File: | jdk/src/java.desktop/share/native/libjavajpeg/jmemmgr.c |
Warning: | line 373, column 21 Dereference of null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | ||||
2 | * reserved comment block | ||||
3 | * DO NOT REMOVE OR ALTER! | ||||
4 | */ | ||||
5 | /* | ||||
6 | * jmemmgr.c | ||||
7 | * | ||||
8 | * Copyright (C) 1991-1997, Thomas G. Lane. | ||||
9 | * This file is part of the Independent JPEG Group's software. | ||||
10 | * For conditions of distribution and use, see the accompanying README file. | ||||
11 | * | ||||
12 | * This file contains the JPEG system-independent memory management | ||||
13 | * routines. This code is usable across a wide variety of machines; most | ||||
14 | * of the system dependencies have been isolated in a separate file. | ||||
15 | * The major functions provided here are: | ||||
16 | * * pool-based allocation and freeing of memory; | ||||
17 | * * policy decisions about how to divide available memory among the | ||||
18 | * virtual arrays; | ||||
19 | * * control logic for swapping virtual arrays between main memory and | ||||
20 | * backing storage. | ||||
21 | * The separate system-dependent file provides the actual backing-storage | ||||
22 | * access code, and it contains the policy decision about how much total | ||||
23 | * main memory to use. | ||||
24 | * This file is system-dependent in the sense that some of its functions | ||||
25 | * are unnecessary in some systems. For example, if there is enough virtual | ||||
26 | * memory so that backing storage will never be used, much of the virtual | ||||
27 | * array control logic could be removed. (Of course, if you have that much | ||||
28 | * memory then you shouldn't care about a little bit of unused code...) | ||||
29 | */ | ||||
30 | |||||
31 | #define JPEG_INTERNALS | ||||
32 | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ | ||||
33 | #include "jinclude.h" | ||||
34 | #include "jpeglib.h" | ||||
35 | #include "jmemsys.h" /* import the system-dependent declarations */ | ||||
36 | |||||
37 | #ifndef NO_GETENV | ||||
38 | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ | ||||
39 | extern char * getenv JPP((const char * name))(const char * name); | ||||
40 | #endif | ||||
41 | #endif | ||||
42 | |||||
43 | |||||
44 | /* | ||||
45 | * Some important notes: | ||||
46 | * The allocation routines provided here must never return NULL. | ||||
47 | * They should exit to error_exit if unsuccessful. | ||||
48 | * | ||||
49 | * It's not a good idea to try to merge the sarray and barray routines, | ||||
50 | * even though they are textually almost the same, because samples are | ||||
51 | * usually stored as bytes while coefficients are shorts or ints. Thus, | ||||
52 | * in machines where byte pointers have a different representation from | ||||
53 | * word pointers, the resulting machine code could not be the same. | ||||
54 | */ | ||||
55 | |||||
56 | |||||
57 | /* | ||||
58 | * Many machines require storage alignment: longs must start on 4-byte | ||||
59 | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() | ||||
60 | * always returns pointers that are multiples of the worst-case alignment | ||||
61 | * requirement, and we had better do so too. | ||||
62 | * There isn't any really portable way to determine the worst-case alignment | ||||
63 | * requirement. This module assumes that the alignment requirement is | ||||
64 | * multiples of sizeof(ALIGN_TYPE). | ||||
65 | * By default, we define ALIGN_TYPE as double. This is necessary on some | ||||
66 | * workstations (where doubles really do need 8-byte alignment) and will work | ||||
67 | * fine on nearly everything. If your machine has lesser alignment needs, | ||||
68 | * you can save a few bytes by making ALIGN_TYPE smaller. | ||||
69 | * The only place I know of where this will NOT work is certain Macintosh | ||||
70 | * 680x0 compilers that define double as a 10-byte IEEE extended float. | ||||
71 | * Doing 10-byte alignment is counterproductive because longwords won't be | ||||
72 | * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have | ||||
73 | * such a compiler. | ||||
74 | */ | ||||
75 | |||||
76 | #ifndef ALIGN_TYPEdouble /* so can override from jconfig.h */ | ||||
77 | #define ALIGN_TYPEdouble double | ||||
78 | #endif | ||||
79 | |||||
80 | |||||
81 | /* | ||||
82 | * We allocate objects from "pools", where each pool is gotten with a single | ||||
83 | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object | ||||
84 | * overhead within a pool, except for alignment padding. Each pool has a | ||||
85 | * header with a link to the next pool of the same class. | ||||
86 | * Small and large pool headers are identical except that the latter's | ||||
87 | * link pointer must be FAR on 80x86 machines. | ||||
88 | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE | ||||
89 | * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple | ||||
90 | * of the alignment requirement of ALIGN_TYPE. | ||||
91 | */ | ||||
92 | |||||
93 | typedef union small_pool_struct * small_pool_ptr; | ||||
94 | |||||
95 | typedef union small_pool_struct { | ||||
96 | struct { | ||||
97 | small_pool_ptr next; /* next in list of pools */ | ||||
98 | size_t bytes_used; /* how many bytes already used within pool */ | ||||
99 | size_t bytes_left; /* bytes still available in this pool */ | ||||
100 | } hdr; | ||||
101 | ALIGN_TYPEdouble dummy; /* included in union to ensure alignment */ | ||||
102 | } small_pool_hdr; | ||||
103 | |||||
104 | typedef union large_pool_struct FAR * large_pool_ptr; | ||||
105 | |||||
106 | typedef union large_pool_struct { | ||||
107 | struct { | ||||
108 | large_pool_ptr next; /* next in list of pools */ | ||||
109 | size_t bytes_used; /* how many bytes already used within pool */ | ||||
110 | size_t bytes_left; /* bytes still available in this pool */ | ||||
111 | } hdr; | ||||
112 | ALIGN_TYPEdouble dummy; /* included in union to ensure alignment */ | ||||
113 | } large_pool_hdr; | ||||
114 | |||||
115 | |||||
116 | /* | ||||
117 | * Here is the full definition of a memory manager object. | ||||
118 | */ | ||||
119 | |||||
120 | typedef struct { | ||||
121 | struct jpeg_memory_mgr pub; /* public fields */ | ||||
122 | |||||
123 | /* Each pool identifier (lifetime class) names a linked list of pools. */ | ||||
124 | small_pool_ptr small_list[JPOOL_NUMPOOLS2]; | ||||
125 | large_pool_ptr large_list[JPOOL_NUMPOOLS2]; | ||||
126 | |||||
127 | /* Since we only have one lifetime class of virtual arrays, only one | ||||
128 | * linked list is necessary (for each datatype). Note that the virtual | ||||
129 | * array control blocks being linked together are actually stored somewhere | ||||
130 | * in the small-pool list. | ||||
131 | */ | ||||
132 | jvirt_sarray_ptr virt_sarray_list; | ||||
133 | jvirt_barray_ptr virt_barray_list; | ||||
134 | |||||
135 | /* This counts total space obtained from jpeg_get_small/large */ | ||||
136 | size_t total_space_allocated; | ||||
137 | |||||
138 | /* alloc_sarray and alloc_barray set this value for use by virtual | ||||
