File: | jdk/src/java.desktop/share/native/libsplashscreen/splashscreen_gfx_impl.c |
Warning: | line 305, column 34 The left operand of '+' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright (c) 2005, Oracle and/or its affiliates. All rights reserved. | |||
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
4 | * | |||
5 | * This code is free software; you can redistribute it and/or modify it | |||
6 | * under the terms of the GNU General Public License version 2 only, as | |||
7 | * published by the Free Software Foundation. Oracle designates this | |||
8 | * particular file as subject to the "Classpath" exception as provided | |||
9 | * by Oracle in the LICENSE file that accompanied this code. | |||
10 | * | |||
11 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
14 | * version 2 for more details (a copy is included in the LICENSE file that | |||
15 | * accompanied this code). | |||
16 | * | |||
17 | * You should have received a copy of the GNU General Public License version | |||
18 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
20 | * | |||
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
22 | * or visit www.oracle.com if you need additional information or have any | |||
23 | * questions. | |||
24 | */ | |||
25 | ||||
26 | #include "splashscreen_gfx_impl.h" | |||
27 | ||||
28 | /* *INDENT-OFF* */ | |||
29 | const byte_t baseDitherMatrix[DITHER_SIZE][DITHER_SIZE] = { | |||
30 | /* Bayer's order-4 dither array. Generated by the code given in | |||
31 | * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | |||
32 | */ | |||
33 | { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, | |||
34 | { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | |||
35 | { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | |||
36 | { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | |||
37 | { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, | |||
38 | { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | |||
39 | { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | |||
40 | { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | |||
41 | { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, | |||
42 | { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | |||
43 | { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | |||
44 | { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | |||
45 | { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, | |||
46 | { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | |||
47 | { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | |||
48 | { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | |||
49 | }; | |||
50 | /* *INDENT-ON* */ | |||
51 | ||||
52 | // FIXME: tinting on some colormaps (e.g. 1-2-1) means something is slightly wrong with | |||
53 | // colormap calculation... probably it's some rounding error | |||
54 | ||||
55 | /* calculates the colorTable for mapping from 0..255 to 0..numColors-1 | |||
56 | also calculates the dithering matrix, scaling baseDitherMatrix accordingly */ | |||
57 | void | |||
58 | initDither(DitherSettings * pDither, int numColors, int scale) | |||
59 | { | |||
60 | int i, j; | |||
61 | ||||
62 | pDither->numColors = numColors; | |||
63 | for (i = 0; i < (MAX_COLOR_VALUE255 + 1) * 2; i++) { | |||
64 | pDither->colorTable[i] = | |||
65 | (((i > MAX_COLOR_VALUE255) ? MAX_COLOR_VALUE255 : i) * | |||
66 | (numColors - 1) / MAX_COLOR_VALUE255) * scale; | |||
67 | } | |||
68 | for (i = 0; i < DITHER_SIZE; i++) | |||
69 | for (j = 0; j < DITHER_SIZE; j++) | |||
70 | pDither->matrix[i][j] = | |||
71 | (int) baseDitherMatrix[i][j] / (numColors - 1); | |||
72 | } | |||
73 | ||||
74 | /* scale a number on the range of 0..numColorsIn-1 to 0..numColorsOut-1 | |||
75 | 0 maps to 0 and numColorsIn-1 maps to numColorsOut-1 | |||
76 | intermediate values are spread evenly between 0 and numColorsOut-1 */ | |||
77 | INLINEstatic int | |||
78 | scaleColor(int color, int numColorsIn, int numColorsOut) | |||
79 | { | |||
80 | return (color * (numColorsOut - 1) + (numColorsIn - 1) / 2) | |||
81 | / (numColorsIn - 1); | |||
