| File: | jdk/src/hotspot/share/opto/memnode.cpp |
| Warning: | line 3469, column 13 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. | |||
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
| 4 | * | |||
| 5 | * This code is free software; you can redistribute it and/or modify it | |||
| 6 | * under the terms of the GNU General Public License version 2 only, as | |||
| 7 | * published by the Free Software Foundation. | |||
| 8 | * | |||
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
| 12 | * version 2 for more details (a copy is included in the LICENSE file that | |||
| 13 | * accompanied this code). | |||
| 14 | * | |||
| 15 | * You should have received a copy of the GNU General Public License version | |||
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
| 18 | * | |||
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
| 20 | * or visit www.oracle.com if you need additional information or have any | |||
| 21 | * questions. | |||
| 22 | * | |||
| 23 | */ | |||
| 24 | ||||
| 25 | #include "precompiled.hpp" | |||
| 26 | #include "classfile/javaClasses.hpp" | |||
| 27 | #include "compiler/compileLog.hpp" | |||
| 28 | #include "gc/shared/barrierSet.hpp" | |||
| 29 | #include "gc/shared/c2/barrierSetC2.hpp" | |||
| 30 | #include "gc/shared/tlab_globals.hpp" | |||
| 31 | #include "memory/allocation.inline.hpp" | |||
| 32 | #include "memory/resourceArea.hpp" | |||
| 33 | #include "oops/objArrayKlass.hpp" | |||
| 34 | #include "opto/addnode.hpp" | |||
| 35 | #include "opto/arraycopynode.hpp" | |||
| 36 | #include "opto/cfgnode.hpp" | |||
| 37 | #include "opto/regalloc.hpp" | |||
| 38 | #include "opto/compile.hpp" | |||
| 39 | #include "opto/connode.hpp" | |||
| 40 | #include "opto/convertnode.hpp" | |||
| 41 | #include "opto/loopnode.hpp" | |||
| 42 | #include "opto/machnode.hpp" | |||
| 43 | #include "opto/matcher.hpp" | |||
| 44 | #include "opto/memnode.hpp" | |||
| 45 | #include "opto/mulnode.hpp" | |||
| 46 | #include "opto/narrowptrnode.hpp" | |||
| 47 | #include "opto/phaseX.hpp" | |||
| 48 | #include "opto/regmask.hpp" | |||
| 49 | #include "opto/rootnode.hpp" | |||
| 50 | #include "opto/vectornode.hpp" | |||
| 51 | #include "utilities/align.hpp" | |||
| 52 | #include "utilities/copy.hpp" | |||
| 53 | #include "utilities/macros.hpp" | |||
| 54 | #include "utilities/powerOfTwo.hpp" | |||
| 55 | #include "utilities/vmError.hpp" | |||
| 56 | ||||
| 57 | // Portions of code courtesy of Clifford Click | |||
| 58 | ||||
| 59 | // Optimization - Graph Style | |||
| 60 | ||||
| 61 | static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); | |||
| 62 | ||||
| 63 | //============================================================================= | |||
| 64 | uint MemNode::size_of() const { return sizeof(*this); } | |||
| 65 | ||||
| 66 | const TypePtr *MemNode::adr_type() const { | |||
| 67 | Node* adr = in(Address); | |||
| 68 | if (adr == NULL__null) return NULL__null; // node is dead | |||
| 69 | const TypePtr* cross_check = NULL__null; | |||
| 70 | DEBUG_ONLY(cross_check = _adr_type)cross_check = _adr_type; | |||
| 71 | return calculate_adr_type(adr->bottom_type(), cross_check); | |||
| 72 | } | |||
| 73 | ||||
| 74 | bool MemNode::check_if_adr_maybe_raw(Node* adr) { | |||
| 75 | if (adr != NULL__null) { | |||
| 76 | if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { | |||
| 77 | return true; | |||
| 78 | } | |||
| 79 | } | |||
| 80 | return false; | |||
| 81 | } | |||
| 82 | ||||
| 83 | #ifndef PRODUCT | |||
| 84 | void MemNode::dump_spec(outputStream *st) const { | |||
| 85 | if (in(Address) == NULL__null) return; // node is dead | |||
| 86 | #ifndef ASSERT1 | |||
| 87 | // fake the missing field | |||
| 88 | const TypePtr* _adr_type = NULL__null; | |||
| 89 | if (in(Address) != NULL__null) | |||
| 90 | _adr_type = in(Address)->bottom_type()->isa_ptr(); | |||
| 91 | #endif | |||
| 92 | dump_adr_type(this, _adr_type, st); | |||
| 93 | ||||
| 94 | Compile* C = Compile::current(); | |||
| 95 | if (C->alias_type(_adr_type)->is_volatile()) { | |||
| 96 | st->print(" Volatile!"); | |||
| 97 | } | |||