139 | * array routines. | ||||
140 | */ | ||||
141 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ | ||||
142 | } my_memory_mgr; | ||||
143 | |||||
144 | typedef my_memory_mgr * my_mem_ptr; | ||||
145 | |||||
146 | |||||
147 | /* | ||||
148 | * The control blocks for virtual arrays. | ||||
149 | * Note that these blocks are allocated in the "small" pool area. | ||||
150 | * System-dependent info for the associated backing store (if any) is hidden | ||||
151 | * inside the backing_store_info struct. | ||||
152 | */ | ||||
153 | |||||
154 | struct jvirt_sarray_control { | ||||
155 | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ | ||||
156 | JDIMENSION rows_in_array; /* total virtual array height */ | ||||
157 | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ | ||||
158 | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ | ||||
159 | JDIMENSION rows_in_mem; /* height of memory buffer */ | ||||
160 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | ||||
161 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ | ||||
162 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ | ||||
163 | boolean pre_zero; /* pre-zero mode requested? */ | ||||
164 | boolean dirty; /* do current buffer contents need written? */ | ||||
165 | boolean b_s_open; /* is backing-store data valid? */ | ||||
166 | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ | ||||
167 | backing_store_info b_s_info; /* System-dependent control info */ | ||||
168 | }; | ||||
169 | |||||
170 | struct jvirt_barray_control { | ||||
171 | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ | ||||
172 | JDIMENSION rows_in_array; /* total virtual array height */ | ||||
173 | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ | ||||
174 | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ | ||||
175 | JDIMENSION rows_in_mem; /* height of memory buffer */ | ||||
176 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | ||||
177 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ | ||||
178 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ | ||||
179 | boolean pre_zero; /* pre-zero mode requested? */ | ||||
180 | boolean dirty; /* do current buffer contents need written? */ | ||||
181 | boolean b_s_open; /* is backing-store data valid? */ | ||||
182 | jvirt_barray_ptr next; /* link to next virtual barray control block */ | ||||
183 | backing_store_info b_s_info; /* System-dependent control info */ | ||||
184 | }; | ||||
185 | |||||
186 | |||||
187 | #ifdef MEM_STATS /* optional extra stuff for statistics */ | ||||
188 | |||||
189 | LOCAL(void)static void | ||||
190 | print_mem_stats (j_common_ptr cinfo, int pool_id) | ||||
191 | { | ||||
192 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
193 | small_pool_ptr shdr_ptr; | ||||
194 | large_pool_ptr lhdr_ptr; | ||||
195 | |||||
196 | /* Since this is only a debugging stub, we can cheat a little by using | ||||
197 | * fprintf directly rather than going through the trace message code. | ||||
198 | * This is helpful because message parm array can't handle longs. | ||||
199 | */ | ||||
200 | fprintf(stderr, "Freeing pool %d, total space = %ld\n",__fprintf_chk (stderr, 2 - 1, "Freeing pool %d, total space = %ld\n" , pool_id, mem->total_space_allocated) | ||||
201 | pool_id, mem->total_space_allocated)__fprintf_chk (stderr, 2 - 1, "Freeing pool %d, total space = %ld\n" , pool_id, mem->total_space_allocated); | ||||
202 | |||||
203 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL((void*)0); | ||||
204 | lhdr_ptr = lhdr_ptr->hdr.next) { | ||||
205 | fprintf(stderr, " Large chunk used %ld\n",__fprintf_chk (stderr, 2 - 1, " Large chunk used %ld\n", (long ) lhdr_ptr->hdr.bytes_used) | ||||
206 | (long) lhdr_ptr->hdr.bytes_used)__fprintf_chk (stderr, 2 - 1, " Large chunk used %ld\n", (long ) lhdr_ptr->hdr.bytes_used); | ||||
207 | } | ||||
208 | |||||
209 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL((void*)0); | ||||
210 | shdr_ptr = shdr_ptr->hdr.next) { | ||||
211 | fprintf(stderr, " Small chunk used %ld free %ld\n",__fprintf_chk (stderr, 2 - 1, " Small chunk used %ld free %ld\n" , (long) shdr_ptr->hdr.bytes_used, (long) shdr_ptr->hdr .bytes_left) | ||||
212 | (long) shdr_ptr->hdr.bytes_used,__fprintf_chk (stderr, 2 - 1, " Small chunk used %ld free %ld\n" , (long) shdr_ptr->hdr.bytes_used, (long) shdr_ptr->hdr .bytes_left) | ||||
213 | (long) shdr_ptr->hdr.bytes_left)__fprintf_chk (stderr, 2 - 1, " Small chunk used %ld free %ld\n" , (long) shdr_ptr->hdr.bytes_used, (long) shdr_ptr->hdr .bytes_left); | ||||
214 | } | ||||
215 | } | ||||
216 | |||||
217 | #endif /* MEM_STATS */ | ||||
218 | |||||
219 | |||||
220 | LOCAL(void)static void | ||||
221 | out_of_memory (j_common_ptr cinfo, int which) | ||||
222 | /* Report an out-of-memory error and stop execution */ | ||||
223 | /* If we compiled MEM_STATS support, report alloc requests before dying */ | ||||
224 | { | ||||
225 | #ifdef MEM_STATS | ||||
226 | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ | ||||
227 | #endif | ||||
228 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which)((cinfo)->err->msg_code = (JERR_OUT_OF_MEMORY), (cinfo) ->err->msg_parm.i[0] = (which), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); | ||||
229 | } | ||||
230 | |||||
231 | |||||
232 | /* | ||||
233 | * Allocation of "small" objects. | ||||
234 | * | ||||
235 | * For these, we use pooled storage. When a new pool must be created, | ||||
236 | * we try to get enough space for the current request plus a "slop" factor, | ||||
237 | * where the slop will be the amount of leftover space in the new pool. | ||||
238 | * The speed vs. space tradeoff is largely determined by the slop values. | ||||
239 | * A different slop value is provided for each pool class (lifetime), | ||||
240 | * and we also distinguish the first pool of a class from later ones. | ||||
241 | * NOTE: the values given work fairly well on both 16- and 32-bit-int | ||||
242 | * machines, but may be too small if longs are 64 bits or more. | ||||
243 | */ | ||||
244 | |||||
245 | static const size_t first_pool_slop[JPOOL_NUMPOOLS2] = | ||||
246 | { | ||||
247 | 1600, /* first PERMANENT pool */ | ||||
248 | 16000 /* first IMAGE pool */ | ||||
249 | }; | ||||
250 | |||||
251 | static const size_t extra_pool_slop[JPOOL_NUMPOOLS2] = | ||||
252 | { | ||||
253 | 0, /* additional PERMANENT pools */ | ||||
254 | 5000 /* additional IMAGE pools */ | ||||
255 | }; | ||||
256 | |||||
257 | #define MIN_SLOP50 50 /* greater than 0 to avoid futile looping */ | ||||
258 | |||||
259 | |||||
260 | METHODDEF(void *)static void * | ||||
261 | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | ||||
262 | /* Allocate a "small" object */ | ||||
263 | { | ||||
264 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
265 | small_pool_ptr hdr_ptr, prev_hdr_ptr; | ||||
266 | char * data_ptr; | ||||
267 | size_t odd_bytes, min_request, slop; | ||||
268 | |||||
269 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | ||||