82 | } | |||
83 | ||||
84 | /* build a colormap for a color cube and a dithering matrix. color cube is quantized | |||
85 | according to the provided maximum number of colors */ | |||
86 | int | |||
87 | quantizeColors(int maxNumColors, int *numColors) | |||
88 | { | |||
89 | ||||
90 | // static const int scale[3]={10000/11,10000/69,10000/30}; | |||
91 | // FIXME: sort out the adaptive color cube subdivision... realistic 11:69:30 is good on photos, | |||
92 | // but would be bad on other pictures. A stupid approximation is used now. | |||
93 | ||||
94 | static const int scale[3] = { 8, 4, 6 }; | |||
95 | ||||
96 | // maxNumColors should be at least 2x2x2=8, or we lose some color components completely | |||
97 | numColors[0] = numColors[1] = numColors[2] = 2; | |||
98 | ||||
99 | while (1) { | |||
100 | int idx[3] = { 0, 1, 2 }; | |||
101 | /* bubble sort the three indexes according to scaled numColors values */ | |||
102 | #define SORT(i,j)if (numColors[idx[i]]*scale[idx[i]]>numColors[idx[j]]*scale [idx[j]]) { int t = idx[i]; idx[i] = idx[j]; idx[j] = t; } \ | |||
103 | if (numColors[idx[i]]*scale[idx[i]]>numColors[idx[j]]*scale[idx[j]]) \ | |||
104 | { int t = idx[i]; idx[i] = idx[j]; idx[j] = t; } | |||
105 | SORT(0, 1)if (numColors[idx[0]]*scale[idx[0]]>numColors[idx[1]]*scale [idx[1]]) { int t = idx[0]; idx[0] = idx[1]; idx[1] = t; }; | |||
106 | SORT(1, 2)if (numColors[idx[1]]*scale[idx[1]]>numColors[idx[2]]*scale [idx[2]]) { int t = idx[1]; idx[1] = idx[2]; idx[2] = t; }; | |||
107 | SORT(0, 1)if (numColors[idx[0]]*scale[idx[0]]>numColors[idx[1]]*scale [idx[1]]) { int t = idx[0]; idx[0] = idx[1]; idx[1] = t; }; | |||
108 | /* try increasing numColors for the first color */ | |||
109 | if ((numColors[idx[0]] + 1) * numColors[idx[1]] * | |||
110 | numColors[idx[2]] <= maxNumColors) { | |||
111 | numColors[idx[0]]++; | |||
112 | } else if (numColors[idx[0]] * (numColors[idx[1]] + 1) * | |||
113 | numColors[idx[2]] <= maxNumColors) { | |||
114 | numColors[idx[1]]++; | |||
115 | } else if (numColors[idx[0]] * numColors[idx[1]] * | |||
116 | (numColors[idx[2]] + 1) <= maxNumColors) { | |||
117 | numColors[idx[2]]++; | |||
118 | } else { | |||
119 | break; | |||
120 | } | |||
121 | } | |||
122 | return numColors[0] * numColors[1] * numColors[2]; | |||
123 | } | |||
124 | ||||
125 | void | |||
126 | initColorCube(int *numColors, rgbquad_t * pColorMap, DitherSettings * pDithers, | |||
127 | rgbquad_t * colorIndex) | |||
128 | { | |||
129 | int r, g, b, n; | |||
130 | ||||
131 | n = 0; | |||
132 | for (r = 0; r < numColors[2]; r++) { | |||
133 | for (g = 0; g < numColors[1]; g++) | |||
134 | for (b = 0; b < numColors[0]; b++) { | |||
135 | pColorMap[colorIndex[n++]] = | |||
136 | scaleColor(b, numColors[0], MAX_COLOR_VALUE255) + | |||
137 | (scaleColor(g, numColors[1], MAX_COLOR_VALUE255) << 8) + | |||
138 | (scaleColor(r, numColors[2], MAX_COLOR_VALUE255) << 16); | |||
139 | } | |||
140 | } | |||
141 | initDither(pDithers + 0, numColors[0], 1); | |||
142 | initDither(pDithers + 1, numColors[1], numColors[0]); | |||
143 | initDither(pDithers + 2, numColors[2], numColors[1] * numColors[0]); | |||
144 | } | |||
145 | ||||
146 | /* | |||
147 | the function below is a line conversion loop | |||
148 | ||||
149 | incSrc and incDst are pSrc and pDst increment values for the loop, in bytes | |||
150 | mode defines how the pixels should be processed | |||
151 | ||||
152 | mode==CVT_COPY means the pixels should be copied as is | |||
153 | mode==CVT_ALPHATEST means pixels should be skipped when source pixel alpha is above the threshold | |||
154 | mode==CVT_BLEND means alpha blending between source and destination should be performed, while | |||
155 | destination alpha should be retained. source alpha is used for blending. | |||
156 | */ | |||
157 | void | |||
158 | convertLine(void *pSrc, int incSrc, void *pDst, int incDst, int numSamples, | |||
159 | ImageFormat * srcFormat, ImageFormat * dstFormat, int doAlpha, | |||
160 | void *pSrc2, int incSrc2, ImageFormat * srcFormat2, | |||
161 | int row, int col) | |||
