File: | jdk/src/hotspot/share/opto/memnode.cpp |
Warning: | line 1063, column 22 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. | |||
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
4 | * | |||
5 | * This code is free software; you can redistribute it and/or modify it | |||
6 | * under the terms of the GNU General Public License version 2 only, as | |||
7 | * published by the Free Software Foundation. | |||
8 | * | |||
9 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
12 | * version 2 for more details (a copy is included in the LICENSE file that | |||
13 | * accompanied this code). | |||
14 | * | |||
15 | * You should have received a copy of the GNU General Public License version | |||
16 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
18 | * | |||
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
20 | * or visit www.oracle.com if you need additional information or have any | |||
21 | * questions. | |||
22 | * | |||
23 | */ | |||
24 | ||||
25 | #include "precompiled.hpp" | |||
26 | #include "classfile/javaClasses.hpp" | |||
27 | #include "compiler/compileLog.hpp" | |||
28 | #include "gc/shared/barrierSet.hpp" | |||
29 | #include "gc/shared/c2/barrierSetC2.hpp" | |||
30 | #include "gc/shared/tlab_globals.hpp" | |||
31 | #include "memory/allocation.inline.hpp" | |||
32 | #include "memory/resourceArea.hpp" | |||
33 | #include "oops/objArrayKlass.hpp" | |||
34 | #include "opto/addnode.hpp" | |||
35 | #include "opto/arraycopynode.hpp" | |||
36 | #include "opto/cfgnode.hpp" | |||
37 | #include "opto/regalloc.hpp" | |||
38 | #include "opto/compile.hpp" | |||
39 | #include "opto/connode.hpp" | |||
40 | #include "opto/convertnode.hpp" | |||
41 | #include "opto/loopnode.hpp" | |||
42 | #include "opto/machnode.hpp" | |||
43 | #include "opto/matcher.hpp" | |||
44 | #include "opto/memnode.hpp" | |||
45 | #include "opto/mulnode.hpp" | |||
46 | #include "opto/narrowptrnode.hpp" | |||
47 | #include "opto/phaseX.hpp" | |||
48 | #include "opto/regmask.hpp" | |||
49 | #include "opto/rootnode.hpp" | |||
50 | #include "opto/vectornode.hpp" | |||
51 | #include "utilities/align.hpp" | |||
52 | #include "utilities/copy.hpp" | |||
53 | #include "utilities/macros.hpp" | |||
54 | #include "utilities/powerOfTwo.hpp" | |||
55 | #include "utilities/vmError.hpp" | |||
56 | ||||
57 | // Portions of code courtesy of Clifford Click | |||
58 | ||||
59 | // Optimization - Graph Style | |||
60 | ||||
61 | static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); | |||
62 | ||||
63 | //============================================================================= | |||
64 | uint MemNode::size_of() const { return sizeof(*this); } | |||
65 | ||||
66 | const TypePtr *MemNode::adr_type() const { | |||
67 | Node* adr = in(Address); | |||
68 | if (adr == NULL__null) return NULL__null; // node is dead | |||
69 | const TypePtr* cross_check = NULL__null; | |||
70 | DEBUG_ONLY(cross_check = _adr_type)cross_check = _adr_type; | |||
71 | return calculate_adr_type(adr->bottom_type(), cross_check); | |||
72 | } | |||
73 | ||||
74 | bool MemNode::check_if_adr_maybe_raw(Node* adr) { | |||
75 | if (adr != NULL__null) { | |||
76 | if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { | |||
77 | return true; | |||
78 | } | |||
79 | } | |||
80 | return false; | |||
81 | } | |||
82 | ||||
83 | #ifndef PRODUCT | |||
84 | void MemNode::dump_spec(outputStream *st) const { | |||
85 | if (in(Address) == NULL__null) return; // node is dead | |||
86 | #ifndef ASSERT1 | |||
87 | // fake the missing field | |||
88 | const TypePtr* _adr_type = NULL__null; | |||
89 | if (in(Address) != NULL__null) | |||
90 | _adr_type = in(Address)->bottom_type()->isa_ptr(); | |||
91 | #endif | |||
92 | dump_adr_type(this, _adr_type, st); | |||
93 | ||||
94 | Compile* C = Compile::current(); | |||
95 | if (C->alias_type(_adr_type)->is_volatile()) { | |||
96 | st->print(" Volatile!"); | |||
97 | } | |||
98 | if (_unaligned_access) { | |||
99 | st->print(" unaligned"); | |||
100 | } | |||
101 | if (_mismatched_access) { | |||
102 | st->print(" mismatched"); | |||
103 | } | |||
104 | if (_unsafe_access) { | |||
105 | st->print(" unsafe"); | |||
106 | } | |||
107 | } | |||
108 | ||||
109 | void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { | |||
110 | st->print(" @"); | |||
111 | if (adr_type == NULL__null) { | |||
112 | st->print("NULL"); | |||
113 | } else { | |||
114 | adr_type->dump_on(st); | |||
115 | Compile* C = Compile::current(); | |||
116 | Compile::AliasType* atp = NULL__null; | |||
117 | if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); | |||
118 | if (atp == NULL__null) | |||
119 | st->print(", idx=?\?;"); | |||
120 | else if (atp->index() == Compile::AliasIdxBot) | |||
121 | st->print(", idx=Bot;"); | |||
122 | else if (atp->index() == Compile::AliasIdxTop) | |||
123 | st->print(", idx=Top;"); | |||
124 | else if (atp->index() == Compile::AliasIdxRaw) | |||
125 | st->print(", idx=Raw;"); | |||
126 | else { | |||
127 | ciField* field = atp->field(); | |||
128 | if (field) { | |||
129 | st->print(", name="); | |||
130 | field->print_name_on(st); | |||
131 | } | |||
132 | st->print(", idx=%d;", atp->index()); | |||
133 | } | |||
134 | } | |||
135 | } | |||
136 | ||||
137 | extern void print_alias_types(); | |||
138 | ||||
139 | #endif | |||
140 | ||||
141 | Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { | |||
142 | assert((t_oop != NULL), "sanity")do { if (!((t_oop != __null))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 142, "assert(" "(t_oop != __null)" ") failed", "sanity"); :: breakpoint(); } } while (0); | |||
143 | bool is_instance = t_oop->is_known_instance_field(); | |||
144 | bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && | |||
145 | (load != NULL__null) && load->is_Load() && | |||
146 | (phase->is_IterGVN() != NULL__null); | |||
147 | if (!(is_instance || is_boxed_value_load)) | |||
148 | return mchain; // don't try to optimize non-instance types | |||
149 | uint instance_id = t_oop->instance_id(); | |||
150 | Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); | |||
151 | Node *prev = NULL__null; | |||
152 | Node *result = mchain; | |||
153 | while (prev != result) { | |||
154 | prev = result; | |||
155 | if (result == start_mem) | |||
156 | break; // hit one of our sentinels | |||
157 | // skip over a call which does not affect this memory slice | |||
158 | if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { | |||
159 | Node *proj_in = result->in(0); | |||
160 | if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { | |||
161 | break; // hit one of our sentinels | |||
162 | } else if (proj_in->is_Call()) { | |||
163 | // ArrayCopyNodes processed here as well | |||
164 | CallNode *call = proj_in->as_Call(); | |||
165 | if (!call->may_modify(t_oop, phase)) { // returns false for instances | |||
166 | result = call->in(TypeFunc::Memory); | |||
167 | } | |||
168 | } else if (proj_in->is_Initialize()) { | |||
169 | AllocateNode* alloc = proj_in->as_Initialize()->allocation(); | |||
170 | // Stop if this is the initialization for the object instance which | |||
171 | // contains this memory slice, otherwise skip over it. | |||
172 | if ((alloc == NULL__null) || (alloc->_idx == instance_id)) { | |||
173 | break; | |||
174 | } | |||
175 | if (is_instance) { | |||
176 | result = proj_in->in(TypeFunc::Memory); | |||
177 | } else if (is_boxed_value_load) { | |||
178 | Node* klass = alloc->in(AllocateNode::KlassNode); | |||
179 | const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); | |||
180 | if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) { | |||
181 | result = proj_in->in(TypeFunc::Memory); // not related allocation | |||
182 | } | |||
183 | } | |||
184 | } else if (proj_in->is_MemBar()) { | |||
185 | ArrayCopyNode* ac = NULL__null; | |||
186 | if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { | |||
187 | break; | |||
188 | } | |||
189 | result = proj_in->in(TypeFunc::Memory); | |||
190 | } else { | |||
191 | assert(false, "unexpected projection")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 191, "assert(" "false" ") failed", "unexpected projection") ; ::breakpoint(); } } while (0); | |||
192 | } | |||
193 | } else if (result->is_ClearArray()) { | |||
194 | if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { | |||
195 | // Can not bypass initialization of the instance | |||
196 | // we are looking for. | |||
197 | break; | |||
198 | } | |||
199 | // Otherwise skip it (the call updated 'result' value). | |||
200 | } else if (result->is_MergeMem()) { | |||
201 | result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL__null, tty); | |||
202 | } | |||
203 | } | |||
204 | return result; | |||
205 | } | |||
206 | ||||
207 | Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { | |||
208 | const TypeOopPtr* t_oop = t_adr->isa_oopptr(); | |||
209 | if (t_oop == NULL__null) | |||
210 | return mchain; // don't try to optimize non-oop types | |||
211 | Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); | |||
212 | bool is_instance = t_oop->is_known_instance_field(); | |||
213 | PhaseIterGVN *igvn = phase->is_IterGVN(); | |||
214 | if (is_instance && igvn != NULL__null && result->is_Phi()) { | |||
215 | PhiNode *mphi = result->as_Phi(); | |||
216 | assert(mphi->bottom_type() == Type::MEMORY, "memory phi required")do { if (!(mphi->bottom_type() == Type::MEMORY)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 216, "assert(" "mphi->bottom_type() == Type::MEMORY" ") failed" , "memory phi required"); ::breakpoint(); } } while (0); | |||
217 | const TypePtr *t = mphi->adr_type(); | |||
218 | if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM || | |||
219 | (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() && | |||
220 | t->is_oopptr()->cast_to_exactness(true) | |||
221 | ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) | |||
222 | ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) { | |||
223 | // clone the Phi with our address type | |||
224 | result = mphi->split_out_instance(t_adr, igvn); | |||
225 | } else { | |||
226 | assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain")do { if (!(phase->C->get_alias_index(t) == phase->C-> get_alias_index(t_adr))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 226, "assert(" "phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr)" ") failed", "correct memory chain"); ::breakpoint(); } } while (0); | |||
227 | } | |||
228 | } | |||
229 | return result; | |||
230 | } | |||
231 | ||||
232 | static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { | |||
233 | uint alias_idx = phase->C->get_alias_index(tp); | |||
234 | Node *mem = mmem; | |||
235 | #ifdef ASSERT1 | |||
236 | { | |||
237 | // Check that current type is consistent with the alias index used during graph construction | |||
238 | assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx")do { if (!(alias_idx >= Compile::AliasIdxRaw)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 238, "assert(" "alias_idx >= Compile::AliasIdxRaw" ") failed" , "must not be a bad alias_idx"); ::breakpoint(); } } while ( 0); | |||
239 | bool consistent = adr_check == NULL__null || adr_check->empty() || | |||
240 | phase->C->must_alias(adr_check, alias_idx ); | |||
241 | // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] | |||
242 | if( !consistent && adr_check != NULL__null && !adr_check->empty() && | |||
243 | tp->isa_aryptr() && tp->offset() == Type::OffsetBot && | |||
244 | adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && | |||
245 | ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || | |||
246 | adr_check->offset() == oopDesc::klass_offset_in_bytes() || | |||
247 | adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { | |||
248 | // don't assert if it is dead code. | |||
249 | consistent = true; | |||
250 | } | |||
251 | if( !consistent ) { | |||
252 | st->print("alias_idx==%d, adr_check==", alias_idx); | |||
253 | if( adr_check == NULL__null ) { | |||
254 | st->print("NULL"); | |||
255 | } else { | |||
256 | adr_check->dump(); | |||
257 | } | |||
258 | st->cr(); | |||
259 | print_alias_types(); | |||
260 | assert(consistent, "adr_check must match alias idx")do { if (!(consistent)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 260, "assert(" "consistent" ") failed", "adr_check must match alias idx" ); ::breakpoint(); } } while (0); | |||
261 | } | |||
262 | } | |||
263 | #endif | |||
264 | // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally | |||
265 | // means an array I have not precisely typed yet. Do not do any | |||
266 | // alias stuff with it any time soon. | |||
267 | const TypeOopPtr *toop = tp->isa_oopptr(); | |||
268 | if( tp->base() != Type::AnyPtr && | |||
269 | !(toop && | |||
270 | toop->klass() != NULL__null && | |||
271 | toop->klass()->is_java_lang_Object() && | |||
272 | toop->offset() == Type::OffsetBot) ) { | |||
273 | // compress paths and change unreachable cycles to TOP | |||
274 | // If not, we can update the input infinitely along a MergeMem cycle | |||
275 | // Equivalent code in PhiNode::Ideal | |||
276 | Node* m = phase->transform(mmem); | |||
277 | // If transformed to a MergeMem, get the desired slice | |||
278 | // Otherwise the returned node represents memory for every slice | |||
279 | mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; | |||
280 | // Update input if it is progress over what we have now | |||
281 | } | |||
282 | return mem; | |||
283 | } | |||
284 | ||||
285 | //--------------------------Ideal_common--------------------------------------- | |||
286 | // Look for degenerate control and memory inputs. Bypass MergeMem inputs. | |||
287 | // Unhook non-raw memories from complete (macro-expanded) initializations. | |||
288 | Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { | |||
289 | // If our control input is a dead region, kill all below the region | |||
290 | Node *ctl = in(MemNode::Control); | |||
291 | if (ctl && remove_dead_region(phase, can_reshape)) | |||
292 | return this; | |||
293 | ctl = in(MemNode::Control); | |||
294 | // Don't bother trying to transform a dead node | |||
295 | if (ctl && ctl->is_top()) return NodeSentinel(Node*)-1; | |||
296 | ||||
297 | PhaseIterGVN *igvn = phase->is_IterGVN(); | |||
298 | // Wait if control on the worklist. | |||
299 | if (ctl && can_reshape && igvn != NULL__null) { | |||
300 | Node* bol = NULL__null; | |||
301 | Node* cmp = NULL__null; | |||
302 | if (ctl->in(0)->is_If()) { | |||
303 | assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity")do { if (!(ctl->is_IfTrue() || ctl->is_IfFalse())) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 303, "assert(" "ctl->is_IfTrue() || ctl->is_IfFalse()" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
304 | bol = ctl->in(0)->in(1); | |||
305 | if (bol->is_Bool()) | |||
306 | cmp = ctl->in(0)->in(1)->in(1); | |||
307 | } | |||
308 | if (igvn->_worklist.member(ctl) || | |||
309 | (bol != NULL__null && igvn->_worklist.member(bol)) || | |||
310 | (cmp != NULL__null && igvn->_worklist.member(cmp)) ) { | |||
311 | // This control path may be dead. | |||
312 | // Delay this memory node transformation until the control is processed. | |||
313 | igvn->_worklist.push(this); | |||
314 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
315 | } | |||
316 | } | |||
317 | // Ignore if memory is dead, or self-loop | |||
318 | Node *mem = in(MemNode::Memory); | |||
319 | if (phase->type( mem ) == Type::TOP) return NodeSentinel(Node*)-1; // caller will return NULL | |||
320 | assert(mem != this, "dead loop in MemNode::Ideal")do { if (!(mem != this)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 320, "assert(" "mem != this" ") failed", "dead loop in MemNode::Ideal" ); ::breakpoint(); } } while (0); | |||
321 | ||||
322 | if (can_reshape && igvn != NULL__null && igvn->_worklist.member(mem)) { | |||
323 | // This memory slice may be dead. | |||
324 | // Delay this mem node transformation until the memory is processed. | |||
325 | igvn->_worklist.push(this); | |||
326 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
327 | } | |||
328 | ||||
329 | Node *address = in(MemNode::Address); | |||
330 | const Type *t_adr = phase->type(address); | |||
331 | if (t_adr == Type::TOP) return NodeSentinel(Node*)-1; // caller will return NULL | |||
332 | ||||
333 | if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { | |||
334 | // Unsafe off-heap access with zero address. Remove access and other control users | |||
335 | // to not confuse optimizations and add a HaltNode to fail if this is ever executed. | |||
336 | assert(ctl != NULL, "unsafe accesses should be control dependent")do { if (!(ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 336, "assert(" "ctl != __null" ") failed", "unsafe accesses should be control dependent" ); ::breakpoint(); } } while (0); | |||
337 | for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { | |||
338 | Node* u = ctl->fast_out(i); | |||
339 | if (u != ctl) { | |||
340 | igvn->rehash_node_delayed(u); | |||
341 | int nb = u->replace_edge(ctl, phase->C->top(), igvn); | |||
342 | --i, imax -= nb; | |||
343 | } | |||
344 | } | |||
345 | Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); | |||
346 | Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); | |||
347 | phase->C->root()->add_req(halt); | |||
348 | return this; | |||
349 | } | |||
350 | ||||
351 | if (can_reshape && igvn != NULL__null && | |||
352 | (igvn->_worklist.member(address) || | |||
353 | (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { | |||
354 | // The address's base and type may change when the address is processed. | |||
355 | // Delay this mem node transformation until the address is processed. | |||
356 | igvn->_worklist.push(this); | |||
357 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
358 | } | |||
359 | ||||
360 | // Do NOT remove or optimize the next lines: ensure a new alias index | |||
361 | // is allocated for an oop pointer type before Escape Analysis. | |||
362 | // Note: C++ will not remove it since the call has side effect. | |||
363 | if (t_adr->isa_oopptr()) { | |||
364 | int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); | |||
365 | } | |||
366 | ||||
367 | Node* base = NULL__null; | |||
368 | if (address->is_AddP()) { | |||
369 | base = address->in(AddPNode::Base); | |||
370 | } | |||
371 | if (base != NULL__null && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && | |||
372 | !t_adr->isa_rawptr()) { | |||
373 | // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. | |||
374 | // Skip this node optimization if its address has TOP base. | |||
375 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
376 | } | |||
377 | ||||
378 | // Avoid independent memory operations | |||
379 | Node* old_mem = mem; | |||
380 | ||||
381 | // The code which unhooks non-raw memories from complete (macro-expanded) | |||
382 | // initializations was removed. After macro-expansion all stores catched | |||
383 | // by Initialize node became raw stores and there is no information | |||
384 | // which memory slices they modify. So it is unsafe to move any memory | |||
385 | // operation above these stores. Also in most cases hooked non-raw memories | |||
386 | // were already unhooked by using information from detect_ptr_independence() | |||
387 | // and find_previous_store(). | |||
388 | ||||
389 | if (mem->is_MergeMem()) { | |||
390 | MergeMemNode* mmem = mem->as_MergeMem(); | |||
391 | const TypePtr *tp = t_adr->is_ptr(); | |||
392 | ||||
393 | mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); | |||
394 | } | |||
395 | ||||
396 | if (mem != old_mem) { | |||
397 | set_req(MemNode::Memory, mem); | |||
398 | if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL__null) { | |||
399 | igvn->_worklist.push(old_mem); | |||
400 | } | |||
401 | if (phase->type(mem) == Type::TOP) return NodeSentinel(Node*)-1; | |||
402 | return this; | |||
403 | } | |||
404 | ||||
405 | // let the subclass continue analyzing... | |||
406 | return NULL__null; | |||
407 | } | |||
408 | ||||
409 | // Helper function for proving some simple control dominations. | |||
410 | // Attempt to prove that all control inputs of 'dom' dominate 'sub'. | |||
411 | // Already assumes that 'dom' is available at 'sub', and that 'sub' | |||
412 | // is not a constant (dominated by the method's StartNode). | |||
413 | // Used by MemNode::find_previous_store to prove that the | |||
414 | // control input of a memory operation predates (dominates) | |||
415 | // an allocation it wants to look past. | |||
416 | bool MemNode::all_controls_dominate(Node* dom, Node* sub) { | |||
417 | if (dom == NULL__null || dom->is_top() || sub == NULL__null || sub->is_top()) | |||
418 | return false; // Conservative answer for dead code | |||
419 | ||||
420 | // Check 'dom'. Skip Proj and CatchProj nodes. | |||
421 | dom = dom->find_exact_control(dom); | |||
422 | if (dom == NULL__null || dom->is_top()) | |||
423 | return false; // Conservative answer for dead code | |||
424 | ||||
425 | if (dom == sub) { | |||
426 | // For the case when, for example, 'sub' is Initialize and the original | |||
427 | // 'dom' is Proj node of the 'sub'. | |||
428 | return false; | |||
429 | } | |||
430 | ||||
431 | if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) | |||
432 | return true; | |||
433 | ||||
434 | // 'dom' dominates 'sub' if its control edge and control edges | |||
435 | // of all its inputs dominate or equal to sub's control edge. | |||
436 | ||||
437 | // Currently 'sub' is either Allocate, Initialize or Start nodes. | |||
438 | // Or Region for the check in LoadNode::Ideal(); | |||
439 | // 'sub' should have sub->in(0) != NULL. | |||
440 | assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||do { if (!(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 441, "assert(" "sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call()" ") failed", "expecting only these nodes"); ::breakpoint(); } } while (0) | |||
441 | sub->is_Region() || sub->is_Call(), "expecting only these nodes")do { if (!(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 441, "assert(" "sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call()" ") failed", "expecting only these nodes"); ::breakpoint(); } } while (0); | |||
442 | ||||
443 | // Get control edge of 'sub'. | |||
444 | Node* orig_sub = sub; | |||
445 | sub = sub->find_exact_control(sub->in(0)); | |||
446 | if (sub == NULL__null || sub->is_top()) | |||
447 | return false; // Conservative answer for dead code | |||
448 | ||||
449 | assert(sub->is_CFG(), "expecting control")do { if (!(sub->is_CFG())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 449, "assert(" "sub->is_CFG()" ") failed", "expecting control" ); ::breakpoint(); } } while (0); | |||
450 | ||||
451 | if (sub == dom) | |||
452 | return true; | |||
453 | ||||
454 | if (sub->is_Start() || sub->is_Root()) | |||
455 | return false; | |||
456 | ||||
457 | { | |||
458 | // Check all control edges of 'dom'. | |||
459 | ||||
460 | ResourceMark rm; | |||
461 | Node_List nlist; | |||
462 | Unique_Node_List dom_list; | |||
463 | ||||
464 | dom_list.push(dom); | |||
465 | bool only_dominating_controls = false; | |||
466 | ||||
467 | for (uint next = 0; next < dom_list.size(); next++) { | |||
468 | Node* n = dom_list.at(next); | |||
469 | if (n == orig_sub) | |||
470 | return false; // One of dom's inputs dominated by sub. | |||
471 | if (!n->is_CFG() && n->pinned()) { | |||
472 | // Check only own control edge for pinned non-control nodes. | |||
473 | n = n->find_exact_control(n->in(0)); | |||
474 | if (n == NULL__null || n->is_top()) | |||
475 | return false; // Conservative answer for dead code | |||
476 | assert(n->is_CFG(), "expecting control")do { if (!(n->is_CFG())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 476, "assert(" "n->is_CFG()" ") failed", "expecting control" ); ::breakpoint(); } } while (0); | |||
477 | dom_list.push(n); | |||
478 | } else if (n->is_Con() || n->is_Start() || n->is_Root()) { | |||
479 | only_dominating_controls = true; | |||
480 | } else if (n->is_CFG()) { | |||
481 | if (n->dominates(sub, nlist)) | |||
482 | only_dominating_controls = true; | |||
483 | else | |||
484 | return false; | |||
485 | } else { | |||
486 | // First, own control edge. | |||
487 | Node* m = n->find_exact_control(n->in(0)); | |||
488 | if (m != NULL__null) { | |||
489 | if (m->is_top()) | |||
490 | return false; // Conservative answer for dead code | |||
491 | dom_list.push(m); | |||
492 | } | |||
493 | // Now, the rest of edges. | |||
494 | uint cnt = n->req(); | |||
495 | for (uint i = 1; i < cnt; i++) { | |||
496 | m = n->find_exact_control(n->in(i)); | |||
497 | if (m == NULL__null || m->is_top()) | |||
498 | continue; | |||
499 | dom_list.push(m); | |||
500 | } | |||
501 | } | |||
502 | } | |||
503 | return only_dominating_controls; | |||
504 | } | |||
505 | } | |||
506 | ||||
507 | //---------------------detect_ptr_independence--------------------------------- | |||
508 | // Used by MemNode::find_previous_store to prove that two base | |||
509 | // pointers are never equal. | |||
510 | // The pointers are accompanied by their associated allocations, | |||
511 | // if any, which have been previously discovered by the caller. | |||
512 | bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, | |||
513 | Node* p2, AllocateNode* a2, | |||
514 | PhaseTransform* phase) { | |||
515 | // Attempt to prove that these two pointers cannot be aliased. | |||
516 | // They may both manifestly be allocations, and they should differ. | |||
517 | // Or, if they are not both allocations, they can be distinct constants. | |||
518 | // Otherwise, one is an allocation and the other a pre-existing value. | |||
519 | if (a1 == NULL__null && a2 == NULL__null) { // neither an allocation | |||
520 | return (p1 != p2) && p1->is_Con() && p2->is_Con(); | |||
521 | } else if (a1 != NULL__null && a2 != NULL__null) { // both allocations | |||
522 | return (a1 != a2); | |||
523 | } else if (a1 != NULL__null) { // one allocation a1 | |||
524 | // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) | |||
525 | return all_controls_dominate(p2, a1); | |||
526 | } else { //(a2 != NULL) // one allocation a2 | |||
527 | return all_controls_dominate(p1, a2); | |||
528 | } | |||
529 | return false; | |||
530 | } | |||
531 | ||||
532 | ||||
533 | // Find an arraycopy ac that produces the memory state represented by parameter mem. | |||
534 | // Return ac if | |||
535 | // (a) can_see_stored_value=true and ac must have set the value for this load or if | |||
536 | // (b) can_see_stored_value=false and ac could have set the value for this load or if | |||
537 | // (c) can_see_stored_value=false and ac cannot have set the value for this load. | |||
538 | // In case (c) change the parameter mem to the memory input of ac to skip it | |||
539 | // when searching stored value. | |||
540 | // Otherwise return NULL. | |||
541 | Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { | |||
542 | ArrayCopyNode* ac = find_array_copy_clone(phase, ld_alloc, mem); | |||
543 | if (ac != NULL__null) { | |||
544 | Node* ld_addp = in(MemNode::Address); | |||
545 | Node* src = ac->in(ArrayCopyNode::Src); | |||
546 | const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); | |||
547 | ||||
548 | // This is a load from a cloned array. The corresponding arraycopy ac must | |||
549 | // have set the value for the load and we can return ac but only if the load | |||
550 | // is known to be within bounds. This is checked below. | |||
551 | if (ary_t != NULL__null && ld_addp->is_AddP()) { | |||
552 | Node* ld_offs = ld_addp->in(AddPNode::Offset); | |||
553 | BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type(); | |||
554 | jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); | |||
555 | jlong elemsize = type2aelembytes(ary_elem); | |||
556 | ||||
557 | const TypeXTypeLong* ld_offs_t = phase->type(ld_offs)->isa_intptr_tisa_long(); | |||
558 | const TypeInt* sizetype = ary_t->size(); | |||
559 | ||||
560 | if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { | |||
561 | // The load is known to be within bounds. It receives its value from ac. | |||
562 | return ac; | |||
563 | } | |||
564 | // The load is known to be out-of-bounds. | |||
565 | } | |||
566 | // The load could be out-of-bounds. It must not be hoisted but must remain | |||
567 | // dependent on the runtime range check. This is achieved by returning NULL. | |||
568 | } else if (mem->is_Proj() && mem->in(0) != NULL__null && mem->in(0)->is_ArrayCopy()) { | |||
569 | ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); | |||
570 | ||||
571 | if (ac->is_arraycopy_validated() || | |||
572 | ac->is_copyof_validated() || | |||
573 | ac->is_copyofrange_validated()) { | |||
574 | Node* ld_addp = in(MemNode::Address); | |||
575 | if (ld_addp->is_AddP()) { | |||
576 | Node* ld_base = ld_addp->in(AddPNode::Address); | |||
577 | Node* ld_offs = ld_addp->in(AddPNode::Offset); | |||
578 | ||||
579 | Node* dest = ac->in(ArrayCopyNode::Dest); | |||
580 | ||||
581 | if (dest == ld_base) { | |||
582 | const TypeXTypeLong *ld_offs_t = phase->type(ld_offs)->isa_intptr_tisa_long(); | |||
583 | if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) { | |||
584 | return ac; | |||
585 | } | |||
586 | if (!can_see_stored_value) { | |||
587 | mem = ac->in(TypeFunc::Memory); | |||
588 | return ac; | |||
589 | } | |||
590 | } | |||
591 | } | |||
592 | } | |||
593 | } | |||
594 | return NULL__null; | |||
595 | } | |||
596 | ||||
597 | ArrayCopyNode* MemNode::find_array_copy_clone(PhaseTransform* phase, Node* ld_alloc, Node* mem) const { | |||
598 | if (mem->is_Proj() && mem->in(0) != NULL__null && (mem->in(0)->Opcode() == Op_MemBarStoreStore || | |||
599 | mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { | |||
600 | if (ld_alloc != NULL__null) { | |||
601 | // Check if there is an array copy for a clone | |||
602 | Node* mb = mem->in(0); | |||
603 | ArrayCopyNode* ac = NULL__null; | |||
604 | if (mb->in(0) != NULL__null && mb->in(0)->is_Proj() && | |||
605 | mb->in(0)->in(0) != NULL__null && mb->in(0)->in(0)->is_ArrayCopy()) { | |||
606 | ac = mb->in(0)->in(0)->as_ArrayCopy(); | |||
607 | } else { | |||
608 | // Step over GC barrier when ReduceInitialCardMarks is disabled | |||
609 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
610 | Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); | |||
611 | ||||
612 | if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { | |||
613 | ac = control_proj_ac->in(0)->as_ArrayCopy(); | |||
614 | } | |||
615 | } | |||
616 | ||||
617 | if (ac != NULL__null && ac->is_clonebasic()) { | |||
618 | AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase); | |||
619 | if (alloc != NULL__null && alloc == ld_alloc) { | |||
620 | return ac; | |||
621 | } | |||
622 | } | |||
623 | } | |||
624 | } | |||
625 | return NULL__null; | |||
626 | } | |||
627 | ||||
628 | // The logic for reordering loads and stores uses four steps: | |||
629 | // (a) Walk carefully past stores and initializations which we | |||
630 | // can prove are independent of this load. | |||
631 | // (b) Observe that the next memory state makes an exact match | |||
632 | // with self (load or store), and locate the relevant store. | |||
633 | // (c) Ensure that, if we were to wire self directly to the store, | |||
634 | // the optimizer would fold it up somehow. | |||
635 | // (d) Do the rewiring, and return, depending on some other part of | |||
636 | // the optimizer to fold up the load. | |||
637 | // This routine handles steps (a) and (b). Steps (c) and (d) are | |||
638 | // specific to loads and stores, so they are handled by the callers. | |||
639 | // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) | |||
640 | // | |||
641 | Node* MemNode::find_previous_store(PhaseTransform* phase) { | |||
642 | Node* ctrl = in(MemNode::Control); | |||
643 | Node* adr = in(MemNode::Address); | |||
644 | intptr_t offset = 0; | |||
645 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
646 | AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); | |||
647 | ||||
648 | if (offset == Type::OffsetBot) | |||
649 | return NULL__null; // cannot unalias unless there are precise offsets | |||
650 | ||||
651 | const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); | |||
652 | const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); | |||
653 | ||||
654 | intptr_t size_in_bytes = memory_size(); | |||
655 | ||||
656 | Node* mem = in(MemNode::Memory); // start searching here... | |||
657 | ||||
658 | int cnt = 50; // Cycle limiter | |||
659 | for (;;) { // While we can dance past unrelated stores... | |||
660 | if (--cnt < 0) break; // Caught in cycle or a complicated dance? | |||
661 | ||||
662 | Node* prev = mem; | |||
663 | if (mem->is_Store()) { | |||
664 | Node* st_adr = mem->in(MemNode::Address); | |||
665 | intptr_t st_offset = 0; | |||
666 | Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); | |||
667 | if (st_base == NULL__null) | |||
668 | break; // inscrutable pointer | |||
669 | ||||
670 | // For raw accesses it's not enough to prove that constant offsets don't intersect. | |||
671 | // We need the bases to be the equal in order for the offset check to make sense. | |||
672 | if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { | |||
673 | break; | |||
674 | } | |||
675 | ||||
676 | if (st_offset != offset && st_offset != Type::OffsetBot) { | |||
677 | const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); | |||
678 | assert(mem->as_Store()->memory_size() <= MAX_STORE, "")do { if (!(mem->as_Store()->memory_size() <= MAX_STORE )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 678, "assert(" "mem->as_Store()->memory_size() <= MAX_STORE" ") failed", ""); ::breakpoint(); } } while (0); | |||
679 | if (st_offset >= offset + size_in_bytes || | |||
680 | st_offset <= offset - MAX_STORE || | |||
681 | st_offset <= offset - mem->as_Store()->memory_size()) { | |||
682 | // Success: The offsets are provably independent. | |||
683 | // (You may ask, why not just test st_offset != offset and be done? | |||
684 | // The answer is that stores of different sizes can co-exist | |||
685 | // in the same sequence of RawMem effects. We sometimes initialize | |||
686 | // a whole 'tile' of array elements with a single jint or jlong.) | |||
687 | mem = mem->in(MemNode::Memory); | |||
688 | continue; // (a) advance through independent store memory | |||
689 | } | |||
690 | } | |||
691 | if (st_base != base && | |||
692 | detect_ptr_independence(base, alloc, | |||
693 | st_base, | |||