270 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK1000000000L-SIZEOF(small_pool_hdr)((size_t) sizeof(small_pool_hdr)))) | ||||
271 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ | ||||
272 | |||||
273 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | ||||
274 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)); | ||||
275 | if (odd_bytes > 0) | ||||
276 | sizeofobject += SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)) - odd_bytes; | ||||
277 | |||||
278 | /* See if space is available in any existing pool */ | ||||
279 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS2) | ||||
280 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | ||||
281 | prev_hdr_ptr = NULL((void*)0); | ||||
282 | hdr_ptr = mem->small_list[pool_id]; | ||||
283 | while (hdr_ptr != NULL((void*)0)) { | ||||
284 | if (hdr_ptr->hdr.bytes_left >= sizeofobject) | ||||
285 | break; /* found pool with enough space */ | ||||
286 | prev_hdr_ptr = hdr_ptr; | ||||
287 | hdr_ptr = hdr_ptr->hdr.next; | ||||
288 | } | ||||
289 | |||||
290 | /* Time to make a new pool? */ | ||||
291 | if (hdr_ptr == NULL((void*)0)) { | ||||
292 | /* min_request is what we need now, slop is what will be leftover */ | ||||
293 | min_request = sizeofobject + SIZEOF(small_pool_hdr)((size_t) sizeof(small_pool_hdr)); | ||||
294 | if (prev_hdr_ptr == NULL((void*)0)) /* first pool in class? */ | ||||
295 | slop = first_pool_slop[pool_id]; | ||||
296 | else | ||||
297 | slop = extra_pool_slop[pool_id]; | ||||
298 | /* Don't ask for more than MAX_ALLOC_CHUNK */ | ||||
299 | if (slop > (size_t) (MAX_ALLOC_CHUNK1000000000L-min_request)) | ||||
300 | slop = (size_t) (MAX_ALLOC_CHUNK1000000000L-min_request); | ||||
301 | /* Try to get space, if fail reduce slop and try again */ | ||||
302 | for (;;) { | ||||
303 | hdr_ptr = (small_pool_ptr) jpeg_get_smalljGetSmall(cinfo, min_request + slop); | ||||
304 | if (hdr_ptr != NULL((void*)0)) | ||||
305 | break; | ||||
306 | slop /= 2; | ||||
307 | if (slop < MIN_SLOP50) /* give up when it gets real small */ | ||||
308 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | ||||
309 | } | ||||
310 | mem->total_space_allocated += min_request + slop; | ||||
311 | /* Success, initialize the new pool header and add to end of list */ | ||||
312 | hdr_ptr->hdr.next = NULL((void*)0); | ||||
313 | hdr_ptr->hdr.bytes_used = 0; | ||||
314 | hdr_ptr->hdr.bytes_left = sizeofobject + slop; | ||||
315 | if (prev_hdr_ptr == NULL((void*)0)) /* first pool in class? */ | ||||
316 | mem->small_list[pool_id] = hdr_ptr; | ||||
317 | else | ||||
318 | prev_hdr_ptr->hdr.next = hdr_ptr; | ||||
319 | } | ||||
320 | |||||
321 | /* OK, allocate the object from the current pool */ | ||||
322 | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ | ||||
323 | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ | ||||
324 | hdr_ptr->hdr.bytes_used += sizeofobject; | ||||
325 | hdr_ptr->hdr.bytes_left -= sizeofobject; | ||||
326 | |||||
327 | return (void *) data_ptr; | ||||
328 | } | ||||
329 | |||||
330 | |||||
331 | /* | ||||
332 | * Allocation of "large" objects. | ||||
333 | * | ||||
334 | * The external semantics of these are the same as "small" objects, | ||||
335 | * except that FAR pointers are used on 80x86. However the pool | ||||
336 | * management heuristics are quite different. We assume that each | ||||
337 | * request is large enough that it may as well be passed directly to | ||||
338 | * jpeg_get_large; the pool management just links everything together | ||||
339 | * so that we can free it all on demand. | ||||
340 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | ||||
341 | * structures. The routines that create these structures (see below) | ||||
342 | * deliberately bunch rows together to ensure a large request size. | ||||
343 | */ | ||||
344 | |||||
345 | METHODDEF(void FAR *)static void * | ||||
346 | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | ||||
347 | /* Allocate a "large" object */ | ||||
348 | { | ||||
349 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
350 | large_pool_ptr hdr_ptr; | ||||
351 | size_t odd_bytes; | ||||
352 | |||||
353 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | ||||
354 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK1000000000L-SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr)))) | ||||
355 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ | ||||
356 | |||||
357 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | ||||
358 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)); | ||||
359 | if (odd_bytes
| ||||
360 | sizeofobject += SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)) - odd_bytes; | ||||
361 | |||||
362 | /* Always make a new pool */ | ||||
363 | if (pool_id
| ||||
364 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | ||||
365 | |||||
366 | hdr_ptr = (large_pool_ptr) jpeg_get_largejGetLarge(cinfo, sizeofobject + | ||||
367 | SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr))); | ||||
368 | if (hdr_ptr == NULL((void*)0)) | ||||
369 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ | ||||
370 | mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr)); | ||||
371 | |||||
372 | /* Success, initialize the new pool header and add to list */ | ||||
373 | hdr_ptr->hdr.next = mem->large_list[pool_id]; | ||||
| |||||
374 | /* We maintain space counts in each pool header for statistical purposes, | ||||
375 | * even though they are not needed for allocation. | ||||
376 | */ | ||||
377 | hdr_ptr->hdr.bytes_used = sizeofobject; | ||||
378 | hdr_ptr->hdr.bytes_left = 0; | ||||
379 | mem->large_list[pool_id] = hdr_ptr; | ||||
380 | |||||
381 | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ | ||||
382 | } | ||||
383 | |||||
384 | |||||
385 | /* | ||||
386 | * Creation of 2-D sample arrays. | ||||
387 | * The pointers are in near heap, the samples themselves in FAR heap. | ||||
388 | * | ||||
389 | * To minimize allocation overhead and to allow I/O of large contiguous | ||||
390 | * blocks, we allocate the sample rows in groups of as many rows as possible | ||||
391 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | ||||
392 | * NB: the virtual array control routines, later in this file, know about | ||||
393 | * this chunking of rows. The rowsperchunk value is left in the mem manager | ||||
394 | * object so that it can be saved away if this sarray is the workspace for | ||||
395 | * a virtual array. | ||||
396 | */ | ||||
397 | |||||
398 | METHODDEF(JSAMPARRAY)static JSAMPARRAY | ||||
399 | alloc_sarray (j_common_ptr cinfo, int pool_id, | ||||
400 | JDIMENSION samplesperrow, JDIMENSION numrows) | ||||
401 | /* Allocate a 2-D sample array */ | ||||
402 | { | ||||
403 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
404 | JSAMPARRAY result; | ||||
405 | JSAMPROW workspace; | ||||
406 | JDIMENSION rowsperchunk, currow, i; | ||||
407 | long ltemp; | ||||
408 | |||||
409 | if (samplesperrow == 0) { | ||||
410 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
411 | } | ||||