162 | { | |||
163 | int i; | |||
164 | ||||
165 | switch (doAlpha) { | |||
166 | case CVT_COPY: | |||
167 | for (i = 0; i < numSamples; ++i) { | |||
168 | putRGBADither(getRGBA(pSrc, srcFormat), pDst, dstFormat, | |||
169 | row, col++); | |||
170 | INCPN(byte_t, pSrc, incSrc)((pSrc) = (byte_t*)(pSrc)+(incSrc)); | |||
171 | INCPN(byte_t, pDst, incDst)((pDst) = (byte_t*)(pDst)+(incDst)); | |||
172 | } | |||
173 | break; | |||
174 | case CVT_ALPHATEST: | |||
175 | for (i = 0; i < numSamples; ++i) { | |||
176 | rgbquad_t color = getRGBA(pSrc, srcFormat); | |||
177 | ||||
178 | if (color >= ALPHA_THRESHOLD0x80000000) { // test for alpha component >50%. that's an extra branch, and it's bad... | |||
179 | putRGBADither(color, pDst, dstFormat, row, col++); | |||
180 | } | |||
181 | INCPN(byte_t, pSrc, incSrc)((pSrc) = (byte_t*)(pSrc)+(incSrc)); | |||
182 | INCPN(byte_t, pDst, incDst)((pDst) = (byte_t*)(pDst)+(incDst)); | |||
183 | } | |||
184 | break; | |||
185 | case CVT_BLEND: | |||
186 | for (i = 0; i < numSamples; ++i) { | |||
187 | rgbquad_t src = getRGBA(pSrc, srcFormat); | |||
188 | rgbquad_t src2 = getRGBA(pSrc2, srcFormat); | |||
189 | ||||
190 | putRGBADither(blendRGB(src, src2, | |||
191 | QUAD_ALPHA(src2)(((src2)&0xFF000000)>>24)) | (src & QUAD_ALPHA_MASK0xFF000000), pDst, dstFormat, | |||
192 | row, col++); | |||
193 | INCPN(byte_t, pSrc, incSrc)((pSrc) = (byte_t*)(pSrc)+(incSrc)); | |||
194 | INCPN(byte_t, pDst, incDst)((pDst) = (byte_t*)(pDst)+(incDst)); | |||
195 | INCPN(byte_t, pSrc2, incSrc2)((pSrc2) = (byte_t*)(pSrc2)+(incSrc2)); | |||
196 | } | |||
197 | break; | |||
198 | } | |||
199 | } | |||
200 | ||||
201 | /* initialize ImageRect structure according to function arguments */ | |||
202 | void | |||
203 | initRect(ImageRect * pRect, int x, int y, int width, int height, int jump, | |||
204 | int stride, void *pBits, ImageFormat * format) | |||
205 | { | |||
206 | int depthBytes = format->depthBytes; | |||
207 | ||||
208 | pRect->pBits = pBits; | |||
209 | INCPN(byte_t, pRect->pBits, (intptr_t) y * stride + x * depthBytes)((pRect->pBits) = (byte_t*)(pRect->pBits)+((intptr_t) y * stride + x * depthBytes)); | |||
210 | pRect->numLines = height; | |||
211 | pRect->numSamples = width; | |||
212 | pRect->stride = stride * jump; | |||
213 | pRect->depthBytes = depthBytes; | |||
214 | pRect->format = format; | |||
215 | pRect->row = y; | |||
216 | pRect->col = x; | |||
217 | pRect->jump = jump; | |||
218 | } | |||
219 | ||||
220 | /* copy image rectangle from source to destination, or from two sources with blending */ | |||
221 | ||||
222 | int | |||
223 | convertRect(ImageRect * pSrcRect, ImageRect * pDstRect, int mode) | |||
224 | { | |||
225 | return convertRect2(pSrcRect, pDstRect, mode, NULL((void*)0)); | |||
226 | } | |||
227 | ||||
228 | int | |||
229 | convertRect2(ImageRect * pSrcRect, ImageRect * pDstRect, int mode, | |||
230 | ImageRect * pSrcRect2) | |||
231 | { | |||
232 | int numLines = pSrcRect->numLines; | |||
233 | int numSamples = pSrcRect->numSamples; | |||
234 | void *pSrc = pSrcRect->pBits; | |||
235 | void *pDst = pDstRect->pBits; | |||
236 | void *pSrc2 = NULL((void*)0); | |||
237 | int j, row; | |||
238 | ||||
239 | if (pDstRect->numLines < numLines) | |||
240 | numLines = pDstRect->numLines; | |||
241 | if (pDstRect->numSamples < numSamples) { | |||
242 | numSamples = pDstRect->numSamples; | |||
243 | } | |||
244 | if (pSrcRect2) { | |||
245 | if (pSrcRect2->numLines < numLines) { | |||
246 | numLines = pSrcRect2->numLines; | |||
247 | } | |||
248 | if (pSrcRect2->numSamples < numSamples) { | |||
249 | numSamples = pSrcRect2->numSamples; | |||
250 | } | |||
251 | pSrc2 = pSrcRect2->pBits; | |||
252 | } | |||
253 | row = pDstRect->row; | |||
254 | for (j = 0; j < numLines; j++) { | |||
255 | convertLine(pSrc, pSrcRect->depthBytes, pDst, pDstRect->depthBytes, | |||
256 | numSamples, pSrcRect->format, pDstRect->format, mode, | |||
257 | pSrc2, pSrcRect2 ? pSrcRect2->depthBytes : 0, | |||
258 | pSrcRect2 ? pSrcRect2->format : 0, row, pDstRect->col); | |||
