, "assert(" "node->_next == __null" ") failed", "node already in list" ); ::breakpoint(); } } while (0); |
2092 | // put node at end of queue (circular doubly linked list) |
2093 | if (_WaitSet == NULL__null) { |
2094 | _WaitSet = node; |
2095 | node->_prev = node; |
2096 | node->_next = node; |
2097 | } else { |
2098 | ObjectWaiter* head = _WaitSet; |
2099 | ObjectWaiter* tail = head->_prev; |
2100 | assert(tail->_next == head, "invariant check")do { if (!(tail->_next == head)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2100, "assert(" "tail->_next == head" ") failed", "invariant check" ); ::breakpoint(); } } while (0); |
2101 | tail->_next = node; |
2102 | head->_prev = node; |
2103 | node->_next = head; |
2104 | node->_prev = tail; |
2105 | } |
2106 | } |
2107 | |
2108 | inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { |
2109 | // dequeue the very first waiter |
2110 | ObjectWaiter* waiter = _WaitSet; |
2111 | if (waiter) { |
2112 | DequeueSpecificWaiter(waiter); |
2113 | } |
2114 | return waiter; |
2115 | } |
2116 | |
2117 | inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { |
2118 | assert(node != NULL, "should not dequeue NULL node")do { if (!(node != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2118, "assert(" "node != __null" ") failed", "should not dequeue NULL node" ); ::breakpoint(); } } while (0); |
2119 | assert(node->_prev != NULL, "node already removed from list")do { if (!(node->_prev != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2119, "assert(" "node->_prev != __null" ") failed", "node already removed from list" ); ::breakpoint(); } } while (0); |
2120 | assert(node->_next != NULL, "node already removed from list")do { if (!(node->_next != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2120, "assert(" "node->_next != __null" ") failed", "node already removed from list" ); ::breakpoint(); } } while (0); |
2121 | // when the waiter has woken up because of interrupt, |
2122 | // timeout or other spurious wake-up, dequeue the |
2123 | // waiter from waiting list |
2124 | ObjectWaiter* next = node->_next; |
2125 | if (next == node) { |
2126 | assert(node->_prev == node, "invariant check")do { if (!(node->_prev == node)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2126, "assert(" "node->_prev == node" ") failed", "invariant check" ); ::breakpoint(); } } while (0); |
2127 | _WaitSet = NULL__null; |
2128 | } else { |
2129 | ObjectWaiter* prev = node->_prev; |
2130 | assert(prev->_next == node, "invariant check")do { if (!(prev->_next == node)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2130, "assert(" "prev->_next == node" ") failed", "invariant check" ); ::breakpoint(); } } while (0); |
2131 | assert(next->_prev == node, "invariant check")do { if (!(next->_prev == node)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2131, "assert(" "next->_prev == node" ") failed", "invariant check" ); ::breakpoint(); } } while (0); |
2132 | next->_prev = prev; |
2133 | prev->_next = next; |
2134 | if (_WaitSet == node) { |
2135 | _WaitSet = next; |
2136 | } |
2137 | } |
2138 | node->_next = NULL__null; |
2139 | node->_prev = NULL__null; |
2140 | } |
2141 | |
2142 | // ----------------------------------------------------------------------------- |
2143 | // PerfData support |
2144 | PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = NULL__null; |
2145 | PerfCounter * ObjectMonitor::_sync_FutileWakeups = NULL__null; |
2146 | PerfCounter * ObjectMonitor::_sync_Parks = NULL__null; |
2147 | PerfCounter * ObjectMonitor::_sync_Notifications = NULL__null; |
2148 | PerfCounter * ObjectMonitor::_sync_Inflations = NULL__null; |
2149 | PerfCounter * ObjectMonitor::_sync_Deflations = NULL__null; |
2150 | PerfLongVariable * ObjectMonitor::_sync_MonExtant = NULL__null; |
2151 | |
2152 | // One-shot global initialization for the sync subsystem. |
2153 | // We could also defer initialization and initialize on-demand |
2154 | // the first time we call ObjectSynchronizer::inflate(). |
2155 | // Initialization would be protected - like so many things - by |
2156 | // the MonitorCache_lock. |
2157 | |
2158 | void ObjectMonitor::Initialize() { |
2159 | assert(!InitDone, "invariant")do { if (!(!InitDone)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/runtime/objectMonitor.cpp" , 2159, "assert(" "!InitDone" ") failed", "invariant"); ::breakpoint (); } } while (0); |
2160 | |
2161 | if (!os::is_MP()) { |
2162 | Knob_SpinLimit = 0; |
2163 | Knob_PreSpin = 0; |