412 | /* Calculate max # of rows allowed in one allocation chunk */ | ||||
413 | ltemp = (MAX_ALLOC_CHUNK1000000000L-SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr))) / | ||||
414 | ((long) samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE))); | ||||
415 | if (ltemp <= 0) | ||||
416 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
417 | if (ltemp < (long) numrows) | ||||
418 | rowsperchunk = (JDIMENSION) ltemp; | ||||
419 | else | ||||
420 | rowsperchunk = numrows; | ||||
421 | mem->last_rowsperchunk = rowsperchunk; | ||||
422 | |||||
423 | /* Get space for row pointers (small object) */ | ||||
424 | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, | ||||
425 | (size_t) (numrows * SIZEOF(JSAMPROW)((size_t) sizeof(JSAMPROW)))); | ||||
426 | |||||
427 | /* Get the rows themselves (large objects) */ | ||||
428 | currow = 0; | ||||
429 | while (currow
| ||||
430 | rowsperchunk = MIN(rowsperchunk, numrows - currow)((rowsperchunk) < (numrows - currow) ? (rowsperchunk) : (numrows - currow)); | ||||
431 | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, | ||||
432 | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow | ||||
433 | * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)))); | ||||
434 | for (i = rowsperchunk; i > 0; i--) { | ||||
435 | result[currow++] = workspace; | ||||
436 | workspace += samplesperrow; | ||||
437 | } | ||||
438 | } | ||||
439 | |||||
440 | return result; | ||||
441 | } | ||||
442 | |||||
443 | |||||
444 | /* | ||||
445 | * Creation of 2-D coefficient-block arrays. | ||||
446 | * This is essentially the same as the code for sample arrays, above. | ||||
447 | */ | ||||
448 | |||||
449 | METHODDEF(JBLOCKARRAY)static JBLOCKARRAY | ||||
450 | alloc_barray (j_common_ptr cinfo, int pool_id, | ||||
451 | JDIMENSION blocksperrow, JDIMENSION numrows) | ||||
452 | /* Allocate a 2-D coefficient-block array */ | ||||
453 | { | ||||
454 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
455 | JBLOCKARRAY result; | ||||
456 | JBLOCKROW workspace; | ||||
457 | JDIMENSION rowsperchunk, currow, i; | ||||
458 | long ltemp; | ||||
459 | |||||
460 | if (blocksperrow == 0) { | ||||
461 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
462 | } | ||||
463 | |||||
464 | /* Calculate max # of rows allowed in one allocation chunk */ | ||||
465 | ltemp = (MAX_ALLOC_CHUNK1000000000L-SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr))) / | ||||
466 | ((long) blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | ||||
467 | if (ltemp <= 0) | ||||
468 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
469 | if (ltemp < (long) numrows) | ||||
470 | rowsperchunk = (JDIMENSION) ltemp; | ||||
471 | else | ||||
472 | rowsperchunk = numrows; | ||||
473 | mem->last_rowsperchunk = rowsperchunk; | ||||
474 | |||||
475 | /* Get space for row pointers (small object) */ | ||||
476 | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, | ||||
477 | (size_t) (numrows * SIZEOF(JBLOCKROW)((size_t) sizeof(JBLOCKROW)))); | ||||
478 | |||||
479 | /* Get the rows themselves (large objects) */ | ||||
480 | currow = 0; | ||||
481 | while (currow < numrows) { | ||||
482 | rowsperchunk = MIN(rowsperchunk, numrows - currow)((rowsperchunk) < (numrows - currow) ? (rowsperchunk) : (numrows - currow)); | ||||
483 | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, | ||||
484 | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow | ||||
485 | * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)))); | ||||
486 | for (i = rowsperchunk; i > 0; i--) { | ||||
487 | result[currow++] = workspace; | ||||
488 | workspace += blocksperrow; | ||||
489 | } | ||||
490 | } | ||||
491 | |||||
492 | return result; | ||||
493 | } | ||||
494 | |||||
495 | |||||
496 | /* | ||||
497 | * About virtual array management: | ||||
498 | * | ||||
499 | * The above "normal" array routines are only used to allocate strip buffers | ||||
500 | * (as wide as the image, but just a few rows high). Full-image-sized buffers | ||||
501 | * are handled as "virtual" arrays. The array is still accessed a strip at a | ||||
502 | * time, but the memory manager must save the whole array for repeated | ||||
503 | * accesses. The intended implementation is that there is a strip buffer in | ||||
504 | * memory (as high as is possible given the desired memory limit), plus a | ||||
505 | * backing file that holds the rest of the array. | ||||
506 | * | ||||
507 | * The request_virt_array routines are told the total size of the image and | ||||
508 | * the maximum number of rows that will be accessed at once. The in-memory | ||||
509 | * buffer must be at least as large as the maxaccess value. | ||||
510 | * | ||||
511 | * The request routines create control blocks but not the in-memory buffers. | ||||
512 | * That is postponed until realize_virt_arrays is called. At that time the | ||||
513 | * total amount of space needed is known (approximately, anyway), so free | ||||
514 | * memory can be divided up fairly. | ||||
515 | * | ||||
516 | * The access_virt_array routines are responsible for making a specific strip | ||||
517 | * area accessible (after reading or writing the backing file, if necessary). | ||||
518 | * Note that the access routines are told whether the caller intends to modify | ||||
519 | * the accessed strip; during a read-only pass this saves having to rewrite | ||||
520 | * data to disk. The access routines are also responsible for pre-zeroing | ||||
521 | * any newly accessed rows, if pre-zeroing was requested. | ||||
522 | * | ||||
523 | * In current usage, the access requests are usually for nonoverlapping | ||||
524 | * strips; that is, successive access start_row numbers differ by exactly | ||||
525 | * num_rows = maxaccess. This means we can get good performance with simple | ||||
526 | * buffer dump/reload logic, by making the in-memory buffer be a multiple | ||||
527 | * of the access height; then there will never be accesses across bufferload | ||||
528 | * boundaries. The code will still work with overlapping access requests, | ||||
529 | * but it doesn't handle bufferload overlaps very efficiently. | ||||
530 | */ | ||||
531 | |||||
532 | |||||
533 | METHODDEF(jvirt_sarray_ptr)static jvirt_sarray_ptr | ||||
534 | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | ||||
535 | JDIMENSION samplesperrow, JDIMENSION numrows, | ||||
536 | JDIMENSION maxaccess) | ||||
537 | /* Request a virtual 2-D sample array */ | ||||
538 | { | ||||
539 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
540 | jvirt_sarray_ptr result; | ||||
541 | |||||
542 | /* Only IMAGE-lifetime virtual arrays are currently supported */ | ||||
543 | if (pool_id != JPOOL_IMAGE1) | ||||
544 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | ||||
545 | |||||
546 | /* get control block */ | ||||
547 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, | ||||
548 | SIZEOF(struct jvirt_sarray_control)((size_t) sizeof(struct jvirt_sarray_control))); | ||||
549 | |||||
550 | result->mem_buffer = NULL((void*)0); /* marks array not yet realized */ | ||||