259 | INCPN(byte_t, pSrc, pSrcRect->stride)((pSrc) = (byte_t*)(pSrc)+(pSrcRect->stride)); | |||
260 | INCPN(byte_t, pDst, pDstRect->stride)((pDst) = (byte_t*)(pDst)+(pDstRect->stride)); | |||
261 | if (pSrcRect2) { | |||
262 | INCPN(byte_t, pSrc2, pSrcRect2->stride)((pSrc2) = (byte_t*)(pSrc2)+(pSrcRect2->stride)); | |||
263 | } | |||
264 | row += pDstRect->jump; | |||
265 | } | |||
266 | return numLines * pSrcRect->stride; | |||
267 | } | |||
268 | ||||
269 | int | |||
270 | fillRect(rgbquad_t color, ImageRect * pDstRect) | |||
271 | { | |||
272 | int numLines = pDstRect->numLines; | |||
273 | int numSamples = pDstRect->numSamples; | |||
274 | void *pDst = pDstRect->pBits; | |||
275 | int j, row; | |||
276 | ||||
277 | row = pDstRect->row; | |||
278 | for (j = 0; j < numLines; j++) { | |||
279 | fillLine(color, pDst, pDstRect->depthBytes, numSamples, | |||
280 | pDstRect->format, row, pDstRect->col); | |||
281 | INCPN(byte_t, pDst, pDstRect->stride)((pDst) = (byte_t*)(pDst)+(pDstRect->stride)); | |||
282 | row += pDstRect->jump; | |||
283 | } | |||
284 | return numLines * pDstRect->stride; | |||
285 | } | |||
286 | ||||
287 | /* init the masks; all other parameters are initialized to default values */ | |||
288 | void | |||
289 | initFormat(ImageFormat * format, int redMask, int greenMask, int blueMask, | |||
290 | int alphaMask) | |||
291 | { | |||
292 | int i, shift, numBits; | |||
| ||||
293 | ||||
294 | format->byteOrder = BYTE_ORDER_NATIVE; | |||
295 | format->colorMap = NULL((void*)0); | |||
296 | format->depthBytes = 4; | |||
297 | format->fixedBits = 0; | |||
298 | format->premultiplied = 0; | |||
299 | format->mask[0] = blueMask; | |||
300 | format->mask[1] = greenMask; | |||
301 | format->mask[2] = redMask; | |||
302 | format->mask[3] = alphaMask; | |||
303 | for (i = 0; i < 4; i++) { | |||
304 | getMaskShift(format->mask[i], &shift, &numBits); | |||
305 | format->shift[i] = shift + numBits - i * 8 - 8; | |||
| ||||
306 | } | |||
307 | } | |||
308 | ||||
309 | /* dump the visual format */ | |||
310 | void | |||
311 | dumpFormat(ImageFormat * format) | |||
312 | { | |||
313 | #ifdef _DEBUG | |||
314 | int i; | |||
315 | ||||
316 | printf("byteorder=%d colormap=%08x depthBytes=%d fixedBits=%08x transparentColor=%u ",__printf_chk (2 - 1, "byteorder=%d colormap=%08x depthBytes=%d fixedBits=%08x transparentColor=%u " , format->byteOrder, (unsigned) format->colorMap, format ->depthBytes, (unsigned) format->fixedBits, (unsigned) format ->transparentColor) | |||
317 | format->byteOrder, (unsigned) format->colorMap, format->depthBytes,__printf_chk (2 - 1, "byteorder=%d colormap=%08x depthBytes=%d fixedBits=%08x transparentColor=%u " , format->byteOrder, (unsigned) format->colorMap, format ->depthBytes, (unsigned) format->fixedBits, (unsigned) format ->transparentColor) | |||
318 | (unsigned) format->fixedBits, (unsigned) format->transparentColor)__printf_chk (2 - 1, "byteorder=%d colormap=%08x depthBytes=%d fixedBits=%08x transparentColor=%u " , format->byteOrder, (unsigned) format->colorMap, format ->depthBytes, (unsigned) format->fixedBits, (unsigned) format ->transparentColor); | |||
319 | for (i = 0; i < 4; i++) { | |||
320 | printf("mask[%d]=%08x shift[%d]=%d\n", i, (unsigned) format->mask[i], i,__printf_chk (2 - 1, "mask[%d]=%08x shift[%d]=%d\n", i, (unsigned ) format->mask[i], i, format->shift[i]) | |||
321 | format->shift[i])__printf_chk (2 - 1, "mask[%d]=%08x shift[%d]=%d\n", i, (unsigned ) format->mask[i], i, format->shift[i]); | |||
322 | } | |||
323 | printf("\n")__printf_chk (2 - 1, "\n"); | |||
324 | #endif | |||
325 | } | |||
326 | ||||
327 | /* optimize the format */ | |||
328 | void | |||
329 | optimizeFormat(ImageFormat * format) | |||
330 | { | |||
331 | if (platformByteOrder() == format->byteOrder && format->depthBytes != 3) { | |||
332 | format->byteOrder = BYTE_ORDER_NATIVE; | |||
333 | } | |||
334 | /* FIXME: some advanced optimizations are possible, especially for format pairs */ | |||
335 | } | |||
336 | ||||
337 | int | |||
338 | platformByteOrder() | |||
339 | { | |||
340 | int test = 1; | |||