694 | AllocateNode::Ideal_allocation(st_base, phase), | |||
695 | phase)) { | |||
696 | // Success: The bases are provably independent. | |||
697 | mem = mem->in(MemNode::Memory); | |||
698 | continue; // (a) advance through independent store memory | |||
699 | } | |||
700 | ||||
701 | // (b) At this point, if the bases or offsets do not agree, we lose, | |||
702 | // since we have not managed to prove 'this' and 'mem' independent. | |||
703 | if (st_base == base && st_offset == offset) { | |||
704 | return mem; // let caller handle steps (c), (d) | |||
705 | } | |||
706 | ||||
707 | } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { | |||
708 | InitializeNode* st_init = mem->in(0)->as_Initialize(); | |||
709 | AllocateNode* st_alloc = st_init->allocation(); | |||
710 | if (st_alloc == NULL__null) | |||
711 | break; // something degenerated | |||
712 | bool known_identical = false; | |||
713 | bool known_independent = false; | |||
714 | if (alloc == st_alloc) | |||
715 | known_identical = true; | |||
716 | else if (alloc != NULL__null) | |||
717 | known_independent = true; | |||
718 | else if (all_controls_dominate(this, st_alloc)) | |||
719 | known_independent = true; | |||
720 | ||||
721 | if (known_independent) { | |||
722 | // The bases are provably independent: Either they are | |||
723 | // manifestly distinct allocations, or else the control | |||
724 | // of this load dominates the store's allocation. | |||
725 | int alias_idx = phase->C->get_alias_index(adr_type()); | |||
726 | if (alias_idx == Compile::AliasIdxRaw) { | |||
727 | mem = st_alloc->in(TypeFunc::Memory); | |||
728 | } else { | |||
729 | mem = st_init->memory(alias_idx); | |||
730 | } | |||
731 | continue; // (a) advance through independent store memory | |||
732 | } | |||
733 | ||||
734 | // (b) at this point, if we are not looking at a store initializing | |||
735 | // the same allocation we are loading from, we lose. | |||
736 | if (known_identical) { | |||
737 | // From caller, can_see_stored_value will consult find_captured_store. | |||
738 | return mem; // let caller handle steps (c), (d) | |||
739 | } | |||
740 | ||||
741 | } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL__null) { | |||
742 | if (prev != mem) { | |||
743 | // Found an arraycopy but it doesn't affect that load | |||
744 | continue; | |||
745 | } | |||
746 | // Found an arraycopy that may affect that load | |||
747 | return mem; | |||
748 | } else if (addr_t != NULL__null && addr_t->is_known_instance_field()) { | |||
749 | // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. | |||
750 | if (mem->is_Proj() && mem->in(0)->is_Call()) { | |||
751 | // ArrayCopyNodes processed here as well. | |||
752 | CallNode *call = mem->in(0)->as_Call(); | |||
753 | if (!call->may_modify(addr_t, phase)) { | |||
754 | mem = call->in(TypeFunc::Memory); | |||
755 | continue; // (a) advance through independent call memory | |||
756 | } | |||
757 | } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { | |||
758 | ArrayCopyNode* ac = NULL__null; | |||
759 | if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { | |||
760 | break; | |||
761 | } | |||
762 | mem = mem->in(0)->in(TypeFunc::Memory); | |||
763 | continue; // (a) advance through independent MemBar memory | |||
764 | } else if (mem->is_ClearArray()) { | |||
765 | if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { | |||
766 | // (the call updated 'mem' value) | |||
767 | continue; // (a) advance through independent allocation memory | |||
768 | } else { | |||
769 | // Can not bypass initialization of the instance | |||
770 | // we are looking for. | |||
771 | return mem; | |||
772 | } | |||
773 | } else if (mem->is_MergeMem()) { | |||
774 | int alias_idx = phase->C->get_alias_index(adr_type()); | |||
775 | mem = mem->as_MergeMem()->memory_at(alias_idx); | |||
776 | continue; // (a) advance through independent MergeMem memory | |||
777 | } | |||
778 | } | |||
779 | ||||
780 | // Unless there is an explicit 'continue', we must bail out here, | |||
781 | // because 'mem' is an inscrutable memory state (e.g., a call). | |||
782 | break; | |||
783 | } | |||
784 | ||||
785 | return NULL__null; // bail out | |||
786 | } | |||
787 | ||||
788 | //----------------------calculate_adr_type------------------------------------- | |||
789 | // Helper function. Notices when the given type of address hits top or bottom. | |||
790 | // Also, asserts a cross-check of the type against the expected address type. | |||
791 | const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { | |||
792 | if (t == Type::TOP) return NULL__null; // does not touch memory any more? | |||
793 | #ifdef ASSERT1 | |||
794 | if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = NULL__null; | |||
795 | #endif | |||
796 | const TypePtr* tp = t->isa_ptr(); | |||
797 | if (tp == NULL__null) { | |||
798 | assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide")do { if (!(cross_check == __null || cross_check == TypePtr::BOTTOM )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 798, "assert(" "cross_check == __null || cross_check == TypePtr::BOTTOM" ") failed", "expected memory type must be wide"); ::breakpoint (); } } while (0); | |||
799 | return TypePtr::BOTTOM; // touches lots of memory | |||
800 | } else { | |||
801 | #ifdef ASSERT1 | |||
802 | // %%%% [phh] We don't check the alias index if cross_check is | |||
803 | // TypeRawPtr::BOTTOM. Needs to be investigated. | |||
804 | if (cross_check != NULL__null && | |||
805 | cross_check != TypePtr::BOTTOM && | |||
806 | cross_check != TypeRawPtr::BOTTOM) { | |||
807 | // Recheck the alias index, to see if it has changed (due to a bug). | |||
808 | Compile* C = Compile::current(); | |||
809 | assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),do { if (!(C->get_alias_index(cross_check) == C->get_alias_index (tp))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 810, "assert(" "C->get_alias_index(cross_check) == C->get_alias_index(tp)" ") failed", "must stay in the original alias category"); ::breakpoint (); } } while (0) | |||
810 | "must stay in the original alias category")do { if (!(C->get_alias_index(cross_check) == C->get_alias_index (tp))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 810, "assert(" "C->get_alias_index(cross_check) == C->get_alias_index(tp)" ") failed", "must stay in the original alias category"); ::breakpoint (); } } while (0); | |||
811 | // The type of the address must be contained in the adr_type, | |||
812 | // disregarding "null"-ness. | |||
813 | // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) | |||
814 | const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); | |||
815 | assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),do { if (!(cross_check->meet(tp_notnull) == cross_check-> remove_speculative())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 816, "assert(" "cross_check->meet(tp_notnull) == cross_check->remove_speculative()" ") failed", "real address must not escape from expected memory type" ); ::breakpoint(); } } while (0) | |||
816 | "real address must not escape from expected memory type")do { if (!(cross_check->meet(tp_notnull) == cross_check-> remove_speculative())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 816, "assert(" "cross_check->meet(tp_notnull) == cross_check->remove_speculative()" ") failed", "real address must not escape from expected memory type" ); ::breakpoint(); } } while (0); | |||
817 | } | |||
818 | #endif | |||
819 | return tp; | |||
820 | } | |||
821 | } | |||
822 | ||||
823 | //============================================================================= | |||
824 | // Should LoadNode::Ideal() attempt to remove control edges? | |||
825 | bool LoadNode::can_remove_control() const { | |||
826 | return true; | |||
827 | } | |||
828 | uint LoadNode::size_of() const { return sizeof(*this); } | |||
829 | bool LoadNode::cmp( const Node &n ) const | |||
830 | { return !Type::cmp( _type, ((LoadNode&)n)._type ); } | |||
831 | const Type *LoadNode::bottom_type() const { return _type; } | |||
832 | uint LoadNode::ideal_reg() const { | |||
833 | return _type->ideal_reg(); | |||
834 | } | |||
835 | ||||
836 | #ifndef PRODUCT | |||
837 | void LoadNode::dump_spec(outputStream *st) const { | |||
838 | MemNode::dump_spec(st); | |||
839 | if( !Verbose && !WizardMode ) { | |||
840 | // standard dump does this in Verbose and WizardMode | |||
841 | st->print(" #"); _type->dump_on(st); | |||
842 | } | |||
843 | if (!depends_only_on_test()) { | |||
844 | st->print(" (does not depend only on test)"); | |||
845 | } | |||
846 | } | |||
847 | #endif | |||
848 | ||||
849 | #ifdef ASSERT1 | |||
850 | //----------------------------is_immutable_value------------------------------- | |||
851 | // Helper function to allow a raw load without control edge for some cases | |||
852 | bool LoadNode::is_immutable_value(Node* adr) { | |||
853 | return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && | |||
854 | adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal && | |||
855 | (adr->in(AddPNode::Offset)->find_intptr_t_confind_long_con(-1) == | |||
856 | in_bytes(JavaThread::osthread_offset()) || | |||
857 | adr->in(AddPNode::Offset)->find_intptr_t_confind_long_con(-1) == | |||
858 | in_bytes(JavaThread::threadObj_offset()))); | |||
859 | } | |||
860 | #endif | |||
861 | ||||
862 | //----------------------------LoadNode::make----------------------------------- | |||
863 | // Polymorphic factory method: | |||
864 | Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo, | |||
865 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { | |||
866 | Compile* C = gvn.C; | |||
867 | ||||
868 | // sanity check the alias category against the created node type | |||
869 | assert(!(adr_type->isa_oopptr() &&do { if (!(!(adr_type->isa_oopptr() && adr_type-> offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())" ") failed", "use LoadKlassNode instead"); ::breakpoint(); } } while (0) | |||
870 | adr_type->offset() == oopDesc::klass_offset_in_bytes()),do { if (!(!(adr_type->isa_oopptr() && adr_type-> offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())" ") failed", "use LoadKlassNode instead"); ::breakpoint(); } } while (0) | |||
871 | "use LoadKlassNode instead")do { if (!(!(adr_type->isa_oopptr() && adr_type-> offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())" ") failed", "use LoadKlassNode instead"); ::breakpoint(); } } while (0); | |||
872 | assert(!(adr_type->isa_aryptr() &&do { if (!(!(adr_type->isa_aryptr() && adr_type-> offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())" ") failed", "use LoadRangeNode instead"); ::breakpoint(); } } while (0) | |||
873 | adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),do { if (!(!(adr_type->isa_aryptr() && adr_type-> offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())" ") failed", "use LoadRangeNode instead"); ::breakpoint(); } } while (0) | |||
874 | "use LoadRangeNode instead")do { if (!(!(adr_type->isa_aryptr() && adr_type-> offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())" ") failed", "use LoadRangeNode instead"); ::breakpoint(); } } while (0); | |||
875 | // Check control edge of raw loads | |||
876 | assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||do { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
877 | // oop will be recorded in oop map if load crosses safepointdo { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
878 | rt->isa_oopptr() || is_immutable_value(adr),do { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
879 | "raw memory operations should have control edge")do { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0); | |||
880 | LoadNode* load = NULL__null; | |||
881 | switch (bt) { | |||
882 | case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
883 | case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
884 | case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
885 | case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
886 | case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
887 | case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break; | |||
888 | case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; | |||
889 | case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; | |||
890 | case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; | |||
891 | case T_OBJECT: | |||
892 | #ifdef _LP641 | |||
893 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { | |||
894 | load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); | |||
895 | } else | |||
896 | #endif | |||
897 | { | |||
898 | assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop")do { if (!(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 898, "assert(" "!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass()" ") failed", "should have got back a narrow oop"); ::breakpoint (); } } while (0); | |||
899 | load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); | |||
900 | } | |||
901 | break; | |||
902 | default: | |||
903 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 903); ::breakpoint(); } while (0); | |||
904 | break; | |||
905 | } | |||
906 | assert(load != NULL, "LoadNode should have been created")do { if (!(load != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 906, "assert(" "load != __null" ") failed", "LoadNode should have been created" ); ::breakpoint(); } } while (0); | |||
907 | if (unaligned) { | |||
908 | load->set_unaligned_access(); | |||
909 | } | |||
910 | if (mismatched) { | |||
911 | load->set_mismatched_access(); | |||
912 | } | |||
913 | if (unsafe) { | |||
914 | load->set_unsafe_access(); | |||
915 | } | |||
916 | load->set_barrier_data(barrier_data); | |||
917 | if (load->Opcode() == Op_LoadN) { | |||
918 | Node* ld = gvn.transform(load); | |||
919 | return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); | |||
920 | } | |||
921 | ||||
922 | return load; | |||
923 | } | |||
924 | ||||
925 | LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, | |||
926 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { | |||
927 | bool require_atomic = true; | |||
928 | LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic); | |||
929 | if (unaligned) { | |||
930 | load->set_unaligned_access(); | |||
931 | } | |||
932 | if (mismatched) { | |||
933 | load->set_mismatched_access(); | |||
934 | } | |||
935 | if (unsafe) { | |||
936 | load->set_unsafe_access(); | |||
937 | } | |||
938 | load->set_barrier_data(barrier_data); | |||
939 | return load; | |||
940 | } | |||
941 | ||||
942 | LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, | |||
943 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { | |||
944 | bool require_atomic = true; | |||
945 | LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic); | |||
946 | if (unaligned) { | |||
947 | load->set_unaligned_access(); | |||
948 | } | |||
949 | if (mismatched) { | |||
950 | load->set_mismatched_access(); | |||
951 | } | |||
952 | if (unsafe) { | |||
953 | load->set_unsafe_access(); | |||
954 | } | |||
955 | load->set_barrier_data(barrier_data); | |||
956 | return load; | |||
957 | } | |||
958 | ||||
959 | ||||
960 | ||||
961 | //------------------------------hash------------------------------------------- | |||
962 | uint LoadNode::hash() const { | |||
963 | // unroll addition of interesting fields | |||
964 | return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); | |||
965 | } | |||
966 | ||||
967 | static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { | |||
968 | if ((atp != NULL__null) && (atp->index() >= Compile::AliasIdxRaw)) { | |||
969 | bool non_volatile = (atp->field() != NULL__null) && !atp->field()->is_volatile(); | |||
970 | bool is_stable_ary = FoldStableValues && | |||
971 | (tp != NULL__null) && (tp->isa_aryptr() != NULL__null) && | |||
972 | tp->isa_aryptr()->is_stable(); | |||
973 | ||||
974 | return (eliminate_boxing && non_volatile) || is_stable_ary; | |||
975 | } | |||
976 | ||||
977 | return false; | |||
978 | } | |||
979 | ||||
980 | // Is the value loaded previously stored by an arraycopy? If so return | |||
981 | // a load node that reads from the source array so we may be able to | |||
982 | // optimize out the ArrayCopy node later. | |||
983 | Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { | |||
984 | Node* ld_adr = in(MemNode::Address); | |||
985 | intptr_t ld_off = 0; | |||
986 | AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); | |||
987 | Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); | |||
988 | if (ac != NULL__null) { | |||
989 | assert(ac->is_ArrayCopy(), "what kind of node can this be?")do { if (!(ac->is_ArrayCopy())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 989, "assert(" "ac->is_ArrayCopy()" ") failed", "what kind of node can this be?" ); ::breakpoint(); } } while (0); | |||
990 | ||||
991 | Node* mem = ac->in(TypeFunc::Memory); | |||
992 | Node* ctl = ac->in(0); | |||
993 | Node* src = ac->in(ArrayCopyNode::Src); | |||
994 | ||||
995 | if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { | |||
996 | return NULL__null; | |||
997 | } | |||
998 | ||||
999 | LoadNode* ld = clone()->as_Load(); | |||
1000 | Node* addp = in(MemNode::Address)->clone(); | |||
1001 | if (ac->as_ArrayCopy()->is_clonebasic()) { | |||
1002 | assert(ld_alloc != NULL, "need an alloc")do { if (!(ld_alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1002, "assert(" "ld_alloc != __null" ") failed", "need an alloc" ); ::breakpoint(); } } while (0); | |||
1003 | assert(addp->is_AddP(), "address must be addp")do { if (!(addp->is_AddP())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1003, "assert(" "addp->is_AddP()" ") failed", "address must be addp" ); ::breakpoint(); } } while (0); | |||
1004 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
1005 | assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern")do { if (!(bs->step_over_gc_barrier(addp->in(AddPNode:: Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode ::Dest)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1005, "assert(" "bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest))" ") failed", "strange pattern"); ::breakpoint(); } } while (0 ); | |||
1006 | assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern")do { if (!(bs->step_over_gc_barrier(addp->in(AddPNode:: Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode ::Dest)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1006, "assert(" "bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest))" ") failed", "strange pattern"); ::breakpoint(); } } while (0 ); | |||
1007 | addp->set_req(AddPNode::Base, src); | |||
1008 | addp->set_req(AddPNode::Address, src); | |||
1009 | } else { | |||
1010 | assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac-> as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()" ") failed", "only supported cases"); ::breakpoint(); } } while (0) | |||
1011 | ac->as_ArrayCopy()->is_copyof_validated() ||do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac-> as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()" ") failed", "only supported cases"); ::breakpoint(); } } while (0) | |||
1012 | ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases")do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac-> as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()" ") failed", "only supported cases"); ::breakpoint(); } } while (0); | |||
1013 | assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be")do { if (!(addp->in(AddPNode::Base) == addp->in(AddPNode ::Address))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1013, "assert(" "addp->in(AddPNode::Base) == addp->in(AddPNode::Address)" ") failed", "should be"); ::breakpoint(); } } while (0); | |||
1014 | addp->set_req(AddPNode::Base, src); | |||
1015 | addp->set_req(AddPNode::Address, src); | |||
1016 | ||||
1017 | const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); | |||
1018 | BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type(); | |||
1019 | uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); | |||
1020 | uint shift = exact_log2(type2aelembytes(ary_elem)); | |||
1021 | ||||
1022 | Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); | |||
1023 | #ifdef _LP641 | |||
1024 | diff = phase->transform(new ConvI2LNode(diff)); | |||
1025 | #endif | |||
1026 | diff = phase->transform(new LShiftXNodeLShiftLNode(diff, phase->intcon(shift))); | |||
1027 | ||||
1028 | Node* offset = phase->transform(new AddXNodeAddLNode(addp->in(AddPNode::Offset), diff)); | |||
1029 | addp->set_req(AddPNode::Offset, offset); | |||
1030 | } | |||
1031 | addp = phase->transform(addp); | |||
1032 | #ifdef ASSERT1 | |||
1033 | const TypePtr* adr_type = phase->type(addp)->is_ptr(); | |||
1034 | ld->_adr_type = adr_type; | |||
1035 | #endif | |||
1036 | ld->set_req(MemNode::Address, addp); | |||
1037 | ld->set_req(0, ctl); | |||
1038 | ld->set_req(MemNode::Memory, mem); | |||
1039 | // load depends on the tests that validate the arraycopy | |||
1040 | ld->_control_dependency = UnknownControl; | |||
1041 | return ld; | |||
1042 | } | |||
1043 | return NULL__null; | |||
1044 | } | |||
1045 | ||||
1046 | ||||
1047 | //---------------------------can_see_stored_value------------------------------ | |||
1048 | // This routine exists to make sure this set of tests is done the same | |||
1049 | // everywhere. We need to make a coordinated change: first LoadNode::Ideal | |||
1050 | // will change the graph shape in a way which makes memory alive twice at the | |||
1051 | // same time (uses the Oracle model of aliasing), then some | |||
1052 | // LoadXNode::Identity will fold things back to the equivalence-class model | |||
1053 | // of aliasing. | |||
1054 | Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const { | |||
1055 | Node* ld_adr = in(MemNode::Address); | |||
1056 | intptr_t ld_off = 0; | |||
1057 | Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); | |||
1058 | Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase); | |||
1059 | const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); | |||
1060 | Compile::AliasType* atp = (tp
| |||
1061 | // This is more general than load from boxing objects. | |||
1062 | if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { | |||
1063 | uint alias_idx = atp->index(); | |||
| ||||
1064 | Node* result = NULL__null; | |||
1065 | Node* current = st; | |||
1066 | // Skip through chains of MemBarNodes checking the MergeMems for | |||
1067 | // new states for the slice of this load. Stop once any other | |||
1068 | // kind of node is encountered. Loads from final memory can skip | |||
1069 | // through any kind of MemBar but normal loads shouldn't skip | |||
1070 | // through MemBarAcquire since the could allow them to move out of | |||
1071 | // a synchronized region. It is not safe to step over MemBarCPUOrder, | |||
1072 | // because alias info above them may be inaccurate (e.g., due to | |||
1073 | // mixed/mismatched unsafe accesses). | |||
1074 | bool is_final_mem = !atp->is_rewritable(); | |||
1075 | while (current->is_Proj()) { | |||
1076 | int opc = current->in(0)->Opcode(); | |||
1077 | if ((is_final_mem && (opc == Op_MemBarAcquire || | |||
1078 | opc == Op_MemBarAcquireLock || | |||
1079 | opc == Op_LoadFence)) || | |||
1080 | opc == Op_MemBarRelease || | |||
1081 | opc == Op_StoreFence || | |||
1082 | opc == Op_MemBarReleaseLock || | |||
1083 | opc == Op_MemBarStoreStore || | |||
1084 | opc == Op_StoreStoreFence) { | |||
1085 | Node* mem = current->in(0)->in(TypeFunc::Memory); | |||
1086 | if (mem->is_MergeMem()) { | |||
1087 | MergeMemNode* merge = mem->as_MergeMem(); | |||
1088 | Node* new_st = merge->memory_at(alias_idx); | |||
1089 | if (new_st == merge->base_memory()) { | |||
1090 | // Keep searching | |||
1091 | current = new_st; | |||
1092 | continue; | |||
1093 | } | |||
1094 | // Save the new memory state for the slice and fall through | |||
1095 | // to exit. | |||
1096 | result = new_st; | |||
1097 | } | |||
1098 | } | |||
1099 | break; | |||
1100 | } | |||
1101 | if (result != NULL__null) { | |||
1102 | st = result; | |||
1103 | } | |||
1104 | } | |||
1105 | ||||
1106 | // Loop around twice in the case Load -> Initialize -> Store. | |||
1107 | // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) | |||
1108 | for (int trip = 0; trip <= 1; trip++) { | |||
1109 | ||||
1110 | if (st->is_Store()) { | |||
1111 | Node* st_adr = st->in(MemNode::Address); | |||
1112 | if (st_adr != ld_adr) { | |||
1113 | // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). | |||
1114 | intptr_t st_off = 0; | |||
1115 | Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); | |||
1116 | if (ld_base == NULL__null) return NULL__null; | |||
1117 | if (st_base == NULL__null) return NULL__null; | |||
1118 | if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return NULL__null; | |||
1119 | if (ld_off != st_off) return NULL__null; | |||
1120 | if (ld_off == Type::OffsetBot) return NULL__null; | |||
1121 | // Same base, same offset. | |||
1122 | // Possible improvement for arrays: check index value instead of absolute offset. | |||
1123 | ||||
1124 | // At this point we have proven something like this setup: | |||
1125 | // B = << base >> | |||
1126 | // L = LoadQ(AddP(Check/CastPP(B), #Off)) | |||
1127 | // S = StoreQ(AddP( B , #Off), V) | |||
1128 | // (Actually, we haven't yet proven the Q's are the same.) | |||
1129 | // In other words, we are loading from a casted version of | |||
1130 | // the same pointer-and-offset that we stored to. | |||
1131 | // Casted version may carry a dependency and it is respected. | |||
1132 | // Thus, we are able to replace L by V. | |||
1133 | } | |||
1134 | // Now prove that we have a LoadQ matched to a StoreQ, for some Q. | |||
1135 | if (store_Opcode() != st->Opcode()) { | |||
1136 | return NULL__null; | |||
1137 | } | |||
1138 | // LoadVector/StoreVector needs additional check to ensure the types match. | |||
1139 | if (st->is_StoreVector()) { | |||
1140 | const TypeVect* in_vt = st->as_StoreVector()->vect_type(); | |||
1141 | const TypeVect* out_vt = as_LoadVector()->vect_type(); | |||
1142 | if (in_vt != out_vt) { | |||
1143 | return NULL__null; | |||
1144 | } | |||
1145 | } | |||
1146 | return st->in(MemNode::ValueIn); | |||
1147 | } | |||
1148 | ||||
1149 | // A load from a freshly-created object always returns zero. | |||
1150 | // (This can happen after LoadNode::Ideal resets the load's memory input | |||
1151 | // to find_captured_store, which returned InitializeNode::zero_memory.) | |||
1152 | if (st->is_Proj() && st->in(0)->is_Allocate() && | |||
1153 | (st->in(0) == ld_alloc) && | |||
1154 | (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { | |||
1155 | // return a zero value for the load's basic type | |||
1156 | // (This is one of the few places where a generic PhaseTransform | |||
1157 | // can create new nodes. Think of it as lazily manifesting | |||
1158 | // virtually pre-existing constants.) | |||
1159 | if (memory_type() != T_VOID) { | |||
1160 | if (ReduceBulkZeroing || find_array_copy_clone(phase, ld_alloc, in(MemNode::Memory)) == NULL__null) { | |||
1161 | // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an | |||
1162 | // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done | |||
1163 | // by the ArrayCopyNode. | |||
1164 | return phase->zerocon(memory_type()); | |||
1165 | } | |||
1166 | } else { | |||
1167 | // TODO: materialize all-zero vector constant | |||
1168 | assert(!isa_Load() || as_Load()->type()->isa_vect(), "")do { if (!(!isa_Load() || as_Load()->type()->isa_vect() )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1168, "assert(" "!isa_Load() || as_Load()->type()->isa_vect()" ") failed", ""); ::breakpoint(); } } while (0); | |||
1169 | } | |||
1170 | } | |||
1171 | ||||
1172 | // A load from an initialization barrier can match a captured store. | |||
1173 | if (st->is_Proj() && st->in(0)->is_Initialize()) { | |||
1174 | InitializeNode* init = st->in(0)->as_Initialize(); | |||
1175 | AllocateNode* alloc = init->allocation(); | |||
1176 | if ((alloc != NULL__null) && (alloc == ld_alloc)) { | |||
1177 | // examine a captured store value | |||
1178 | st = init->find_captured_store(ld_off, memory_size(), phase); | |||
1179 | if (st != NULL__null) { | |||
1180 | continue; // take one more trip around | |||
1181 | } | |||
1182 | } | |||
1183 | } | |||
1184 | ||||
1185 | // Load boxed value from result of valueOf() call is input parameter. | |||
1186 | if (this->is_Load() && ld_adr->is_AddP() && | |||
1187 | (tp != NULL__null) && tp->is_ptr_to_boxed_value()) { | |||
1188 | intptr_t ignore = 0; | |||
1189 | Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); | |||
1190 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
1191 | base = bs->step_over_gc_barrier(base); | |||
1192 | if (base != NULL__null && base->is_Proj() && | |||
1193 | base->as_Proj()->_con == TypeFunc::Parms && | |||
1194 | base->in(0)->is_CallStaticJava() && | |||
1195 | base->in(0)->as_CallStaticJava()->is_boxing_method()) { | |||
1196 | return base->in(0)->in(TypeFunc::Parms); | |||
1197 | } | |||
1198 | } | |||
1199 | ||||
1200 | break; | |||
1201 | } | |||
1202 | ||||
1203 | return NULL__null; | |||
1204 | } | |||
1205 | ||||
1206 | //----------------------is_instance_field_load_with_local_phi------------------ | |||
1207 | bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { | |||
1208 | if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && | |||
1209 | in(Address)->is_AddP() ) { | |||
1210 | const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); | |||
1211 | // Only instances and boxed values. | |||
1212 | if( t_oop != NULL__null && | |||
1213 | (t_oop->is_ptr_to_boxed_value() || | |||
1214 | t_oop->is_known_instance_field()) && | |||
1215 | t_oop->offset() != Type::OffsetBot && | |||
1216 | t_oop->offset() != Type::OffsetTop) { | |||
1217 | return true; | |||
1218 | } | |||
1219 | } | |||
1220 | return false; | |||
1221 | } | |||
1222 | ||||
1223 | //------------------------------Identity--------------------------------------- | |||
1224 | // Loads are identity if previous store is to same address | |||
1225 | Node* LoadNode::Identity(PhaseGVN* phase) { | |||
1226 | // If the previous store-maker is the right kind of Store, and the store is | |||
1227 | // to the same address, then we are equal to the value stored. | |||
1228 | Node* mem = in(Memory); | |||
1229 | Node* value = can_see_stored_value(mem, phase); | |||
1230 | if( value ) { | |||
1231 | // byte, short & char stores truncate naturally. | |||
1232 | // A load has to load the truncated value which requires | |||
1233 | // some sort of masking operation and that requires an | |||
1234 | // Ideal call instead of an Identity call. | |||
1235 | if (memory_size() < BytesPerInt) { | |||
1236 | // If the input to the store does not fit with the load's result type, | |||
1237 | // it must be truncated via an Ideal call. | |||
1238 | if (!phase->type(value)->higher_equal(phase->type(this))) | |||
1239 | return this; | |||
1240 | } | |||
1241 | // (This works even when value is a Con, but LoadNode::Value | |||
1242 | // usually runs first, producing the singleton type of the Con.) | |||
1243 | return value; | |||
1244 | } | |||
1245 | ||||
1246 | // Search for an existing data phi which was generated before for the same | |||
1247 | // instance's field to avoid infinite generation of phis in a loop. | |||
1248 | Node *region = mem->in(0); | |||
1249 | if (is_instance_field_load_with_local_phi(region)) { | |||
1250 | const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); | |||
1251 | int this_index = phase->C->get_alias_index(addr_t); | |||
1252 | int this_offset = addr_t->offset(); | |||
1253 | int this_iid = addr_t->instance_id(); | |||
1254 | if (!addr_t->is_known_instance() && | |||
1255 | addr_t->is_ptr_to_boxed_value()) { | |||
1256 | // Use _idx of address base (could be Phi node) for boxed values. | |||
1257 | intptr_t ignore = 0; | |||
1258 | Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); | |||
1259 | if (base == NULL__null) { | |||
1260 | return this; | |||
1261 | } | |||
1262 | this_iid = base->_idx; | |||
1263 | } | |||
1264 | const Type* this_type = bottom_type(); | |||
1265 | for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { | |||
1266 | Node* phi = region->fast_out(i); | |||
1267 | if (phi->is_Phi() && phi != mem && | |||
1268 | phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { | |||
1269 | return phi; | |||
1270 | } | |||
1271 | } | |||
1272 | } | |||
1273 | ||||
1274 | return this; | |||
1275 | } | |||
1276 | ||||
1277 | // Construct an equivalent unsigned load. | |||
1278 | Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { | |||
1279 | BasicType bt = T_ILLEGAL; | |||
1280 | const Type* rt = NULL__null; | |||
1281 | switch (Opcode()) { | |||
1282 | case Op_LoadUB: return this; | |||
1283 | case Op_LoadUS: return this; | |||
1284 | case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; | |||
1285 | case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; | |||
1286 | default: | |||
1287 | assert(false, "no unsigned variant: %s", Name())do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1287, "assert(" "false" ") failed", "no unsigned variant: %s" , Name()); ::breakpoint(); } } while (0); | |||
1288 | return NULL__null; | |||
1289 | } | |||
1290 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | |||
1291 | raw_adr_type(), rt, bt, _mo, _control_dependency, | |||
1292 | is_unaligned_access(), is_mismatched_access()); | |||
1293 | } | |||
1294 | ||||
1295 | // Construct an equivalent signed load. | |||
1296 | Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { | |||
1297 | BasicType bt = T_ILLEGAL; | |||
1298 | const Type* rt = NULL__null; | |||
1299 | switch (Opcode()) { | |||
1300 | case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; | |||
1301 | case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; | |||
1302 | case Op_LoadB: // fall through | |||
1303 | case Op_LoadS: // fall through | |||
1304 | case Op_LoadI: // fall through | |||
1305 | case Op_LoadL: return this; | |||
1306 | default: | |||
1307 | assert(false, "no signed variant: %s", Name())do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1307, "assert(" "false" ") failed", "no signed variant: %s" , Name()); ::breakpoint(); } } while (0); | |||
1308 | return NULL__null; | |||
1309 | } | |||
1310 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | |||
1311 | raw_adr_type(), rt, bt, _mo, _control_dependency, | |||
1312 | is_unaligned_access(), is_mismatched_access()); | |||
1313 | } | |||
1314 | ||||