551 | result->rows_in_array = numrows; | ||||
552 | result->samplesperrow = samplesperrow; | ||||
553 | result->maxaccess = maxaccess; | ||||
554 | result->pre_zero = pre_zero; | ||||
555 | result->b_s_open = FALSE0; /* no associated backing-store object */ | ||||
556 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | ||||
557 | mem->virt_sarray_list = result; | ||||
558 | |||||
559 | return result; | ||||
560 | } | ||||
561 | |||||
562 | |||||
563 | METHODDEF(jvirt_barray_ptr)static jvirt_barray_ptr | ||||
564 | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | ||||
565 | JDIMENSION blocksperrow, JDIMENSION numrows, | ||||
566 | JDIMENSION maxaccess) | ||||
567 | /* Request a virtual 2-D coefficient-block array */ | ||||
568 | { | ||||
569 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
570 | jvirt_barray_ptr result; | ||||
571 | |||||
572 | /* Only IMAGE-lifetime virtual arrays are currently supported */ | ||||
573 | if (pool_id != JPOOL_IMAGE1) | ||||
574 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | ||||
575 | |||||
576 | /* get control block */ | ||||
577 | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, | ||||
578 | SIZEOF(struct jvirt_barray_control)((size_t) sizeof(struct jvirt_barray_control))); | ||||
579 | |||||
580 | result->mem_buffer = NULL((void*)0); /* marks array not yet realized */ | ||||
581 | result->rows_in_array = numrows; | ||||
582 | result->blocksperrow = blocksperrow; | ||||
583 | result->maxaccess = maxaccess; | ||||
584 | result->pre_zero = pre_zero; | ||||
585 | result->b_s_open = FALSE0; /* no associated backing-store object */ | ||||
586 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | ||||
587 | mem->virt_barray_list = result; | ||||
588 | |||||
589 | return result; | ||||
590 | } | ||||
591 | |||||
592 | |||||
593 | METHODDEF(void)static void | ||||
594 | realize_virt_arrays (j_common_ptr cinfo) | ||||
595 | /* Allocate the in-memory buffers for any unrealized virtual arrays */ | ||||
596 | { | ||||
597 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
598 | size_t space_per_minheight, maximum_space, avail_mem; | ||||
599 | size_t minheights, max_minheights; | ||||
600 | jvirt_sarray_ptr sptr; | ||||
601 | jvirt_barray_ptr bptr; | ||||
602 | |||||
603 | /* Compute the minimum space needed (maxaccess rows in each buffer) | ||||
604 | * and the maximum space needed (full image height in each buffer). | ||||
605 | * These may be of use to the system-dependent jpeg_mem_available routine. | ||||
606 | */ | ||||
607 | space_per_minheight = 0; | ||||
608 | maximum_space = 0; | ||||
609 | for (sptr = mem->virt_sarray_list; sptr != NULL((void*)0); sptr = sptr->next) { | ||||
| |||||
610 | if (sptr->mem_buffer == NULL((void*)0)) { /* if not realized yet */ | ||||
611 | space_per_minheight += (long) sptr->maxaccess * | ||||
612 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | ||||
613 | maximum_space += (long) sptr->rows_in_array * | ||||
614 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | ||||
615 | } | ||||
616 | } | ||||
617 | for (bptr = mem->virt_barray_list; bptr != NULL((void*)0); bptr = bptr->next) { | ||||
618 | if (bptr->mem_buffer == NULL((void*)0)) { /* if not realized yet */ | ||||
619 | space_per_minheight += (long) bptr->maxaccess * | ||||
620 | (long) bptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | ||||
621 | maximum_space += (long) bptr->rows_in_array * | ||||
622 | (long) bptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | ||||
623 | } | ||||
624 | } | ||||
625 | |||||
626 | if (space_per_minheight <= 0) | ||||
627 | return; /* no unrealized arrays, no work */ | ||||
628 | |||||
629 | /* Determine amount of memory to actually use; this is system-dependent. */ | ||||
630 | avail_mem = jpeg_mem_availablejMemAvail(cinfo, space_per_minheight, maximum_space, | ||||
631 | mem->total_space_allocated); | ||||
632 | |||||
633 | /* If the maximum space needed is available, make all the buffers full | ||||
634 | * height; otherwise parcel it out with the same number of minheights | ||||
635 | * in each buffer. | ||||
636 | */ | ||||
637 | if (avail_mem >= maximum_space) | ||||
638 | max_minheights = 1000000000L; | ||||
639 | else { | ||||
640 | max_minheights = avail_mem / space_per_minheight; | ||||
641 | /* If there doesn't seem to be enough space, try to get the minimum | ||||
642 | * anyway. This allows a "stub" implementation of jpeg_mem_available(). | ||||
643 | */ | ||||
644 | if (max_minheights <= 0) | ||||
645 | max_minheights = 1; | ||||
646 | } | ||||
647 | |||||
648 | /* Allocate the in-memory buffers and initialize backing store as needed. */ | ||||
649 | |||||
650 | for (sptr = mem->virt_sarray_list; sptr
| ||||
651 | if (sptr->mem_buffer
| ||||
652 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | ||||
653 | if (minheights <= max_minheights) { | ||||
654 | /* This buffer fits in memory */ | ||||
655 | sptr->rows_in_mem = sptr->rows_in_array; | ||||
656 | } else { | ||||
657 | /* It doesn't fit in memory, create backing store. */ | ||||
658 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); | ||||
659 | jpeg_open_backing_storejOpenBackStore(cinfo, & sptr->b_s_info, | ||||
660 | (long) sptr->rows_in_array * | ||||
661 | (long) sptr->samplesperrow * | ||||
662 | (long) SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE))); | ||||
663 | sptr->b_s_open = TRUE1; | ||||
664 | } | ||||
665 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE1, | ||||
666 | sptr->samplesperrow, sptr->rows_in_mem); | ||||
667 | sptr->rowsperchunk = mem->last_rowsperchunk; | ||||
668 | sptr->cur_start_row = 0; | ||||
669 | sptr->first_undef_row = 0; | ||||
670 | sptr->dirty = FALSE0; | ||||
671 | } | ||||
672 | } | ||||
673 | |||||
674 | for (bptr = mem->virt_barray_list; bptr != NULL((void*)0); bptr = bptr->next) { | ||||
675 | if (bptr->mem_buffer == NULL((void*)0)) { /* if not realized yet */ | ||||
676 | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | ||||
677 | if (minheights <= max_minheights) { | ||||
678 | /* This buffer fits in memory */ | ||||
679 | bptr->rows_in_mem = bptr->rows_in_array; | ||||
680 | } else { | ||||
681 | /* It doesn't fit in memory, create backing store. */ | ||||
682 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); | ||||
683 | jpeg_open_backing_storejOpenBackStore(cinfo, & bptr->b_s_info, | ||||
684 | (long) bptr->rows_in_array * | ||||
685 | (long) bptr->blocksperrow * | ||||
686 | (long) SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | ||||
687 | bptr->b_s_open = TRUE1; | ||||
688 | } | ||||
689 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE1, | ||||
690 | bptr->blocksperrow, bptr->rows_in_mem); | ||||
691 | bptr->rowsperchunk = mem->last_rowsperchunk; | ||||
692 | bptr->cur_start_row = 0; | ||||
693 | bptr->first_undef_row = 0; | ||||
694 | bptr->dirty = FALSE0; | ||||
695 | } | ||||
696 | } | ||||
697 | } | ||||
698 | |||||
699 | |||||
700 | LOCAL(void)static void | ||||
701 | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | ||||