341 | ||||
342 | *(char *) &test = 0; | |||
343 | return test ? BYTE_ORDER_MSBFIRST : BYTE_ORDER_LSBFIRST; | |||
344 | } |
1 | /* |
2 | * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | #ifndef SPLASHSCREEN_GFX_IMPL_H |
27 | #define SPLASHSCREEN_GFX_IMPL_H |
28 | |
29 | #include "splashscreen_gfx.h" |
30 | |
31 | /* here come some very simple macros */ |
32 | |
33 | /* advance a pointer p by sizeof(type)*n bytes */ |
34 | #define INCPN(type,p,n)((p) = (type*)(p)+(n)) ((p) = (type*)(p)+(n)) |
35 | |
36 | /* advance a pointer by sizeof(type) */ |
37 | #define INCP(type,p)(((p)) = (type*)((p))+(1)) INCPN(type,(p),1)(((p)) = (type*)((p))+(1)) |
38 | |
39 | /* store a typed value to pointed location */ |
40 | #define PUT(type,p,v)(*(type*)(p) = (type)(v)) (*(type*)(p) = (type)(v)) |
41 | |
42 | /* load a typed value from pointed location */ |
43 | #define GET(type,p)(*(type*)p) (*(type*)p) |
44 | |
45 | /* same as cond<0?-1:0 */ |
46 | enum |
47 | { |
48 | IFNEG_SHIFT_BITS = sizeof(int) * 8 - 1 |
49 | }; |
50 | |
51 | #define IFNEG(cond)((int)(cond)>>IFNEG_SHIFT_BITS) ((int)(cond)>>IFNEG_SHIFT_BITS) |
52 | |
53 | /* same as cond<0?n1:n2 */ |
54 | #define IFNEGPOS(cond,n1,n2)((((int)(cond)>>IFNEG_SHIFT_BITS)&(n1))|((~((int)(cond )>>IFNEG_SHIFT_BITS))&(n2))) ((IFNEG(cond)((int)(cond)>>IFNEG_SHIFT_BITS)&(n1))|((~IFNEG(cond)((int)(cond)>>IFNEG_SHIFT_BITS))&(n2))) |
55 | |
56 | /* value shifted left by n bits, negative n is allowed */ |
57 | #define LSHIFT(value,n)((((int)((n))>>IFNEG_SHIFT_BITS)&((value)>>-( n)))|((~((int)((n))>>IFNEG_SHIFT_BITS))&((value)<< (n)))) IFNEGPOS((n),(value)>>-(n),(value)<<(n))((((int)((n))>>IFNEG_SHIFT_BITS)&((value)>>-( n)))|((~((int)((n))>>IFNEG_SHIFT_BITS))&((value)<< (n)))) |
58 | |
59 | /* value shifted right by n bits, negative n is allowed */ |
60 | #define RSHIFT(value,n)((((int)(n)>>IFNEG_SHIFT_BITS)&((value)<<-(n) ))|((~((int)(n)>>IFNEG_SHIFT_BITS))&((value)>> (n)))) IFNEGPOS(n,(value)<<-(n),(value)>>(n))((((int)(n)>>IFNEG_SHIFT_BITS)&((value)<<-(n) ))|((~((int)(n)>>IFNEG_SHIFT_BITS))&((value)>> (n)))) |
61 | |
62 | /* converts a single i'th component to the specific format defined by format->shift[i] and format->mask[i] */ |
63 | #define CONVCOMP(quad,format,i)(((((int)(((format)->shift[i]))>>IFNEG_SHIFT_BITS)& (((quad))>>-((format)->shift[i])))|((~((int)(((format )->shift[i]))>>IFNEG_SHIFT_BITS))&(((quad))<< ((format)->shift[i]))))&(format)->mask[i]) \ |
64 | (LSHIFT((quad),(format)->shift[i])((((int)(((format)->shift[i]))>>IFNEG_SHIFT_BITS)& (((quad))>>-((format)->shift[i])))|((~((int)(((format )->shift[i]))>>IFNEG_SHIFT_BITS))&(((quad))<< ((format)->shift[i]))))&(format)->mask[i]) |
65 | |
66 | /* extracts the component defined by format->shift[i] and format->mask[i] from a specific-format value */ |
67 | #define UNCONVCOMP(value,format,i)(((((int)((format)->shift[i])>>IFNEG_SHIFT_BITS)& (((value)&(format)->mask[i])<<-((format)->shift [i])))|((~((int)((format)->shift[i])>>IFNEG_SHIFT_BITS ))&(((value)&(format)->mask[i])>>((format)-> shift[i]))))) \ |
68 | (RSHIFT((value)&(format)->mask[i],(format)->shift[i])((((int)((format)->shift[i])>>IFNEG_SHIFT_BITS)& (((value)&(format)->mask[i])<<-((format)->shift [i])))|((~((int)((format)->shift[i])>>IFNEG_SHIFT_BITS ))&(((value)&(format)->mask[i])>>((format)-> shift[i]))))) |
69 | |
70 | /* dithers the color using the dither matrices and colormap from format |
71 | indices to dither matrices are passed as arguments */ |
72 | INLINEstatic unsigned |
73 | ditherColor(rgbquad_t value, ImageFormat * format, int row, int col) |
74 | { |
75 | int blue = QUAD_BLUE(value)(((value)&0x000000FF)>>0); |
76 | int green = QUAD_GREEN(value)(((value)&0x0000FF00)>>8); |
77 | int red = QUAD_RED(value)(((value)&0x00FF0000)>>16); |
78 | |
79 | blue = format->dithers[0].colorTable[blue + |
80 | format->dithers[0].matrix[col & DITHER_MASK][row & DITHER_MASK]]; |
81 | green = format->dithers[1].colorTable[green + |
82 | format->dithers[1].matrix[col & DITHER_MASK][row & DITHER_MASK]]; |
83 | red = format->dithers[2].colorTable[red + |