2164 | Knob_FixedSpin = -1; |
2165 | } |
2166 | |
2167 | if (UsePerfData) { |
2168 | EXCEPTION_MARKExceptionMark __em; JavaThread* __the_thread__ = __em.thread( );; |
2169 | #define NEWPERFCOUNTER(n) \ |
2170 | { \ |
2171 | n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ |
2172 | CHECK__the_thread__); if ((((ThreadShadow*)__the_thread__)->has_pending_exception ())) return ; (void)(0); \ |
2173 | } |
2174 | #define NEWPERFVARIABLE(n) \ |
2175 | { \ |
2176 | n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ |
2177 | CHECK__the_thread__); if ((((ThreadShadow*)__the_thread__)->has_pending_exception ())) return ; (void)(0); \ |
2178 | } |
2179 | NEWPERFCOUNTER(_sync_Inflations); |
2180 | NEWPERFCOUNTER(_sync_Deflations); |
2181 | NEWPERFCOUNTER(_sync_ContendedLockAttempts); |
2182 | NEWPERFCOUNTER(_sync_FutileWakeups); |
2183 | NEWPERFCOUNTER(_sync_Parks); |
2184 | NEWPERFCOUNTER(_sync_Notifications); |
2185 | NEWPERFVARIABLE(_sync_MonExtant); |
2186 | #undef NEWPERFCOUNTER |
2187 | #undef NEWPERFVARIABLE |
2188 | } |
2189 | |
2190 | _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); |
2191 | |
2192 | DEBUG_ONLY(InitDone = true;)InitDone = true; |
2193 | } |
2194 | |
2195 | void ObjectMonitor::print_on(outputStream* st) const { |
2196 | // The minimal things to print for markWord printing, more can be added for debugging and logging. |
2197 | st->print("{contentions=0x%08x,waiters=0x%08x" |
2198 | ",recursions=" INTX_FORMAT"%" "l" "d" ",owner=" INTPTR_FORMAT"0x%016" "l" "x" "}", |
2199 | contentions(), waiters(), recursions(), |
2200 | p2i(owner())); |
2201 | } |
2202 | void ObjectMonitor::print() const { print_on(tty); } |
2203 | |
2204 | #ifdef ASSERT1 |
2205 | // Print the ObjectMonitor like a debugger would: |
2206 | // |
2207 | // (ObjectMonitor) 0x00007fdfb6012e40 = { |
2208 | // _header = 0x0000000000000001 |
2209 | // _object = 0x000000070ff45fd0 |
2210 | // _pad_buf0 = { |
2211 | // [0] = '\0' |
2212 | // ... |
2213 | // [43] = '\0' |
2214 | // } |
2215 | // _owner = 0x0000000000000000 |
2216 | // _previous_owner_tid = 0 |
2217 | // _pad_buf1 = { |
2218 | // [0] = '\0' |
2219 | // ... |
2220 | // [47] = '\0' |
2221 | // } |
2222 | // _next_om = 0x0000000000000000 |
2223 | // _recursions = 0 |
2224 | // _EntryList = 0x0000000000000000 |
2225 | // _cxq = 0x0000000000000000 |
2226 | // _succ = 0x0000000000000000 |
2227 | // _Responsible = 0x0000000000000000 |
2228 | // _Spinner = 0 |
2229 | // _SpinDuration = 5000 |
2230 | // _contentions = 0 |
2231 | // _WaitSet = 0x0000700009756248 |
2232 | // _waiters = 1 |
2233 | // _WaitSetLock = 0 |
2234 | // } |
2235 | // |
2236 | void ObjectMonitor::print_debug_style_on(outputStream* st) const { |
2237 | st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT"0x%016" "l" "x" " = {", p2i(this)); |
2238 | st->print_cr(" _header = " INTPTR_FORMAT"0x%016" "l" "x", header().value()); |
2239 | st->print_cr(" _object = " INTPTR_FORMAT"0x%016" "l" "x", p2i(object_peek())); |
2240 | st->print_cr(" _pad_buf0 = {"); |
2241 | st->print_cr(" [0] = '\\0'"); |
2242 | st->print_cr(" ..."); |
2243 | st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); |
2244 | st->print_cr(" }"); |
2245 | st->print_cr(" _owner = " INTPTR_FORMAT"0x%016" "l" "x", p2i(owner_raw())); |
2246 | st->print_cr(" _previous_owner_tid = " UINT64_FORMAT"%" "l" "u", _previous_owner_tid); |
2247 | st->print_cr(" _pad_buf1 = {"); |
2248 | st->print_cr(" [0] = '\\0'"); |
2249 | st->print_cr(" ..."); |
2250 | st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); |
2251 | st->print_cr(" }"); |
2252 | st->print_cr(" _next_om = " INTPTR_FORMAT"0x%016" "l" "x", p2i(next_om())); |
2253 | st->print_cr(" _recursions = " INTX_FORMAT"%" "l" "d", _recursions); |
2254 | st->print_cr(" _EntryList = " INTPTR_FORMAT"0x%016" "l" "x", p2i(_EntryList)); |
2255 | st->print_cr(" _cxq = " INTPTR_FORMAT"0x%016" "l" "x", p2i(_cxq)); |
2256 | st->print_cr(" _succ = " INTPTR_FORMAT"0x%016" "l" "x", p2i(_succ)); |
2257 | st->print_cr(" _Responsible = " INTPTR_FORMAT"0x%016" "l" "x", p2i(_Responsible)); |
2258 | st->print_cr(" _Spinner = %d", _Spinner); |
2259 | st->print_cr(" _SpinDuration = %d", _SpinDuration); |
2260 | st->print_cr(" _contentions = %d", contentions()); |
2261 | st->print_cr(" _WaitSet = " INTPTR_FORMAT"0x%016" "l" "x", p2i(_WaitSet)); |
2262 | st->print_cr(" _waiters = %d", _waiters); |
2263 | st->print_cr(" _WaitSetLock = %d", _WaitSetLock); |
2264 | st->print_cr("}"); |
2265 | } |
2266 | #endif |