1315 | bool LoadNode::has_reinterpret_variant(const Type* rt) { | |||
1316 | BasicType bt = rt->basic_type(); | |||
1317 | switch (Opcode()) { | |||
1318 | case Op_LoadI: return (bt == T_FLOAT); | |||
1319 | case Op_LoadL: return (bt == T_DOUBLE); | |||
1320 | case Op_LoadF: return (bt == T_INT); | |||
1321 | case Op_LoadD: return (bt == T_LONG); | |||
1322 | ||||
1323 | default: return false; | |||
1324 | } | |||
1325 | } | |||
1326 | ||||
1327 | Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { | |||
1328 | BasicType bt = rt->basic_type(); | |||
1329 | assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt))do { if (!(has_reinterpret_variant(rt))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1329, "assert(" "has_reinterpret_variant(rt)" ") failed", "no reinterpret variant: %s %s" , Name(), type2name(bt)); ::breakpoint(); } } while (0); | |||
1330 | bool is_mismatched = is_mismatched_access(); | |||
1331 | const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); | |||
1332 | if (raw_type == NULL__null) { | |||
1333 | is_mismatched = true; // conservatively match all non-raw accesses as mismatched | |||
1334 | } | |||
1335 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | |||
1336 | raw_adr_type(), rt, bt, _mo, _control_dependency, | |||
1337 | is_unaligned_access(), is_mismatched); | |||
1338 | } | |||
1339 | ||||
1340 | bool StoreNode::has_reinterpret_variant(const Type* vt) { | |||
1341 | BasicType bt = vt->basic_type(); | |||
1342 | switch (Opcode()) { | |||
1343 | case Op_StoreI: return (bt == T_FLOAT); | |||
1344 | case Op_StoreL: return (bt == T_DOUBLE); | |||
1345 | case Op_StoreF: return (bt == T_INT); | |||
1346 | case Op_StoreD: return (bt == T_LONG); | |||
1347 | ||||
1348 | default: return false; | |||
1349 | } | |||
1350 | } | |||
1351 | ||||
1352 | Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { | |||
1353 | BasicType bt = vt->basic_type(); | |||
1354 | assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt))do { if (!(has_reinterpret_variant(vt))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1354, "assert(" "has_reinterpret_variant(vt)" ") failed", "no reinterpret variant: %s %s" , Name(), type2name(bt)); ::breakpoint(); } } while (0); | |||
1355 | StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), raw_adr_type(), val, bt, _mo); | |||
1356 | ||||
1357 | bool is_mismatched = is_mismatched_access(); | |||
1358 | const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); | |||
1359 | if (raw_type == NULL__null) { | |||
1360 | is_mismatched = true; // conservatively match all non-raw accesses as mismatched | |||
1361 | } | |||
1362 | if (is_mismatched) { | |||
1363 | st->set_mismatched_access(); | |||
1364 | } | |||
1365 | return st; | |||
1366 | } | |||
1367 | ||||
1368 | // We're loading from an object which has autobox behaviour. | |||
1369 | // If this object is result of a valueOf call we'll have a phi | |||
1370 | // merging a newly allocated object and a load from the cache. | |||
1371 | // We want to replace this load with the original incoming | |||
1372 | // argument to the valueOf call. | |||
1373 | Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { | |||
1374 | assert(igvn->C->eliminate_boxing(), "sanity")do { if (!(igvn->C->eliminate_boxing())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1374, "assert(" "igvn->C->eliminate_boxing()" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
1375 | intptr_t ignore = 0; | |||
1376 | Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); | |||
1377 | if ((base == NULL__null) || base->is_Phi()) { | |||
1378 | // Push the loads from the phi that comes from valueOf up | |||
1379 | // through it to allow elimination of the loads and the recovery | |||
1380 | // of the original value. It is done in split_through_phi(). | |||
1381 | return NULL__null; | |||
1382 | } else if (base->is_Load() || | |||
1383 | (base->is_DecodeN() && base->in(1)->is_Load())) { | |||
1384 | // Eliminate the load of boxed value for integer types from the cache | |||
1385 | // array by deriving the value from the index into the array. | |||
1386 | // Capture the offset of the load and then reverse the computation. | |||
1387 | ||||
1388 | // Get LoadN node which loads a boxing object from 'cache' array. | |||
1389 | if (base->is_DecodeN()) { | |||
1390 | base = base->in(1); | |||
1391 | } | |||
1392 | if (!base->in(Address)->is_AddP()) { | |||
1393 | return NULL__null; // Complex address | |||
1394 | } | |||
1395 | AddPNode* address = base->in(Address)->as_AddP(); | |||
1396 | Node* cache_base = address->in(AddPNode::Base); | |||
1397 | if ((cache_base != NULL__null) && cache_base->is_DecodeN()) { | |||
1398 | // Get ConP node which is static 'cache' field. | |||
1399 | cache_base = cache_base->in(1); | |||
1400 | } | |||
1401 | if ((cache_base != NULL__null) && cache_base->is_Con()) { | |||
1402 | const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); | |||
1403 | if ((base_type != NULL__null) && base_type->is_autobox_cache()) { | |||
1404 | Node* elements[4]; | |||
1405 | int shift = exact_log2(type2aelembytes(T_OBJECT)); | |||
1406 | int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)sizeof(array_size_impl(elements))); | |||
1407 | if (count > 0 && elements[0]->is_Con() && | |||
1408 | (count == 1 || | |||
1409 | (count == 2 && elements[1]->Opcode() == Op_LShiftXOp_LShiftL && | |||
1410 | elements[1]->in(2) == igvn->intcon(shift)))) { | |||
1411 | ciObjArray* array = base_type->const_oop()->as_obj_array(); | |||
1412 | // Fetch the box object cache[0] at the base of the array and get its value | |||
1413 | ciInstance* box = array->obj_at(0)->as_instance(); | |||
1414 | ciInstanceKlass* ik = box->klass()->as_instance_klass(); | |||
1415 | assert(ik->is_box_klass(), "sanity")do { if (!(ik->is_box_klass())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1415, "assert(" "ik->is_box_klass()" ") failed", "sanity" ); ::breakpoint(); } } while (0); | |||
1416 | assert(ik->nof_nonstatic_fields() == 1, "change following code")do { if (!(ik->nof_nonstatic_fields() == 1)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1416, "assert(" "ik->nof_nonstatic_fields() == 1" ") failed" , "change following code"); ::breakpoint(); } } while (0); | |||
1417 | if (ik->nof_nonstatic_fields() == 1) { | |||
1418 | // This should be true nonstatic_field_at requires calling | |||
1419 | // nof_nonstatic_fields so check it anyway | |||
1420 | ciConstant c = box->field_value(ik->nonstatic_field_at(0)); | |||
1421 | BasicType bt = c.basic_type(); | |||
1422 | // Only integer types have boxing cache. | |||
1423 | assert(bt == T_BOOLEAN || bt == T_CHAR ||do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG" ") failed", "wrong type = %s", type2name(bt)); ::breakpoint( ); } } while (0) | |||
1424 | bt == T_BYTE || bt == T_SHORT ||do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG" ") failed", "wrong type = %s", type2name(bt)); ::breakpoint( ); } } while (0) | |||
1425 | bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt))do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG" ") failed", "wrong type = %s", type2name(bt)); ::breakpoint( ); } } while (0); | |||
1426 | jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); | |||
1427 | if (cache_low != (int)cache_low) { | |||
1428 | return NULL__null; // should not happen since cache is array indexed by value | |||
1429 | } | |||
1430 | jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); | |||
1431 | if (offset != (int)offset) { | |||
1432 | return NULL__null; // should not happen since cache is array indexed by value | |||
1433 | } | |||
1434 | // Add up all the offsets making of the address of the load | |||
1435 | Node* result = elements[0]; | |||
1436 | for (int i = 1; i < count; i++) { | |||
1437 | result = igvn->transform(new AddXNodeAddLNode(result, elements[i])); | |||
1438 | } | |||
1439 | // Remove the constant offset from the address and then | |||
1440 | result = igvn->transform(new AddXNodeAddLNode(result, igvn->MakeConXlongcon(-(int)offset))); | |||
1441 | // remove the scaling of the offset to recover the original index. | |||
1442 | if (result->Opcode() == Op_LShiftXOp_LShiftL && result->in(2) == igvn->intcon(shift)) { | |||
1443 | // Peel the shift off directly but wrap it in a dummy node | |||
1444 | // since Ideal can't return existing nodes | |||
1445 | igvn->_worklist.push(result); // remove dead node later | |||
1446 | result = new RShiftXNodeRShiftLNode(result->in(1), igvn->intcon(0)); | |||
1447 | } else if (result->is_Add() && result->in(2)->is_Con() && | |||
1448 | result->in(1)->Opcode() == Op_LShiftXOp_LShiftL && | |||
1449 | result->in(1)->in(2) == igvn->intcon(shift)) { | |||
1450 | // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) | |||
1451 | // but for boxing cache access we know that X<<Z will not overflow | |||
1452 | // (there is range check) so we do this optimizatrion by hand here. | |||
1453 | igvn->_worklist.push(result); // remove dead node later | |||
1454 | Node* add_con = new RShiftXNodeRShiftLNode(result->in(2), igvn->intcon(shift)); | |||
1455 | result = new AddXNodeAddLNode(result->in(1)->in(1), igvn->transform(add_con)); | |||
1456 | } else { | |||
1457 | result = new RShiftXNodeRShiftLNode(result, igvn->intcon(shift)); | |||
1458 | } | |||
1459 | #ifdef _LP641 | |||
1460 | if (bt != T_LONG) { | |||
1461 | result = new ConvL2INode(igvn->transform(result)); | |||
1462 | } | |||
1463 | #else | |||
1464 | if (bt == T_LONG) { | |||
1465 | result = new ConvI2LNode(igvn->transform(result)); | |||
1466 | } | |||
1467 | #endif | |||
1468 | // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). | |||
1469 | // Need to preserve unboxing load type if it is unsigned. | |||
1470 | switch(this->Opcode()) { | |||
1471 | case Op_LoadUB: | |||
1472 | result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); | |||
1473 | break; | |||
1474 | case Op_LoadUS: | |||
1475 | result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); | |||
1476 | break; | |||
1477 | } | |||
1478 | return result; | |||
1479 | } | |||
1480 | } | |||
1481 | } | |||
1482 | } | |||
1483 | } | |||
1484 | return NULL__null; | |||
1485 | } | |||
1486 | ||||
1487 | static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { | |||
1488 | Node* region = phi->in(0); | |||
1489 | if (region == NULL__null) { | |||
1490 | return false; // Wait stable graph | |||
1491 | } | |||
1492 | uint cnt = phi->req(); | |||
1493 | for (uint i = 1; i < cnt; i++) { | |||
1494 | Node* rc = region->in(i); | |||
1495 | if (rc == NULL__null || phase->type(rc) == Type::TOP) | |||
1496 | return false; // Wait stable graph | |||
1497 | Node* in = phi->in(i); | |||
1498 | if (in == NULL__null || phase->type(in) == Type::TOP) | |||
1499 | return false; // Wait stable graph | |||
1500 | } | |||
1501 | return true; | |||
1502 | } | |||
1503 | //------------------------------split_through_phi------------------------------ | |||
1504 | // Split instance or boxed field load through Phi. | |||
1505 | Node *LoadNode::split_through_phi(PhaseGVN *phase) { | |||
1506 | Node* mem = in(Memory); | |||
1507 | Node* address = in(Address); | |||
1508 | const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); | |||
1509 | ||||
1510 | assert((t_oop != NULL) &&do { if (!((t_oop != __null) && (t_oop->is_known_instance_field () || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())" ") failed", "invalide conditions"); ::breakpoint(); } } while (0) | |||
1511 | (t_oop->is_known_instance_field() ||do { if (!((t_oop != __null) && (t_oop->is_known_instance_field () || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())" ") failed", "invalide conditions"); ::breakpoint(); } } while (0) | |||
1512 | t_oop->is_ptr_to_boxed_value()), "invalide conditions")do { if (!((t_oop != __null) && (t_oop->is_known_instance_field () || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())" ") failed", "invalide conditions"); ::breakpoint(); } } while (0); | |||
1513 | ||||
1514 | Compile* C = phase->C; | |||
1515 | intptr_t ignore = 0; | |||
1516 | Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); | |||
1517 | bool base_is_phi = (base != NULL__null) && base->is_Phi(); | |||
1518 | bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && | |||
1519 | (base != NULL__null) && (base == address->in(AddPNode::Base)) && | |||
1520 | phase->type(base)->higher_equal(TypePtr::NOTNULL); | |||
1521 | ||||
1522 | if (!((mem->is_Phi() || base_is_phi) && | |||
1523 | (load_boxed_values || t_oop->is_known_instance_field()))) { | |||
1524 | return NULL__null; // memory is not Phi | |||
1525 | } | |||
1526 | ||||
1527 | if (mem->is_Phi()) { | |||
1528 | if (!stable_phi(mem->as_Phi(), phase)) { | |||
1529 | return NULL__null; // Wait stable graph | |||
1530 | } | |||
1531 | uint cnt = mem->req(); | |||
1532 | // Check for loop invariant memory. | |||
1533 | if (cnt == 3) { | |||
1534 | for (uint i = 1; i < cnt; i++) { | |||
1535 | Node* in = mem->in(i); | |||
1536 | Node* m = optimize_memory_chain(in, t_oop, this, phase); | |||
1537 | if (m == mem) { | |||
1538 | if (i == 1) { | |||
1539 | // if the first edge was a loop, check second edge too. | |||
1540 | // If both are replaceable - we are in an infinite loop | |||
1541 | Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); | |||
1542 | if (n == mem) { | |||
1543 | break; | |||
1544 | } | |||
1545 | } | |||
1546 | set_req(Memory, mem->in(cnt - i)); | |||
1547 | return this; // made change | |||
1548 | } | |||
1549 | } | |||
1550 | } | |||
1551 | } | |||
1552 | if (base_is_phi) { | |||
1553 | if (!stable_phi(base->as_Phi(), phase)) { | |||
1554 | return NULL__null; // Wait stable graph | |||
1555 | } | |||
1556 | uint cnt = base->req(); | |||
1557 | // Check for loop invariant memory. | |||
1558 | if (cnt == 3) { | |||
1559 | for (uint i = 1; i < cnt; i++) { | |||
1560 | if (base->in(i) == base) { | |||
1561 | return NULL__null; // Wait stable graph | |||
1562 | } | |||
1563 | } | |||
1564 | } | |||
1565 | } | |||
1566 | ||||
1567 | // Split through Phi (see original code in loopopts.cpp). | |||
1568 | assert(C->have_alias_type(t_oop), "instance should have alias type")do { if (!(C->have_alias_type(t_oop))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1568, "assert(" "C->have_alias_type(t_oop)" ") failed", "instance should have alias type" ); ::breakpoint(); } } while (0); | |||
1569 | ||||
1570 | // Do nothing here if Identity will find a value | |||
1571 | // (to avoid infinite chain of value phis generation). | |||
1572 | if (this != Identity(phase)) { | |||
1573 | return NULL__null; | |||
1574 | } | |||
1575 | ||||
1576 | // Select Region to split through. | |||
1577 | Node* region; | |||
1578 | if (!base_is_phi) { | |||
1579 | assert(mem->is_Phi(), "sanity")do { if (!(mem->is_Phi())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1579, "assert(" "mem->is_Phi()" ") failed", "sanity"); :: breakpoint(); } } while (0); | |||
1580 | region = mem->in(0); | |||
1581 | // Skip if the region dominates some control edge of the address. | |||
1582 | if (!MemNode::all_controls_dominate(address, region)) | |||
1583 | return NULL__null; | |||
1584 | } else if (!mem->is_Phi()) { | |||
1585 | assert(base_is_phi, "sanity")do { if (!(base_is_phi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1585, "assert(" "base_is_phi" ") failed", "sanity"); ::breakpoint (); } } while (0); | |||
1586 | region = base->in(0); | |||
1587 | // Skip if the region dominates some control edge of the memory. | |||
1588 | if (!MemNode::all_controls_dominate(mem, region)) | |||
1589 | return NULL__null; | |||
1590 | } else if (base->in(0) != mem->in(0)) { | |||
1591 | assert(base_is_phi && mem->is_Phi(), "sanity")do { if (!(base_is_phi && mem->is_Phi())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1591, "assert(" "base_is_phi && mem->is_Phi()" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
1592 | if (MemNode::all_controls_dominate(mem, base->in(0))) { | |||
1593 | region = base->in(0); | |||
1594 | } else if (MemNode::all_controls_dominate(address, mem->in(0))) { | |||
1595 | region = mem->in(0); | |||
1596 | } else { | |||
1597 | return NULL__null; // complex graph | |||
1598 | } | |||
1599 | } else { | |||
1600 | assert(base->in(0) == mem->in(0), "sanity")do { if (!(base->in(0) == mem->in(0))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1600, "assert(" "base->in(0) == mem->in(0)" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
1601 | region = mem->in(0); | |||
1602 | } | |||
1603 | ||||
1604 | const Type* this_type = this->bottom_type(); | |||
1605 | int this_index = C->get_alias_index(t_oop); | |||
1606 | int this_offset = t_oop->offset(); | |||
1607 | int this_iid = t_oop->instance_id(); | |||
1608 | if (!t_oop->is_known_instance() && load_boxed_values) { | |||
1609 | // Use _idx of address base for boxed values. | |||
1610 | this_iid = base->_idx; | |||
1611 | } | |||
1612 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
1613 | Node* phi = new PhiNode(region, this_type, NULL__null, mem->_idx, this_iid, this_index, this_offset); | |||
1614 | for (uint i = 1; i < region->req(); i++) { | |||
1615 | Node* x; | |||
1616 | Node* the_clone = NULL__null; | |||
1617 | Node* in = region->in(i); | |||
1618 | if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && | |||
1619 | in != NULL__null && in->is_OuterStripMinedLoop()) { | |||
1620 | // No node should go in the outer strip mined loop | |||
1621 | in = in->in(LoopNode::EntryControl); | |||
1622 | } | |||
1623 | if (in == NULL__null || in == C->top()) { | |||
1624 | x = C->top(); // Dead path? Use a dead data op | |||
1625 | } else { | |||
1626 | x = this->clone(); // Else clone up the data op | |||
1627 | the_clone = x; // Remember for possible deletion. | |||
1628 | // Alter data node to use pre-phi inputs | |||
1629 | if (this->in(0) == region) { | |||
1630 | x->set_req(0, in); | |||
1631 | } else { | |||
1632 | x->set_req(0, NULL__null); | |||
1633 | } | |||
1634 | if (mem->is_Phi() && (mem->in(0) == region)) { | |||
1635 | x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. | |||
1636 | } | |||
1637 | if (address->is_Phi() && address->in(0) == region) { | |||
1638 | x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone | |||
1639 | } | |||
1640 | if (base_is_phi && (base->in(0) == region)) { | |||
1641 | Node* base_x = base->in(i); // Clone address for loads from boxed objects. | |||
1642 | Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); | |||
1643 | x->set_req(Address, adr_x); | |||
1644 | } | |||
1645 | } | |||
1646 | // Check for a 'win' on some paths | |||
1647 | const Type *t = x->Value(igvn); | |||
1648 | ||||
1649 | bool singleton = t->singleton(); | |||
1650 | ||||
1651 | // See comments in PhaseIdealLoop::split_thru_phi(). | |||
1652 | if (singleton && t == Type::TOP) { | |||
1653 | singleton &= region->is_Loop() && (i != LoopNode::EntryControl); | |||
1654 | } | |||
1655 | ||||
1656 | if (singleton) { | |||
1657 | x = igvn->makecon(t); | |||
1658 | } else { | |||
1659 | // We now call Identity to try to simplify the cloned node. | |||
1660 | // Note that some Identity methods call phase->type(this). | |||
1661 | // Make sure that the type array is big enough for | |||
1662 | // our new node, even though we may throw the node away. | |||
1663 | // (This tweaking with igvn only works because x is a new node.) | |||
1664 | igvn->set_type(x, t); | |||
1665 | // If x is a TypeNode, capture any more-precise type permanently into Node | |||
1666 | // otherwise it will be not updated during igvn->transform since | |||
1667 | // igvn->type(x) is set to x->Value() already. | |||
1668 | x->raise_bottom_type(t); | |||
1669 | Node* y = x->Identity(igvn); | |||
1670 | if (y != x) { | |||
1671 | x = y; | |||
1672 | } else { | |||
1673 | y = igvn->hash_find_insert(x); | |||
1674 | if (y) { | |||
1675 | x = y; | |||
1676 | } else { | |||
1677 | // Else x is a new node we are keeping | |||
1678 | // We do not need register_new_node_with_optimizer | |||
1679 | // because set_type has already been called. | |||
1680 | igvn->_worklist.push(x); | |||
1681 | } | |||
1682 | } | |||
1683 | } | |||
1684 | if (x != the_clone && the_clone != NULL__null) { | |||
1685 | igvn->remove_dead_node(the_clone); | |||
1686 | } | |||
1687 | phi->set_req(i, x); | |||
1688 | } | |||
1689 | // Record Phi | |||
1690 | igvn->register_new_node_with_optimizer(phi); | |||
1691 | return phi; | |||
1692 | } | |||
1693 | ||||
1694 | AllocateNode* LoadNode::is_new_object_mark_load(PhaseGVN *phase) const { | |||
1695 | if (Opcode() == Op_LoadXOp_LoadL) { | |||
1696 | Node* address = in(MemNode::Address); | |||
1697 | AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase); | |||
1698 | Node* mem = in(MemNode::Memory); | |||
1699 | if (alloc != NULL__null && mem->is_Proj() && | |||
1700 | mem->in(0) != NULL__null && | |||
1701 | mem->in(0) == alloc->initialization() && | |||
1702 | alloc->initialization()->proj_out_or_null(0) != NULL__null) { | |||
1703 | return alloc; | |||
1704 | } | |||
1705 | } | |||
1706 | return NULL__null; | |||
1707 | } | |||
1708 | ||||
1709 | ||||
1710 | //------------------------------Ideal------------------------------------------ | |||
1711 | // If the load is from Field memory and the pointer is non-null, it might be possible to | |||
1712 | // zero out the control input. | |||
1713 | // If the offset is constant and the base is an object allocation, | |||
1714 | // try to hook me up to the exact initializing store. | |||
1715 | Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
1716 | Node* p = MemNode::Ideal_common(phase, can_reshape); | |||
1717 | if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p; | |||
1718 | ||||
1719 | Node* ctrl = in(MemNode::Control); | |||
1720 | Node* address = in(MemNode::Address); | |||
1721 | bool progress = false; | |||
1722 | ||||
1723 | bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && | |||
1724 | phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); | |||
1725 | ||||
1726 | // Skip up past a SafePoint control. Cannot do this for Stores because | |||
1727 | // pointer stores & cardmarks must stay on the same side of a SafePoint. | |||
1728 | if( ctrl != NULL__null && ctrl->Opcode() == Op_SafePoint && | |||
1729 | phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && | |||
1730 | !addr_mark && | |||
1731 | (depends_only_on_test() || has_unknown_control_dependency())) { | |||
1732 | ctrl = ctrl->in(0); | |||
1733 | set_req(MemNode::Control,ctrl); | |||
1734 | progress = true; | |||
1735 | } | |||
1736 | ||||
1737 | intptr_t ignore = 0; | |||
1738 | Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); | |||
1739 | if (base != NULL__null | |||
1740 | && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { | |||
1741 | // Check for useless control edge in some common special cases | |||
1742 | if (in(MemNode::Control) != NULL__null | |||
1743 | && can_remove_control() | |||
1744 | && phase->type(base)->higher_equal(TypePtr::NOTNULL) | |||
1745 | && all_controls_dominate(base, phase->C->start())) { | |||
1746 | // A method-invariant, non-null address (constant or 'this' argument). | |||
1747 | set_req(MemNode::Control, NULL__null); | |||
1748 | progress = true; | |||
1749 | } | |||
1750 | } | |||
1751 | ||||
1752 | Node* mem = in(MemNode::Memory); | |||
1753 | const TypePtr *addr_t = phase->type(address)->isa_ptr(); | |||
1754 | ||||
1755 | if (can_reshape && (addr_t != NULL__null)) { | |||
1756 | // try to optimize our memory input | |||
1757 | Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); | |||
1758 | if (opt_mem != mem) { | |||
1759 | set_req_X(MemNode::Memory, opt_mem, phase); | |||
1760 | if (phase->type( opt_mem ) == Type::TOP) return NULL__null; | |||
1761 | return this; | |||
1762 | } | |||
1763 | const TypeOopPtr *t_oop = addr_t->isa_oopptr(); | |||
1764 | if ((t_oop != NULL__null) && | |||
1765 | (t_oop->is_known_instance_field() || | |||
1766 | t_oop->is_ptr_to_boxed_value())) { | |||
1767 | PhaseIterGVN *igvn = phase->is_IterGVN(); | |||
1768 | assert(igvn != NULL, "must be PhaseIterGVN when can_reshape is true")do { if (!(igvn != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1768, "assert(" "igvn != __null" ") failed", "must be PhaseIterGVN when can_reshape is true" ); ::breakpoint(); } } while (0); | |||
1769 | if (igvn->_worklist.member(opt_mem)) { | |||
1770 | // Delay this transformation until memory Phi is processed. | |||
1771 | igvn->_worklist.push(this); | |||
1772 | return NULL__null; | |||
1773 | } | |||
1774 | // Split instance field load through Phi. | |||
1775 | Node* result = split_through_phi(phase); | |||
1776 | if (result != NULL__null) return result; | |||
1777 | ||||
1778 | if (t_oop->is_ptr_to_boxed_value()) { | |||
1779 | Node* result = eliminate_autobox(igvn); | |||
1780 | if (result != NULL__null) return result; | |||
1781 | } | |||
1782 | } | |||
1783 | } | |||
1784 | ||||
1785 | // Is there a dominating load that loads the same value? Leave | |||
1786 | // anything that is not a load of a field/array element (like | |||
1787 | // barriers etc.) alone | |||
1788 | if (in(0) != NULL__null && !adr_type()->isa_rawptr() && can_reshape) { | |||
1789 | for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { | |||
1790 | Node *use = mem->fast_out(i); | |||
1791 | if (use != this && | |||
1792 | use->Opcode() == Opcode() && | |||
1793 | use->in(0) != NULL__null && | |||
1794 | use->in(0) != in(0) && | |||
1795 | use->in(Address) == in(Address)) { | |||
1796 | Node* ctl = in(0); | |||
1797 | for (int i = 0; i < 10 && ctl != NULL__null; i++) { | |||
1798 | ctl = IfNode::up_one_dom(ctl); | |||
1799 | if (ctl == use->in(0)) { | |||
1800 | set_req(0, use->in(0)); | |||
1801 | return this; | |||
1802 | } | |||
1803 | } | |||
1804 | } | |||
1805 | } | |||
1806 | } | |||
1807 | ||||
1808 | // Check for prior store with a different base or offset; make Load | |||
1809 | // independent. Skip through any number of them. Bail out if the stores | |||
1810 | // are in an endless dead cycle and report no progress. This is a key | |||
1811 | // transform for Reflection. However, if after skipping through the Stores | |||
1812 | // we can't then fold up against a prior store do NOT do the transform as | |||
1813 | // this amounts to using the 'Oracle' model of aliasing. It leaves the same | |||
1814 | // array memory alive twice: once for the hoisted Load and again after the | |||
1815 | // bypassed Store. This situation only works if EVERYBODY who does | |||
1816 | // anti-dependence work knows how to bypass. I.e. we need all | |||
1817 | // anti-dependence checks to ask the same Oracle. Right now, that Oracle is | |||
1818 | // the alias index stuff. So instead, peek through Stores and IFF we can | |||
1819 | // fold up, do so. | |||
1820 | Node* prev_mem = find_previous_store(phase); | |||
1821 | if (prev_mem != NULL__null) { | |||
1822 | Node* value = can_see_arraycopy_value(prev_mem, phase); | |||
1823 | if (value != NULL__null) { | |||
1824 | return value; | |||
1825 | } | |||
1826 | } | |||
1827 | // Steps (a), (b): Walk past independent stores to find an exact match. | |||
1828 | if (prev_mem != NULL__null && prev_mem != in(MemNode::Memory)) { | |||
1829 | // (c) See if we can fold up on the spot, but don't fold up here. | |||
1830 | // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or | |||
1831 | // just return a prior value, which is done by Identity calls. | |||
1832 | if (can_see_stored_value(prev_mem, phase)) { | |||
1833 | // Make ready for step (d): | |||
1834 | set_req_X(MemNode::Memory, prev_mem, phase); | |||
1835 | return this; | |||
1836 | } | |||
1837 | } | |||
1838 | ||||
1839 | return progress ? this : NULL__null; | |||
1840 | } | |||
1841 | ||||
1842 | // Helper to recognize certain Klass fields which are invariant across | |||
1843 | // some group of array types (e.g., int[] or all T[] where T < Object). | |||
1844 | const Type* | |||
1845 | LoadNode::load_array_final_field(const TypeKlassPtr *tkls, | |||
1846 | ciKlass* klass) const { | |||
1847 | if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { | |||
1848 | // The field is Klass::_modifier_flags. Return its (constant) value. | |||
1849 | // (Folds up the 2nd indirection in aClassConstant.getModifiers().) | |||
1850 | assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1850, "assert(" "this->Opcode() == Op_LoadI" ") failed", "must load an int from _modifier_flags"); ::breakpoint(); } } while (0); | |||
1851 | return TypeInt::make(klass->modifier_flags()); | |||
1852 | } | |||
1853 | if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { | |||
1854 | // The field is Klass::_access_flags. Return its (constant) value. | |||
1855 | // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) | |||
1856 | assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1856, "assert(" "this->Opcode() == Op_LoadI" ") failed", "must load an int from _access_flags"); ::breakpoint(); } } while (0); | |||
1857 | return TypeInt::make(klass->access_flags()); | |||
1858 | } | |||
1859 | if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { | |||
1860 | // The field is Klass::_layout_helper. Return its constant value if known. | |||
1861 | assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1861, "assert(" "this->Opcode() == Op_LoadI" ") failed", "must load an int from _layout_helper"); ::breakpoint(); } } while (0); | |||
1862 | return TypeInt::make(klass->layout_helper()); | |||
1863 | } | |||
1864 | ||||
1865 | // No match. | |||
1866 | return NULL__null; | |||
1867 | } | |||
1868 | ||||
1869 | //------------------------------Value----------------------------------------- | |||
1870 | const Type* LoadNode::Value(PhaseGVN* phase) const { | |||
1871 | // Either input is TOP ==> the result is TOP | |||
1872 | Node* mem = in(MemNode::Memory); | |||
1873 | const Type *t1 = phase->type(mem); | |||
1874 | if (t1 == Type::TOP) return Type::TOP; | |||
1875 | Node* adr = in(MemNode::Address); | |||
1876 | const TypePtr* tp = phase->type(adr)->isa_ptr(); | |||
1877 | if (tp == NULL__null || tp->empty()) return Type::TOP; | |||
1878 | int off = tp->offset(); | |||
1879 | assert(off != Type::OffsetTop, "case covered by TypePtr::empty")do { if (!(off != Type::OffsetTop)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1879, "assert(" "off != Type::OffsetTop" ") failed", "case covered by TypePtr::empty" ); ::breakpoint(); } } while (0); | |||
1880 | Compile* C = phase->C; | |||
1881 | ||||
1882 | // Try to guess loaded type from pointer type | |||
1883 | if (tp->isa_aryptr()) { | |||
1884 | const TypeAryPtr* ary = tp->is_aryptr(); | |||
1885 | const Type* t = ary->elem(); | |||
1886 | ||||
1887 | // Determine whether the reference is beyond the header or not, by comparing | |||
1888 | // the offset against the offset of the start of the array's data. | |||
1889 | // Different array types begin at slightly different offsets (12 vs. 16). | |||
1890 | // We choose T_BYTE as an example base type that is least restrictive | |||
1891 | // as to alignment, which will therefore produce the smallest | |||
1892 | // possible base offset. | |||
1893 | const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); | |||
1894 | const bool off_beyond_header = (off >= min_base_off); | |||
1895 | ||||
1896 | // Try to constant-fold a stable array element. | |||
1897 | if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { | |||
1898 | // Make sure the reference is not into the header and the offset is constant | |||
1899 | ciObject* aobj = ary->const_oop(); | |||
1900 | if (aobj != NULL__null && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { | |||
1901 | int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); | |||
1902 | const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, | |||
1903 | stable_dimension, | |||
1904 | memory_type(), is_unsigned()); | |||
1905 | if (con_type != NULL__null) { | |||
1906 | return con_type; | |||
1907 | } | |||
1908 | } | |||
1909 | } | |||
1910 | ||||
1911 | // Don't do this for integer types. There is only potential profit if | |||
1912 | // the element type t is lower than _type; that is, for int types, if _type is | |||
1913 | // more restrictive than t. This only happens here if one is short and the other | |||
1914 | // char (both 16 bits), and in those cases we've made an intentional decision | |||
1915 | // to use one kind of load over the other. See AndINode::Ideal and 4965907. | |||
1916 | // Also, do not try to narrow the type for a LoadKlass, regardless of offset. | |||
1917 | // | |||
1918 | // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) | |||
1919 | // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier | |||
1920 | // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been | |||
1921 | // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, | |||
1922 | // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. | |||
1923 | // In fact, that could have been the original type of p1, and p1 could have | |||
1924 | // had an original form like p1:(AddP x x (LShiftL quux 3)), where the | |||
1925 | // expression (LShiftL quux 3) independently optimized to the constant 8. | |||
1926 | if ((t->isa_int() == NULL__null) && (t->isa_long() == NULL__null) | |||
1927 | && (_type->isa_vect() == NULL__null) | |||
1928 | && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { | |||
1929 | // t might actually be lower than _type, if _type is a unique | |||
1930 | // concrete subclass of abstract class t. | |||
1931 | if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? | |||
1932 | const Type* jt = t->join_speculative(_type); | |||
1933 | // In any case, do not allow the join, per se, to empty out the type. | |||
1934 | if (jt->empty() && !t->empty()) { | |||
1935 | // This can happen if a interface-typed array narrows to a class type. | |||
1936 | jt = _type; | |||
1937 | } | |||
1938 | #ifdef ASSERT1 | |||
1939 | if (phase->C->eliminate_boxing() && adr->is_AddP()) { | |||
1940 | // The pointers in the autobox arrays are always non-null | |||
1941 | Node* base = adr->in(AddPNode::Base); | |||
1942 | if ((base != NULL__null) && base->is_DecodeN()) { | |||
1943 | // Get LoadN node which loads IntegerCache.cache field | |||
1944 | base = base->in(1); | |||
1945 | } | |||
1946 | if ((base != NULL__null) && base->is_Con()) { | |||
1947 | const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); | |||
1948 | if ((base_type != NULL__null) && base_type->is_autobox_cache()) { | |||
1949 | // It could be narrow oop | |||