| 98 | if (_unaligned_access) { | |||
| 99 | st->print(" unaligned"); | |||
| 100 | } | |||
| 101 | if (_mismatched_access) { | |||
| 102 | st->print(" mismatched"); | |||
| 103 | } | |||
| 104 | if (_unsafe_access) { | |||
| 105 | st->print(" unsafe"); | |||
| 106 | } | |||
| 107 | } | |||
| 108 | ||||
| 109 | void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { | |||
| 110 | st->print(" @"); | |||
| 111 | if (adr_type == NULL__null) { | |||
| 112 | st->print("NULL"); | |||
| 113 | } else { | |||
| 114 | adr_type->dump_on(st); | |||
| 115 | Compile* C = Compile::current(); | |||
| 116 | Compile::AliasType* atp = NULL__null; | |||
| 117 | if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); | |||
| 118 | if (atp == NULL__null) | |||
| 119 | st->print(", idx=?\?;"); | |||
| 120 | else if (atp->index() == Compile::AliasIdxBot) | |||
| 121 | st->print(", idx=Bot;"); | |||
| 122 | else if (atp->index() == Compile::AliasIdxTop) | |||
| 123 | st->print(", idx=Top;"); | |||
| 124 | else if (atp->index() == Compile::AliasIdxRaw) | |||
| 125 | st->print(", idx=Raw;"); | |||
| 126 | else { | |||
| 127 | ciField* field = atp->field(); | |||
| 128 | if (field) { | |||
| 129 | st->print(", name="); | |||
| 130 | field->print_name_on(st); | |||
| 131 | } | |||
| 132 | st->print(", idx=%d;", atp->index()); | |||
| 133 | } | |||
| 134 | } | |||
| 135 | } | |||
| 136 | ||||
| 137 | extern void print_alias_types(); | |||
| 138 | ||||
| 139 | #endif | |||
| 140 | ||||
| 141 | Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { | |||
| 142 | assert((t_oop != NULL), "sanity")do { if (!((t_oop != __null))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 142, "assert(" "(t_oop != __null)" ") failed", "sanity"); :: breakpoint(); } } while (0); | |||
| 143 | bool is_instance = t_oop->is_known_instance_field(); | |||
| 144 | bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && | |||
| 145 | (load != NULL__null) && load->is_Load() && | |||
| 146 | (phase->is_IterGVN() != NULL__null); | |||
| 147 | if (!(is_instance || is_boxed_value_load)) | |||
| 148 | return mchain; // don't try to optimize non-instance types | |||
| 149 | uint instance_id = t_oop->instance_id(); | |||
| 150 | Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); | |||
| 151 | Node *prev = NULL__null; | |||
| 152 | Node *result = mchain; | |||
| 153 | while (prev != result) { | |||
| 154 | prev = result; | |||
| 155 | if (result == start_mem) | |||
| 156 | break; // hit one of our sentinels | |||
| 157 | // skip over a call which does not affect this memory slice | |||
| 158 | if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { | |||
| 159 | Node *proj_in = result->in(0); | |||
| 160 | if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { | |||
| 161 | break; // hit one of our sentinels | |||
| 162 | } else if (proj_in->is_Call()) { | |||
| 163 | // ArrayCopyNodes processed here as well | |||
| 164 | CallNode *call = proj_in->as_Call(); | |||
| 165 | if (!call->may_modify(t_oop, phase)) { // returns false for instances | |||
| 166 | result = call->in(TypeFunc::Memory); | |||
| 167 | } | |||
| 168 | } else if (proj_in->is_Initialize()) { | |||
| 169 | AllocateNode* alloc = proj_in->as_Initialize()->allocation(); | |||
| 170 | // Stop if this is the initialization for the object instance which | |||
| 171 | // contains this memory slice, otherwise skip over it. | |||
| 172 | if ((alloc == NULL__null) || (alloc->_idx == instance_id)) { | |||
| 173 | break; | |||
| 174 | } | |||
| 175 | if (is_instance) { | |||
| 176 | result = proj_in->in(TypeFunc::Memory); | |||
| 177 | } else if (is_boxed_value_load) { | |||
| 178 | Node* klass = alloc->in(AllocateNode::KlassNode); | |||
| 179 | const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); | |||
| 180 | if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) { | |||
| 181 | result = proj_in->in(TypeFunc::Memory); // not related allocation | |||
| 182 | } | |||
| 183 | } | |||
| 184 | } else if (proj_in->is_MemBar()) { | |||
| 185 | ArrayCopyNode* ac = NULL__null; | |||
| 186 | if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { | |||