702 | /* Do backing store read or write of a virtual sample array */ | ||||
703 | { | ||||
704 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | ||||
705 | |||||
706 | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | ||||
707 | file_offset = ptr->cur_start_row * bytesperrow; | ||||
708 | /* Loop to read or write each allocation chunk in mem_buffer */ | ||||
709 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | ||||
710 | /* One chunk, but check for short chunk at end of buffer */ | ||||
711 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i)(((long) ptr->rowsperchunk) < ((long) ptr->rows_in_mem - i) ? ((long) ptr->rowsperchunk) : ((long) ptr->rows_in_mem - i)); | ||||
712 | /* Transfer no more than is currently defined */ | ||||
713 | thisrow = (long) ptr->cur_start_row + i; | ||||
714 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow)((rows) < ((long) ptr->first_undef_row - thisrow) ? (rows ) : ((long) ptr->first_undef_row - thisrow)); | ||||
715 | /* Transfer no more than fits in file */ | ||||
716 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow)((rows) < ((long) ptr->rows_in_array - thisrow) ? (rows ) : ((long) ptr->rows_in_array - thisrow)); | ||||
717 | if (rows <= 0) /* this chunk might be past end of file! */ | ||||
718 | break; | ||||
719 | byte_count = rows * bytesperrow; | ||||
720 | if (writing) | ||||
721 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | ||||
722 | (void FAR *) ptr->mem_buffer[i], | ||||
723 | file_offset, byte_count); | ||||
724 | else | ||||
725 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | ||||
726 | (void FAR *) ptr->mem_buffer[i], | ||||
727 | file_offset, byte_count); | ||||
728 | file_offset += byte_count; | ||||
729 | } | ||||
730 | } | ||||
731 | |||||
732 | |||||
733 | LOCAL(void)static void | ||||
734 | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | ||||
735 | /* Do backing store read or write of a virtual coefficient-block array */ | ||||
736 | { | ||||
737 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | ||||
738 | |||||
739 | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | ||||
740 | file_offset = ptr->cur_start_row * bytesperrow; | ||||
741 | /* Loop to read or write each allocation chunk in mem_buffer */ | ||||
742 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | ||||
743 | /* One chunk, but check for short chunk at end of buffer */ | ||||
744 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i)(((long) ptr->rowsperchunk) < ((long) ptr->rows_in_mem - i) ? ((long) ptr->rowsperchunk) : ((long) ptr->rows_in_mem - i)); | ||||
745 | /* Transfer no more than is currently defined */ | ||||
746 | thisrow = (long) ptr->cur_start_row + i; | ||||
747 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow)((rows) < ((long) ptr->first_undef_row - thisrow) ? (rows ) : ((long) ptr->first_undef_row - thisrow)); | ||||
748 | /* Transfer no more than fits in file */ | ||||
749 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow)((rows) < ((long) ptr->rows_in_array - thisrow) ? (rows ) : ((long) ptr->rows_in_array - thisrow)); | ||||
750 | if (rows <= 0) /* this chunk might be past end of file! */ | ||||
751 | break; | ||||
752 | byte_count = rows * bytesperrow; | ||||
753 | if (writing) | ||||
754 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | ||||
755 | (void FAR *) ptr->mem_buffer[i], | ||||
756 | file_offset, byte_count); | ||||
757 | else | ||||
758 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | ||||
759 | (void FAR *) ptr->mem_buffer[i], | ||||
760 | file_offset, byte_count); | ||||
761 | file_offset += byte_count; | ||||
762 | } | ||||
763 | } | ||||
764 | |||||
765 | |||||
766 | METHODDEF(JSAMPARRAY)static JSAMPARRAY | ||||
767 | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, | ||||
768 | JDIMENSION start_row, JDIMENSION num_rows, | ||||
769 | boolean writable) | ||||
770 | /* Access the part of a virtual sample array starting at start_row */ | ||||
771 | /* and extending for num_rows rows. writable is true if */ | ||||
772 | /* caller intends to modify the accessed area. */ | ||||
773 | { | ||||
774 | JDIMENSION end_row = start_row + num_rows; | ||||
775 | JDIMENSION undef_row; | ||||
776 | |||||
777 | /* debugging check */ | ||||
778 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | ||||
779 | ptr->mem_buffer == NULL((void*)0)) | ||||
780 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
781 | |||||
782 | /* Make the desired part of the virtual array accessible */ | ||||
783 | if (start_row < ptr->cur_start_row || | ||||
784 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { | ||||
785 | if (! ptr->b_s_open) | ||||
786 | ERREXIT(cinfo, JERR_VIRTUAL_BUG)((cinfo)->err->msg_code = (JERR_VIRTUAL_BUG), (*(cinfo) ->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
787 | /* Flush old buffer contents if necessary */ | ||||
788 | if (ptr->dirty) { | ||||
789 | do_sarray_io(cinfo, ptr, TRUE1); | ||||
790 | ptr->dirty = FALSE0; | ||||
791 | } | ||||
792 | /* Decide what part of virtual array to access. | ||||
793 | * Algorithm: if target address > current window, assume forward scan, | ||||
794 | * load starting at target address. If target address < current window, | ||||
795 | * assume backward scan, load so that target area is top of window. | ||||
796 | * Note that when switching from forward write to forward read, will have | ||||
797 | * start_row = 0, so the limiting case applies and we load from 0 anyway. | ||||
798 | */ | ||||
799 | if (start_row > ptr->cur_start_row) { | ||||
800 | ptr->cur_start_row = start_row; | ||||
801 | } else { | ||||
802 | /* use long arithmetic here to avoid overflow & unsigned problems */ | ||||
803 | long ltemp; | ||||
804 | |||||
805 | ltemp = (long) end_row - (long) ptr->rows_in_mem; | ||||
806 | if (ltemp < 0) | ||||
807 | ltemp = 0; /* don't fall off front end of file */ | ||||
808 | ptr->cur_start_row = (JDIMENSION) ltemp; | ||||
809 | } | ||||
810 | /* Read in the selected part of the array. | ||||
811 | * During the initial write pass, we will do no actual read | ||||
812 | * because the selected part is all undefined. | ||||
813 | */ | ||||
814 | do_sarray_io(cinfo, ptr, FALSE0); | ||||
815 | } | ||||
816 | /* Ensure the accessed part of the array is defined; prezero if needed. | ||||
817 | * To improve locality of access, we only prezero the part of the array | ||||
818 | * that the caller is about to access, not the entire in-memory array. | ||||
819 | */ | ||||
820 | if (ptr->first_undef_row < end_row) { | ||||
821 | if (ptr->first_undef_row < start_row) { | ||||
822 | if (writable) /* writer skipped over a section of array */ | ||||
823 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
824 | undef_row = start_row; /* but reader is allowed to read ahead */ | ||||
825 | } else { | ||||
826 | undef_row = ptr->first_undef_row; | ||||
827 | } | ||||
828 | if (writable) | ||||
829 | ptr->first_undef_row = end_row; | ||||
830 | if (ptr->pre_zero) { | ||||
831 | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | ||||