1950 | assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity")do { if (!(jt->make_ptr()->ptr() == TypePtr::NotNull)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1950, "assert(" "jt->make_ptr()->ptr() == TypePtr::NotNull" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
1951 | } | |||
1952 | } | |||
1953 | } | |||
1954 | #endif | |||
1955 | return jt; | |||
1956 | } | |||
1957 | } | |||
1958 | } else if (tp->base() == Type::InstPtr) { | |||
1959 | assert( off != Type::OffsetBot ||do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1960 | // arrays can be cast to Objectsdo { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1961 | tp->is_oopptr()->klass()->is_java_lang_Object() ||do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1962 | // unsafe field access may not have a constant offsetdo { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1963 | C->has_unsafe_access(),do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1964 | "Field accesses must be precise" )do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0); | |||
1965 | // For oop loads, we expect the _type to be precise. | |||
1966 | ||||
1967 | // Optimize loads from constant fields. | |||
1968 | const TypeInstPtr* tinst = tp->is_instptr(); | |||
1969 | ciObject* const_oop = tinst->const_oop(); | |||
1970 | if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL__null && const_oop->is_instance()) { | |||
1971 | const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type()); | |||
1972 | if (con_type != NULL__null) { | |||
1973 | return con_type; | |||
1974 | } | |||
1975 | } | |||
1976 | } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) { | |||
1977 | assert( off != Type::OffsetBot ||do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1978 | // arrays can be cast to Objectsdo { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1979 | tp->is_klassptr()->klass()->is_java_lang_Object() ||do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1980 | // also allow array-loading from the primary supertypedo { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1981 | // array during subtype checksdo { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1982 | Opcode() == Op_LoadKlass,do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
1983 | "Field accesses must be precise" )do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0); | |||
1984 | // For klass/static loads, we expect the _type to be precise | |||
1985 | } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { | |||
1986 | /* With mirrors being an indirect in the Klass* | |||
1987 | * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) | |||
1988 | * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). | |||
1989 | * | |||
1990 | * So check the type and klass of the node before the LoadP. | |||
1991 | */ | |||
1992 | Node* adr2 = adr->in(MemNode::Address); | |||
1993 | const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); | |||
1994 | if (tkls != NULL__null && !StressReflectiveCode) { | |||
1995 | ciKlass* klass = tkls->klass(); | |||
1996 | if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { | |||
1997 | assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror")do { if (!(adr->Opcode() == Op_LoadP)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1997, "assert(" "adr->Opcode() == Op_LoadP" ") failed", "must load an oop from _java_mirror" ); ::breakpoint(); } } while (0); | |||
1998 | assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror")do { if (!(Opcode() == Op_LoadP)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1998, "assert(" "Opcode() == Op_LoadP" ") failed", "must load an oop from _java_mirror" ); ::breakpoint(); } } while (0); | |||
1999 | return TypeInstPtr::make(klass->java_mirror()); | |||
2000 | } | |||
2001 | } | |||
2002 | } | |||
2003 | ||||
2004 | const TypeKlassPtr *tkls = tp->isa_klassptr(); | |||
2005 | if (tkls != NULL__null && !StressReflectiveCode) { | |||
2006 | ciKlass* klass = tkls->klass(); | |||
2007 | if (klass->is_loaded() && tkls->klass_is_exact()) { | |||
2008 | // We are loading a field from a Klass metaobject whose identity | |||
2009 | // is known at compile time (the type is "exact" or "precise"). | |||
2010 | // Check for fields we know are maintained as constants by the VM. | |||
2011 | if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { | |||
2012 | // The field is Klass::_super_check_offset. Return its (constant) value. | |||
2013 | // (Folds up type checking code.) | |||
2014 | assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset")do { if (!(Opcode() == Op_LoadI)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2014, "assert(" "Opcode() == Op_LoadI" ") failed", "must load an int from _super_check_offset" ); ::breakpoint(); } } while (0); | |||
2015 | return TypeInt::make(klass->super_check_offset()); | |||
2016 | } | |||
2017 | // Compute index into primary_supers array | |||
2018 | juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); | |||
2019 | // Check for overflowing; use unsigned compare to handle the negative case. | |||
2020 | if( depth < ciKlass::primary_super_limit() ) { | |||
2021 | // The field is an element of Klass::_primary_supers. Return its (constant) value. | |||
2022 | // (Folds up type checking code.) | |||
2023 | assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers")do { if (!(Opcode() == Op_LoadKlass)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2023, "assert(" "Opcode() == Op_LoadKlass" ") failed", "must load a klass from _primary_supers" ); ::breakpoint(); } } while (0); | |||
2024 | ciKlass *ss = klass->super_of_depth(depth); | |||
2025 | return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; | |||
2026 | } | |||
2027 | const Type* aift = load_array_final_field(tkls, klass); | |||
2028 | if (aift != NULL__null) return aift; | |||
2029 | } | |||
2030 | ||||
2031 | // We can still check if we are loading from the primary_supers array at a | |||
2032 | // shallow enough depth. Even though the klass is not exact, entries less | |||
2033 | // than or equal to its super depth are correct. | |||
2034 | if (klass->is_loaded() ) { | |||
2035 | ciType *inner = klass; | |||
2036 | while( inner->is_obj_array_klass() ) | |||
2037 | inner = inner->as_obj_array_klass()->base_element_type(); | |||
2038 | if( inner->is_instance_klass() && | |||
2039 | !inner->as_instance_klass()->flags().is_interface() ) { | |||
2040 | // Compute index into primary_supers array | |||
2041 | juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); | |||
2042 | // Check for overflowing; use unsigned compare to handle the negative case. | |||
2043 | if( depth < ciKlass::primary_super_limit() && | |||
2044 | depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case | |||
2045 | // The field is an element of Klass::_primary_supers. Return its (constant) value. | |||
2046 | // (Folds up type checking code.) | |||
2047 | assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers")do { if (!(Opcode() == Op_LoadKlass)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2047, "assert(" "Opcode() == Op_LoadKlass" ") failed", "must load a klass from _primary_supers" ); ::breakpoint(); } } while (0); | |||
2048 | ciKlass *ss = klass->super_of_depth(depth); | |||
2049 | return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; | |||
2050 | } | |||
2051 | } | |||
2052 | } | |||
2053 | ||||
2054 | // If the type is enough to determine that the thing is not an array, | |||
2055 | // we can give the layout_helper a positive interval type. | |||
2056 | // This will help short-circuit some reflective code. | |||
2057 | if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) | |||
2058 | && !klass->is_array_klass() // not directly typed as an array | |||
2059 | && !klass->is_interface() // specifically not Serializable & Cloneable | |||
2060 | && !klass->is_java_lang_Object() // not the supertype of all T[] | |||
2061 | ) { | |||
2062 | // Note: When interfaces are reliable, we can narrow the interface | |||
2063 | // test to (klass != Serializable && klass != Cloneable). | |||
2064 | assert(Opcode() == Op_LoadI, "must load an int from _layout_helper")do { if (!(Opcode() == Op_LoadI)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2064, "assert(" "Opcode() == Op_LoadI" ") failed", "must load an int from _layout_helper" ); ::breakpoint(); } } while (0); | |||
2065 | jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); | |||
2066 | // The key property of this type is that it folds up tests | |||
2067 | // for array-ness, since it proves that the layout_helper is positive. | |||
2068 | // Thus, a generic value like the basic object layout helper works fine. | |||
2069 | return TypeInt::make(min_size, max_jint, Type::WidenMin); | |||
2070 | } | |||
2071 | } | |||
2072 | ||||
2073 | // If we are loading from a freshly-allocated object, produce a zero, | |||
2074 | // if the load is provably beyond the header of the object. | |||
2075 | // (Also allow a variable load from a fresh array to produce zero.) | |||
2076 | const TypeOopPtr *tinst = tp->isa_oopptr(); | |||
2077 | bool is_instance = (tinst != NULL__null) && tinst->is_known_instance_field(); | |||
2078 | bool is_boxed_value = (tinst != NULL__null) && tinst->is_ptr_to_boxed_value(); | |||
2079 | if (ReduceFieldZeroing || is_instance || is_boxed_value) { | |||
2080 | Node* value = can_see_stored_value(mem,phase); | |||
2081 | if (value != NULL__null && value->is_Con()) { | |||
2082 | assert(value->bottom_type()->higher_equal(_type),"sanity")do { if (!(value->bottom_type()->higher_equal(_type))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2082, "assert(" "value->bottom_type()->higher_equal(_type)" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
2083 | return value->bottom_type(); | |||
2084 | } | |||
2085 | } | |||
2086 | ||||
2087 | bool is_vect = (_type->isa_vect() != NULL__null); | |||
2088 | if (is_instance && !is_vect) { | |||
2089 | // If we have an instance type and our memory input is the | |||
2090 | // programs's initial memory state, there is no matching store, | |||
2091 | // so just return a zero of the appropriate type - | |||
2092 | // except if it is vectorized - then we have no zero constant. | |||
2093 | Node *mem = in(MemNode::Memory); | |||
2094 | if (mem->is_Parm() && mem->in(0)->is_Start()) { | |||
2095 | assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm")do { if (!(mem->as_Parm()->_con == TypeFunc::Memory)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2095, "assert(" "mem->as_Parm()->_con == TypeFunc::Memory" ") failed", "must be memory Parm"); ::breakpoint(); } } while (0); | |||
2096 | return Type::get_zero_type(_type->basic_type()); | |||
2097 | } | |||
2098 | } | |||
2099 | ||||
2100 | Node* alloc = is_new_object_mark_load(phase); | |||
2101 | if (alloc != NULL__null) { | |||
2102 | return TypeXTypeLong::make(markWord::prototype().value()); | |||
2103 | } | |||
2104 | ||||
2105 | return _type; | |||
2106 | } | |||
2107 | ||||
2108 | //------------------------------match_edge------------------------------------- | |||
2109 | // Do we Match on this edge index or not? Match only the address. | |||
2110 | uint LoadNode::match_edge(uint idx) const { | |||
2111 | return idx == MemNode::Address; | |||
2112 | } | |||
2113 | ||||
2114 | //--------------------------LoadBNode::Ideal-------------------------------------- | |||
2115 | // | |||
2116 | // If the previous store is to the same address as this load, | |||
2117 | // and the value stored was larger than a byte, replace this load | |||
2118 | // with the value stored truncated to a byte. If no truncation is | |||
2119 | // needed, the replacement is done in LoadNode::Identity(). | |||
2120 | // | |||
2121 | Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
2122 | Node* mem = in(MemNode::Memory); | |||
2123 | Node* value = can_see_stored_value(mem,phase); | |||
2124 | if (value != NULL__null) { | |||
2125 | Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); | |||
2126 | if (narrow != value) { | |||
2127 | return narrow; | |||
2128 | } | |||
2129 | } | |||
2130 | // Identity call will handle the case where truncation is not needed. | |||
2131 | return LoadNode::Ideal(phase, can_reshape); | |||
2132 | } | |||
2133 | ||||
2134 | const Type* LoadBNode::Value(PhaseGVN* phase) const { | |||
2135 | Node* mem = in(MemNode::Memory); | |||
2136 | Node* value = can_see_stored_value(mem,phase); | |||
2137 | if (value != NULL__null && value->is_Con() && | |||
2138 | !value->bottom_type()->higher_equal(_type)) { | |||
2139 | // If the input to the store does not fit with the load's result type, | |||
2140 | // it must be truncated. We can't delay until Ideal call since | |||
2141 | // a singleton Value is needed for split_thru_phi optimization. | |||
2142 | int con = value->get_int(); | |||
2143 | return TypeInt::make((con << 24) >> 24); | |||
2144 | } | |||
2145 | return LoadNode::Value(phase); | |||
2146 | } | |||
2147 | ||||
2148 | //--------------------------LoadUBNode::Ideal------------------------------------- | |||
2149 | // | |||
2150 | // If the previous store is to the same address as this load, | |||
2151 | // and the value stored was larger than a byte, replace this load | |||
2152 | // with the value stored truncated to a byte. If no truncation is | |||
2153 | // needed, the replacement is done in LoadNode::Identity(). | |||
2154 | // | |||
2155 | Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
2156 | Node* mem = in(MemNode::Memory); | |||
2157 | Node* value = can_see_stored_value(mem, phase); | |||
2158 | if (value != NULL__null) { | |||
2159 | Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); | |||
2160 | if (narrow != value) { | |||
2161 | return narrow; | |||
2162 | } | |||
2163 | } | |||
2164 | // Identity call will handle the case where truncation is not needed. | |||
2165 | return LoadNode::Ideal(phase, can_reshape); | |||
2166 | } | |||
2167 | ||||
2168 | const Type* LoadUBNode::Value(PhaseGVN* phase) const { | |||
2169 | Node* mem = in(MemNode::Memory); | |||
2170 | Node* value = can_see_stored_value(mem,phase); | |||
| ||||
2171 | if (value != NULL__null && value->is_Con() && | |||
2172 | !value->bottom_type()->higher_equal(_type)) { | |||
2173 | // If the input to the store does not fit with the load's result type, | |||
2174 | // it must be truncated. We can't delay until Ideal call since | |||
2175 | // a singleton Value is needed for split_thru_phi optimization. | |||
2176 | int con = value->get_int(); | |||
2177 | return TypeInt::make(con & 0xFF); | |||
2178 | } | |||
2179 | return LoadNode::Value(phase); | |||
2180 | } | |||
2181 | ||||
2182 | //--------------------------LoadUSNode::Ideal------------------------------------- | |||
2183 | // | |||
2184 | // If the previous store is to the same address as this load, | |||
2185 | // and the value stored was larger than a char, replace this load | |||
2186 | // with the value stored truncated to a char. If no truncation is | |||
2187 | // needed, the replacement is done in LoadNode::Identity(). | |||
2188 | // | |||
2189 | Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
2190 | Node* mem = in(MemNode::Memory); | |||
2191 | Node* value = can_see_stored_value(mem,phase); | |||
2192 | if (value != NULL__null) { | |||
2193 | Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); | |||
2194 | if (narrow != value) { | |||
2195 | return narrow; | |||
2196 | } | |||
2197 | } | |||
2198 | // Identity call will handle the case where truncation is not needed. | |||
2199 | return LoadNode::Ideal(phase, can_reshape); | |||
2200 | } | |||
2201 | ||||
2202 | const Type* LoadUSNode::Value(PhaseGVN* phase) const { | |||
2203 | Node* mem = in(MemNode::Memory); | |||
2204 | Node* value = can_see_stored_value(mem,phase); | |||
2205 | if (value != NULL__null && value->is_Con() && | |||
2206 | !value->bottom_type()->higher_equal(_type)) { | |||
2207 | // If the input to the store does not fit with the load's result type, | |||
2208 | // it must be truncated. We can't delay until Ideal call since | |||
2209 | // a singleton Value is needed for split_thru_phi optimization. | |||
2210 | int con = value->get_int(); | |||
2211 | return TypeInt::make(con & 0xFFFF); | |||
2212 | } | |||
2213 | return LoadNode::Value(phase); | |||
2214 | } | |||
2215 | ||||
2216 | //--------------------------LoadSNode::Ideal-------------------------------------- | |||
2217 | // | |||
2218 | // If the previous store is to the same address as this load, | |||
2219 | // and the value stored was larger than a short, replace this load | |||
2220 | // with the value stored truncated to a short. If no truncation is | |||
2221 | // needed, the replacement is done in LoadNode::Identity(). | |||
2222 | // | |||
2223 | Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
2224 | Node* mem = in(MemNode::Memory); | |||
2225 | Node* value = can_see_stored_value(mem,phase); | |||
2226 | if (value != NULL__null) { | |||
2227 | Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); | |||
2228 | if (narrow != value) { | |||
2229 | return narrow; | |||
2230 | } | |||
2231 | } | |||
2232 | // Identity call will handle the case where truncation is not needed. | |||
2233 | return LoadNode::Ideal(phase, can_reshape); | |||
2234 | } | |||
2235 | ||||
2236 | const Type* LoadSNode::Value(PhaseGVN* phase) const { | |||
2237 | Node* mem = in(MemNode::Memory); | |||
2238 | Node* value = can_see_stored_value(mem,phase); | |||
2239 | if (value != NULL__null && value->is_Con() && | |||
2240 | !value->bottom_type()->higher_equal(_type)) { | |||
2241 | // If the input to the store does not fit with the load's result type, | |||
2242 | // it must be truncated. We can't delay until Ideal call since | |||
2243 | // a singleton Value is needed for split_thru_phi optimization. | |||
2244 | int con = value->get_int(); | |||
2245 | return TypeInt::make((con << 16) >> 16); | |||
2246 | } | |||
2247 | return LoadNode::Value(phase); | |||
2248 | } | |||
2249 | ||||
2250 | //============================================================================= | |||
2251 | //----------------------------LoadKlassNode::make------------------------------ | |||
2252 | // Polymorphic factory method: | |||
2253 | Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { | |||
2254 | // sanity check the alias category against the created node type | |||
2255 | const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); | |||
2256 | assert(adr_type != NULL, "expecting TypeKlassPtr")do { if (!(adr_type != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2256, "assert(" "adr_type != __null" ") failed", "expecting TypeKlassPtr" ); ::breakpoint(); } } while (0); | |||
2257 | #ifdef _LP641 | |||
2258 | if (adr_type->is_ptr_to_narrowklass()) { | |||
2259 | assert(UseCompressedClassPointers, "no compressed klasses")do { if (!(UseCompressedClassPointers)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2259, "assert(" "UseCompressedClassPointers" ") failed", "no compressed klasses" ); ::breakpoint(); } } while (0); | |||
2260 | Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); | |||
2261 | return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); | |||
2262 | } | |||
2263 | #endif | |||
2264 | assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop")do { if (!(!adr_type->is_ptr_to_narrowklass() && ! adr_type->is_ptr_to_narrowoop())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2264, "assert(" "!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop()" ") failed", "should have got back a narrow oop"); ::breakpoint (); } } while (0); | |||
2265 | return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); | |||
2266 | } | |||
2267 | ||||
2268 | //------------------------------Value------------------------------------------ | |||
2269 | const Type* LoadKlassNode::Value(PhaseGVN* phase) const { | |||
2270 | return klass_value_common(phase); | |||
2271 | } | |||
2272 | ||||
2273 | // In most cases, LoadKlassNode does not have the control input set. If the control | |||
2274 | // input is set, it must not be removed (by LoadNode::Ideal()). | |||
2275 | bool LoadKlassNode::can_remove_control() const { | |||
2276 | return false; | |||
2277 | } | |||
2278 | ||||
2279 | const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { | |||
2280 | // Either input is TOP ==> the result is TOP | |||
2281 | const Type *t1 = phase->type( in(MemNode::Memory) ); | |||
2282 | if (t1 == Type::TOP) return Type::TOP; | |||
2283 | Node *adr = in(MemNode::Address); | |||
2284 | const Type *t2 = phase->type( adr ); | |||
2285 | if (t2 == Type::TOP) return Type::TOP; | |||
2286 | const TypePtr *tp = t2->is_ptr(); | |||
2287 | if (TypePtr::above_centerline(tp->ptr()) || | |||
2288 | tp->ptr() == TypePtr::Null) return Type::TOP; | |||
2289 | ||||
2290 | // Return a more precise klass, if possible | |||
2291 | const TypeInstPtr *tinst = tp->isa_instptr(); | |||
2292 | if (tinst != NULL__null) { | |||
2293 | ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); | |||
2294 | int offset = tinst->offset(); | |||
2295 | if (ik == phase->C->env()->Class_klass() | |||
2296 | && (offset == java_lang_Class::klass_offset() || | |||
2297 | offset == java_lang_Class::array_klass_offset())) { | |||
2298 | // We are loading a special hidden field from a Class mirror object, | |||
2299 | // the field which points to the VM's Klass metaobject. | |||
2300 | ciType* t = tinst->java_mirror_type(); | |||
2301 | // java_mirror_type returns non-null for compile-time Class constants. | |||
2302 | if (t != NULL__null) { | |||
2303 | // constant oop => constant klass | |||
2304 | if (offset == java_lang_Class::array_klass_offset()) { | |||
2305 | if (t->is_void()) { | |||
2306 | // We cannot create a void array. Since void is a primitive type return null | |||
2307 | // klass. Users of this result need to do a null check on the returned klass. | |||
2308 | return TypePtr::NULL_PTR; | |||
2309 | } | |||
2310 | return TypeKlassPtr::make(ciArrayKlass::make(t)); | |||
2311 | } | |||
2312 | if (!t->is_klass()) { | |||
2313 | // a primitive Class (e.g., int.class) has NULL for a klass field | |||
2314 | return TypePtr::NULL_PTR; | |||
2315 | } | |||
2316 | // (Folds up the 1st indirection in aClassConstant.getModifiers().) | |||
2317 | return TypeKlassPtr::make(t->as_klass()); | |||
2318 | } | |||
2319 | // non-constant mirror, so we can't tell what's going on | |||
2320 | } | |||
2321 | if( !ik->is_loaded() ) | |||
2322 | return _type; // Bail out if not loaded | |||
2323 | if (offset == oopDesc::klass_offset_in_bytes()) { | |||
2324 | if (tinst->klass_is_exact()) { | |||
2325 | return TypeKlassPtr::make(ik); | |||
2326 | } | |||
2327 | // See if we can become precise: no subklasses and no interface | |||
2328 | // (Note: We need to support verified interfaces.) | |||
2329 | if (!ik->is_interface() && !ik->has_subklass()) { | |||
2330 | // Add a dependence; if any subclass added we need to recompile | |||
2331 | if (!ik->is_final()) { | |||
2332 | // %%% should use stronger assert_unique_concrete_subtype instead | |||
2333 | phase->C->dependencies()->assert_leaf_type(ik); | |||
2334 | } | |||
2335 | // Return precise klass | |||
2336 | return TypeKlassPtr::make(ik); | |||
2337 | } | |||
2338 | ||||
2339 | // Return root of possible klass | |||
2340 | return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/); | |||
2341 | } | |||
2342 | } | |||
2343 | ||||
2344 | // Check for loading klass from an array | |||
2345 | const TypeAryPtr *tary = tp->isa_aryptr(); | |||
2346 | if( tary != NULL__null ) { | |||
2347 | ciKlass *tary_klass = tary->klass(); | |||
2348 | if (tary_klass != NULL__null // can be NULL when at BOTTOM or TOP | |||
2349 | && tary->offset() == oopDesc::klass_offset_in_bytes()) { | |||
2350 | if (tary->klass_is_exact()) { | |||
2351 | return TypeKlassPtr::make(tary_klass); | |||
2352 | } | |||
2353 | ciArrayKlass *ak = tary->klass()->as_array_klass(); | |||
2354 | // If the klass is an object array, we defer the question to the | |||
2355 | // array component klass. | |||
2356 | if( ak->is_obj_array_klass() ) { | |||
2357 | assert( ak->is_loaded(), "" )do { if (!(ak->is_loaded())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2357, "assert(" "ak->is_loaded()" ") failed", ""); ::breakpoint (); } } while (0); | |||
2358 | ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass(); | |||
2359 | if( base_k->is_loaded() && base_k->is_instance_klass() ) { | |||
2360 | ciInstanceKlass* ik = base_k->as_instance_klass(); | |||
2361 | // See if we can become precise: no subklasses and no interface | |||
2362 | if (!ik->is_interface() && !ik->has_subklass()) { | |||
2363 | // Add a dependence; if any subclass added we need to recompile | |||
2364 | if (!ik->is_final()) { | |||
2365 | phase->C->dependencies()->assert_leaf_type(ik); | |||
2366 | } | |||
2367 | // Return precise array klass | |||
2368 | return TypeKlassPtr::make(ak); | |||
2369 | } | |||
2370 | } | |||
2371 | return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); | |||
2372 | } else { // Found a type-array? | |||
2373 | assert( ak->is_type_array_klass(), "" )do { if (!(ak->is_type_array_klass())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2373, "assert(" "ak->is_type_array_klass()" ") failed", "" ); ::breakpoint(); } } while (0); | |||
2374 | return TypeKlassPtr::make(ak); // These are always precise | |||
2375 | } | |||
2376 | } | |||
2377 | } | |||
2378 | ||||
2379 | // Check for loading klass from an array klass | |||
2380 | const TypeKlassPtr *tkls = tp->isa_klassptr(); | |||
2381 | if (tkls != NULL__null && !StressReflectiveCode) { | |||
2382 | ciKlass* klass = tkls->klass(); | |||
2383 | if( !klass->is_loaded() ) | |||
2384 | return _type; // Bail out if not loaded | |||
2385 | if( klass->is_obj_array_klass() && | |||
2386 | tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { | |||
2387 | ciKlass* elem = klass->as_obj_array_klass()->element_klass(); | |||
2388 | // // Always returning precise element type is incorrect, | |||
2389 | // // e.g., element type could be object and array may contain strings | |||
2390 | // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); | |||
2391 | ||||
2392 | // The array's TypeKlassPtr was declared 'precise' or 'not precise' | |||
2393 | // according to the element type's subclassing. | |||
2394 | return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/); | |||
2395 | } | |||
2396 | if( klass->is_instance_klass() && tkls->klass_is_exact() && | |||
2397 | tkls->offset() == in_bytes(Klass::super_offset())) { | |||
2398 | ciKlass* sup = klass->as_instance_klass()->super(); | |||
2399 | // The field is Klass::_super. Return its (constant) value. | |||
2400 | // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) | |||
2401 | return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR; | |||
2402 | } | |||
2403 | } | |||
2404 | ||||
2405 | // Bailout case | |||
2406 | return LoadNode::Value(phase); | |||
2407 | } | |||
2408 | ||||
2409 | //------------------------------Identity--------------------------------------- | |||
2410 | // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. | |||
2411 | // Also feed through the klass in Allocate(...klass...)._klass. | |||
2412 | Node* LoadKlassNode::Identity(PhaseGVN* phase) { | |||
2413 | return klass_identity_common(phase); | |||
2414 | } | |||
2415 | ||||
2416 | Node* LoadNode::klass_identity_common(PhaseGVN* phase) { | |||
2417 | Node* x = LoadNode::Identity(phase); | |||
2418 | if (x != this) return x; | |||
2419 | ||||
2420 | // Take apart the address into an oop and and offset. | |||
2421 | // Return 'this' if we cannot. | |||
2422 | Node* adr = in(MemNode::Address); | |||
2423 | intptr_t offset = 0; | |||
2424 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
2425 | if (base == NULL__null) return this; | |||
2426 | const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); | |||
2427 | if (toop == NULL__null) return this; | |||
2428 | ||||
2429 | // Step over potential GC barrier for OopHandle resolve | |||
2430 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
2431 | if (bs->is_gc_barrier_node(base)) { | |||
2432 | base = bs->step_over_gc_barrier(base); | |||
2433 | } | |||
2434 | ||||
2435 | // We can fetch the klass directly through an AllocateNode. | |||
2436 | // This works even if the klass is not constant (clone or newArray). | |||
2437 | if (offset == oopDesc::klass_offset_in_bytes()) { | |||
2438 | Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); | |||
2439 | if (allocated_klass != NULL__null) { | |||
2440 | return allocated_klass; | |||
2441 | } | |||
2442 | } | |||
2443 | ||||
2444 | // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. | |||
2445 | // See inline_native_Class_query for occurrences of these patterns. | |||
2446 | // Java Example: x.getClass().isAssignableFrom(y) | |||
2447 | // | |||
2448 | // This improves reflective code, often making the Class | |||
2449 | // mirror go completely dead. (Current exception: Class | |||
2450 | // mirrors may appear in debug info, but we could clean them out by | |||
2451 | // introducing a new debug info operator for Klass.java_mirror). | |||
2452 | ||||
2453 | if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass() | |||
2454 | && offset == java_lang_Class::klass_offset()) { | |||
2455 | if (base->is_Load()) { | |||
2456 | Node* base2 = base->in(MemNode::Address); | |||
2457 | if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ | |||
2458 | Node* adr2 = base2->in(MemNode::Address); | |||
2459 | const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); | |||
2460 | if (tkls != NULL__null && !tkls->empty() | |||
2461 | && (tkls->klass()->is_instance_klass() || | |||
2462 | tkls->klass()->is_array_klass()) | |||
2463 | && adr2->is_AddP() | |||
2464 | ) { | |||
2465 | int mirror_field = in_bytes(Klass::java_mirror_offset()); | |||
2466 | if (tkls->offset() == mirror_field) { | |||
2467 | return adr2->in(AddPNode::Base); | |||
2468 | } | |||
2469 | } | |||
2470 | } | |||
2471 | } | |||
2472 | } | |||
2473 | ||||
2474 | return this; | |||
2475 | } | |||
2476 | ||||
2477 | ||||
2478 | //------------------------------Value------------------------------------------ | |||
2479 | const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { | |||
2480 | const Type *t = klass_value_common(phase); | |||
2481 | if (t == Type::TOP) | |||
2482 | return t; | |||
2483 | ||||
2484 | return t->make_narrowklass(); | |||
2485 | } | |||
2486 | ||||
2487 | //------------------------------Identity--------------------------------------- | |||
2488 | // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. | |||
2489 | // Also feed through the klass in Allocate(...klass...)._klass. | |||
2490 | Node* LoadNKlassNode::Identity(PhaseGVN* phase) { | |||
2491 | Node *x = klass_identity_common(phase); | |||
2492 | ||||
2493 | const Type *t = phase->type( x ); | |||
2494 | if( t == Type::TOP ) return x; | |||
2495 | if( t->isa_narrowklass()) return x; | |||
2496 | assert (!t->isa_narrowoop(), "no narrow oop here")do { if (!(!t->isa_narrowoop())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2496, "assert(" "!t->isa_narrowoop()" ") failed", "no narrow oop here" ); ::breakpoint(); } } while (0); | |||
2497 | ||||
2498 | return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); | |||
2499 | } | |||
2500 | ||||
2501 | //------------------------------Value----------------------------------------- | |||
2502 | const Type* LoadRangeNode::Value(PhaseGVN* phase) const { | |||
2503 | // Either input is TOP ==> the result is TOP | |||
2504 | const Type *t1 = phase->type( in(MemNode::Memory) ); | |||
2505 | if( t1 == Type::TOP ) return Type::TOP; | |||
2506 | Node *adr = in(MemNode::Address); | |||
2507 | const Type *t2 = phase->type( adr ); | |||
2508 | if( t2 == Type::TOP ) return Type::TOP; | |||
2509 | const TypePtr *tp = t2->is_ptr(); | |||
2510 | if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; | |||
2511 | const TypeAryPtr *tap = tp->isa_aryptr(); | |||
2512 | if( !tap ) return _type; | |||
2513 | return tap->size(); | |||
2514 | } | |||
2515 | ||||
2516 | //-------------------------------Ideal--------------------------------------- | |||
2517 | // Feed through the length in AllocateArray(...length...)._length. | |||
2518 | Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
2519 | Node* p = MemNode::Ideal_common(phase, can_reshape); | |||
2520 | if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p; | |||
2521 | ||||
2522 | // Take apart the address into an oop and and offset. | |||
2523 | // Return 'this' if we cannot. | |||
2524 | Node* adr = in(MemNode::Address); | |||
2525 | intptr_t offset = 0; | |||
2526 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
2527 | if (base == NULL__null) return NULL__null; | |||
2528 | const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); | |||
2529 | if (tary == NULL__null) return NULL__null; | |||
2530 | ||||
2531 | // We can fetch the length directly through an AllocateArrayNode. | |||
2532 | // This works even if the length is not constant (clone or newArray). | |||
2533 | if (offset == arrayOopDesc::length_offset_in_bytes()) { | |||
2534 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); | |||
2535 | if (alloc != NULL__null) { | |||
2536 | Node* allocated_length = alloc->Ideal_length(); | |||
2537 | Node* len = alloc->make_ideal_length(tary, phase); | |||
2538 | if (allocated_length != len) { | |||
2539 | // New CastII improves on this. | |||
2540 | return len; | |||
2541 | } | |||
2542 | } | |||
2543 | } | |||
2544 | ||||
2545 | return NULL__null; | |||
2546 | } | |||
2547 | ||||
2548 | //------------------------------Identity--------------------------------------- | |||
2549 | // Feed through the length in AllocateArray(...length...)._length. | |||
2550 | Node* LoadRangeNode::Identity(PhaseGVN* phase) { | |||
2551 | Node* x = LoadINode::Identity(phase); | |||
2552 | if (x != this) return x; | |||
2553 | ||||
2554 | // Take apart the address into an oop and and offset. | |||
2555 | // Return 'this' if we cannot. | |||
2556 | Node* adr = in(MemNode::Address); | |||
2557 | intptr_t offset = 0; | |||
2558 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
2559 | if (base == NULL__null) return this; | |||
2560 | const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); | |||
2561 | if (tary == NULL__null) return this; | |||
2562 | ||||
2563 | // We can fetch the length directly through an AllocateArrayNode. | |||
2564 | // This works even if the length is not constant (clone or newArray). | |||
2565 | if (offset == arrayOopDesc::length_offset_in_bytes()) { | |||