| 187 | break; | |||
| 188 | } | |||
| 189 | result = proj_in->in(TypeFunc::Memory); | |||
| 190 | } else { | |||
| 191 | assert(false, "unexpected projection")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 191, "assert(" "false" ") failed", "unexpected projection") ; ::breakpoint(); } } while (0); | |||
| 192 | } | |||
| 193 | } else if (result->is_ClearArray()) { | |||
| 194 | if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { | |||
| 195 | // Can not bypass initialization of the instance | |||
| 196 | // we are looking for. | |||
| 197 | break; | |||
| 198 | } | |||
| 199 | // Otherwise skip it (the call updated 'result' value). | |||
| 200 | } else if (result->is_MergeMem()) { | |||
| 201 | result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL__null, tty); | |||
| 202 | } | |||
| 203 | } | |||
| 204 | return result; | |||
| 205 | } | |||
| 206 | ||||
| 207 | Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { | |||
| 208 | const TypeOopPtr* t_oop = t_adr->isa_oopptr(); | |||
| 209 | if (t_oop == NULL__null) | |||
| 210 | return mchain; // don't try to optimize non-oop types | |||
| 211 | Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); | |||
| 212 | bool is_instance = t_oop->is_known_instance_field(); | |||
| 213 | PhaseIterGVN *igvn = phase->is_IterGVN(); | |||
| 214 | if (is_instance && igvn != NULL__null && result->is_Phi()) { | |||
| 215 | PhiNode *mphi = result->as_Phi(); | |||
| 216 | assert(mphi->bottom_type() == Type::MEMORY, "memory phi required")do { if (!(mphi->bottom_type() == Type::MEMORY)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 216, "assert(" "mphi->bottom_type() == Type::MEMORY" ") failed" , "memory phi required"); ::breakpoint(); } } while (0); | |||
| 217 | const TypePtr *t = mphi->adr_type(); | |||
| 218 | if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM || | |||
| 219 | (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() && | |||
| 220 | t->is_oopptr()->cast_to_exactness(true) | |||
| 221 | ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) | |||
| 222 | ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) { | |||
| 223 | // clone the Phi with our address type | |||
| 224 | result = mphi->split_out_instance(t_adr, igvn); | |||
| 225 | } else { | |||
| 226 | assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain")do { if (!(phase->C->get_alias_index(t) == phase->C-> get_alias_index(t_adr))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 226, "assert(" "phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr)" ") failed", "correct memory chain"); ::breakpoint(); } } while (0); | |||
| 227 | } | |||
| 228 | } | |||
| 229 | return result; | |||
| 230 | } | |||
| 231 | ||||
| 232 | static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { | |||
| 233 | uint alias_idx = phase->C->get_alias_index(tp); | |||
| 234 | Node *mem = mmem; | |||
| 235 | #ifdef ASSERT1 | |||
| 236 | { | |||
| 237 | // Check that current type is consistent with the alias index used during graph construction | |||
| 238 | assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx")do { if (!(alias_idx >= Compile::AliasIdxRaw)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 238, "assert(" "alias_idx >= Compile::AliasIdxRaw" ") failed" , "must not be a bad alias_idx"); ::breakpoint(); } } while ( 0); | |||
| 239 | bool consistent = adr_check == NULL__null || adr_check->empty() || | |||
| 240 | phase->C->must_alias(adr_check, alias_idx ); | |||
| 241 | // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] | |||
| 242 | if( !consistent && adr_check != NULL__null && !adr_check->empty() && | |||
| 243 | tp->isa_aryptr() && tp->offset() == Type::OffsetBot && | |||
| 244 | adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && | |||
| 245 | ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || | |||
| 246 | adr_check->offset() == oopDesc::klass_offset_in_bytes() || | |||
| 247 | adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { | |||
| 248 | // don't assert if it is dead code. | |||
| 249 | consistent = true; | |||
| 250 | } | |||
| 251 | if( !consistent ) { | |||