832 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | ||||
833 | end_row -= ptr->cur_start_row; | ||||
834 | while (undef_row < end_row) { | ||||
835 | jzero_farjZeroFar((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | ||||
836 | undef_row++; | ||||
837 | } | ||||
838 | } else { | ||||
839 | if (! writable) /* reader looking at undefined data */ | ||||
840 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
841 | } | ||||
842 | } | ||||
843 | /* Flag the buffer dirty if caller will write in it */ | ||||
844 | if (writable) | ||||
845 | ptr->dirty = TRUE1; | ||||
846 | /* Return address of proper part of the buffer */ | ||||
847 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | ||||
848 | } | ||||
849 | |||||
850 | |||||
851 | METHODDEF(JBLOCKARRAY)static JBLOCKARRAY | ||||
852 | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, | ||||
853 | JDIMENSION start_row, JDIMENSION num_rows, | ||||
854 | boolean writable) | ||||
855 | /* Access the part of a virtual block array starting at start_row */ | ||||
856 | /* and extending for num_rows rows. writable is true if */ | ||||
857 | /* caller intends to modify the accessed area. */ | ||||
858 | { | ||||
859 | JDIMENSION end_row = start_row + num_rows; | ||||
860 | JDIMENSION undef_row; | ||||
861 | |||||
862 | /* debugging check */ | ||||
863 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | ||||
864 | ptr->mem_buffer == NULL((void*)0)) | ||||
865 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
866 | |||||
867 | /* Make the desired part of the virtual array accessible */ | ||||
868 | if (start_row < ptr->cur_start_row || | ||||
869 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { | ||||
870 | if (! ptr->b_s_open) | ||||
871 | ERREXIT(cinfo, JERR_VIRTUAL_BUG)((cinfo)->err->msg_code = (JERR_VIRTUAL_BUG), (*(cinfo) ->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
872 | /* Flush old buffer contents if necessary */ | ||||
873 | if (ptr->dirty) { | ||||
874 | do_barray_io(cinfo, ptr, TRUE1); | ||||
875 | ptr->dirty = FALSE0; | ||||
876 | } | ||||
877 | /* Decide what part of virtual array to access. | ||||
878 | * Algorithm: if target address > current window, assume forward scan, | ||||
879 | * load starting at target address. If target address < current window, | ||||
880 | * assume backward scan, load so that target area is top of window. | ||||
881 | * Note that when switching from forward write to forward read, will have | ||||
882 | * start_row = 0, so the limiting case applies and we load from 0 anyway. | ||||
883 | */ | ||||
884 | if (start_row > ptr->cur_start_row) { | ||||
885 | ptr->cur_start_row = start_row; | ||||
886 | } else { | ||||
887 | /* use long arithmetic here to avoid overflow & unsigned problems */ | ||||
888 | long ltemp; | ||||
889 | |||||
890 | ltemp = (long) end_row - (long) ptr->rows_in_mem; | ||||
891 | if (ltemp < 0) | ||||
892 | ltemp = 0; /* don't fall off front end of file */ | ||||
893 | ptr->cur_start_row = (JDIMENSION) ltemp; | ||||
894 | } | ||||
895 | /* Read in the selected part of the array. | ||||
896 | * During the initial write pass, we will do no actual read | ||||
897 | * because the selected part is all undefined. | ||||
898 | */ | ||||
899 | do_barray_io(cinfo, ptr, FALSE0); | ||||
900 | } | ||||
901 | /* Ensure the accessed part of the array is defined; prezero if needed. | ||||
902 | * To improve locality of access, we only prezero the part of the array | ||||
903 | * that the caller is about to access, not the entire in-memory array. | ||||
904 | */ | ||||
905 | if (ptr->first_undef_row < end_row) { | ||||
906 | if (ptr->first_undef_row < start_row) { | ||||
907 | if (writable) /* writer skipped over a section of array */ | ||||
908 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
909 | undef_row = start_row; /* but reader is allowed to read ahead */ | ||||
910 | } else { | ||||
911 | undef_row = ptr->first_undef_row; | ||||
912 | } | ||||
913 | if (writable) | ||||
914 | ptr->first_undef_row = end_row; | ||||
915 | if (ptr->pre_zero) { | ||||
916 | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | ||||
917 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | ||||
918 | end_row -= ptr->cur_start_row; | ||||
919 | while (undef_row < end_row) { | ||||
920 | jzero_farjZeroFar((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | ||||
921 | undef_row++; | ||||
922 | } | ||||
923 | } else { | ||||
924 | if (! writable) /* reader looking at undefined data */ | ||||
925 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
926 | } | ||||
927 | } | ||||
928 | /* Flag the buffer dirty if caller will write in it */ | ||||
929 | if (writable) | ||||
930 | ptr->dirty = TRUE1; | ||||
931 | /* Return address of proper part of the buffer */ | ||||
932 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | ||||
933 | } | ||||
934 | |||||
935 | |||||
936 | /* | ||||
937 | * Release all objects belonging to a specified pool. | ||||
938 | */ | ||||
939 | |||||
940 | METHODDEF(void)static void | ||||
941 | free_pool (j_common_ptr cinfo, int pool_id) | ||||
942 | { | ||||
943 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | ||||
944 | small_pool_ptr shdr_ptr; | ||||
945 | large_pool_ptr lhdr_ptr; | ||||
946 | size_t space_freed; | ||||
947 | |||||
948 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS2) | ||||
949 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | ||||
950 | |||||
951 | #ifdef MEM_STATS | ||||
952 | if (cinfo->err->trace_level > 1) | ||||
953 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | ||||
954 | #endif | ||||
955 | |||||
956 | /* If freeing IMAGE pool, close any virtual arrays first */ | ||||
957 | if (pool_id == JPOOL_IMAGE1) { | ||||
958 | jvirt_sarray_ptr sptr; | ||||
959 | jvirt_barray_ptr bptr; | ||||
960 | |||||
961 | for (sptr = mem->virt_sarray_list; sptr != NULL((void*)0); sptr = sptr->next) { | ||||
962 | if (sptr->b_s_open) { /* there may be no backing store */ | ||||
963 | sptr->b_s_open = FALSE0; /* prevent recursive close if error */ | ||||
964 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); | ||||
965 | } | ||||
966 | } | ||||
967 | mem->virt_sarray_list = NULL((void*)0); | ||||
968 | for (bptr = mem->virt_barray_list; bptr != NULL((void*)0); bptr = bptr->next) { | ||||
969 | if (bptr->b_s_open) { /* there may be no backing store */ | ||||
970 | bptr->b_s_open = FALSE0; /* prevent recursive close if error */ | ||||
971 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); | ||||
972 | } | ||||
973 | } | ||||
974 | mem->virt_barray_list = NULL((void*)0); | ||||
975 | } | ||||
976 | |||||
977 | /* Release large objects */ | ||||
978 | lhdr_ptr = mem->large_list[pool_id]; | ||||
979 | mem->large_list[pool_id] = NULL((void*)0); | ||||
980 | |||||
981 | while (lhdr_ptr != NULL((void*)0)) { | ||||
982 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; | ||||
983 | space_freed = lhdr_ptr->hdr.bytes_used + | ||||
984 | lhdr_ptr->hdr.bytes_left + | ||||
985 | SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr)); | ||||