2566 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); | |||
2567 | if (alloc != NULL__null) { | |||
2568 | Node* allocated_length = alloc->Ideal_length(); | |||
2569 | // Do not allow make_ideal_length to allocate a CastII node. | |||
2570 | Node* len = alloc->make_ideal_length(tary, phase, false); | |||
2571 | if (allocated_length == len) { | |||
2572 | // Return allocated_length only if it would not be improved by a CastII. | |||
2573 | return allocated_length; | |||
2574 | } | |||
2575 | } | |||
2576 | } | |||
2577 | ||||
2578 | return this; | |||
2579 | ||||
2580 | } | |||
2581 | ||||
2582 | //============================================================================= | |||
2583 | //---------------------------StoreNode::make----------------------------------- | |||
2584 | // Polymorphic factory method: | |||
2585 | StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) { | |||
2586 | assert((mo == unordered || mo == release), "unexpected")do { if (!((mo == unordered || mo == release))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2586, "assert(" "(mo == unordered || mo == release)" ") failed" , "unexpected"); ::breakpoint(); } } while (0); | |||
2587 | Compile* C = gvn.C; | |||
2588 | assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||do { if (!(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2589, "assert(" "C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
2589 | ctl != NULL, "raw memory operations should have control edge")do { if (!(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2589, "assert(" "C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0); | |||
2590 | ||||
2591 | switch (bt) { | |||
2592 | case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case | |||
2593 | case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); | |||
2594 | case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); | |||
2595 | case T_CHAR: | |||
2596 | case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); | |||
2597 | case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo); | |||
2598 | case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); | |||
2599 | case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo); | |||
2600 | case T_METADATA: | |||
2601 | case T_ADDRESS: | |||
2602 | case T_OBJECT: | |||
2603 | #ifdef _LP641 | |||
2604 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { | |||
2605 | val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); | |||
2606 | return new StoreNNode(ctl, mem, adr, adr_type, val, mo); | |||
2607 | } else if (adr->bottom_type()->is_ptr_to_narrowklass() || | |||
2608 | (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && | |||
2609 | adr->bottom_type()->isa_rawptr())) { | |||
2610 | val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); | |||
2611 | return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); | |||
2612 | } | |||
2613 | #endif | |||
2614 | { | |||
2615 | return new StorePNode(ctl, mem, adr, adr_type, val, mo); | |||
2616 | } | |||
2617 | default: | |||
2618 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2618); ::breakpoint(); } while (0); | |||
2619 | return (StoreNode*)NULL__null; | |||
2620 | } | |||
2621 | } | |||
2622 | ||||
2623 | StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { | |||
2624 | bool require_atomic = true; | |||
2625 | return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic); | |||
2626 | } | |||
2627 | ||||
2628 | StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { | |||
2629 | bool require_atomic = true; | |||
2630 | return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic); | |||
2631 | } | |||
2632 | ||||
2633 | ||||
2634 | //--------------------------bottom_type---------------------------------------- | |||
2635 | const Type *StoreNode::bottom_type() const { | |||
2636 | return Type::MEMORY; | |||
2637 | } | |||
2638 | ||||
2639 | //------------------------------hash------------------------------------------- | |||
2640 | uint StoreNode::hash() const { | |||
2641 | // unroll addition of interesting fields | |||
2642 | //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); | |||
2643 | ||||
2644 | // Since they are not commoned, do not hash them: | |||
2645 | return NO_HASH; | |||
2646 | } | |||
2647 | ||||
2648 | //------------------------------Ideal------------------------------------------ | |||
2649 | // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). | |||
2650 | // When a store immediately follows a relevant allocation/initialization, | |||
2651 | // try to capture it into the initialization, or hoist it above. | |||
2652 | Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
2653 | Node* p = MemNode::Ideal_common(phase, can_reshape); | |||
2654 | if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p; | |||
2655 | ||||
2656 | Node* mem = in(MemNode::Memory); | |||
2657 | Node* address = in(MemNode::Address); | |||
2658 | Node* value = in(MemNode::ValueIn); | |||
2659 | // Back-to-back stores to same address? Fold em up. Generally | |||
2660 | // unsafe if I have intervening uses... Also disallowed for StoreCM | |||
2661 | // since they must follow each StoreP operation. Redundant StoreCMs | |||
2662 | // are eliminated just before matching in final_graph_reshape. | |||
2663 | { | |||
2664 | Node* st = mem; | |||
2665 | // If Store 'st' has more than one use, we cannot fold 'st' away. | |||
2666 | // For example, 'st' might be the final state at a conditional | |||
2667 | // return. Or, 'st' might be used by some node which is live at | |||
2668 | // the same time 'st' is live, which might be unschedulable. So, | |||
2669 | // require exactly ONE user until such time as we clone 'mem' for | |||
2670 | // each of 'mem's uses (thus making the exactly-1-user-rule hold | |||
2671 | // true). | |||
2672 | while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) { | |||
2673 | // Looking at a dead closed cycle of memory? | |||
2674 | assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal")do { if (!(st != st->in(MemNode::Memory))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2674, "assert(" "st != st->in(MemNode::Memory)" ") failed" , "dead loop in StoreNode::Ideal"); ::breakpoint(); } } while (0); | |||
2675 | assert(Opcode() == st->Opcode() ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2676 | st->Opcode() == Op_StoreVector ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2677 | Opcode() == Op_StoreVector ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2678 | st->Opcode() == Op_StoreVectorScatter ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2679 | Opcode() == Op_StoreVectorScatter ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2680 | phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2681 | (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNodedo { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2682 | (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopydo { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2683 | (is_mismatched_access() || st->as_Store()->is_mismatched_access()),do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
2684 | "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()])do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0); | |||
2685 | ||||
2686 | if (st->in(MemNode::Address)->eqv_uncast(address) && | |||
2687 | st->as_Store()->memory_size() <= this->memory_size()) { | |||
2688 | Node* use = st->raw_out(0); | |||
2689 | if (phase->is_IterGVN()) { | |||
2690 | phase->is_IterGVN()->rehash_node_delayed(use); | |||
2691 | } | |||
2692 | // It's OK to do this in the parser, since DU info is always accurate, | |||
2693 | // and the parser always refers to nodes via SafePointNode maps. | |||
2694 | use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); | |||
2695 | return this; | |||
2696 | } | |||
2697 | st = st->in(MemNode::Memory); | |||
2698 | } | |||
2699 | } | |||
2700 | ||||
2701 | ||||
2702 | // Capture an unaliased, unconditional, simple store into an initializer. | |||
2703 | // Or, if it is independent of the allocation, hoist it above the allocation. | |||
2704 | if (ReduceFieldZeroing && /*can_reshape &&*/ | |||
2705 | mem->is_Proj() && mem->in(0)->is_Initialize()) { | |||
2706 | InitializeNode* init = mem->in(0)->as_Initialize(); | |||
2707 | intptr_t offset = init->can_capture_store(this, phase, can_reshape); | |||
2708 | if (offset > 0) { | |||
2709 | Node* moved = init->capture_store(this, offset, phase, can_reshape); | |||
2710 | // If the InitializeNode captured me, it made a raw copy of me, | |||
2711 | // and I need to disappear. | |||
2712 | if (moved != NULL__null) { | |||
2713 | // %%% hack to ensure that Ideal returns a new node: | |||
2714 | mem = MergeMemNode::make(mem); | |||
2715 | return mem; // fold me away | |||
2716 | } | |||
2717 | } | |||
2718 | } | |||
2719 | ||||
2720 | // Fold reinterpret cast into memory operation: | |||
2721 | // StoreX mem (MoveY2X v) => StoreY mem v | |||
2722 | if (value->is_Move()) { | |||
2723 | const Type* vt = value->in(1)->bottom_type(); | |||
2724 | if (has_reinterpret_variant(vt)) { | |||
2725 | if (phase->C->post_loop_opts_phase()) { | |||
2726 | return convert_to_reinterpret_store(*phase, value->in(1), vt); | |||
2727 | } else { | |||
2728 | phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over | |||
2729 | } | |||
2730 | } | |||
2731 | } | |||
2732 | ||||
2733 | return NULL__null; // No further progress | |||
2734 | } | |||
2735 | ||||
2736 | //------------------------------Value----------------------------------------- | |||
2737 | const Type* StoreNode::Value(PhaseGVN* phase) const { | |||
2738 | // Either input is TOP ==> the result is TOP | |||
2739 | const Type *t1 = phase->type( in(MemNode::Memory) ); | |||
2740 | if( t1 == Type::TOP ) return Type::TOP; | |||
2741 | const Type *t2 = phase->type( in(MemNode::Address) ); | |||
2742 | if( t2 == Type::TOP ) return Type::TOP; | |||
2743 | const Type *t3 = phase->type( in(MemNode::ValueIn) ); | |||
2744 | if( t3 == Type::TOP ) return Type::TOP; | |||
2745 | return Type::MEMORY; | |||
2746 | } | |||
2747 | ||||
2748 | //------------------------------Identity--------------------------------------- | |||
2749 | // Remove redundant stores: | |||
2750 | // Store(m, p, Load(m, p)) changes to m. | |||
2751 | // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). | |||
2752 | Node* StoreNode::Identity(PhaseGVN* phase) { | |||
2753 | Node* mem = in(MemNode::Memory); | |||
2754 | Node* adr = in(MemNode::Address); | |||
2755 | Node* val = in(MemNode::ValueIn); | |||
2756 | ||||
2757 | Node* result = this; | |||
2758 | ||||
2759 | // Load then Store? Then the Store is useless | |||
2760 | if (val->is_Load() && | |||
2761 | val->in(MemNode::Address)->eqv_uncast(adr) && | |||
2762 | val->in(MemNode::Memory )->eqv_uncast(mem) && | |||
2763 | val->as_Load()->store_Opcode() == Opcode()) { | |||
2764 | result = mem; | |||
2765 | } | |||
2766 | ||||
2767 | // Two stores in a row of the same value? | |||
2768 | if (result == this && | |||
2769 | mem->is_Store() && | |||
2770 | mem->in(MemNode::Address)->eqv_uncast(adr) && | |||
2771 | mem->in(MemNode::ValueIn)->eqv_uncast(val) && | |||
2772 | mem->Opcode() == Opcode()) { | |||
2773 | result = mem; | |||
2774 | } | |||
2775 | ||||
2776 | // Store of zero anywhere into a freshly-allocated object? | |||
2777 | // Then the store is useless. | |||
2778 | // (It must already have been captured by the InitializeNode.) | |||
2779 | if (result == this && | |||
2780 | ReduceFieldZeroing && phase->type(val)->is_zero_type()) { | |||
2781 | // a newly allocated object is already all-zeroes everywhere | |||
2782 | if (mem->is_Proj() && mem->in(0)->is_Allocate()) { | |||
2783 | result = mem; | |||
2784 | } | |||
2785 | ||||
2786 | if (result == this) { | |||
2787 | // the store may also apply to zero-bits in an earlier object | |||
2788 | Node* prev_mem = find_previous_store(phase); | |||
2789 | // Steps (a), (b): Walk past independent stores to find an exact match. | |||
2790 | if (prev_mem != NULL__null) { | |||
2791 | Node* prev_val = can_see_stored_value(prev_mem, phase); | |||
2792 | if (prev_val != NULL__null && prev_val == val) { | |||
2793 | // prev_val and val might differ by a cast; it would be good | |||
2794 | // to keep the more informative of the two. | |||
2795 | result = mem; | |||
2796 | } | |||
2797 | } | |||
2798 | } | |||
2799 | } | |||
2800 | ||||
2801 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
2802 | if (result != this && igvn != NULL__null) { | |||
2803 | MemBarNode* trailing = trailing_membar(); | |||
2804 | if (trailing != NULL__null) { | |||
2805 | #ifdef ASSERT1 | |||
2806 | const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); | |||
2807 | assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects")do { if (!(t_oop == __null || t_oop->is_known_instance_field ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2807, "assert(" "t_oop == __null || t_oop->is_known_instance_field()" ") failed", "only for non escaping objects"); ::breakpoint() ; } } while (0); | |||
2808 | #endif | |||
2809 | trailing->remove(igvn); | |||
2810 | } | |||
2811 | } | |||
2812 | ||||
2813 | return result; | |||
2814 | } | |||
2815 | ||||
2816 | //------------------------------match_edge------------------------------------- | |||
2817 | // Do we Match on this edge index or not? Match only memory & value | |||
2818 | uint StoreNode::match_edge(uint idx) const { | |||
2819 | return idx == MemNode::Address || idx == MemNode::ValueIn; | |||
2820 | } | |||
2821 | ||||
2822 | //------------------------------cmp-------------------------------------------- | |||
2823 | // Do not common stores up together. They generally have to be split | |||
2824 | // back up anyways, so do not bother. | |||
2825 | bool StoreNode::cmp( const Node &n ) const { | |||
2826 | return (&n == this); // Always fail except on self | |||
2827 | } | |||
2828 | ||||
2829 | //------------------------------Ideal_masked_input----------------------------- | |||
2830 | // Check for a useless mask before a partial-word store | |||
2831 | // (StoreB ... (AndI valIn conIa) ) | |||
2832 | // If (conIa & mask == mask) this simplifies to | |||
2833 | // (StoreB ... (valIn) ) | |||
2834 | Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { | |||
2835 | Node *val = in(MemNode::ValueIn); | |||
2836 | if( val->Opcode() == Op_AndI ) { | |||
2837 | const TypeInt *t = phase->type( val->in(2) )->isa_int(); | |||
2838 | if( t && t->is_con() && (t->get_con() & mask) == mask ) { | |||
2839 | set_req_X(MemNode::ValueIn, val->in(1), phase); | |||
2840 | return this; | |||
2841 | } | |||
2842 | } | |||
2843 | return NULL__null; | |||
2844 | } | |||
2845 | ||||
2846 | ||||
2847 | //------------------------------Ideal_sign_extended_input---------------------- | |||
2848 | // Check for useless sign-extension before a partial-word store | |||
2849 | // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) | |||
2850 | // If (conIL == conIR && conIR <= num_bits) this simplifies to | |||
2851 | // (StoreB ... (valIn) ) | |||
2852 | Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { | |||
2853 | Node *val = in(MemNode::ValueIn); | |||
2854 | if( val->Opcode() == Op_RShiftI ) { | |||
2855 | const TypeInt *t = phase->type( val->in(2) )->isa_int(); | |||
2856 | if( t && t->is_con() && (t->get_con() <= num_bits) ) { | |||
2857 | Node *shl = val->in(1); | |||
2858 | if( shl->Opcode() == Op_LShiftI ) { | |||
2859 | const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); | |||
2860 | if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { | |||
2861 | set_req_X(MemNode::ValueIn, shl->in(1), phase); | |||
2862 | return this; | |||
2863 | } | |||
2864 | } | |||
2865 | } | |||
2866 | } | |||
2867 | return NULL__null; | |||
2868 | } | |||
2869 | ||||
2870 | //------------------------------value_never_loaded----------------------------------- | |||
2871 | // Determine whether there are any possible loads of the value stored. | |||
2872 | // For simplicity, we actually check if there are any loads from the | |||
2873 | // address stored to, not just for loads of the value stored by this node. | |||
2874 | // | |||
2875 | bool StoreNode::value_never_loaded( PhaseTransform *phase) const { | |||
2876 | Node *adr = in(Address); | |||
2877 | const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); | |||
2878 | if (adr_oop == NULL__null) | |||
2879 | return false; | |||
2880 | if (!adr_oop->is_known_instance_field()) | |||
2881 | return false; // if not a distinct instance, there may be aliases of the address | |||
2882 | for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { | |||
2883 | Node *use = adr->fast_out(i); | |||
2884 | if (use->is_Load() || use->is_LoadStore()) { | |||
2885 | return false; | |||
2886 | } | |||
2887 | } | |||
2888 | return true; | |||
2889 | } | |||
2890 | ||||
2891 | MemBarNode* StoreNode::trailing_membar() const { | |||
2892 | if (is_release()) { | |||
2893 | MemBarNode* trailing_mb = NULL__null; | |||
2894 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { | |||
2895 | Node* u = fast_out(i); | |||
2896 | if (u->is_MemBar()) { | |||
2897 | if (u->as_MemBar()->trailing_store()) { | |||
2898 | assert(u->Opcode() == Op_MemBarVolatile, "")do { if (!(u->Opcode() == Op_MemBarVolatile)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2898, "assert(" "u->Opcode() == Op_MemBarVolatile" ") failed" , ""); ::breakpoint(); } } while (0); | |||
2899 | assert(trailing_mb == NULL, "only one")do { if (!(trailing_mb == __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2899, "assert(" "trailing_mb == __null" ") failed", "only one" ); ::breakpoint(); } } while (0); | |||
2900 | trailing_mb = u->as_MemBar(); | |||
2901 | #ifdef ASSERT1 | |||
2902 | Node* leading = u->as_MemBar()->leading_membar(); | |||
2903 | assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar")do { if (!(leading->Opcode() == Op_MemBarRelease)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2903, "assert(" "leading->Opcode() == Op_MemBarRelease" ") failed" , "incorrect membar"); ::breakpoint(); } } while (0); | |||
2904 | assert(leading->as_MemBar()->leading_store(), "incorrect membar pair")do { if (!(leading->as_MemBar()->leading_store())) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2904, "assert(" "leading->as_MemBar()->leading_store()" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
2905 | assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair")do { if (!(leading->as_MemBar()->trailing_membar() == u )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2905, "assert(" "leading->as_MemBar()->trailing_membar() == u" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
2906 | #endif | |||
2907 | } else { | |||
2908 | assert(u->as_MemBar()->standalone(), "")do { if (!(u->as_MemBar()->standalone())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2908, "assert(" "u->as_MemBar()->standalone()" ") failed" , ""); ::breakpoint(); } } while (0); | |||
2909 | } | |||
2910 | } | |||
2911 | } | |||
2912 | return trailing_mb; | |||
2913 | } | |||
2914 | return NULL__null; | |||
2915 | } | |||
2916 | ||||
2917 | ||||
2918 | //============================================================================= | |||
2919 | //------------------------------Ideal------------------------------------------ | |||
2920 | // If the store is from an AND mask that leaves the low bits untouched, then | |||
2921 | // we can skip the AND operation. If the store is from a sign-extension | |||
2922 | // (a left shift, then right shift) we can skip both. | |||
2923 | Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ | |||
2924 | Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); | |||
2925 | if( progress != NULL__null ) return progress; | |||
2926 | ||||
2927 | progress = StoreNode::Ideal_sign_extended_input(phase, 24); | |||
2928 | if( progress != NULL__null ) return progress; | |||
2929 | ||||
2930 | // Finally check the default case | |||
2931 | return StoreNode::Ideal(phase, can_reshape); | |||
2932 | } | |||
2933 | ||||
2934 | //============================================================================= | |||
2935 | //------------------------------Ideal------------------------------------------ | |||
2936 | // If the store is from an AND mask that leaves the low bits untouched, then | |||
2937 | // we can skip the AND operation | |||
2938 | Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ | |||
2939 | Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); | |||
2940 | if( progress != NULL__null ) return progress; | |||
2941 | ||||
2942 | progress = StoreNode::Ideal_sign_extended_input(phase, 16); | |||
2943 | if( progress != NULL__null ) return progress; | |||
2944 | ||||
2945 | // Finally check the default case | |||
2946 | return StoreNode::Ideal(phase, can_reshape); | |||
2947 | } | |||
2948 | ||||
2949 | //============================================================================= | |||
2950 | //------------------------------Identity--------------------------------------- | |||
2951 | Node* StoreCMNode::Identity(PhaseGVN* phase) { | |||
2952 | // No need to card mark when storing a null ptr | |||
2953 | Node* my_store = in(MemNode::OopStore); | |||
2954 | if (my_store->is_Store()) { | |||
2955 | const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) ); | |||
2956 | if( t1 == TypePtr::NULL_PTR ) { | |||
2957 | return in(MemNode::Memory); | |||
2958 | } | |||
2959 | } | |||
2960 | return this; | |||
2961 | } | |||
2962 | ||||
2963 | //============================================================================= | |||
2964 | //------------------------------Ideal--------------------------------------- | |||
2965 | Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){ | |||
2966 | Node* progress = StoreNode::Ideal(phase, can_reshape); | |||
2967 | if (progress != NULL__null) return progress; | |||
2968 | ||||
2969 | Node* my_store = in(MemNode::OopStore); | |||
2970 | if (my_store->is_MergeMem()) { | |||
2971 | Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx()); | |||
2972 | set_req_X(MemNode::OopStore, mem, phase); | |||
2973 | return this; | |||
2974 | } | |||
2975 | ||||
2976 | return NULL__null; | |||
2977 | } | |||
2978 | ||||
2979 | //------------------------------Value----------------------------------------- | |||
2980 | const Type* StoreCMNode::Value(PhaseGVN* phase) const { | |||
2981 | // Either input is TOP ==> the result is TOP (checked in StoreNode::Value). | |||
2982 | // If extra input is TOP ==> the result is TOP | |||
2983 | const Type* t = phase->type(in(MemNode::OopStore)); | |||
2984 | if (t == Type::TOP) { | |||
2985 | return Type::TOP; | |||
2986 | } | |||
2987 | return StoreNode::Value(phase); | |||
2988 | } | |||
2989 | ||||
2990 | ||||
2991 | //============================================================================= | |||
2992 | //----------------------------------SCMemProjNode------------------------------ | |||
2993 | const Type* SCMemProjNode::Value(PhaseGVN* phase) const | |||
2994 | { | |||
2995 | if (in(0) == NULL__null || phase->type(in(0)) == Type::TOP) { | |||
2996 | return Type::TOP; | |||
2997 | } | |||
2998 | return bottom_type(); | |||
2999 | } | |||
3000 | ||||
3001 | //============================================================================= | |||
3002 | //----------------------------------LoadStoreNode------------------------------ | |||
3003 | LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) | |||
3004 | : Node(required), | |||
3005 | _type(rt), | |||
3006 | _adr_type(at), | |||
3007 | _barrier_data(0) | |||
3008 | { | |||
3009 | init_req(MemNode::Control, c ); | |||
3010 | init_req(MemNode::Memory , mem); | |||
3011 | init_req(MemNode::Address, adr); | |||
3012 | init_req(MemNode::ValueIn, val); | |||
3013 | init_class_id(Class_LoadStore); | |||
3014 | } | |||
3015 | ||||
3016 | //------------------------------Value----------------------------------------- | |||
3017 | const Type* LoadStoreNode::Value(PhaseGVN* phase) const { | |||
3018 | // Either input is TOP ==> the result is TOP | |||
3019 | if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { | |||
3020 | return Type::TOP; | |||
3021 | } | |||
3022 | const Type* t = phase->type(in(MemNode::Memory)); | |||
3023 | if (t == Type::TOP) { | |||
3024 | return Type::TOP; | |||
3025 | } | |||
3026 | t = phase->type(in(MemNode::Address)); | |||
3027 | if (t == Type::TOP) { | |||
3028 | return Type::TOP; | |||
3029 | } | |||
3030 | t = phase->type(in(MemNode::ValueIn)); | |||
3031 | if (t == Type::TOP) { | |||
3032 | return Type::TOP; | |||
3033 | } | |||
3034 | return bottom_type(); | |||
3035 | } | |||
3036 | ||||
3037 | uint LoadStoreNode::ideal_reg() const { | |||
3038 | return _type->ideal_reg(); | |||
3039 | } | |||
3040 | ||||
3041 | bool LoadStoreNode::result_not_used() const { | |||
3042 | for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { | |||
3043 | Node *x = fast_out(i); | |||
3044 | if (x->Opcode() == Op_SCMemProj) continue; | |||
3045 | return false; | |||
3046 | } | |||
3047 | return true; | |||
3048 | } | |||
3049 | ||||
3050 | MemBarNode* LoadStoreNode::trailing_membar() const { | |||
3051 | MemBarNode* trailing = NULL__null; | |||
3052 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { | |||
3053 | Node* u = fast_out(i); | |||
3054 | if (u->is_MemBar()) { | |||
3055 | if (u->as_MemBar()->trailing_load_store()) { | |||
3056 | assert(u->Opcode() == Op_MemBarAcquire, "")do { if (!(u->Opcode() == Op_MemBarAcquire)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3056, "assert(" "u->Opcode() == Op_MemBarAcquire" ") failed" , ""); ::breakpoint(); } } while (0); | |||
3057 | assert(trailing == NULL, "only one")do { if (!(trailing == __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3057, "assert(" "trailing == __null" ") failed", "only one" ); ::breakpoint(); } } while (0); | |||
3058 | trailing = u->as_MemBar(); | |||
3059 | #ifdef ASSERT1 | |||
3060 | Node* leading = trailing->leading_membar(); | |||
3061 | assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar")do { if (!(support_IRIW_for_not_multiple_copy_atomic_cpu || leading ->Opcode() == Op_MemBarRelease)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3061, "assert(" "support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease" ") failed", "incorrect membar"); ::breakpoint(); } } while ( 0); | |||
3062 | assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair")do { if (!(leading->as_MemBar()->leading_load_store())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3062, "assert(" "leading->as_MemBar()->leading_load_store()" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
3063 | assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair")do { if (!(leading->as_MemBar()->trailing_membar() == trailing )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3063, "assert(" "leading->as_MemBar()->trailing_membar() == trailing" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
3064 | #endif | |||
3065 | } else { | |||
3066 | assert(u->as_MemBar()->standalone(), "wrong barrier kind")do { if (!(u->as_MemBar()->standalone())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3066, "assert(" "u->as_MemBar()->standalone()" ") failed" , "wrong barrier kind"); ::breakpoint(); } } while (0); | |||
3067 | } | |||
3068 | } | |||
3069 | } | |||
3070 | ||||
3071 | return trailing; | |||
3072 | } | |||
3073 | ||||
3074 | uint LoadStoreNode::size_of() const { return sizeof(*this); } | |||
3075 | ||||
3076 | //============================================================================= | |||
3077 | //----------------------------------LoadStoreConditionalNode-------------------- | |||
3078 | LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL__null, TypeInt::BOOL, 5) { | |||
3079 | init_req(ExpectedIn, ex ); | |||
3080 | } | |||
3081 | ||||
3082 | const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { | |||
3083 | // Either input is TOP ==> the result is TOP | |||
3084 | const Type* t = phase->type(in(ExpectedIn)); | |||
3085 | if (t == Type::TOP) { | |||
3086 | return Type::TOP; | |||
3087 | } | |||
3088 | return LoadStoreNode::Value(phase); | |||
3089 | } | |||
3090 | ||||
3091 | //============================================================================= | |||
3092 | //-------------------------------adr_type-------------------------------------- | |||
3093 | const TypePtr* ClearArrayNode::adr_type() const { | |||
3094 | Node *adr = in(3); | |||
3095 | if (adr == NULL__null) return NULL__null; // node is dead | |||
3096 | return MemNode::calculate_adr_type(adr->bottom_type()); | |||
3097 | } | |||
3098 | ||||
3099 | //------------------------------match_edge------------------------------------- | |||
3100 | // Do we Match on this edge index or not? Do not match memory | |||
3101 | uint ClearArrayNode::match_edge(uint idx) const { | |||
3102 | return idx > 1; | |||
3103 | } | |||
3104 | ||||
3105 | //------------------------------Identity--------------------------------------- | |||
3106 | // Clearing a zero length array does nothing | |||
3107 | Node* ClearArrayNode::Identity(PhaseGVN* phase) { | |||
3108 | return phase->type(in(2))->higher_equal(TypeXTypeLong::ZERO) ? in(1) : this; | |||
3109 | } | |||
3110 | ||||
3111 | //------------------------------Idealize--------------------------------------- | |||
3112 | // Clearing a short array is faster with stores | |||
3113 | Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
3114 | // Already know this is a large node, do not try to ideal it | |||
3115 | if (!IdealizeClearArrayNode || _is_large) return NULL__null; | |||
3116 | ||||
3117 | const int unit = BytesPerLong; | |||
3118 | const TypeXTypeLong* t = phase->type(in(2))->isa_intptr_tisa_long(); | |||
3119 | if (!t) return NULL__null; | |||
3120 | if (!t->is_con()) return NULL__null; | |||
3121 | intptr_t raw_count = t->get_con(); | |||
3122 | intptr_t size = raw_count; | |||
3123 | if (!Matcher::init_array_count_is_in_bytes) size *= unit; | |||
3124 | // Clearing nothing uses the Identity call. | |||
3125 | // Negative clears are possible on dead ClearArrays | |||
3126 | // (see jck test stmt114.stmt11402.val). | |||
3127 | if (size <= 0 || size % unit != 0) return NULL__null; | |||
3128 | intptr_t count = size / unit; | |||
3129 | // Length too long; communicate this to matchers and assemblers. | |||
3130 | // Assemblers are responsible to produce fast hardware clears for it. | |||
3131 | if (size > InitArrayShortSize) { | |||
3132 | return new ClearArrayNode(in(0), in(1), in(2), in(3), true); | |||
3133 | } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { | |||
3134 | return NULL__null; | |||
3135 | } | |||
3136 | Node *mem = in(1); | |||
3137 | if( phase->type(mem)==Type::TOP ) return NULL__null; | |||
3138 | Node *adr = in(3); | |||
3139 | const Type* at = phase->type(adr); | |||
3140 | if( at==Type::TOP ) return NULL__null; | |||
3141 | const TypePtr* atp = at->isa_ptr(); | |||
3142 | // adjust atp to be the correct array element address type | |||
3143 | if (atp == NULL__null) atp = TypePtr::BOTTOM; | |||
3144 | else atp = atp->add_offset(Type::OffsetBot); | |||
3145 | // Get base for derived pointer purposes | |||
3146 | if( adr->Opcode() != Op_AddP ) Unimplemented()do { (*g_assert_poison) = 'X';; report_unimplemented("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3146); ::breakpoint(); } while (0); | |||
3147 | Node *base = adr->in(1); | |||
3148 | ||||
3149 | Node *zero = phase->makecon(TypeLong::ZERO); | |||
3150 | Node *off = phase->MakeConXlongcon(BytesPerLong); | |||
3151 | mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); | |||
3152 | count--; | |||
3153 | while( count-- ) { | |||
3154 | mem = phase->transform(mem); | |||
3155 | adr = phase->transform(new AddPNode(base,adr,off)); | |||
3156 | mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); | |||
3157 | } | |||
3158 | return mem; | |||
3159 | } | |||
3160 | ||||
3161 | //----------------------------step_through---------------------------------- | |||
3162 | // Return allocation input memory edge if it is different instance | |||
3163 | // or itself if it is the one we are looking for. | |||
3164 | bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) { | |||
3165 | Node* n = *np; | |||
3166 | assert(n->is_ClearArray(), "sanity")do { if (!(n->is_ClearArray())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3166, "assert(" "n->is_ClearArray()" ") failed", "sanity" ); ::breakpoint(); } } while (0); | |||
3167 | intptr_t offset; | |||
3168 | AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); | |||
3169 | // This method is called only before Allocate nodes are expanded | |||
3170 | // during macro nodes expansion. Before that ClearArray nodes are | |||
3171 | // only generated in PhaseMacroExpand::generate_arraycopy() (before | |||
3172 | // Allocate nodes are expanded) which follows allocations. | |||
3173 | assert(alloc != NULL, "should have allocation")do { if (!(alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3173, "assert(" "alloc != __null" ") failed", "should have allocation" ); ::breakpoint(); } } while (0); | |||
3174 | if (alloc->_idx == instance_id) { | |||
3175 | // Can not bypass initialization of the instance we are looking for. | |||
3176 | return false; | |||
3177 | } | |||
3178 | // Otherwise skip it. | |||
3179 | InitializeNode* init = alloc->initialization(); | |||
3180 | if (init != NULL__null) | |||
3181 | *np = init->in(TypeFunc::Memory); | |||
3182 | else | |||
3183 | *np = alloc->in(TypeFunc::Memory); | |||
3184 | return true; | |||
3185 | } | |||
3186 | ||||
3187 | //----------------------------clear_memory------------------------------------- | |||
3188 | // Generate code to initialize object storage to zero. | |||
3189 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | |||
3190 | intptr_t start_offset, | |||
3191 | Node* end_offset, | |||
3192 | PhaseGVN* phase) { | |||
3193 | intptr_t offset = start_offset; | |||
3194 | ||||
3195 | int unit = BytesPerLong; | |||
3196 | if ((offset % unit) != 0) { | |||
3197 | Node* adr = new AddPNode(dest, dest, phase->MakeConXlongcon(offset)); | |||
3198 | adr = phase->transform(adr); | |||
3199 | const TypePtr* atp = TypeRawPtr::BOTTOM; | |||
3200 | mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); | |||
3201 | mem = phase->transform(mem); | |||
3202 | offset += BytesPerInt; | |||
3203 | } | |||
3204 | assert((offset % unit) == 0, "")do { if (!((offset % unit) == 0)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3204, "assert(" "(offset % unit) == 0" ") failed", ""); ::breakpoint (); } } while (0); | |||