84 | format->dithers[2].matrix[col & DITHER_MASK][row & DITHER_MASK]]; |
85 | return red + green + blue; |
86 | } |
87 | |
88 | /* blend (lerp between) two rgb quads |
89 | src and dst alpha is ignored |
90 | the algorithm: src*alpha+dst*(1-alpha)=(src-dst)*alpha+dst, rb and g are done separately |
91 | */ |
92 | INLINEstatic rgbquad_t |
93 | blendRGB(rgbquad_t dst, rgbquad_t src, rgbquad_t alpha) |
94 | { |
95 | const rgbquad_t a = alpha; |
96 | const rgbquad_t a1 = 0xFF - alpha; |
97 | |
98 | return MAKE_QUAD((((0)<<24)&0xFF000000)| ((((rgbquad_t)(((((src)& 0x00FF0000)>>16) * a + (((dst)&0x00FF0000)>>16 ) * a1) / 0xFF))<<16)&0x00FF0000)| ((((rgbquad_t)(( (((src)&0x0000FF00)>>8) * a + (((dst)&0x0000FF00 )>>8) * a1) / 0xFF))<<8)&0x0000FF00)| ((((rgbquad_t )(((((src)&0x000000FF)>>0) * a + (((dst)&0x000000FF )>>0) * a1) / 0xFF))<<0)&0x000000FF) |
99 | (rgbquad_t)((QUAD_RED(src) * a + QUAD_RED(dst) * a1) / 0xFF),(((0)<<24)&0xFF000000)| ((((rgbquad_t)(((((src)& 0x00FF0000)>>16) * a + (((dst)&0x00FF0000)>>16 ) * a1) / 0xFF))<<16)&0x00FF0000)| ((((rgbquad_t)(( (((src)&0x0000FF00)>>8) * a + (((dst)&0x0000FF00 )>>8) * a1) / 0xFF))<<8)&0x0000FF00)| ((((rgbquad_t )(((((src)&0x000000FF)>>0) * a + (((dst)&0x000000FF )>>0) * a1) / 0xFF))<<0)&0x000000FF) |
100 | (rgbquad_t)((QUAD_GREEN(src) * a + QUAD_GREEN(dst) * a1) / 0xFF),(((0)<<24)&0xFF000000)| ((((rgbquad_t)(((((src)& 0x00FF0000)>>16) * a + (((dst)&0x00FF0000)>>16 ) * a1) / 0xFF))<<16)&0x00FF0000)| ((((rgbquad_t)(( (((src)&0x0000FF00)>>8) * a + (((dst)&0x0000FF00 )>>8) * a1) / 0xFF))<<8)&0x0000FF00)| ((((rgbquad_t )(((((src)&0x000000FF)>>0) * a + (((dst)&0x000000FF )>>0) * a1) / 0xFF))<<0)&0x000000FF) |
101 | (rgbquad_t)((QUAD_BLUE(src) * a + QUAD_BLUE(dst) * a1) / 0xFF),(((0)<<24)&0xFF000000)| ((((rgbquad_t)(((((src)& 0x00FF0000)>>16) * a + (((dst)&0x00FF0000)>>16 ) * a1) / 0xFF))<<16)&0x00FF0000)| ((((rgbquad_t)(( (((src)&0x0000FF00)>>8) * a + (((dst)&0x0000FF00 )>>8) * a1) / 0xFF))<<8)&0x0000FF00)| ((((rgbquad_t )(((((src)&0x000000FF)>>0) * a + (((dst)&0x000000FF )>>0) * a1) / 0xFF))<<0)&0x000000FF) |
102 | 0)(((0)<<24)&0xFF000000)| ((((rgbquad_t)(((((src)& 0x00FF0000)>>16) * a + (((dst)&0x00FF0000)>>16 ) * a1) / 0xFF))<<16)&0x00FF0000)| ((((rgbquad_t)(( (((src)&0x0000FF00)>>8) * a + (((dst)&0x0000FF00 )>>8) * a1) / 0xFF))<<8)&0x0000FF00)| ((((rgbquad_t )(((((src)&0x000000FF)>>0) * a + (((dst)&0x000000FF )>>0) * a1) / 0xFF))<<0)&0x000000FF); |
103 | } |
104 | |
105 | /* scales rgb quad by alpha. basically similar to what's above. src alpha is retained. |
106 | used for premultiplying alpha |
107 | |
108 | btw: braindead MSVC6 generates _three_ mul instructions for this function */ |
109 | |
110 | INLINEstatic rgbquad_t |
111 | premultiplyRGBA(rgbquad_t src) |
112 | { |
113 | rgbquad_t srb = src & 0xFF00FF; |
114 | rgbquad_t sg = src & 0xFF00; |
115 | rgbquad_t alpha = src >> QUAD_ALPHA_SHIFT24; |
116 | |
117 | alpha += 1; |
118 | |
119 | srb *= alpha; |
120 | sg *= alpha; |
121 | srb >>= 8; |
122 | sg >>= 8; |
123 | |
124 | return (src & 0xFF000000) | (srb & 0xFF00FF) | (sg & 0xFF00); |
125 | } |
126 | |
127 | /* The functions below are inherently ineffective, but the performance seems to be |
128 | more or less adequate for the case of splash screens. They can be optimized later |
129 | if needed. The idea of optimization is to provide inlineable form of putRGBADither and |
130 | getRGBA at least for certain most frequently used visuals. Something like this is |
131 | done in Java 2D ("loops"). This would be possible with C++ templates, but making it |
132 | clean for C would require ugly preprocessor tricks. Leaving it out for later. |
133 | */ |
134 | |
135 | /* convert a single pixel color value from rgbquad according to visual format |
136 | and place it to pointed location |
137 | ordered dithering used when necessary */ |
138 | INLINEstatic void |
139 | putRGBADither(rgbquad_t value, void *ptr, ImageFormat * format, |
140 | int row, int col) |
141 | { |
142 | if (format->premultiplied) { |
143 | value = premultiplyRGBA(value); |
144 | } |
145 | if (format->dithers) { |