986 | jpeg_free_largejFreeLarge(cinfo, (void FAR *) lhdr_ptr, space_freed); | ||||
987 | mem->total_space_allocated -= space_freed; | ||||
988 | lhdr_ptr = next_lhdr_ptr; | ||||
989 | } | ||||
990 | |||||
991 | /* Release small objects */ | ||||
992 | shdr_ptr = mem->small_list[pool_id]; | ||||
993 | mem->small_list[pool_id] = NULL((void*)0); | ||||
994 | |||||
995 | while (shdr_ptr != NULL((void*)0)) { | ||||
996 | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; | ||||
997 | space_freed = shdr_ptr->hdr.bytes_used + | ||||
998 | shdr_ptr->hdr.bytes_left + | ||||
999 | SIZEOF(small_pool_hdr)((size_t) sizeof(small_pool_hdr)); | ||||
1000 | jpeg_free_smalljFreeSmall(cinfo, (void *) shdr_ptr, space_freed); | ||||
1001 | mem->total_space_allocated -= space_freed; | ||||
1002 | shdr_ptr = next_shdr_ptr; | ||||
1003 | } | ||||
1004 | } | ||||
1005 | |||||
1006 | |||||
1007 | /* | ||||
1008 | * Close up shop entirely. | ||||
1009 | * Note that this cannot be called unless cinfo->mem is non-NULL. | ||||
1010 | */ | ||||
1011 | |||||
1012 | METHODDEF(void)static void | ||||
1013 | self_destruct (j_common_ptr cinfo) | ||||
1014 | { | ||||
1015 | int pool; | ||||
1016 | |||||
1017 | /* Close all backing store, release all memory. | ||||
1018 | * Releasing pools in reverse order might help avoid fragmentation | ||||
1019 | * with some (brain-damaged) malloc libraries. | ||||
1020 | */ | ||||
1021 | for (pool = JPOOL_NUMPOOLS2-1; pool >= JPOOL_PERMANENT0; pool--) { | ||||
1022 | free_pool(cinfo, pool); | ||||
1023 | } | ||||
1024 | |||||
1025 | /* Release the memory manager control block too. */ | ||||
1026 | jpeg_free_smalljFreeSmall(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)((size_t) sizeof(my_memory_mgr))); | ||||
1027 | cinfo->mem = NULL((void*)0); /* ensures I will be called only once */ | ||||
1028 | |||||
1029 | jpeg_mem_termjMemTerm(cinfo); /* system-dependent cleanup */ | ||||
1030 | } | ||||
1031 | |||||
1032 | |||||
1033 | /* | ||||
1034 | * Memory manager initialization. | ||||
1035 | * When this is called, only the error manager pointer is valid in cinfo! | ||||
1036 | */ | ||||
1037 | |||||
1038 | GLOBAL(void)void | ||||
1039 | jinit_memory_mgrjIMemMgr (j_common_ptr cinfo) | ||||
1040 | { | ||||
1041 | my_mem_ptr mem; | ||||
1042 | size_t max_to_use; | ||||
1043 | int pool; | ||||
1044 | size_t test_mac; | ||||
1045 | |||||
1046 | cinfo->mem = NULL((void*)0); /* for safety if init fails */ | ||||
1047 | |||||
1048 | /* Check for configuration errors. | ||||
1049 | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably | ||||
1050 | * doesn't reflect any real hardware alignment requirement. | ||||
1051 | * The test is a little tricky: for X>0, X and X-1 have no one-bits | ||||
1052 | * in common if and only if X is a power of 2, ie has only one one-bit. | ||||
1053 | * Some compilers may give an "unreachable code" warning here; ignore it. | ||||
1054 | */ | ||||
1055 | if ((SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)) & (SIZEOF(ALIGN_TYPE)((size_t) sizeof(double))-1)) != 0) | ||||
1056 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE)((cinfo)->err->msg_code = (JERR_BAD_ALIGN_TYPE), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
1057 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | ||||
1058 | * a multiple of SIZEOF(ALIGN_TYPE). | ||||
1059 | * Again, an "unreachable code" warning may be ignored here. | ||||
1060 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | ||||
1061 | */ | ||||
1062 | test_mac = (size_t) MAX_ALLOC_CHUNK1000000000L; | ||||
1063 | if ((long) test_mac != MAX_ALLOC_CHUNK1000000000L || | ||||
1064 | (MAX_ALLOC_CHUNK1000000000L % SIZEOF(ALIGN_TYPE)((size_t) sizeof(double))) != 0) | ||||
1065 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK)((cinfo)->err->msg_code = (JERR_BAD_ALLOC_CHUNK), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | ||||
1066 | |||||
1067 | max_to_use = jpeg_mem_initjMemInit(cinfo); /* system-dependent initialization */ | ||||
1068 | |||||
1069 | /* Attempt to allocate memory manager's control block */ | ||||
1070 | mem = (my_mem_ptr) jpeg_get_smalljGetSmall(cinfo, SIZEOF(my_memory_mgr)((size_t) sizeof(my_memory_mgr))); | ||||
1071 | |||||
1072 | if (mem == NULL((void*)0)) { | ||||
1073 | jpeg_mem_termjMemTerm(cinfo); /* system-dependent cleanup */ | ||||
1074 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0)((cinfo)->err->msg_code = (JERR_OUT_OF_MEMORY), (cinfo) ->err->msg_parm.i[0] = (0), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); | ||||
1075 | } | ||||
1076 | |||||
1077 | /* OK, fill in the method pointers */ | ||||
1078 | mem->pub.alloc_small = alloc_small; | ||||
1079 | mem->pub.alloc_large = alloc_large; | ||||
1080 | mem->pub.alloc_sarray = alloc_sarray; | ||||
1081 | mem->pub.alloc_barray = alloc_barray; | ||||
1082 | mem->pub.request_virt_sarray = request_virt_sarray; | ||||
1083 | mem->pub.request_virt_barray = request_virt_barray; | ||||
1084 | mem->pub.realize_virt_arrays = realize_virt_arrays; | ||||
1085 | mem->pub.access_virt_sarray = access_virt_sarray; | ||||
1086 | mem->pub.access_virt_barray = access_virt_barray; | ||||
1087 | mem->pub.free_pool = free_pool; | ||||
1088 | mem->pub.self_destruct = self_destruct; | ||||
1089 | |||||
1090 | /* Make MAX_ALLOC_CHUNK accessible to other modules */ | ||||
1091 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK1000000000L; | ||||
1092 | |||||
1093 | /* Initialize working state */ | ||||
1094 | mem->pub.max_memory_to_use = max_to_use; | ||||
1095 | |||||
1096 | for (pool = JPOOL_NUMPOOLS2-1; pool >= JPOOL_PERMANENT0; pool--) { | ||||
1097 | mem->small_list[pool] = NULL((void*)0); | ||||
1098 | mem->large_list[pool] = NULL((void*)0); | ||||
1099 | } | ||||
1100 | mem->virt_sarray_list = NULL((void*)0); | ||||
1101 | mem->virt_barray_list = NULL((void*)0); | ||||
1102 | |||||
1103 | mem->total_space_allocated = SIZEOF(my_memory_mgr)((size_t) sizeof(my_memory_mgr)); | ||||
1104 | |||||
1105 | /* Declare ourselves open for business */ | ||||
1106 | cinfo->mem = & mem->pub; | ||||
1107 | |||||
1108 | /* Check for an environment variable JPEGMEM; if found, override the | ||||
1109 | * default max_memory setting from jpeg_mem_init. Note that the | ||||
1110 | * surrounding application may again override this value. | ||||
1111 | * If your system doesn't support getenv(), define NO_GETENV to disable | ||||
1112 | * this feature. | ||||
1113 | */ | ||||
1114 | #ifndef NO_GETENV | ||||
1115 | { char * memenv; | ||||
1116 | |||||
1117 | if ((memenv = getenv("JPEGMEM")) != NULL((void*)0)) { | ||||
1118 | char ch = 'x'; | ||||
1119 | unsigned int mem_max = 0u; | ||||
1120 | |||||
1121 | if (sscanf(memenv, "%u%c", &mem_max, &ch) > 0) { | ||||
1122 | max_to_use = (size_t)mem_max; | ||||
1123 | if (ch == 'm' || ch == 'M') | ||||
1124 | max_to_use *= 1000L; | ||||
1125 | mem->pub.max_memory_to_use = max_to_use * 1000L; | ||||
1126 | } | ||||
1127 | } | ||||
1128 | } | ||||
1129 | #endif | ||||
1130 | |||||
1131 | } |