3205 | ||||
3206 | // Initialize the remaining stuff, if any, with a ClearArray. | |||
3207 | return clear_memory(ctl, mem, dest, phase->MakeConXlongcon(offset), end_offset, phase); | |||
3208 | } | |||
3209 | ||||
3210 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | |||
3211 | Node* start_offset, | |||
3212 | Node* end_offset, | |||
3213 | PhaseGVN* phase) { | |||
3214 | if (start_offset == end_offset) { | |||
3215 | // nothing to do | |||
3216 | return mem; | |||
3217 | } | |||
3218 | ||||
3219 | int unit = BytesPerLong; | |||
3220 | Node* zbase = start_offset; | |||
3221 | Node* zend = end_offset; | |||
3222 | ||||
3223 | // Scale to the unit required by the CPU: | |||
3224 | if (!Matcher::init_array_count_is_in_bytes) { | |||
3225 | Node* shift = phase->intcon(exact_log2(unit)); | |||
3226 | zbase = phase->transform(new URShiftXNodeURShiftLNode(zbase, shift) ); | |||
3227 | zend = phase->transform(new URShiftXNodeURShiftLNode(zend, shift) ); | |||
3228 | } | |||
3229 | ||||
3230 | // Bulk clear double-words | |||
3231 | Node* zsize = phase->transform(new SubXNodeSubLNode(zend, zbase) ); | |||
3232 | Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); | |||
3233 | mem = new ClearArrayNode(ctl, mem, zsize, adr, false); | |||
3234 | return phase->transform(mem); | |||
3235 | } | |||
3236 | ||||
3237 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | |||
3238 | intptr_t start_offset, | |||
3239 | intptr_t end_offset, | |||
3240 | PhaseGVN* phase) { | |||
3241 | if (start_offset == end_offset) { | |||
3242 | // nothing to do | |||
3243 | return mem; | |||
3244 | } | |||
3245 | ||||
3246 | assert((end_offset % BytesPerInt) == 0, "odd end offset")do { if (!((end_offset % BytesPerInt) == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3246, "assert(" "(end_offset % BytesPerInt) == 0" ") failed" , "odd end offset"); ::breakpoint(); } } while (0); | |||
3247 | intptr_t done_offset = end_offset; | |||
3248 | if ((done_offset % BytesPerLong) != 0) { | |||
3249 | done_offset -= BytesPerInt; | |||
3250 | } | |||
3251 | if (done_offset > start_offset) { | |||
3252 | mem = clear_memory(ctl, mem, dest, | |||
3253 | start_offset, phase->MakeConXlongcon(done_offset), phase); | |||
3254 | } | |||
3255 | if (done_offset < end_offset) { // emit the final 32-bit store | |||
3256 | Node* adr = new AddPNode(dest, dest, phase->MakeConXlongcon(done_offset)); | |||
3257 | adr = phase->transform(adr); | |||
3258 | const TypePtr* atp = TypeRawPtr::BOTTOM; | |||
3259 | mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); | |||
3260 | mem = phase->transform(mem); | |||
3261 | done_offset += BytesPerInt; | |||
3262 | } | |||
3263 | assert(done_offset == end_offset, "")do { if (!(done_offset == end_offset)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3263, "assert(" "done_offset == end_offset" ") failed", "") ; ::breakpoint(); } } while (0); | |||
3264 | return mem; | |||
3265 | } | |||
3266 | ||||
3267 | //============================================================================= | |||
3268 | MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) | |||
3269 | : MultiNode(TypeFunc::Parms + (precedent == NULL__null? 0: 1)), | |||
3270 | _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) | |||
3271 | #ifdef ASSERT1 | |||
3272 | , _pair_idx(0) | |||
3273 | #endif | |||
3274 | { | |||
3275 | init_class_id(Class_MemBar); | |||
3276 | Node* top = C->top(); | |||
3277 | init_req(TypeFunc::I_O,top); | |||
3278 | init_req(TypeFunc::FramePtr,top); | |||
3279 | init_req(TypeFunc::ReturnAdr,top); | |||
3280 | if (precedent != NULL__null) | |||
3281 | init_req(TypeFunc::Parms, precedent); | |||
3282 | } | |||
3283 | ||||
3284 | //------------------------------cmp-------------------------------------------- | |||
3285 | uint MemBarNode::hash() const { return NO_HASH; } | |||
3286 | bool MemBarNode::cmp( const Node &n ) const { | |||
3287 | return (&n == this); // Always fail except on self | |||
3288 | } | |||
3289 | ||||
3290 | //------------------------------make------------------------------------------- | |||
3291 | MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { | |||
3292 | switch (opcode) { | |||
3293 | case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); | |||
3294 | case Op_LoadFence: return new LoadFenceNode(C, atp, pn); | |||
3295 | case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); | |||
3296 | case Op_StoreFence: return new StoreFenceNode(C, atp, pn); | |||
3297 | case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); | |||
3298 | case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); | |||
3299 | case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); | |||
3300 | case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); | |||
3301 | case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); | |||
3302 | case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); | |||
3303 | case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); | |||
3304 | case Op_Initialize: return new InitializeNode(C, atp, pn); | |||
3305 | case Op_Blackhole: return new BlackholeNode(C, atp, pn); | |||
3306 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3306); ::breakpoint(); } while (0); return NULL__null; | |||
3307 | } | |||
3308 | } | |||
3309 | ||||
3310 | void MemBarNode::remove(PhaseIterGVN *igvn) { | |||
3311 | if (outcnt() != 2) { | |||
3312 | assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory")do { if (!(Opcode() == Op_Initialize)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3312, "assert(" "Opcode() == Op_Initialize" ") failed", "Only seen when there are no use of init memory" ); ::breakpoint(); } } while (0); | |||
3313 | assert(outcnt() == 1, "Only control then")do { if (!(outcnt() == 1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3313, "assert(" "outcnt() == 1" ") failed", "Only control then" ); ::breakpoint(); } } while (0); | |||
3314 | } | |||
3315 | if (trailing_store() || trailing_load_store()) { | |||
3316 | MemBarNode* leading = leading_membar(); | |||
3317 | if (leading != NULL__null) { | |||
3318 | assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars")do { if (!(leading->trailing_membar() == this)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3318, "assert(" "leading->trailing_membar() == this" ") failed" , "inconsistent leading/trailing membars"); ::breakpoint(); } } while (0); | |||
3319 | leading->remove(igvn); | |||
3320 | } | |||
3321 | } | |||
3322 | if (proj_out_or_null(TypeFunc::Memory) != NULL__null) { | |||
3323 | igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); | |||
3324 | } | |||
3325 | if (proj_out_or_null(TypeFunc::Control) != NULL__null) { | |||
3326 | igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); | |||
3327 | } | |||
3328 | } | |||
3329 | ||||
3330 | //------------------------------Ideal------------------------------------------ | |||
3331 | // Return a node which is more "ideal" than the current node. Strip out | |||
3332 | // control copies | |||
3333 | Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
3334 | if (remove_dead_region(phase, can_reshape)) return this; | |||
3335 | // Don't bother trying to transform a dead node | |||
3336 | if (in(0) && in(0)->is_top()) { | |||
3337 | return NULL__null; | |||
3338 | } | |||
3339 | ||||
3340 | bool progress = false; | |||
3341 | // Eliminate volatile MemBars for scalar replaced objects. | |||
3342 | if (can_reshape && req() == (Precedent+1)) { | |||
3343 | bool eliminate = false; | |||
3344 | int opc = Opcode(); | |||
3345 | if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { | |||
3346 | // Volatile field loads and stores. | |||
3347 | Node* my_mem = in(MemBarNode::Precedent); | |||
3348 | // The MembarAquire may keep an unused LoadNode alive through the Precedent edge | |||
3349 | if ((my_mem != NULL__null) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { | |||
3350 | // if the Precedent is a decodeN and its input (a Load) is used at more than one place, | |||
3351 | // replace this Precedent (decodeN) with the Load instead. | |||
3352 | if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { | |||
3353 | Node* load_node = my_mem->in(1); | |||
3354 | set_req(MemBarNode::Precedent, load_node); | |||
3355 | phase->is_IterGVN()->_worklist.push(my_mem); | |||
3356 | my_mem = load_node; | |||
3357 | } else { | |||
3358 | assert(my_mem->unique_out() == this, "sanity")do { if (!(my_mem->unique_out() == this)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3358, "assert(" "my_mem->unique_out() == this" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
3359 | del_req(Precedent); | |||
3360 | phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later | |||
3361 | my_mem = NULL__null; | |||
3362 | } | |||
3363 | progress = true; | |||
3364 | } | |||
3365 | if (my_mem != NULL__null && my_mem->is_Mem()) { | |||
3366 | const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); | |||
3367 | // Check for scalar replaced object reference. | |||
3368 | if( t_oop != NULL__null && t_oop->is_known_instance_field() && | |||
3369 | t_oop->offset() != Type::OffsetBot && | |||
3370 | t_oop->offset() != Type::OffsetTop) { | |||
3371 | eliminate = true; | |||
3372 | } | |||
3373 | } | |||
3374 | } else if (opc == Op_MemBarRelease) { | |||
3375 | // Final field stores. | |||
3376 | Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase); | |||
3377 | if ((alloc != NULL__null) && alloc->is_Allocate() && | |||
3378 | alloc->as_Allocate()->does_not_escape_thread()) { | |||
3379 | // The allocated object does not escape. | |||
3380 | eliminate = true; | |||
3381 | } | |||
3382 | } | |||
3383 | if (eliminate) { | |||
3384 | // Replace MemBar projections by its inputs. | |||
3385 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
3386 | remove(igvn); | |||
3387 | // Must return either the original node (now dead) or a new node | |||
3388 | // (Do not return a top here, since that would break the uniqueness of top.) | |||
3389 | return new ConINode(TypeInt::ZERO); | |||
3390 | } | |||
3391 | } | |||
3392 | return progress ? this : NULL__null; | |||
3393 | } | |||
3394 | ||||
3395 | //------------------------------Value------------------------------------------ | |||
3396 | const Type* MemBarNode::Value(PhaseGVN* phase) const { | |||
3397 | if( !in(0) ) return Type::TOP; | |||
3398 | if( phase->type(in(0)) == Type::TOP ) | |||
3399 | return Type::TOP; | |||
3400 | return TypeTuple::MEMBAR; | |||
3401 | } | |||
3402 | ||||
3403 | //------------------------------match------------------------------------------ | |||
3404 | // Construct projections for memory. | |||
3405 | Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { | |||
3406 | switch (proj->_con) { | |||
3407 | case TypeFunc::Control: | |||
3408 | case TypeFunc::Memory: | |||
3409 | return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); | |||
3410 | } | |||
3411 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3411); ::breakpoint(); } while (0); | |||
3412 | return NULL__null; | |||
3413 | } | |||
3414 | ||||
3415 | void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { | |||
3416 | trailing->_kind = TrailingStore; | |||
3417 | leading->_kind = LeadingStore; | |||
3418 | #ifdef ASSERT1 | |||
3419 | trailing->_pair_idx = leading->_idx; | |||
3420 | leading->_pair_idx = leading->_idx; | |||
3421 | #endif | |||
3422 | } | |||
3423 | ||||
3424 | void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { | |||
3425 | trailing->_kind = TrailingLoadStore; | |||
3426 | leading->_kind = LeadingLoadStore; | |||
3427 | #ifdef ASSERT1 | |||
3428 | trailing->_pair_idx = leading->_idx; | |||
3429 | leading->_pair_idx = leading->_idx; | |||
3430 | #endif | |||
3431 | } | |||
3432 | ||||
3433 | MemBarNode* MemBarNode::trailing_membar() const { | |||
3434 | ResourceMark rm; | |||
3435 | Node* trailing = (Node*)this; | |||
3436 | VectorSet seen; | |||
3437 | Node_Stack multis(0); | |||
3438 | do { | |||
3439 | Node* c = trailing; | |||
3440 | uint i = 0; | |||
3441 | do { | |||
3442 | trailing = NULL__null; | |||
3443 | for (; i < c->outcnt(); i++) { | |||
3444 | Node* next = c->raw_out(i); | |||
3445 | if (next != c && next->is_CFG()) { | |||
3446 | if (c->is_MultiBranch()) { | |||
3447 | if (multis.node() == c) { | |||
3448 | multis.set_index(i+1); | |||
3449 | } else { | |||
3450 | multis.push(c, i+1); | |||
3451 | } | |||
3452 | } | |||
3453 | trailing = next; | |||
3454 | break; | |||
3455 | } | |||
3456 | } | |||
3457 | if (trailing != NULL__null && !seen.test_set(trailing->_idx)) { | |||
3458 | break; | |||
3459 | } | |||
3460 | while (multis.size() > 0) { | |||
3461 | c = multis.node(); | |||
3462 | i = multis.index(); | |||
3463 | if (i < c->req()) { | |||
3464 | break; | |||
3465 | } | |||
3466 | multis.pop(); | |||
3467 | } | |||
3468 | } while (multis.size() > 0); | |||
3469 | } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); | |||
3470 | ||||
3471 | MemBarNode* mb = trailing->as_MemBar(); | |||
3472 | assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||do { if (!((mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3473, "assert(" "(mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore)" ") failed", "bad trailing membar"); ::breakpoint(); } } while (0) | |||
3473 | (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar")do { if (!((mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3473, "assert(" "(mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore)" ") failed", "bad trailing membar"); ::breakpoint(); } } while (0); | |||
3474 | assert(mb->_pair_idx == _pair_idx, "bad trailing membar")do { if (!(mb->_pair_idx == _pair_idx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3474, "assert(" "mb->_pair_idx == _pair_idx" ") failed", "bad trailing membar"); ::breakpoint(); } } while (0); | |||
3475 | return mb; | |||
3476 | } | |||
3477 | ||||
3478 | MemBarNode* MemBarNode::leading_membar() const { | |||
3479 | ResourceMark rm; | |||
3480 | VectorSet seen; | |||
3481 | Node_Stack regions(0); | |||
3482 | Node* leading = in(0); | |||
3483 | while (leading != NULL__null && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { | |||
3484 | while (leading == NULL__null || leading->is_top() || seen.test_set(leading->_idx)) { | |||
3485 | leading = NULL__null; | |||
3486 | while (regions.size() > 0 && leading == NULL__null) { | |||
3487 | Node* r = regions.node(); | |||
3488 | uint i = regions.index(); | |||
3489 | if (i < r->req()) { | |||
3490 | leading = r->in(i); | |||
3491 | regions.set_index(i+1); | |||
3492 | } else { | |||
3493 | regions.pop(); | |||
3494 | } | |||
3495 | } | |||
3496 | if (leading == NULL__null) { | |||
3497 | assert(regions.size() == 0, "all paths should have been tried")do { if (!(regions.size() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3497, "assert(" "regions.size() == 0" ") failed", "all paths should have been tried" ); ::breakpoint(); } } while (0); | |||
3498 | return NULL__null; | |||
3499 | } | |||
3500 | } | |||
3501 | if (leading->is_Region()) { | |||
3502 | regions.push(leading, 2); | |||
3503 | leading = leading->in(1); | |||
3504 | } else { | |||
3505 | leading = leading->in(0); | |||
3506 | } | |||
3507 | } | |||
3508 | #ifdef ASSERT1 | |||
3509 | Unique_Node_List wq; | |||
3510 | wq.push((Node*)this); | |||
3511 | uint found = 0; | |||
3512 | for (uint i = 0; i < wq.size(); i++) { | |||
3513 | Node* n = wq.at(i); | |||
3514 | if (n->is_Region()) { | |||
3515 | for (uint j = 1; j < n->req(); j++) { | |||
3516 | Node* in = n->in(j); | |||
3517 | if (in != NULL__null && !in->is_top()) { | |||
3518 | wq.push(in); | |||
3519 | } | |||
3520 | } | |||
3521 | } else { | |||
3522 | if (n->is_MemBar() && n->as_MemBar()->leading()) { | |||
3523 | assert(n == leading, "consistency check failed")do { if (!(n == leading)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3523, "assert(" "n == leading" ") failed", "consistency check failed" ); ::breakpoint(); } } while (0); | |||
3524 | found++; | |||
3525 | } else { | |||
3526 | Node* in = n->in(0); | |||
3527 | if (in != NULL__null && !in->is_top()) { | |||
3528 | wq.push(in); | |||
3529 | } | |||
3530 | } | |||
3531 | } | |||
3532 | } | |||
3533 | assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed")do { if (!(found == 1 || (found == 0 && leading == __null ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3533, "assert(" "found == 1 || (found == 0 && leading == __null)" ") failed", "consistency check failed"); ::breakpoint(); } } while (0); | |||
3534 | #endif | |||
3535 | if (leading == NULL__null) { | |||
3536 | return NULL__null; | |||
3537 | } | |||
3538 | MemBarNode* mb = leading->as_MemBar(); | |||
3539 | assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||do { if (!((mb->_kind == LeadingStore && _kind == TrailingStore ) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3540, "assert(" "(mb->_kind == LeadingStore && _kind == TrailingStore) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore)" ") failed", "bad leading membar"); ::breakpoint(); } } while (0) | |||
3540 | (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar")do { if (!((mb->_kind == LeadingStore && _kind == TrailingStore ) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3540, "assert(" "(mb->_kind == LeadingStore && _kind == TrailingStore) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore)" ") failed", "bad leading membar"); ::breakpoint(); } } while (0); | |||
3541 | assert(mb->_pair_idx == _pair_idx, "bad leading membar")do { if (!(mb->_pair_idx == _pair_idx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3541, "assert(" "mb->_pair_idx == _pair_idx" ") failed", "bad leading membar"); ::breakpoint(); } } while (0); | |||
3542 | return mb; | |||
3543 | } | |||
3544 | ||||
3545 | #ifndef PRODUCT | |||
3546 | void BlackholeNode::format(PhaseRegAlloc* ra, outputStream* st) const { | |||
3547 | st->print("blackhole "); | |||
3548 | bool first = true; | |||
3549 | for (uint i = 0; i < req(); i++) { | |||
3550 | Node* n = in(i); | |||
3551 | if (n != NULL__null && OptoReg::is_valid(ra->get_reg_first(n))) { | |||
3552 | if (first) { | |||
3553 | first = false; | |||
3554 | } else { | |||
3555 | st->print(", "); | |||
3556 | } | |||
3557 | char buf[128]; | |||
3558 | ra->dump_register(n, buf); | |||
3559 | st->print("%s", buf); | |||
3560 | } | |||
3561 | } | |||
3562 | st->cr(); | |||
3563 | } | |||
3564 | #endif | |||
3565 | ||||
3566 | //===========================InitializeNode==================================== | |||
3567 | // SUMMARY: | |||
3568 | // This node acts as a memory barrier on raw memory, after some raw stores. | |||
3569 | // The 'cooked' oop value feeds from the Initialize, not the Allocation. | |||
3570 | // The Initialize can 'capture' suitably constrained stores as raw inits. | |||
3571 | // It can coalesce related raw stores into larger units (called 'tiles'). | |||
3572 | // It can avoid zeroing new storage for memory units which have raw inits. | |||
3573 | // At macro-expansion, it is marked 'complete', and does not optimize further. | |||
3574 | // | |||
3575 | // EXAMPLE: | |||
3576 | // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. | |||
3577 | // ctl = incoming control; mem* = incoming memory | |||
3578 | // (Note: A star * on a memory edge denotes I/O and other standard edges.) | |||
3579 | // First allocate uninitialized memory and fill in the header: | |||
3580 | // alloc = (Allocate ctl mem* 16 #short[].klass ...) | |||
3581 | // ctl := alloc.Control; mem* := alloc.Memory* | |||
3582 | // rawmem = alloc.Memory; rawoop = alloc.RawAddress | |||
3583 | // Then initialize to zero the non-header parts of the raw memory block: | |||
3584 | // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) | |||
3585 | // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory | |||
3586 | // After the initialize node executes, the object is ready for service: | |||
3587 | // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) | |||
3588 | // Suppose its body is immediately initialized as {1,2}: | |||
3589 | // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) | |||
3590 | // store2 = (StoreC init.Control store1 (+ oop 14) 2) | |||
3591 | // mem.SLICE(#short[*]) := store2 | |||
3592 | // | |||
3593 | // DETAILS: | |||
3594 | // An InitializeNode collects and isolates object initialization after | |||
3595 | // an AllocateNode and before the next possible safepoint. As a | |||
3596 | // memory barrier (MemBarNode), it keeps critical stores from drifting | |||
3597 | // down past any safepoint or any publication of the allocation. | |||
3598 | // Before this barrier, a newly-allocated object may have uninitialized bits. | |||
3599 | // After this barrier, it may be treated as a real oop, and GC is allowed. | |||
3600 | // | |||
3601 | // The semantics of the InitializeNode include an implicit zeroing of | |||
3602 | // the new object from object header to the end of the object. | |||
3603 | // (The object header and end are determined by the AllocateNode.) | |||
3604 | // | |||
3605 | // Certain stores may be added as direct inputs to the InitializeNode. | |||
3606 | // These stores must update raw memory, and they must be to addresses | |||
3607 | // derived from the raw address produced by AllocateNode, and with | |||
3608 | // a constant offset. They must be ordered by increasing offset. | |||
3609 | // The first one is at in(RawStores), the last at in(req()-1). | |||
3610 | // Unlike most memory operations, they are not linked in a chain, | |||
3611 | // but are displayed in parallel as users of the rawmem output of | |||
3612 | // the allocation. | |||
3613 | // | |||
3614 | // (See comments in InitializeNode::capture_store, which continue | |||
3615 | // the example given above.) | |||
3616 | // | |||
3617 | // When the associated Allocate is macro-expanded, the InitializeNode | |||
3618 | // may be rewritten to optimize collected stores. A ClearArrayNode | |||
3619 | // may also be created at that point to represent any required zeroing. | |||
3620 | // The InitializeNode is then marked 'complete', prohibiting further | |||
3621 | // capturing of nearby memory operations. | |||
3622 | // | |||
3623 | // During macro-expansion, all captured initializations which store | |||
3624 | // constant values of 32 bits or smaller are coalesced (if advantageous) | |||
3625 | // into larger 'tiles' 32 or 64 bits. This allows an object to be | |||
3626 | // initialized in fewer memory operations. Memory words which are | |||
3627 | // covered by neither tiles nor non-constant stores are pre-zeroed | |||
3628 | // by explicit stores of zero. (The code shape happens to do all | |||
3629 | // zeroing first, then all other stores, with both sequences occurring | |||
3630 | // in order of ascending offsets.) | |||
3631 | // | |||
3632 | // Alternatively, code may be inserted between an AllocateNode and its | |||
3633 | // InitializeNode, to perform arbitrary initialization of the new object. | |||
3634 | // E.g., the object copying intrinsics insert complex data transfers here. | |||
3635 | // The initialization must then be marked as 'complete' disable the | |||
3636 | // built-in zeroing semantics and the collection of initializing stores. | |||
3637 | // | |||
3638 | // While an InitializeNode is incomplete, reads from the memory state | |||
3639 | // produced by it are optimizable if they match the control edge and | |||
3640 | // new oop address associated with the allocation/initialization. | |||
3641 | // They return a stored value (if the offset matches) or else zero. | |||
3642 | // A write to the memory state, if it matches control and address, | |||
3643 | // and if it is to a constant offset, may be 'captured' by the | |||
3644 | // InitializeNode. It is cloned as a raw memory operation and rewired | |||
3645 | // inside the initialization, to the raw oop produced by the allocation. | |||
3646 | // Operations on addresses which are provably distinct (e.g., to | |||
3647 | // other AllocateNodes) are allowed to bypass the initialization. | |||
3648 | // | |||
3649 | // The effect of all this is to consolidate object initialization | |||
3650 | // (both arrays and non-arrays, both piecewise and bulk) into a | |||
3651 | // single location, where it can be optimized as a unit. | |||
3652 | // | |||
3653 | // Only stores with an offset less than TrackedInitializationLimit words | |||
3654 | // will be considered for capture by an InitializeNode. This puts a | |||
3655 | // reasonable limit on the complexity of optimized initializations. | |||
3656 | ||||
3657 | //---------------------------InitializeNode------------------------------------ | |||
3658 | InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) | |||
3659 | : MemBarNode(C, adr_type, rawoop), | |||
3660 | _is_complete(Incomplete), _does_not_escape(false) | |||
3661 | { | |||
3662 | init_class_id(Class_Initialize); | |||
3663 | ||||
3664 | assert(adr_type == Compile::AliasIdxRaw, "only valid atp")do { if (!(adr_type == Compile::AliasIdxRaw)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3664, "assert(" "adr_type == Compile::AliasIdxRaw" ") failed" , "only valid atp"); ::breakpoint(); } } while (0); | |||
3665 | assert(in(RawAddress) == rawoop, "proper init")do { if (!(in(RawAddress) == rawoop)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3665, "assert(" "in(RawAddress) == rawoop" ") failed", "proper init" ); ::breakpoint(); } } while (0); | |||
3666 | // Note: allocation() can be NULL, for secondary initialization barriers | |||
3667 | } | |||
3668 | ||||
3669 | // Since this node is not matched, it will be processed by the | |||
3670 | // register allocator. Declare that there are no constraints | |||
3671 | // on the allocation of the RawAddress edge. | |||
3672 | const RegMask &InitializeNode::in_RegMask(uint idx) const { | |||
3673 | // This edge should be set to top, by the set_complete. But be conservative. | |||
3674 | if (idx == InitializeNode::RawAddress) | |||
3675 | return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); | |||
3676 | return RegMask::Empty; | |||
3677 | } | |||
3678 | ||||
3679 | Node* InitializeNode::memory(uint alias_idx) { | |||
3680 | Node* mem = in(Memory); | |||
3681 | if (mem->is_MergeMem()) { | |||
3682 | return mem->as_MergeMem()->memory_at(alias_idx); | |||
3683 | } else { | |||
3684 | // incoming raw memory is not split | |||
3685 | return mem; | |||
3686 | } | |||
3687 | } | |||
3688 | ||||
3689 | bool InitializeNode::is_non_zero() { | |||
3690 | if (is_complete()) return false; | |||
3691 | remove_extra_zeroes(); | |||
3692 | return (req() > RawStores); | |||
3693 | } | |||
3694 | ||||
3695 | void InitializeNode::set_complete(PhaseGVN* phase) { | |||
3696 | assert(!is_complete(), "caller responsibility")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3696, "assert(" "!is_complete()" ") failed", "caller responsibility" ); ::breakpoint(); } } while (0); | |||
3697 | _is_complete = Complete; | |||
3698 | ||||
3699 | // After this node is complete, it contains a bunch of | |||
3700 | // raw-memory initializations. There is no need for | |||
3701 | // it to have anything to do with non-raw memory effects. | |||
3702 | // Therefore, tell all non-raw users to re-optimize themselves, | |||
3703 | // after skipping the memory effects of this initialization. | |||
3704 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
3705 | if (igvn) igvn->add_users_to_worklist(this); | |||
3706 | } | |||
3707 | ||||
3708 | // convenience function | |||
3709 | // return false if the init contains any stores already | |||
3710 | bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { | |||
3711 | InitializeNode* init = initialization(); | |||
3712 | if (init == NULL__null || init->is_complete()) return false; | |||
3713 | init->remove_extra_zeroes(); | |||
3714 | // for now, if this allocation has already collected any inits, bail: | |||
3715 | if (init->is_non_zero()) return false; | |||
3716 | init->set_complete(phase); | |||
3717 | return true; | |||
3718 | } | |||
3719 | ||||
3720 | void InitializeNode::remove_extra_zeroes() { | |||
3721 | if (req() == RawStores) return; | |||
3722 | Node* zmem = zero_memory(); | |||
3723 | uint fill = RawStores; | |||
3724 | for (uint i = fill; i < req(); i++) { | |||
3725 | Node* n = in(i); | |||
3726 | if (n->is_top() || n == zmem) continue; // skip | |||
3727 | if (fill < i) set_req(fill, n); // compact | |||
3728 | ++fill; | |||
3729 | } | |||
3730 | // delete any empty spaces created: | |||
3731 | while (fill < req()) { | |||
3732 | del_req(fill); | |||
3733 | } | |||
3734 | } | |||
3735 | ||||
3736 | // Helper for remembering which stores go with which offsets. | |||
3737 | intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) { | |||
3738 | if (!st->is_Store()) return -1; // can happen to dead code via subsume_node | |||
3739 | intptr_t offset = -1; | |||
3740 | Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), | |||
3741 | phase, offset); | |||
3742 | if (base == NULL__null) return -1; // something is dead, | |||
3743 | if (offset < 0) return -1; // dead, dead | |||
3744 | return offset; | |||
3745 | } | |||
3746 | ||||
3747 | // Helper for proving that an initialization expression is | |||
3748 | // "simple enough" to be folded into an object initialization. | |||
3749 | // Attempts to prove that a store's initial value 'n' can be captured | |||
3750 | // within the initialization without creating a vicious cycle, such as: | |||
3751 | // { Foo p = new Foo(); p.next = p; } | |||
3752 | // True for constants and parameters and small combinations thereof. | |||
3753 | bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { | |||
3754 | ResourceMark rm; | |||
3755 | Unique_Node_List worklist; | |||
3756 | worklist.push(value); | |||
3757 | ||||
3758 | uint complexity_limit = 20; | |||
3759 | for (uint j = 0; j < worklist.size(); j++) { | |||
3760 | if (j >= complexity_limit) { | |||
3761 | return false; // Bail out if processed too many nodes | |||
3762 | } | |||
3763 | ||||
3764 | Node* n = worklist.at(j); | |||
3765 | if (n == NULL__null) continue; // (can this really happen?) | |||
3766 | if (n->is_Proj()) n = n->in(0); | |||
3767 | if (n == this) return false; // found a cycle | |||
3768 | if (n->is_Con()) continue; | |||
3769 | if (n->is_Start()) continue; // params, etc., are OK | |||
3770 | if (n->is_Root()) continue; // even better | |||
3771 | ||||
3772 | // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation | |||
3773 | if (n->is_CFG() && phase->is_dominator(n, allocation())) { | |||
3774 | continue; | |||
3775 | } | |||
3776 | ||||
3777 | Node* ctl = n->in(0); | |||
3778 | if (ctl != NULL__null && !ctl->is_top()) { | |||
3779 | if (ctl->is_Proj()) ctl = ctl->in(0); | |||
3780 | if (ctl == this) return false; | |||
3781 | ||||
3782 | // If we already know that the enclosing memory op is pinned right after | |||
3783 | // the init, then any control flow that the store has picked up | |||
3784 | // must have preceded the init, or else be equal to the init. | |||
3785 | // Even after loop optimizations (which might change control edges) | |||
3786 | // a store is never pinned *before* the availability of its inputs. | |||
3787 | if (!MemNode::all_controls_dominate(n, this)) | |||
3788 | return false; // failed to prove a good control | |||
3789 | } | |||
3790 | ||||
3791 | // Check data edges for possible dependencies on 'this'. | |||
3792 | for (uint i = 1; i < n->req(); i++) { | |||
3793 | Node* m = n->in(i); | |||
3794 | if (m == NULL__null || m == n || m->is_top()) continue; | |||
3795 | ||||
3796 | // Only process data inputs once | |||
3797 | worklist.push(m); | |||
3798 | } | |||
3799 | } | |||
3800 | ||||
3801 | return true; | |||
3802 | } | |||
3803 | ||||
3804 | // Here are all the checks a Store must pass before it can be moved into | |||
3805 | // an initialization. Returns zero if a check fails. | |||
3806 | // On success, returns the (constant) offset to which the store applies, | |||
3807 | // within the initialized memory. | |||
3808 | intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { | |||
3809 | const int FAIL = 0; | |||
3810 | if (st->req() != MemNode::ValueIn + 1) | |||
3811 | return FAIL; // an inscrutable StoreNode (card mark?) | |||
3812 | Node* ctl = st->in(MemNode::Control); | |||
3813 | if (!(ctl != NULL__null && ctl->is_Proj() && ctl->in(0) == this)) | |||
3814 | return FAIL; // must be unconditional after the initialization | |||
3815 | Node* mem = st->in(MemNode::Memory); | |||
3816 | if (!(mem->is_Proj() && mem->in(0) == this)) | |||
3817 | return FAIL; // must not be preceded by other stores | |||
3818 | Node* adr = st->in(MemNode::Address); | |||
3819 | intptr_t offset; | |||
3820 | AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); | |||
3821 | if (alloc == NULL__null) | |||
3822 | return FAIL; // inscrutable address | |||
3823 | if (alloc != allocation()) | |||
3824 | return FAIL; // wrong allocation! (store needs to float up) | |||
3825 | int size_in_bytes = st->memory_size(); | |||
3826 | if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { | |||
3827 | return FAIL; // mismatched access | |||
3828 | } | |||
3829 | Node* val = st->in(MemNode::ValueIn); | |||
3830 | ||||
3831 | if (!detect_init_independence(val, phase)) | |||
3832 | return FAIL; // stored value must be 'simple enough' | |||
3833 | ||||
3834 | // The Store can be captured only if nothing after the allocation | |||
3835 | // and before the Store is using the memory location that the store | |||
3836 | // overwrites. | |||
3837 | bool failed = false; | |||
3838 | // If is_complete_with_arraycopy() is true the shape of the graph is | |||
3839 | // well defined and is safe so no need for extra checks. | |||
3840 | if (!is_complete_with_arraycopy()) { | |||
3841 | // We are going to look at each use of the memory state following | |||
3842 | // the allocation to make sure nothing reads the memory that the | |||
3843 | // Store writes. | |||
3844 | const TypePtr* t_adr = phase->type(adr)->isa_ptr(); | |||
3845 | int alias_idx = phase->C->get_alias_index(t_adr); | |||
3846 | ResourceMark rm; | |||
3847 | Unique_Node_List mems; | |||
3848 | mems.push(mem); | |||
3849 | Node* unique_merge = NULL__null; | |||
3850 | for (uint next = 0; next < mems.size(); ++next) { | |||
3851 | Node *m = mems.at(next); | |||
3852 | for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { | |||
3853 | Node *n = m->fast_out(j); | |||