146 | value = format->colorIndex[ditherColor(value, format, row, col)]; |
147 | } |
148 | else { |
149 | value = CONVCOMP(value, format, 0)(((((int)(((format)->shift[0]))>>IFNEG_SHIFT_BITS)& (((value))>>-((format)->shift[0])))|((~((int)(((format )->shift[0]))>>IFNEG_SHIFT_BITS))&(((value))<< ((format)->shift[0]))))&(format)->mask[0]) | CONVCOMP(value, format, 1)(((((int)(((format)->shift[1]))>>IFNEG_SHIFT_BITS)& (((value))>>-((format)->shift[1])))|((~((int)(((format )->shift[1]))>>IFNEG_SHIFT_BITS))&(((value))<< ((format)->shift[1]))))&(format)->mask[1]) | |
150 | CONVCOMP(value, format, 2)(((((int)(((format)->shift[2]))>>IFNEG_SHIFT_BITS)& (((value))>>-((format)->shift[2])))|((~((int)(((format )->shift[2]))>>IFNEG_SHIFT_BITS))&(((value))<< ((format)->shift[2]))))&(format)->mask[2]) | CONVCOMP(value, format, 3)(((((int)(((format)->shift[3]))>>IFNEG_SHIFT_BITS)& (((value))>>-((format)->shift[3])))|((~((int)(((format )->shift[3]))>>IFNEG_SHIFT_BITS))&(((value))<< ((format)->shift[3]))))&(format)->mask[3]); |
151 | } |
152 | switch (format->byteOrder) { |
153 | case BYTE_ORDER_LSBFIRST: |
154 | switch (format->depthBytes) { /* lack of *break*'s is intentional */ |
155 | case 4: |
156 | PUT(byte_t, ptr, value & 0xff)(*(byte_t*)(ptr) = (byte_t)(value & 0xff)); |
157 | value >>= 8; |
158 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
159 | case 3: |
160 | PUT(byte_t, ptr, value & 0xff)(*(byte_t*)(ptr) = (byte_t)(value & 0xff)); |
161 | value >>= 8; |
162 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
163 | case 2: |
164 | PUT(byte_t, ptr, value & 0xff)(*(byte_t*)(ptr) = (byte_t)(value & 0xff)); |
165 | value >>= 8; |
166 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
167 | case 1: |
168 | PUT(byte_t, ptr, value & 0xff)(*(byte_t*)(ptr) = (byte_t)(value & 0xff)); |
169 | } |
170 | break; |
171 | case BYTE_ORDER_MSBFIRST: |
172 | switch (format->depthBytes) { /* lack of *break*'s is intentional */ |
173 | case 4: |
174 | PUT(byte_t, ptr, (value >> 24) & 0xff)(*(byte_t*)(ptr) = (byte_t)((value >> 24) & 0xff)); |
175 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
176 | case 3: |
177 | PUT(byte_t, ptr, (value >> 16) & 0xff)(*(byte_t*)(ptr) = (byte_t)((value >> 16) & 0xff)); |
178 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
179 | case 2: |
180 | PUT(byte_t, ptr, (value >> 8) & 0xff)(*(byte_t*)(ptr) = (byte_t)((value >> 8) & 0xff)); |
181 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
182 | case 1: |
183 | PUT(byte_t, ptr, value & 0xff)(*(byte_t*)(ptr) = (byte_t)(value & 0xff)); |
184 | } |
185 | break; |
186 | case BYTE_ORDER_NATIVE: |
187 | switch (format->depthBytes) { |
188 | case 4: |
189 | PUT(rgbquad_t, ptr, value)(*(rgbquad_t*)(ptr) = (rgbquad_t)(value)); |
190 | break; |
191 | case 3: /* not supported, LSB or MSB should always be specified */ |
192 | PUT(byte_t, ptr, 0xff)(*(byte_t*)(ptr) = (byte_t)(0xff)); /* Put a stub value */ |
193 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
194 | PUT(byte_t, ptr, 0xff)(*(byte_t*)(ptr) = (byte_t)(0xff)); |
195 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
196 | PUT(byte_t, ptr, 0xff)(*(byte_t*)(ptr) = (byte_t)(0xff)); |
197 | break; |
198 | case 2: |
199 | PUT(word_t, ptr, value)(*(word_t*)(ptr) = (word_t)(value)); |
200 | break; |
201 | case 1: |
202 | PUT(byte_t, ptr, value)(*(byte_t*)(ptr) = (byte_t)(value)); |
203 | break; |
204 | } |
205 | } |
206 | } |
207 | |
208 | /* load a single pixel color value and un-convert it to rgbquad according to visual format */ |
209 | INLINEstatic rgbquad_t |
210 | getRGBA(void *ptr, ImageFormat * format) |
211 | { |
212 | /* |
213 | FIXME: color is not un-alpha-premultiplied on get |
214 | this is not required by current code, but it makes the implementation inconsistent |
215 | i.e. put(get) will not work right for alpha-premultiplied images */ |
216 | |
217 | /* get the value basing on depth and byte order */ |
218 | rgbquad_t value = 0; |
219 | |
220 | switch (format->byteOrder) { |
221 | case BYTE_ORDER_LSBFIRST: |
222 | switch (format->depthBytes) { |
223 | case 4: |