3854 | if (n->outcnt() == 0) { | |||
3855 | continue; | |||
3856 | } | |||
3857 | if (n == st) { | |||
3858 | continue; | |||
3859 | } else if (n->in(0) != NULL__null && n->in(0) != ctl) { | |||
3860 | // If the control of this use is different from the control | |||
3861 | // of the Store which is right after the InitializeNode then | |||
3862 | // this node cannot be between the InitializeNode and the | |||
3863 | // Store. | |||
3864 | continue; | |||
3865 | } else if (n->is_MergeMem()) { | |||
3866 | if (n->as_MergeMem()->memory_at(alias_idx) == m) { | |||
3867 | // We can hit a MergeMemNode (that will likely go away | |||
3868 | // later) that is a direct use of the memory state | |||
3869 | // following the InitializeNode on the same slice as the | |||
3870 | // store node that we'd like to capture. We need to check | |||
3871 | // the uses of the MergeMemNode. | |||
3872 | mems.push(n); | |||
3873 | } | |||
3874 | } else if (n->is_Mem()) { | |||
3875 | Node* other_adr = n->in(MemNode::Address); | |||
3876 | if (other_adr == adr) { | |||
3877 | failed = true; | |||
3878 | break; | |||
3879 | } else { | |||
3880 | const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); | |||
3881 | if (other_t_adr != NULL__null) { | |||
3882 | int other_alias_idx = phase->C->get_alias_index(other_t_adr); | |||
3883 | if (other_alias_idx == alias_idx) { | |||
3884 | // A load from the same memory slice as the store right | |||
3885 | // after the InitializeNode. We check the control of the | |||
3886 | // object/array that is loaded from. If it's the same as | |||
3887 | // the store control then we cannot capture the store. | |||
3888 | assert(!n->is_Store(), "2 stores to same slice on same control?")do { if (!(!n->is_Store())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3888, "assert(" "!n->is_Store()" ") failed", "2 stores to same slice on same control?" ); ::breakpoint(); } } while (0); | |||
3889 | Node* base = other_adr; | |||
3890 | assert(base->is_AddP(), "should be addp but is %s", base->Name())do { if (!(base->is_AddP())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3890, "assert(" "base->is_AddP()" ") failed", "should be addp but is %s" , base->Name()); ::breakpoint(); } } while (0); | |||
3891 | base = base->in(AddPNode::Base); | |||
3892 | if (base != NULL__null) { | |||
3893 | base = base->uncast(); | |||
3894 | if (base->is_Proj() && base->in(0) == alloc) { | |||
3895 | failed = true; | |||
3896 | break; | |||
3897 | } | |||
3898 | } | |||
3899 | } | |||
3900 | } | |||
3901 | } | |||
3902 | } else { | |||
3903 | failed = true; | |||
3904 | break; | |||
3905 | } | |||
3906 | } | |||
3907 | } | |||
3908 | } | |||
3909 | if (failed) { | |||
3910 | if (!can_reshape) { | |||
3911 | // We decided we couldn't capture the store during parsing. We | |||
3912 | // should try again during the next IGVN once the graph is | |||
3913 | // cleaner. | |||
3914 | phase->C->record_for_igvn(st); | |||
3915 | } | |||
3916 | return FAIL; | |||
3917 | } | |||
3918 | ||||
3919 | return offset; // success | |||
3920 | } | |||
3921 | ||||
3922 | // Find the captured store in(i) which corresponds to the range | |||
3923 | // [start..start+size) in the initialized object. | |||
3924 | // If there is one, return its index i. If there isn't, return the | |||
3925 | // negative of the index where it should be inserted. | |||
3926 | // Return 0 if the queried range overlaps an initialization boundary | |||
3927 | // or if dead code is encountered. | |||
3928 | // If size_in_bytes is zero, do not bother with overlap checks. | |||
3929 | int InitializeNode::captured_store_insertion_point(intptr_t start, | |||
3930 | int size_in_bytes, | |||
3931 | PhaseTransform* phase) { | |||
3932 | const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); | |||
3933 | ||||
3934 | if (is_complete()) | |||
3935 | return FAIL; // arraycopy got here first; punt | |||
3936 | ||||
3937 | assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3937, "assert(" "allocation() != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
3938 | ||||
3939 | // no negatives, no header fields: | |||
3940 | if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; | |||
3941 | ||||
3942 | // after a certain size, we bail out on tracking all the stores: | |||
3943 | intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); | |||
3944 | if (start >= ti_limit) return FAIL; | |||
3945 | ||||
3946 | for (uint i = InitializeNode::RawStores, limit = req(); ; ) { | |||
3947 | if (i >= limit) return -(int)i; // not found; here is where to put it | |||
3948 | ||||
3949 | Node* st = in(i); | |||
3950 | intptr_t st_off = get_store_offset(st, phase); | |||
3951 | if (st_off < 0) { | |||
3952 | if (st != zero_memory()) { | |||
3953 | return FAIL; // bail out if there is dead garbage | |||
3954 | } | |||
3955 | } else if (st_off > start) { | |||
3956 | // ...we are done, since stores are ordered | |||
3957 | if (st_off < start + size_in_bytes) { | |||
3958 | return FAIL; // the next store overlaps | |||
3959 | } | |||
3960 | return -(int)i; // not found; here is where to put it | |||
3961 | } else if (st_off < start) { | |||
3962 | assert(st->as_Store()->memory_size() <= MAX_STORE, "")do { if (!(st->as_Store()->memory_size() <= MAX_STORE )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3962, "assert(" "st->as_Store()->memory_size() <= MAX_STORE" ") failed", ""); ::breakpoint(); } } while (0); | |||
3963 | if (size_in_bytes != 0 && | |||
3964 | start < st_off + MAX_STORE && | |||
3965 | start < st_off + st->as_Store()->memory_size()) { | |||
3966 | return FAIL; // the previous store overlaps | |||
3967 | } | |||
3968 | } else { | |||
3969 | if (size_in_bytes != 0 && | |||
3970 | st->as_Store()->memory_size() != size_in_bytes) { | |||
3971 | return FAIL; // mismatched store size | |||
3972 | } | |||
3973 | return i; | |||
3974 | } | |||
3975 | ||||
3976 | ++i; | |||
3977 | } | |||
3978 | } | |||
3979 | ||||
3980 | // Look for a captured store which initializes at the offset 'start' | |||
3981 | // with the given size. If there is no such store, and no other | |||
3982 | // initialization interferes, then return zero_memory (the memory | |||
3983 | // projection of the AllocateNode). | |||
3984 | Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, | |||
3985 | PhaseTransform* phase) { | |||
3986 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3986, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
3987 | int i = captured_store_insertion_point(start, size_in_bytes, phase); | |||
3988 | if (i == 0) { | |||
3989 | return NULL__null; // something is dead | |||
3990 | } else if (i < 0) { | |||
3991 | return zero_memory(); // just primordial zero bits here | |||
3992 | } else { | |||
3993 | Node* st = in(i); // here is the store at this position | |||
3994 | assert(get_store_offset(st->as_Store(), phase) == start, "sanity")do { if (!(get_store_offset(st->as_Store(), phase) == start )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3994, "assert(" "get_store_offset(st->as_Store(), phase) == start" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
3995 | return st; | |||
3996 | } | |||
3997 | } | |||
3998 | ||||
3999 | // Create, as a raw pointer, an address within my new object at 'offset'. | |||
4000 | Node* InitializeNode::make_raw_address(intptr_t offset, | |||
4001 | PhaseTransform* phase) { | |||
4002 | Node* addr = in(RawAddress); | |||
4003 | if (offset != 0) { | |||
4004 | Compile* C = phase->C; | |||
4005 | addr = phase->transform( new AddPNode(C->top(), addr, | |||
4006 | phase->MakeConXlongcon(offset)) ); | |||
4007 | } | |||
4008 | return addr; | |||
4009 | } | |||
4010 | ||||
4011 | // Clone the given store, converting it into a raw store | |||
4012 | // initializing a field or element of my new object. | |||
4013 | // Caller is responsible for retiring the original store, | |||
4014 | // with subsume_node or the like. | |||
4015 | // | |||
4016 | // From the example above InitializeNode::InitializeNode, | |||
4017 | // here are the old stores to be captured: | |||
4018 | // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) | |||
4019 | // store2 = (StoreC init.Control store1 (+ oop 14) 2) | |||
4020 | // | |||
4021 | // Here is the changed code; note the extra edges on init: | |||
4022 | // alloc = (Allocate ...) | |||
4023 | // rawoop = alloc.RawAddress | |||
4024 | // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) | |||
4025 | // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) | |||
4026 | // init = (Initialize alloc.Control alloc.Memory rawoop | |||
4027 | // rawstore1 rawstore2) | |||
4028 | // | |||
4029 | Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, | |||
4030 | PhaseGVN* phase, bool can_reshape) { | |||
4031 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4031, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
4032 | ||||
4033 | if (start < 0) return NULL__null; | |||
4034 | assert(can_capture_store(st, phase, can_reshape) == start, "sanity")do { if (!(can_capture_store(st, phase, can_reshape) == start )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4034, "assert(" "can_capture_store(st, phase, can_reshape) == start" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
4035 | ||||
4036 | Compile* C = phase->C; | |||
4037 | int size_in_bytes = st->memory_size(); | |||
4038 | int i = captured_store_insertion_point(start, size_in_bytes, phase); | |||
4039 | if (i == 0) return NULL__null; // bail out | |||
4040 | Node* prev_mem = NULL__null; // raw memory for the captured store | |||
4041 | if (i > 0) { | |||
4042 | prev_mem = in(i); // there is a pre-existing store under this one | |||
4043 | set_req(i, C->top()); // temporarily disconnect it | |||
4044 | // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. | |||
4045 | } else { | |||
4046 | i = -i; // no pre-existing store | |||
4047 | prev_mem = zero_memory(); // a slice of the newly allocated object | |||
4048 | if (i > InitializeNode::RawStores && in(i-1) == prev_mem) | |||
4049 | set_req(--i, C->top()); // reuse this edge; it has been folded away | |||
4050 | else | |||
4051 | ins_req(i, C->top()); // build a new edge | |||
4052 | } | |||
4053 | Node* new_st = st->clone(); | |||
4054 | new_st->set_req(MemNode::Control, in(Control)); | |||
4055 | new_st->set_req(MemNode::Memory, prev_mem); | |||
4056 | new_st->set_req(MemNode::Address, make_raw_address(start, phase)); | |||
4057 | new_st = phase->transform(new_st); | |||
4058 | ||||
4059 | // At this point, new_st might have swallowed a pre-existing store | |||
4060 | // at the same offset, or perhaps new_st might have disappeared, | |||
4061 | // if it redundantly stored the same value (or zero to fresh memory). | |||
4062 | ||||
4063 | // In any case, wire it in: | |||
4064 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
4065 | if (igvn) { | |||
4066 | igvn->rehash_node_delayed(this); | |||
4067 | } | |||
4068 | set_req(i, new_st); | |||
4069 | ||||
4070 | // The caller may now kill the old guy. | |||
4071 | DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase))Node* check_st = find_captured_store(start, size_in_bytes, phase ); | |||
4072 | assert(check_st == new_st || check_st == NULL, "must be findable")do { if (!(check_st == new_st || check_st == __null)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4072, "assert(" "check_st == new_st || check_st == __null" ") failed" , "must be findable"); ::breakpoint(); } } while (0); | |||
4073 | assert(!is_complete(), "")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4073, "assert(" "!is_complete()" ") failed", ""); ::breakpoint (); } } while (0); | |||
4074 | return new_st; | |||
4075 | } | |||
4076 | ||||
4077 | static bool store_constant(jlong* tiles, int num_tiles, | |||
4078 | intptr_t st_off, int st_size, | |||
4079 | jlong con) { | |||
4080 | if ((st_off & (st_size-1)) != 0) | |||
4081 | return false; // strange store offset (assume size==2**N) | |||
4082 | address addr = (address)tiles + st_off; | |||
4083 | assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob")do { if (!(st_off >= 0 && addr+st_size <= (address )&tiles[num_tiles])) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4083, "assert(" "st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles]" ") failed", "oob"); ::breakpoint(); } } while (0); | |||
4084 | switch (st_size) { | |||
4085 | case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; | |||
4086 | case sizeof(jchar): *(jchar*) addr = (jchar) con; break; | |||
4087 | case sizeof(jint): *(jint*) addr = (jint) con; break; | |||
4088 | case sizeof(jlong): *(jlong*) addr = (jlong) con; break; | |||
4089 | default: return false; // strange store size (detect size!=2**N here) | |||
4090 | } | |||
4091 | return true; // return success to caller | |||
4092 | } | |||
4093 | ||||
4094 | // Coalesce subword constants into int constants and possibly | |||
4095 | // into long constants. The goal, if the CPU permits, | |||
4096 | // is to initialize the object with a small number of 64-bit tiles. | |||
4097 | // Also, convert floating-point constants to bit patterns. | |||
4098 | // Non-constants are not relevant to this pass. | |||
4099 | // | |||
4100 | // In terms of the running example on InitializeNode::InitializeNode | |||
4101 | // and InitializeNode::capture_store, here is the transformation | |||
4102 | // of rawstore1 and rawstore2 into rawstore12: | |||
4103 | // alloc = (Allocate ...) | |||
4104 | // rawoop = alloc.RawAddress | |||
4105 | // tile12 = 0x00010002 | |||
4106 | // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) | |||
4107 | // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) | |||
4108 | // | |||
4109 | void | |||
4110 | InitializeNode::coalesce_subword_stores(intptr_t header_size, | |||
4111 | Node* size_in_bytes, | |||
4112 | PhaseGVN* phase) { | |||
4113 | Compile* C = phase->C; | |||
4114 | ||||
4115 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4115, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
4116 | // Note: After this pass, they are not completely sane, | |||
4117 | // since there may be some overlaps. | |||
4118 | ||||
4119 | int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; | |||
4120 | ||||
4121 | intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); | |||
4122 | intptr_t size_limit = phase->find_intptr_t_confind_long_con(size_in_bytes, ti_limit); | |||
4123 | size_limit = MIN2(size_limit, ti_limit); | |||
4124 | size_limit = align_up(size_limit, BytesPerLong); | |||
4125 | int num_tiles = size_limit / BytesPerLong; | |||
4126 | ||||
4127 | // allocate space for the tile map: | |||
4128 | const int small_len = DEBUG_ONLY(true ? 3 :)true ? 3 : 30; // keep stack frames small | |||
4129 | jlong tiles_buf[small_len]; | |||
4130 | Node* nodes_buf[small_len]; | |||
4131 | jlong inits_buf[small_len]; | |||
4132 | jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] | |||
4133 | : NEW_RESOURCE_ARRAY(jlong, num_tiles)(jlong*) resource_allocate_bytes((num_tiles) * sizeof(jlong))); | |||
4134 | Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] | |||
4135 | : NEW_RESOURCE_ARRAY(Node*, num_tiles)(Node**) resource_allocate_bytes((num_tiles) * sizeof(Node*))); | |||
4136 | jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] | |||
4137 | : NEW_RESOURCE_ARRAY(jlong, num_tiles)(jlong*) resource_allocate_bytes((num_tiles) * sizeof(jlong))); | |||
4138 | // tiles: exact bitwise model of all primitive constants | |||
4139 | // nodes: last constant-storing node subsumed into the tiles model | |||
4140 | // inits: which bytes (in each tile) are touched by any initializations | |||
4141 | ||||
4142 | //// Pass A: Fill in the tile model with any relevant stores. | |||
4143 | ||||
4144 | Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); | |||
4145 | Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); | |||
4146 | Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); | |||
4147 | Node* zmem = zero_memory(); // initially zero memory state | |||
4148 | for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { | |||
4149 | Node* st = in(i); | |||
4150 | intptr_t st_off = get_store_offset(st, phase); | |||
4151 | ||||
4152 | // Figure out the store's offset and constant value: | |||
4153 | if (st_off < header_size) continue; //skip (ignore header) | |||
4154 | if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) | |||
4155 | int st_size = st->as_Store()->memory_size(); | |||
4156 | if (st_off + st_size > size_limit) break; | |||
4157 | ||||
4158 | // Record which bytes are touched, whether by constant or not. | |||
4159 | if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) | |||
4160 | continue; // skip (strange store size) | |||
4161 | ||||
4162 | const Type* val = phase->type(st->in(MemNode::ValueIn)); | |||
4163 | if (!val->singleton()) continue; //skip (non-con store) | |||
4164 | BasicType type = val->basic_type(); | |||
4165 | ||||
4166 | jlong con = 0; | |||
4167 | switch (type) { | |||
4168 | case T_INT: con = val->is_int()->get_con(); break; | |||
4169 | case T_LONG: con = val->is_long()->get_con(); break; | |||
4170 | case T_FLOAT: con = jint_cast(val->getf()); break; | |||
4171 | case T_DOUBLE: con = jlong_cast(val->getd()); break; | |||
4172 | default: continue; //skip (odd store type) | |||
4173 | } | |||
4174 | ||||
4175 | if (type == T_LONG && Matcher::isSimpleConstant64(con) && | |||
4176 | st->Opcode() == Op_StoreL) { | |||
4177 | continue; // This StoreL is already optimal. | |||
4178 | } | |||
4179 | ||||
4180 | // Store down the constant. | |||
4181 | store_constant(tiles, num_tiles, st_off, st_size, con); | |||
4182 | ||||
4183 | intptr_t j = st_off >> LogBytesPerLong; | |||
4184 | ||||
4185 | if (type == T_INT && st_size == BytesPerInt | |||
4186 | && (st_off & BytesPerInt) == BytesPerInt) { | |||
4187 | jlong lcon = tiles[j]; | |||
4188 | if (!Matcher::isSimpleConstant64(lcon) && | |||
4189 | st->Opcode() == Op_StoreI) { | |||
4190 | // This StoreI is already optimal by itself. | |||
4191 | jint* intcon = (jint*) &tiles[j]; | |||
4192 | intcon[1] = 0; // undo the store_constant() | |||
4193 | ||||
4194 | // If the previous store is also optimal by itself, back up and | |||
4195 | // undo the action of the previous loop iteration... if we can. | |||
4196 | // But if we can't, just let the previous half take care of itself. | |||
4197 | st = nodes[j]; | |||
4198 | st_off -= BytesPerInt; | |||
4199 | con = intcon[0]; | |||
4200 | if (con != 0 && st != NULL__null && st->Opcode() == Op_StoreI) { | |||
4201 | assert(st_off >= header_size, "still ignoring header")do { if (!(st_off >= header_size)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4201, "assert(" "st_off >= header_size" ") failed", "still ignoring header" ); ::breakpoint(); } } while (0); | |||
4202 | assert(get_store_offset(st, phase) == st_off, "must be")do { if (!(get_store_offset(st, phase) == st_off)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4202, "assert(" "get_store_offset(st, phase) == st_off" ") failed" , "must be"); ::breakpoint(); } } while (0); | |||
4203 | assert(in(i-1) == zmem, "must be")do { if (!(in(i-1) == zmem)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4203, "assert(" "in(i-1) == zmem" ") failed", "must be"); :: breakpoint(); } } while (0); | |||
4204 | DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)))const Type* tcon = phase->type(st->in(MemNode::ValueIn) ); | |||
4205 | assert(con == tcon->is_int()->get_con(), "must be")do { if (!(con == tcon->is_int()->get_con())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4205, "assert(" "con == tcon->is_int()->get_con()" ") failed" , "must be"); ::breakpoint(); } } while (0); | |||
4206 | // Undo the effects of the previous loop trip, which swallowed st: | |||
4207 | intcon[0] = 0; // undo store_constant() | |||
4208 | set_req(i-1, st); // undo set_req(i, zmem) | |||
4209 | nodes[j] = NULL__null; // undo nodes[j] = st | |||
4210 | --old_subword; // undo ++old_subword | |||
4211 | } | |||
4212 | continue; // This StoreI is already optimal. | |||
4213 | } | |||
4214 | } | |||
4215 | ||||
4216 | // This store is not needed. | |||
4217 | set_req(i, zmem); | |||
4218 | nodes[j] = st; // record for the moment | |||
4219 | if (st_size < BytesPerLong) // something has changed | |||
4220 | ++old_subword; // includes int/float, but who's counting... | |||
4221 | else ++old_long; | |||
4222 | } | |||
4223 | ||||
4224 | if ((old_subword + old_long) == 0) | |||
4225 | return; // nothing more to do | |||
4226 | ||||
4227 | //// Pass B: Convert any non-zero tiles into optimal constant stores. | |||
4228 | // Be sure to insert them before overlapping non-constant stores. | |||
4229 | // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) | |||
4230 | for (int j = 0; j < num_tiles; j++) { | |||
4231 | jlong con = tiles[j]; | |||
4232 | jlong init = inits[j]; | |||
4233 | if (con == 0) continue; | |||
4234 | jint con0, con1; // split the constant, address-wise | |||
4235 | jint init0, init1; // split the init map, address-wise | |||
4236 | { union { jlong con; jint intcon[2]; } u; | |||
4237 | u.con = con; | |||
4238 | con0 = u.intcon[0]; | |||
4239 | con1 = u.intcon[1]; | |||
4240 | u.con = init; | |||
4241 | init0 = u.intcon[0]; | |||
4242 | init1 = u.intcon[1]; | |||
4243 | } | |||
4244 | ||||
4245 | Node* old = nodes[j]; | |||
4246 | assert(old != NULL, "need the prior store")do { if (!(old != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4246, "assert(" "old != __null" ") failed", "need the prior store" ); ::breakpoint(); } } while (0); | |||
4247 | intptr_t offset = (j * BytesPerLong); | |||
4248 | ||||
4249 | bool split = !Matcher::isSimpleConstant64(con); | |||
4250 | ||||
4251 | if (offset < header_size) { | |||
4252 | assert(offset + BytesPerInt >= header_size, "second int counts")do { if (!(offset + BytesPerInt >= header_size)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4252, "assert(" "offset + BytesPerInt >= header_size" ") failed" , "second int counts"); ::breakpoint(); } } while (0); | |||
4253 | assert(*(jint*)&tiles[j] == 0, "junk in header")do { if (!(*(jint*)&tiles[j] == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4253, "assert(" "*(jint*)&tiles[j] == 0" ") failed", "junk in header" ); ::breakpoint(); } } while (0); | |||
4254 | split = true; // only the second word counts | |||
4255 | // Example: int a[] = { 42 ... } | |||
4256 | } else if (con0 == 0 && init0 == -1) { | |||
4257 | split = true; // first word is covered by full inits | |||
4258 | // Example: int a[] = { ... foo(), 42 ... } | |||
4259 | } else if (con1 == 0 && init1 == -1) { | |||
4260 | split = true; // second word is covered by full inits | |||
4261 | // Example: int a[] = { ... 42, foo() ... } | |||
4262 | } | |||
4263 | ||||
4264 | // Here's a case where init0 is neither 0 nor -1: | |||
4265 | // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } | |||
4266 | // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. | |||
4267 | // In this case the tile is not split; it is (jlong)42. | |||
4268 | // The big tile is stored down, and then the foo() value is inserted. | |||
4269 | // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) | |||
4270 | ||||
4271 | Node* ctl = old->in(MemNode::Control); | |||
4272 | Node* adr = make_raw_address(offset, phase); | |||
4273 | const TypePtr* atp = TypeRawPtr::BOTTOM; | |||
4274 | ||||
4275 | // One or two coalesced stores to plop down. | |||
4276 | Node* st[2]; | |||
4277 | intptr_t off[2]; | |||
4278 | int nst = 0; | |||
4279 | if (!split) { | |||
4280 | ++new_long; | |||
4281 | off[nst] = offset; | |||
4282 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | |||
4283 | phase->longcon(con), T_LONG, MemNode::unordered); | |||
4284 | } else { | |||
4285 | // Omit either if it is a zero. | |||
4286 | if (con0 != 0) { | |||
4287 | ++new_int; | |||
4288 | off[nst] = offset; | |||
4289 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | |||
4290 | phase->intcon(con0), T_INT, MemNode::unordered); | |||
4291 | } | |||
4292 | if (con1 != 0) { | |||
4293 | ++new_int; | |||
4294 | offset += BytesPerInt; | |||
4295 | adr = make_raw_address(offset, phase); | |||
4296 | off[nst] = offset; | |||
4297 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | |||
4298 | phase->intcon(con1), T_INT, MemNode::unordered); | |||
4299 | } | |||
4300 | } | |||
4301 | ||||
4302 | // Insert second store first, then the first before the second. | |||
4303 | // Insert each one just before any overlapping non-constant stores. | |||
4304 | while (nst > 0) { | |||
4305 | Node* st1 = st[--nst]; | |||
4306 | C->copy_node_notes_to(st1, old); | |||
4307 | st1 = phase->transform(st1); | |||
4308 | offset = off[nst]; | |||
4309 | assert(offset >= header_size, "do not smash header")do { if (!(offset >= header_size)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4309, "assert(" "offset >= header_size" ") failed", "do not smash header" ); ::breakpoint(); } } while (0); | |||
4310 | int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); | |||
4311 | guarantee(ins_idx != 0, "must re-insert constant store")do { if (!(ins_idx != 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4311, "guarantee(" "ins_idx != 0" ") failed", "must re-insert constant store" ); ::breakpoint(); } } while (0); | |||
4312 | if (ins_idx < 0) ins_idx = -ins_idx; // never overlap | |||
4313 | if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) | |||
4314 | set_req(--ins_idx, st1); | |||
4315 | else | |||
4316 | ins_req(ins_idx, st1); | |||
4317 | } | |||
4318 | } | |||
4319 | ||||
4320 | if (PrintCompilation && WizardMode) | |||
4321 | tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", | |||
4322 | old_subword, old_long, new_int, new_long); | |||
4323 | if (C->log() != NULL__null) | |||
4324 | C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", | |||
4325 | old_subword, old_long, new_int, new_long); | |||
4326 | ||||
4327 | // Clean up any remaining occurrences of zmem: | |||
4328 | remove_extra_zeroes(); | |||
4329 | } | |||
4330 | ||||
4331 | // Explore forward from in(start) to find the first fully initialized | |||
4332 | // word, and return its offset. Skip groups of subword stores which | |||
4333 | // together initialize full words. If in(start) is itself part of a | |||
4334 | // fully initialized word, return the offset of in(start). If there | |||
4335 | // are no following full-word stores, or if something is fishy, return | |||
4336 | // a negative value. | |||
4337 | intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { | |||
4338 | int int_map = 0; | |||
4339 | intptr_t int_map_off = 0; | |||
4340 | const int FULL_MAP = right_n_bits(BytesPerInt)((((BytesPerInt) >= BitsPerWord) ? 0 : (OneBit << (BytesPerInt ))) - 1); // the int_map we hope for | |||
4341 | ||||
4342 | for (uint i = start, limit = req(); i < limit; i++) { | |||
4343 | Node* st = in(i); | |||
4344 | ||||
4345 | intptr_t st_off = get_store_offset(st, phase); | |||
4346 | if (st_off < 0) break; // return conservative answer | |||
4347 | ||||
4348 | int st_size = st->as_Store()->memory_size(); | |||
4349 | if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { | |||
4350 | return st_off; // we found a complete word init | |||
4351 | } | |||
4352 | ||||
4353 | // update the map: | |||
4354 | ||||
4355 | intptr_t this_int_off = align_down(st_off, BytesPerInt); | |||
4356 | if (this_int_off != int_map_off) { | |||
4357 | // reset the map: | |||
4358 | int_map = 0; | |||
4359 | int_map_off = this_int_off; | |||
4360 | } | |||
4361 | ||||
4362 | int subword_off = st_off - this_int_off; | |||
4363 | int_map |= right_n_bits(st_size)((((st_size) >= BitsPerWord) ? 0 : (OneBit << (st_size ))) - 1) << subword_off; | |||
4364 | if ((int_map & FULL_MAP) == FULL_MAP) { | |||
4365 | return this_int_off; // we found a complete word init | |||
4366 | } | |||
4367 | ||||
4368 | // Did this store hit or cross the word boundary? | |||
4369 | intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); | |||
4370 | if (next_int_off == this_int_off + BytesPerInt) { | |||
4371 | // We passed the current int, without fully initializing it. | |||
4372 | int_map_off = next_int_off; | |||
4373 | int_map >>= BytesPerInt; | |||
4374 | } else if (next_int_off > this_int_off + BytesPerInt) { | |||
4375 | // We passed the current and next int. | |||
4376 | return this_int_off + BytesPerInt; | |||
4377 | } | |||
4378 | } | |||
4379 | ||||
4380 | return -1; | |||
4381 | } | |||
4382 | ||||
4383 | ||||
4384 | // Called when the associated AllocateNode is expanded into CFG. | |||
4385 | // At this point, we may perform additional optimizations. | |||
4386 | // Linearize the stores by ascending offset, to make memory | |||
4387 | // activity as coherent as possible. | |||
4388 | Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, | |||
4389 | intptr_t header_size, | |||
4390 | Node* size_in_bytes, | |||
4391 | PhaseIterGVN* phase) { | |||
4392 | assert(!is_complete(), "not already complete")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4392, "assert(" "!is_complete()" ") failed", "not already complete" ); ::breakpoint(); } } while (0); | |||
4393 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4393, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
4394 | assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4394, "assert(" "allocation() != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
4395 | ||||
4396 | remove_extra_zeroes(); | |||
4397 | ||||
4398 | if (ReduceFieldZeroing || ReduceBulkZeroing) | |||
4399 | // reduce instruction count for common initialization patterns | |||
4400 | coalesce_subword_stores(header_size, size_in_bytes, phase); | |||
4401 | ||||
4402 | Node* zmem = zero_memory(); // initially zero memory state | |||
4403 | Node* inits = zmem; // accumulating a linearized chain of inits | |||
4404 | #ifdef ASSERT1 | |||
4405 | intptr_t first_offset = allocation()->minimum_header_size(); | |||
4406 | intptr_t last_init_off = first_offset; // previous init offset | |||
4407 | intptr_t last_init_end = first_offset; // previous init offset+size | |||
4408 | intptr_t last_tile_end = first_offset; // previous tile offset+size | |||
4409 | #endif | |||
4410 | intptr_t zeroes_done = header_size; | |||
4411 | ||||
4412 | bool do_zeroing = true; // we might give up if inits are very sparse | |||
4413 | int big_init_gaps = 0; // how many large gaps have we seen? | |||
4414 | ||||
4415 | if (UseTLAB && ZeroTLAB) do_zeroing = false; | |||
4416 | if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; | |||
4417 | ||||
4418 | for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { | |||
4419 | Node* st = in(i); | |||
4420 | intptr_t st_off = get_store_offset(st, phase); | |||
4421 | if (st_off < 0) | |||
4422 | break; // unknown junk in the inits | |||
4423 | if (st->in(MemNode::Memory) != zmem) | |||
4424 | break; // complicated store chains somehow in list | |||
4425 | ||||
4426 | int st_size = st->as_Store()->memory_size(); | |||
4427 | intptr_t next_init_off = st_off + st_size; | |||
4428 | ||||
4429 | if (do_zeroing && zeroes_done < next_init_off) { | |||
4430 | // See if this store needs a zero before it or under it. | |||
4431 | intptr_t zeroes_needed = st_off; | |||
4432 | ||||
4433 | if (st_size < BytesPerInt) { | |||
4434 | // Look for subword stores which only partially initialize words. | |||
4435 | // If we find some, we must lay down some word-level zeroes first, | |||
4436 | // underneath the subword stores. | |||
4437 | // | |||
4438 | // Examples: | |||
4439 | // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s | |||
4440 | // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y | |||
4441 | // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z | |||
4442 | // | |||
4443 | // Note: coalesce_subword_stores may have already done this, | |||
4444 | // if it was prompted by constant non-zero subword initializers. | |||
4445 | // But this case can still arise with non-constant stores. | |||
4446 | ||||
4447 | intptr_t next_full_store = find_next_fullword_store(i, phase); | |||
4448 | ||||
4449 | // In the examples above: | |||
4450 | // in(i) p q r s x y z | |||
4451 | // st_off 12 13 14 15 12 13 14 | |||
4452 | // st_size 1 1 1 1 1 1 1 | |||
4453 | // next_full_s. 12 16 16 16 16 16 16 | |||
4454 | // z's_done 12 16 16 16 12 16 12 | |||
4455 | // z's_needed 12 16 16 16 16 16 16 | |||
4456 | // zsize 0 0 0 0 4 0 4 | |||
4457 | if (next_full_store < 0) { | |||
4458 | // Conservative tack: Zero to end of current word. | |||
4459 | zeroes_needed = align_up(zeroes_needed, BytesPerInt); | |||
4460 | } else { | |||
4461 | // Zero to beginning of next fully initialized word. | |||
4462 | // Or, don't zero at all, if we are already in that word. | |||
4463 | assert(next_full_store >= zeroes_needed, "must go forward")do { if (!(next_full_store >= zeroes_needed)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4463, "assert(" "next_full_store >= zeroes_needed" ") failed" , "must go forward"); ::breakpoint(); } } while (0); | |||
4464 | assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary")do { if (!((next_full_store & (BytesPerInt-1)) == 0)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4464, "assert(" "(next_full_store & (BytesPerInt-1)) == 0" ") failed", "even boundary"); ::breakpoint(); } } while (0); | |||
4465 | zeroes_needed = next_full_store; | |||
4466 | } | |||
4467 | } | |||
4468 | ||||
4469 | if (zeroes_needed > zeroes_done) { | |||
4470 | intptr_t zsize = zeroes_needed - zeroes_done; | |||
4471 | // Do some incremental zeroing on rawmem, in parallel with inits. | |||
4472 | zeroes_done = align_down(zeroes_done, BytesPerInt); | |||
4473 | rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, | |||
4474 | zeroes_done, zeroes_needed, | |||
4475 | phase); | |||
4476 | zeroes_done = zeroes_needed; | |||
4477 | if (zsize > InitArrayShortSize && ++big_init_gaps > 2) | |||
4478 | do_zeroing = false; // leave the hole, next time | |||
4479 | } | |||
4480 | } | |||
4481 | ||||
4482 | // Collect the store and move on: | |||
4483 | phase->replace_input_of(st, MemNode::Memory, inits); | |||
4484 | inits = st; // put it on the linearized chain | |||
4485 | set_req(i, zmem); // unhook from previous position | |||
4486 | ||||
4487 | if (zeroes_done == st_off) | |||
4488 | zeroes_done = next_init_off; | |||
4489 | ||||
4490 | assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any")do { if (!(!do_zeroing || zeroes_done >= next_init_off)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4490, "assert(" "!do_zeroing || zeroes_done >= next_init_off" ") failed", "don't miss any"); ::breakpoint(); } } while (0); | |||
4491 | ||||
4492 | #ifdef ASSERT1 | |||
4493 | // Various order invariants. Weaker than stores_are_sane because | |||
4494 | // a large constant tile can be filled in by smaller non-constant stores. | |||
4495 | assert(st_off >= last_init_off, "inits do not reverse")do { if (!(st_off >= last_init_off)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4495, "assert(" "st_off >= last_init_off" ") failed", "inits do not reverse" ); ::breakpoint(); } } while (0); | |||
4496 | last_init_off = st_off; | |||
4497 | const Type* val = NULL__null; | |||
4498 | if (st_size >= BytesPerInt && | |||
4499 | (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && | |||
4500 | (int)val->basic_type() < (int)T_OBJECT) { | |||
4501 | assert(st_off >= last_tile_end, "tiles do not overlap")do { if (!(st_off >= last_tile_end)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4501, "assert(" "st_off >= last_tile_end" ") failed", "tiles do not overlap" ); ::breakpoint(); } } while (0); | |||
4502 | assert(st_off >= last_init_end, "tiles do not overwrite inits")do { if (!(st_off >= last_init_end)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4502, "assert(" "st_off >= last_init_end" ") failed", "tiles do not overwrite inits" ); ::breakpoint(); } } while (0); | |||
4503 | last_tile_end = MAX2(last_tile_end, next_init_off); | |||
4504 | } else { | |||
4505 | intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); | |||
4506 | assert(st_tile_end >= last_tile_end, "inits stay with tiles")do { if (!(st_tile_end >= last_tile_end)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4506, "assert(" "st_tile_end >= last_tile_end" ") failed" , "inits stay with tiles"); ::breakpoint(); } } while (0); | |||
4507 | assert(st_off >= last_init_end, "inits do not overlap")do { if (!(st_off >= last_init_end)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4507, "assert(" "st_off >= last_init_end" ") failed", "inits do not overlap" ); ::breakpoint(); } } while (0); | |||
4508 | last_init_end = next_init_off; // it's a non-tile | |||
4509 | } | |||
4510 | #endif //ASSERT | |||
4511 | } | |||
4512 | ||||
4513 | remove_extra_zeroes(); // clear out all the zmems left over | |||
4514 | add_req(inits); | |||
4515 | ||||
4516 | if (!(UseTLAB && ZeroTLAB)) { | |||
4517 | // If anything remains to be zeroed, zero it all now. | |||
4518 | zeroes_done = align_down(zeroes_done, BytesPerInt); | |||
4519 | // if it is the last unused 4 bytes of an instance, forget about it | |||
4520 | intptr_t size_limit = phase->find_intptr_t_confind_long_con(size_in_bytes, max_jint); | |||
4521 | if (zeroes_done + BytesPerLong >= size_limit) { | |||
4522 | AllocateNode* alloc = allocation(); | |||
4523 | assert(alloc != NULL, "must be present")do { if (!(alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4523, "assert(" "alloc != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
4524 | if (alloc != NULL__null && alloc->Opcode() == Op_Allocate) { | |||
4525 | Node* klass_node = alloc->in(AllocateNode::KlassNode); | |||
4526 | ciKlass* k = phase->type(klass_node)->is_klassptr()->klass(); | |||
4527 | if (zeroes_done == k->layout_helper()) | |||
4528 | zeroes_done = size_limit; | |||
4529 | } | |||
4530 | } | |||
4531 | if (zeroes_done < size_limit) { | |||
4532 | rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, | |||
4533 | zeroes_done, size_in_bytes, phase); | |||
4534 | } | |||
4535 | } | |||
4536 | ||||
4537 | set_complete(phase); | |||
4538 | return rawmem; | |||
4539 | } | |||
4540 | ||||
4541 | ||||
4542 | #ifdef ASSERT1 | |||
4543 | bool InitializeNode::stores_are_sane(PhaseTransform* phase) { | |||
4544 | if (is_complete()) | |||
4545 | return true; // stores could be anything at this point | |||
4546 | assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4546, "assert(" "allocation() != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
4547 | intptr_t last_off = allocation()->minimum_header_size(); | |||
4548 | for (uint i = InitializeNode::RawStores; i < req(); i++) { | |||
4549 | Node* st = in(i); | |||
4550 | intptr_t st_off = get_store_offset(st, phase); | |||
4551 | if (st_off < 0) continue; // ignore dead garbage | |||
4552 | if (last_off > st_off) { | |||
4553 | tty->print_cr("*** bad store offset at %d: " INTX_FORMAT"%" "l" "d" " > " INTX_FORMAT"%" "l" "d", i, last_off, st_off); | |||
4554 | this->dump(2); | |||
4555 | assert(false, "ascending store offsets")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4555, "assert(" "false" ") failed", "ascending store offsets" ); ::breakpoint(); } } while (0); | |||
4556 | return false; | |||
4557 | } | |||
4558 | last_off = st_off + st->as_Store()->memory_size(); | |||
4559 | } | |||
4560 | return true; | |||
4561 | } | |||
4562 | #endif //ASSERT | |||
4563 | ||||
4564 | ||||
4565 | ||||
4566 | ||||
4567 | //============================MergeMemNode===================================== | |||
4568 | // | |||
4569 | // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several | |||
4570 | // contributing store or call operations. Each contributor provides the memory | |||
4571 | // state for a particular "alias type" (see Compile::alias_type). For example, | |||
4572 | // if a MergeMem has an input X for alias category #6, then any memory reference | |||
4573 | // to alias category #6 may use X as its memory state input, as an exact equivalent | |||
4574 | // to using the MergeMem as a whole. | |||
4575 | // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) | |||
4576 | // | |||
4577 | // (Here, the <N> notation gives the index of the relevant adr_type.) | |||
4578 | // | |||
4579 | // In one special case (and more cases in the future), alias categories overlap. | |||
4580 | // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory | |||
4581 | // states. Therefore, if a MergeMem has only one contributing input W for Bot, | |||
4582 | // it is exactly equivalent to that state W: | |||
4583 | // MergeMem(<Bot>: W) <==> W | |||
4584 | // | |||
4585 | // Usually, the merge has more than one input. In that case, where inputs | |||
4586 | // overlap (i.e., one is Bot), the narrower alias type determines the memory | |||
4587 | // state for that type, and the wider alias type (Bot) fills in everywhere else: | |||
4588 | // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) | |||
4589 | // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) | |||
4590 | // | |||
4591 | // A merge can take a "wide" memory state as one of its narrow inputs. | |||
4592 | // This simply means that the merge observes out only the relevant parts of | |||
4593 | // the wide input. That is, wide memory states arriving at narrow merge inputs | |||
4594 | // are implicitly "filtered" or "sliced" as necessary. (This is rare.) | |||
4595 | // | |||
4596 | // These rules imply that MergeMem nodes may cascade (via their <Bot> links), | |||
4597 | // and that memory slices "leak through": | |||
4598 | // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) | |||
4599 | // | |||
4600 | // But, in such a cascade, repeated memory slices can "block the leak": | |||
4601 | // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') | |||
4602 | // | |||
4603 | // In the last example, Y is not part of the combined memory state of the | |||
4604 | // outermost MergeMem. The system must, of course, prevent unschedulable | |||
4605 | // memory states from arising, so you can be sure that the state Y is somehow | |||
4606 | // a precursor to state Y'. | |||
4607 | // | |||
4608 | // | |||
4609 | // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array | |||
4610 | // of each MergeMemNode array are exactly the numerical alias indexes, including | |||
4611 | // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions | |||
4612 | // Compile::alias_type (and kin) produce and manage these indexes. | |||
4613 | // | |||
4614 | // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. | |||
4615 | // (Note that this provides quick access to the top node inside MergeMem methods, | |||
4616 | // without the need to reach out via TLS to Compile::current.) | |||
4617 | // | |||
4618 | // As a consequence of what was just described, a MergeMem that represents a full | |||
4619 | // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, | |||
4620 | // containing all alias categories. | |||
4621 | // | |||
4622 | // MergeMem nodes never (?) have control inputs, so in(0) is NULL. | |||
4623 | // | |||
4624 | // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either | |||
4625 | // a memory state for the alias type <N>, or else the top node, meaning that | |||
4626 | // there is no particular input for that alias type. Note that the length of | |||
4627 | // a MergeMem is variable, and may be extended at any time to accommodate new | |||
4628 | // memory states at larger alias indexes. When merges grow, they are of course | |||
4629 | // filled with "top" in the unused in() positions. | |||
4630 | // | |||
4631 | // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. | |||
4632 | // (Top was chosen because it works smoothly with passes like GCM.) | |||
4633 | // | |||
4634 | // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is | |||
4635 | // the type of random VM bits like TLS references.) Since it is always the | |||
4636 | // first non-Bot memory slice, some low-level loops use it to initialize an | |||
4637 | // index variable: for (i = AliasIdxRaw; i < req(); i++). | |||
4638 | // | |||
4639 | // | |||
4640 | // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns | |||
4641 | // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns | |||
4642 | // the memory state for alias type <N>, or (if there is no particular slice at <N>, | |||
4643 | // it returns the base memory. To prevent bugs, memory_at does not accept <Top> | |||
4644 | // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over | |||
4645 | // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. | |||
4646 | // | |||
4647 | // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't | |||
4648 | // really that different from the other memory inputs. An abbreviation called | |||
4649 | // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. | |||
4650 | // | |||
4651 | // | |||
4652 | // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent | |||
4653 | // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi | |||
4654 | // that "emerges though" the base memory will be marked as excluding the alias types | |||
4655 | // of the other (narrow-memory) copies which "emerged through" the narrow edges: | |||
4656 | // | |||
4657 | // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) | |||
4658 | // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) | |||
4659 | // | |||
4660 | // This strange "subtraction" effect is necessary to ensure IGVN convergence. | |||
4661 | // (It is currently unimplemented.) As you can see, the resulting merge is | |||
4662 | // actually a disjoint union of memory states, rather than an overlay. | |||
4663 | // | |||
4664 | ||||
4665 | //------------------------------MergeMemNode----------------------------------- | |||
4666 | Node* MergeMemNode::make_empty_memory() { | |||
4667 | Node* empty_memory = (Node*) Compile::current()->top(); | |||
4668 | assert(empty_memory->is_top(), "correct sentinel identity")do { if (!(empty_memory->is_top())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4668, "assert(" "empty_memory->is_top()" ") failed", "correct sentinel identity" ); ::breakpoint(); } } while (0); | |||
4669 | return empty_memory; | |||
4670 | } | |||
4671 | ||||
4672 | MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { | |||
4673 | init_class_id(Class_MergeMem); | |||
4674 | // all inputs are nullified in Node::Node(int) | |||
4675 | // set_input(0, NULL); // no control input | |||
4676 | ||||
4677 | // Initialize the edges uniformly to top, for starters. | |||
4678 | Node* empty_mem = make_empty_memory(); | |||
4679 | for (uint i = Compile::AliasIdxTop; i < req(); i++) { | |||
4680 | init_req(i,empty_mem); | |||
4681 | } | |||
4682 | assert(empty_memory() == empty_mem, "")do { if (!(empty_memory() == empty_mem)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4682, "assert(" "empty_memory() == empty_mem" ") failed", "" ); ::breakpoint(); } } while (0); | |||
4683 | ||||
4684 | if( new_base != NULL__null && new_base->is_MergeMem() ) { | |||
4685 | MergeMemNode* mdef = new_base->as_MergeMem(); | |||
4686 | assert(mdef->empty_memory() == empty_mem, "consistent sentinels")do { if (!(mdef->empty_memory() == empty_mem)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4686, "assert(" "mdef->empty_memory() == empty_mem" ") failed" , "consistent sentinels"); ::breakpoint(); } } while (0); | |||
4687 | for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { | |||
4688 | mms.set_memory(mms.memory2()); | |||
4689 | } | |||
4690 | assert(base_memory() == mdef->base_memory(), "")do { if (!(base_memory() == mdef->base_memory())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4690, "assert(" "base_memory() == mdef->base_memory()" ") failed" , ""); ::breakpoint(); } } while (0); | |||
4691 | } else { | |||
4692 | set_base_memory(new_base); | |||
4693 | } | |||
4694 | } | |||
4695 | ||||
4696 | // Make a new, untransformed MergeMem with the same base as 'mem'. | |||
4697 | // If mem is itself a MergeMem, populate the result with the same edges. | |||
4698 | MergeMemNode* MergeMemNode::make(Node* mem) { | |||
4699 | return new MergeMemNode(mem); | |||
4700 | } | |||
4701 | ||||
4702 | //------------------------------cmp-------------------------------------------- | |||
4703 | uint MergeMemNode::hash() const { return NO_HASH; } | |||
4704 | bool MergeMemNode::cmp( const Node &n ) const { | |||
4705 | return (&n == this); // Always fail except on self | |||
4706 | } | |||
4707 | ||||
4708 | //------------------------------Identity--------------------------------------- | |||
4709 | Node* MergeMemNode::Identity(PhaseGVN* phase) { | |||
4710 | // Identity if this merge point does not record any interesting memory | |||
4711 | // disambiguations. | |||
4712 | Node* base_mem = base_memory(); | |||
4713 | Node* empty_mem = empty_memory(); | |||
4714 | if (base_mem != empty_mem) { // Memory path is not dead? | |||
4715 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
4716 | Node* mem = in(i); | |||
4717 | if (mem != empty_mem && mem != base_mem) { | |||
4718 | return this; // Many memory splits; no change | |||
4719 | } | |||
4720 | } | |||
4721 | } | |||
4722 | return base_mem; // No memory splits; ID on the one true input | |||
4723 | } | |||
4724 | ||||
4725 | //------------------------------Ideal------------------------------------------ | |||
4726 | // This method is invoked recursively on chains of MergeMem nodes | |||
4727 | Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
4728 | // Remove chain'd MergeMems | |||
4729 | // | |||
4730 | // This is delicate, because the each "in(i)" (i >= Raw) is interpreted | |||
4731 | // relative to the "in(Bot)". Since we are patching both at the same time, | |||
4732 | // we have to be careful to read each "in(i)" relative to the old "in(Bot)", | |||
4733 | // but rewrite each "in(i)" relative to the new "in(Bot)". | |||
4734 | Node *progress = NULL__null; | |||
4735 | ||||
4736 | ||||
4737 | Node* old_base = base_memory(); | |||
4738 | Node* empty_mem = empty_memory(); | |||
4739 | if (old_base == empty_mem) | |||
4740 | return NULL__null; // Dead memory path. | |||
4741 | ||||
4742 | MergeMemNode* old_mbase; | |||
4743 | if (old_base != NULL__null && old_base->is_MergeMem()) | |||
4744 | old_mbase = old_base->as_MergeMem(); | |||
4745 | else | |||
4746 | old_mbase = NULL__null; | |||
4747 | Node* new_base = old_base; | |||
4748 | ||||
4749 | // simplify stacked MergeMems in base memory | |||
4750 | if (old_mbase) new_base = old_mbase->base_memory(); | |||
4751 | ||||
4752 | // the base memory might contribute new slices beyond my req() | |||
4753 | if (old_mbase) grow_to_match(old_mbase); | |||
4754 | ||||
4755 | // Look carefully at the base node if it is a phi. | |||
4756 | PhiNode* phi_base; | |||
4757 | if (new_base != NULL__null && new_base->is_Phi()) | |||
4758 | phi_base = new_base->as_Phi(); | |||
4759 | else | |||
4760 | phi_base = NULL__null; | |||
4761 | ||||
4762 | Node* phi_reg = NULL__null; | |||
4763 | uint phi_len = (uint)-1; | |||
4764 | if (phi_base != NULL__null) { | |||
4765 | phi_reg = phi_base->region(); | |||
4766 | phi_len = phi_base->req(); | |||
4767 | // see if the phi is unfinished | |||
4768 | for (uint i = 1; i < phi_len; i++) { | |||
4769 | if (phi_base->in(i) == NULL__null) { | |||
4770 | // incomplete phi; do not look at it yet! | |||
4771 | phi_reg = NULL__null; | |||
4772 | phi_len = (uint)-1; | |||
4773 | break; | |||
4774 | } | |||
4775 | } | |||
4776 | } | |||
4777 | ||||
4778 | // Note: We do not call verify_sparse on entry, because inputs | |||
4779 | // can normalize to the base_memory via subsume_node or similar | |||
4780 | // mechanisms. This method repairs that damage. | |||
4781 | ||||
4782 | assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels")do { if (!(!old_mbase || old_mbase->is_empty_memory(empty_mem ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4782, "assert(" "!old_mbase || old_mbase->is_empty_memory(empty_mem)" ") failed", "consistent sentinels"); ::breakpoint(); } } while (0); | |||
4783 | ||||
4784 | // Look at each slice. | |||
4785 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
4786 | Node* old_in = in(i); | |||
4787 | // calculate the old memory value | |||
4788 | Node* old_mem = old_in; | |||
4789 | if (old_mem == empty_mem) old_mem = old_base; | |||
4790 | assert(old_mem == memory_at(i), "")do { if (!(old_mem == memory_at(i))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4790, "assert(" "old_mem == memory_at(i)" ") failed", ""); :: breakpoint(); } } while (0); | |||
4791 | ||||
4792 | // maybe update (reslice) the old memory value | |||
4793 | ||||
4794 | // simplify stacked MergeMems | |||
4795 | Node* new_mem = old_mem; | |||
4796 | MergeMemNode* old_mmem; | |||
4797 | if (old_mem != NULL__null && old_mem->is_MergeMem()) | |||
4798 | old_mmem = old_mem->as_MergeMem(); | |||
4799 | else | |||
4800 | old_mmem = NULL__null; | |||
4801 | if (old_mmem == this) { | |||
4802 | // This can happen if loops break up and safepoints disappear. | |||
4803 | // A merge of BotPtr (default) with a RawPtr memory derived from a | |||
4804 | // safepoint can be rewritten to a merge of the same BotPtr with | |||
4805 | // the BotPtr phi coming into the loop. If that phi disappears | |||
4806 | // also, we can end up with a self-loop of the mergemem. | |||
4807 | // In general, if loops degenerate and memory effects disappear, | |||
4808 | // a mergemem can be left looking at itself. This simply means | |||
4809 | // that the mergemem's default should be used, since there is | |||
4810 | // no longer any apparent effect on this slice. | |||
4811 | // Note: If a memory slice is a MergeMem cycle, it is unreachable | |||
4812 | // from start. Update the input to TOP. | |||
4813 | new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; | |||
4814 | } | |||
4815 | else if (old_mmem != NULL__null) { | |||
4816 | new_mem = old_mmem->memory_at(i); | |||
4817 | } | |||
4818 | // else preceding memory was not a MergeMem | |||
4819 | ||||
4820 | // maybe store down a new value | |||
4821 | Node* new_in = new_mem; | |||
4822 | if (new_in == new_base) new_in = empty_mem; | |||
4823 | ||||
4824 | if (new_in != old_in) { | |||
4825 | // Warning: Do not combine this "if" with the previous "if" | |||
4826 | // A memory slice might have be be rewritten even if it is semantically | |||
4827 | // unchanged, if the base_memory value has changed. | |||
4828 | set_req_X(i, new_in, phase); | |||
4829 | progress = this; // Report progress | |||
4830 | } | |||
4831 | } | |||
4832 | ||||
4833 | if (new_base != old_base) { | |||
4834 | set_req_X(Compile::AliasIdxBot, new_base, phase); | |||
4835 | // Don't use set_base_memory(new_base), because we need to update du. | |||
4836 | assert(base_memory() == new_base, "")do { if (!(base_memory() == new_base)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4836, "assert(" "base_memory() == new_base" ") failed", "") ; ::breakpoint(); } } while (0); | |||
4837 | progress = this; | |||
4838 | } | |||
4839 | ||||
4840 | if( base_memory() == this ) { | |||
4841 | // a self cycle indicates this memory path is dead | |||
4842 | set_req(Compile::AliasIdxBot, empty_mem); | |||
4843 | } | |||
4844 | ||||
4845 | // Resolve external cycles by calling Ideal on a MergeMem base_memory | |||
4846 | // Recursion must occur after the self cycle check above | |||
4847 | if( base_memory()->is_MergeMem() ) { | |||
4848 | MergeMemNode *new_mbase = base_memory()->as_MergeMem(); | |||
4849 | Node *m = phase->transform(new_mbase); // Rollup any cycles | |||
4850 | if( m != NULL__null && | |||
4851 | (m->is_top() || | |||
4852 | (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { | |||
4853 | // propagate rollup of dead cycle to self | |||
4854 | set_req(Compile::AliasIdxBot, empty_mem); | |||
4855 | } | |||
4856 | } | |||
4857 | ||||
4858 | if( base_memory() == empty_mem ) { | |||
4859 | progress = this; | |||
4860 | // Cut inputs during Parse phase only. | |||
4861 | // During Optimize phase a dead MergeMem node will be subsumed by Top. | |||
4862 | if( !can_reshape ) { | |||
4863 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
4864 | if( in(i) != empty_mem ) { set_req(i, empty_mem); } | |||
4865 | } | |||
4866 | } | |||
4867 | } | |||
4868 | ||||
4869 | if( !progress && base_memory()->is_Phi() && can_reshape ) { | |||
4870 | // Check if PhiNode::Ideal's "Split phis through memory merges" | |||
4871 | // transform should be attempted. Look for this->phi->this cycle. | |||
4872 | uint merge_width = req(); | |||
4873 | if (merge_width > Compile::AliasIdxRaw) { | |||
4874 | PhiNode* phi = base_memory()->as_Phi(); | |||
4875 | for( uint i = 1; i < phi->req(); ++i ) {// For all paths in | |||
4876 | if (phi->in(i) == this) { | |||
4877 | phase->is_IterGVN()->_worklist.push(phi); | |||
4878 | break; | |||
4879 | } | |||
4880 | } | |||
4881 | } | |||
4882 | } | |||
4883 | ||||
4884 | assert(progress || verify_sparse(), "please, no dups of base")do { if (!(progress || verify_sparse())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4884, "assert(" "progress || verify_sparse()" ") failed", "please, no dups of base" ); ::breakpoint(); } } while (0); | |||
4885 | return progress; | |||
4886 | } | |||
4887 | ||||
4888 | //-------------------------set_base_memory------------------------------------- | |||
4889 | void MergeMemNode::set_base_memory(Node *new_base) { | |||
4890 | Node* empty_mem = empty_memory(); | |||
4891 | set_req(Compile::AliasIdxBot, new_base); | |||
4892 | assert(memory_at(req()) == new_base, "must set default memory")do { if (!(memory_at(req()) == new_base)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4892, "assert(" "memory_at(req()) == new_base" ") failed", "must set default memory" ); ::breakpoint(); } } while (0); | |||
4893 | // Clear out other occurrences of new_base: | |||
4894 | if (new_base != empty_mem) { | |||
4895 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
4896 | if (in(i) == new_base) set_req(i, empty_mem); | |||
4897 | } | |||
4898 | } | |||
4899 | } | |||
4900 | ||||
4901 | //------------------------------out_RegMask------------------------------------ | |||
4902 | const RegMask &MergeMemNode::out_RegMask() const { | |||
4903 | return RegMask::Empty; | |||
4904 | } | |||
4905 | ||||
4906 | //------------------------------dump_spec-------------------------------------- | |||
4907 | #ifndef PRODUCT | |||
4908 | void MergeMemNode::dump_spec(outputStream *st) const { | |||
4909 | st->print(" {"); | |||
4910 | Node* base_mem = base_memory(); | |||
4911 | for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { | |||
4912 | Node* mem = (in(i) != NULL__null) ? memory_at(i) : base_mem; | |||
4913 | if (mem == base_mem) { st->print(" -"); continue; } | |||
4914 | st->print( " N%d:", mem->_idx ); | |||
4915 | Compile::current()->get_adr_type(i)->dump_on(st); | |||
4916 | } | |||
4917 | st->print(" }"); | |||
4918 | } | |||
4919 | #endif // !PRODUCT | |||
4920 | ||||
4921 | ||||
4922 | #ifdef ASSERT1 | |||
4923 | static bool might_be_same(Node* a, Node* b) { | |||
4924 | if (a == b) return true; | |||
4925 | if (!(a->is_Phi() || b->is_Phi())) return false; | |||
4926 | // phis shift around during optimization | |||
4927 | return true; // pretty stupid... | |||
4928 | } | |||
4929 | ||||
4930 | // verify a narrow slice (either incoming or outgoing) | |||
4931 | static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { | |||
4932 | if (!VerifyAliases) return; // don't bother to verify unless requested | |||
4933 | if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error | |||
4934 | if (Node::in_dump()) return; // muzzle asserts when printing | |||
4935 | assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel")do { if (!(alias_idx >= Compile::AliasIdxRaw)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4935, "assert(" "alias_idx >= Compile::AliasIdxRaw" ") failed" , "must not disturb base_memory or sentinel"); ::breakpoint() ; } } while (0); | |||
4936 | assert(n != NULL, "")do { if (!(n != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4936, "assert(" "n != __null" ") failed", ""); ::breakpoint (); } } while (0); | |||
4937 | // Elide intervening MergeMem's | |||
4938 | while (n->is_MergeMem()) { | |||
4939 | n = n->as_MergeMem()->memory_at(alias_idx); | |||
4940 | } | |||
4941 | Compile* C = Compile::current(); | |||
4942 | const TypePtr* n_adr_type = n->adr_type(); | |||
4943 | if (n == m->empty_memory()) { | |||
4944 | // Implicit copy of base_memory() | |||
4945 | } else if (n_adr_type != TypePtr::BOTTOM) { | |||
4946 | assert(n_adr_type != NULL, "new memory must have a well-defined adr_type")do { if (!(n_adr_type != __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4946, "assert(" "n_adr_type != __null" ") failed", "new memory must have a well-defined adr_type" ); ::breakpoint(); } } while (0); | |||
4947 | assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice")do { if (!(C->must_alias(n_adr_type, alias_idx))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4947, "assert(" "C->must_alias(n_adr_type, alias_idx)" ") failed" , "new memory must match selected slice"); ::breakpoint(); } } while (0); | |||
4948 | } else { | |||
4949 | // A few places like make_runtime_call "know" that VM calls are narrow, | |||
4950 | // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. | |||
4951 | bool expected_wide_mem = false; | |||
4952 | if (n == m->base_memory()) { | |||
4953 | expected_wide_mem = true; | |||
4954 | } else if (alias_idx == Compile::AliasIdxRaw || | |||
4955 | n == m->memory_at(Compile::AliasIdxRaw)) { | |||
4956 | expected_wide_mem = true; | |||
4957 | } else if (!C->alias_type(alias_idx)->is_rewritable()) { | |||
4958 | // memory can "leak through" calls on channels that | |||
4959 | // are write-once. Allow this also. | |||
4960 | expected_wide_mem = true; | |||
4961 | } | |||
4962 | assert(expected_wide_mem, "expected narrow slice replacement")do { if (!(expected_wide_mem)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4962, "assert(" "expected_wide_mem" ") failed", "expected narrow slice replacement" ); ::breakpoint(); } } while (0); | |||
4963 | } | |||
4964 | } | |||
4965 | #else // !ASSERT | |||
4966 | #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op | |||
4967 | #endif | |||
4968 | ||||
4969 | ||||
4970 | //-----------------------------memory_at--------------------------------------- | |||
4971 | Node* MergeMemNode::memory_at(uint alias_idx) const { | |||
4972 | assert(alias_idx >= Compile::AliasIdxRaw ||do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel () == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0" ") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint (); } } while (0) | |||
4973 | alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel () == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0" ") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint (); } } while (0) | |||
4974 | "must avoid base_memory and AliasIdxTop")do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel () == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0" ") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint (); } } while (0); | |||
4975 | ||||
4976 | // Otherwise, it is a narrow slice. | |||
4977 | Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); | |||
4978 | Compile *C = Compile::current(); | |||
4979 | if (is_empty_memory(n)) { | |||
4980 | // the array is sparse; empty slots are the "top" node | |||
4981 | n = base_memory(); | |||
4982 | assert(Node::in_dump()do { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
4983 | || n == NULL || n->bottom_type() == Type::TOPdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
4984 | || n->adr_type() == NULL // address is TOPdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
4985 | || n->adr_type() == TypePtr::BOTTOMdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
4986 | || n->adr_type() == TypeRawPtr::BOTTOMdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
4987 | || Compile::current()->AliasLevel() == 0,do { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
4988 | "must be a wide memory")do { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0); | |||
4989 | // AliasLevel == 0 if we are organizing the memory states manually. | |||
4990 | // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. | |||
4991 | } else { | |||
4992 | // make sure the stored slice is sane | |||
4993 | #ifdef ASSERT1 | |||
4994 | if (VMError::is_error_reported() || Node::in_dump()) { | |||
4995 | } else if (might_be_same(n, base_memory())) { | |||
4996 | // Give it a pass: It is a mostly harmless repetition of the base. | |||
4997 | // This can arise normally from node subsumption during optimization. | |||
4998 | } else { | |||
4999 | verify_memory_slice(this, alias_idx, n); | |||
5000 | } | |||
5001 | #endif | |||
5002 | } | |||
5003 | return n; | |||
5004 | } | |||
5005 | ||||
5006 | //---------------------------set_memory_at------------------------------------- | |||
5007 | void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { | |||
5008 | verify_memory_slice(this, alias_idx, n); | |||
5009 | Node* empty_mem = empty_memory(); | |||
5010 | if (n == base_memory()) n = empty_mem; // collapse default | |||
5011 | uint need_req = alias_idx+1; | |||
5012 | if (req() < need_req) { | |||
5013 | if (n == empty_mem) return; // already the default, so do not grow me | |||
5014 | // grow the sparse array | |||
5015 | do { | |||
5016 | add_req(empty_mem); | |||
5017 | } while (req() < need_req); | |||
5018 | } | |||
5019 | set_req( alias_idx, n ); | |||
5020 | } | |||
5021 | ||||
5022 | ||||
5023 | ||||
5024 | //--------------------------iteration_setup------------------------------------ | |||
5025 | void MergeMemNode::iteration_setup(const MergeMemNode* other) { | |||
5026 | if (other != NULL__null) { | |||
5027 | grow_to_match(other); | |||
5028 | // invariant: the finite support of mm2 is within mm->req() | |||
5029 | #ifdef ASSERT1 | |||
5030 | for (uint i = req(); i < other->req(); i++) { | |||
5031 | assert(other->is_empty_memory(other->in(i)), "slice left uncovered")do { if (!(other->is_empty_memory(other->in(i)))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5031, "assert(" "other->is_empty_memory(other->in(i))" ") failed", "slice left uncovered"); ::breakpoint(); } } while (0); | |||
5032 | } | |||
5033 | #endif | |||
5034 | } | |||
5035 | // Replace spurious copies of base_memory by top. | |||
5036 | Node* base_mem = base_memory(); | |||
5037 | if (base_mem != NULL__null && !base_mem->is_top()) { | |||
5038 | for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { | |||
5039 | if (in(i) == base_mem) | |||
5040 | set_req(i, empty_memory()); | |||
5041 | } | |||
5042 | } | |||
5043 | } | |||
5044 | ||||
5045 | //---------------------------grow_to_match------------------------------------- | |||
5046 | void MergeMemNode::grow_to_match(const MergeMemNode* other) { | |||
5047 | Node* empty_mem = empty_memory(); | |||
5048 | assert(other->is_empty_memory(empty_mem), "consistent sentinels")do { if (!(other->is_empty_memory(empty_mem))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5048, "assert(" "other->is_empty_memory(empty_mem)" ") failed" , "consistent sentinels"); ::breakpoint(); } } while (0); | |||
5049 | // look for the finite support of the other memory | |||
5050 | for (uint i = other->req(); --i >= req(); ) { | |||
5051 | if (other->in(i) != empty_mem) { | |||
5052 | uint new_len = i+1; | |||
5053 | while (req() < new_len) add_req(empty_mem); | |||
5054 | break; | |||
5055 | } | |||
5056 | } | |||
5057 | } | |||
5058 | ||||
5059 | //---------------------------verify_sparse------------------------------------- | |||
5060 | #ifndef PRODUCT | |||
5061 | bool MergeMemNode::verify_sparse() const { | |||
5062 | assert(is_empty_memory(make_empty_memory()), "sane sentinel")do { if (!(is_empty_memory(make_empty_memory()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5062, "assert(" "is_empty_memory(make_empty_memory())" ") failed" , "sane sentinel"); ::breakpoint(); } } while (0); | |||
5063 | Node* base_mem = base_memory(); | |||
5064 | // The following can happen in degenerate cases, since empty==top. | |||
5065 | if (is_empty_memory(base_mem)) return true; | |||
5066 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
5067 | assert(in(i) != NULL, "sane slice")do { if (!(in(i) != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5067, "assert(" "in(i) != __null" ") failed", "sane slice") ; ::breakpoint(); } } while (0); | |||
5068 | if (in(i) == base_mem) return false; // should have been the sentinel value! | |||
5069 | } | |||
5070 | return true; | |||
5071 | } | |||
5072 | ||||
5073 | bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { | |||
5074 | Node* n; | |||
5075 | n = mm->in(idx); | |||
5076 | if (mem == n) return true; // might be empty_memory() | |||
5077 | n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); | |||
5078 | if (mem == n) return true; | |||
5079 | return false; | |||
5080 | } | |||
5081 | #endif // !PRODUCT |