224 | value |= GET(byte_t, ptr)(*(byte_t*)ptr); |
225 | value <<= 8; |
226 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
227 | case 3: |
228 | value |= GET(byte_t, ptr)(*(byte_t*)ptr); |
229 | value <<= 8; |
230 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
231 | case 2: |
232 | value |= GET(byte_t, ptr)(*(byte_t*)ptr); |
233 | value <<= 8; |
234 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
235 | case 1: |
236 | value |= GET(byte_t, ptr)(*(byte_t*)ptr); |
237 | } |
238 | break; |
239 | case BYTE_ORDER_MSBFIRST: |
240 | switch (format->depthBytes) { /* lack of *break*'s is intentional */ |
241 | case 4: |
242 | value |= (GET(byte_t, ptr)(*(byte_t*)ptr) << 24); |
243 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
244 | case 3: |
245 | value |= (GET(byte_t, ptr)(*(byte_t*)ptr) << 16); |
246 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
247 | case 2: |
248 | value |= (GET(byte_t, ptr)(*(byte_t*)ptr) << 8); |
249 | INCP(byte_t, ptr)(((ptr)) = (byte_t*)((ptr))+(1)); |
250 | case 1: |
251 | value |= GET(byte_t, ptr)(*(byte_t*)ptr); |
252 | } |
253 | break; |
254 | case BYTE_ORDER_NATIVE: |
255 | switch (format->depthBytes) { |
256 | case 4: |
257 | value = GET(rgbquad_t, ptr)(*(rgbquad_t*)ptr); |
258 | break; |
259 | case 3: /* not supported, LSB or MSB should always be specified */ |
260 | value = 0xFFFFFFFF; /*return a stub value */ |
261 | break; |
262 | case 2: |
263 | value = (rgbquad_t) GET(word_t, ptr)(*(word_t*)ptr); |
264 | break; |
265 | case 1: |
266 | value = (rgbquad_t) GET(byte_t, ptr)(*(byte_t*)ptr); |
267 | break; |
268 | } |
269 | break; |
270 | } |
271 | /* now un-convert the value */ |
272 | if (format->colorMap) { |
273 | if (value == format->transparentColor) |
274 | return 0; |
275 | else |
276 | return format->colorMap[value]; |
277 | } |
278 | else { |
279 | return UNCONVCOMP(value, format, 0)(((((int)((format)->shift[0])>>IFNEG_SHIFT_BITS)& (((value)&(format)->mask[0])<<-((format)->shift [0])))|((~((int)((format)->shift[0])>>IFNEG_SHIFT_BITS ))&(((value)&(format)->mask[0])>>((format)-> shift[0]))))) | UNCONVCOMP(value, format, 1)(((((int)((format)->shift[1])>>IFNEG_SHIFT_BITS)& (((value)&(format)->mask[1])<<-((format)->shift [1])))|((~((int)((format)->shift[1])>>IFNEG_SHIFT_BITS ))&(((value)&(format)->mask[1])>>((format)-> shift[1]))))) | |
280 | UNCONVCOMP(value, format, 2)(((((int)((format)->shift[2])>>IFNEG_SHIFT_BITS)& (((value)&(format)->mask[2])<<-((format)->shift [2])))|((~((int)((format)->shift[2])>>IFNEG_SHIFT_BITS ))&(((value)&(format)->mask[2])>>((format)-> shift[2]))))) | UNCONVCOMP(value, format, 3)(((((int)((format)->shift[3])>>IFNEG_SHIFT_BITS)& (((value)&(format)->mask[3])<<-((format)->shift [3])))|((~((int)((format)->shift[3])>>IFNEG_SHIFT_BITS ))&(((value)&(format)->mask[3])>>((format)-> shift[3]))))) | |
281 | format->fixedBits; |
282 | } |
283 | } |
284 | |
285 | /* fill the line with the specified color according to visual format */ |
286 | INLINEstatic void |
287 | fillLine(rgbquad_t color, void *pDst, int incDst, int n, |
288 | ImageFormat * dstFormat, int row, int col) |
289 | { |
290 | int i; |
291 | |
292 | for (i = 0; i < n; ++i) { |
293 | putRGBADither(color, pDst, dstFormat, row, col++); |
294 | INCPN(byte_t, pDst, incDst)((pDst) = (byte_t*)(pDst)+(incDst)); |
295 | } |
296 | } |
297 | |
298 | /* find the shift for specified mask, also verify the mask is valid */ |
299 | INLINEstatic int |
300 | getMaskShift(rgbquad_t mask, int *pShift, int *pnumBits) |
301 | { |
302 | int shift = 0, numBits = 0; |
303 | |
304 | /* check the mask is not empty */ |
305 | if (!mask) |
306 | return 0; |
307 | /* calculate the shift */ |
308 | while ((mask & 1) == 0) { |
309 | ++shift; |
310 | mask >>= 1; |
311 | } |
312 | /* check the mask is contigious */ |
313 | if ((mask & (mask + 1)) != 0) |
314 | return 0; |
315 | /* calculate the number of bits */ |
316 | do { |
317 | ++numBits; |
318 | mask >>= 1; |
319 | } while ((mask & 1) != 0); |
320 | *pShift = shift; |
321 | *pnumBits = numBits; |
322 | return 1; |
323 | } |
324 | |
325 | #endif |