| 252 | st->print("alias_idx==%d, adr_check==", alias_idx); | |||
| 253 | if( adr_check == NULL__null ) { | |||
| 254 | st->print("NULL"); | |||
| 255 | } else { | |||
| 256 | adr_check->dump(); | |||
| 257 | } | |||
| 258 | st->cr(); | |||
| 259 | print_alias_types(); | |||
| 260 | assert(consistent, "adr_check must match alias idx")do { if (!(consistent)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 260, "assert(" "consistent" ") failed", "adr_check must match alias idx" ); ::breakpoint(); } } while (0); | |||
| 261 | } | |||
| 262 | } | |||
| 263 | #endif | |||
| 264 | // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally | |||
| 265 | // means an array I have not precisely typed yet. Do not do any | |||
| 266 | // alias stuff with it any time soon. | |||
| 267 | const TypeOopPtr *toop = tp->isa_oopptr(); | |||
| 268 | if( tp->base() != Type::AnyPtr && | |||
| 269 | !(toop && | |||
| 270 | toop->klass() != NULL__null && | |||
| 271 | toop->klass()->is_java_lang_Object() && | |||
| 272 | toop->offset() == Type::OffsetBot) ) { | |||
| 273 | // compress paths and change unreachable cycles to TOP | |||
| 274 | // If not, we can update the input infinitely along a MergeMem cycle | |||
| 275 | // Equivalent code in PhiNode::Ideal | |||
| 276 | Node* m = phase->transform(mmem); | |||
| 277 | // If transformed to a MergeMem, get the desired slice | |||
| 278 | // Otherwise the returned node represents memory for every slice | |||
| 279 | mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; | |||
| 280 | // Update input if it is progress over what we have now | |||
| 281 | } | |||
| 282 | return mem; | |||
| 283 | } | |||
| 284 | ||||
| 285 | //--------------------------Ideal_common--------------------------------------- | |||
| 286 | // Look for degenerate control and memory inputs. Bypass MergeMem inputs. | |||
| 287 | // Unhook non-raw memories from complete (macro-expanded) initializations. | |||
| 288 | Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { | |||
| 289 | // If our control input is a dead region, kill all below the region | |||
| 290 | Node *ctl = in(MemNode::Control); | |||
| 291 | if (ctl && remove_dead_region(phase, can_reshape)) | |||
| 292 | return this; | |||
| 293 | ctl = in(MemNode::Control); | |||
| 294 | // Don't bother trying to transform a dead node | |||
| 295 | if (ctl && ctl->is_top()) return NodeSentinel(Node*)-1; | |||
| 296 | ||||
| 297 | PhaseIterGVN *igvn = phase->is_IterGVN(); | |||
| 298 | // Wait if control on the worklist. | |||
| 299 | if (ctl && can_reshape && igvn != NULL__null) { | |||
| 300 | Node* bol = NULL__null; | |||
| 301 | Node* cmp = NULL__null; | |||
| 302 | if (ctl->in(0)->is_If()) { | |||
| 303 | assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity")do { if (!(ctl->is_IfTrue() || ctl->is_IfFalse())) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 303, "assert(" "ctl->is_IfTrue() || ctl->is_IfFalse()" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
| 304 | bol = ctl->in(0)->in(1); | |||
| 305 | if (bol->is_Bool()) | |||
| 306 | cmp = ctl->in(0)->in(1)->in(1); | |||
| 307 | } | |||
| 308 | if (igvn->_worklist.member(ctl) || | |||
| 309 | (bol != NULL__null && igvn->_worklist.member(bol)) || | |||
| 310 | (cmp != NULL__null && igvn->_worklist.member(cmp)) ) { | |||
| 311 | // This control path may be dead. | |||
| 312 | // Delay this memory node transformation until the control is processed. | |||
| 313 | igvn->_worklist.push(this); | |||
| 314 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
| 315 | } | |||
| 316 | } | |||
| 317 | // Ignore if memory is dead, or self-loop | |||
| 318 | Node *mem = in(MemNode::Memory); | |||
| 319 | if (phase->type( mem ) == Type::TOP) return NodeSentinel(Node*)-1; // caller will return NULL | |||
| 320 | assert(mem != this, "dead loop in MemNode::Ideal")do { if (!(mem != this)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 320, "assert(" "mem != this" ") failed", "dead loop in MemNode::Ideal" ); ::breakpoint(); } } while (0); | |||
| 321 | ||||
| 322 | if (can_reshape && igvn != NULL__null && igvn->_worklist.member(mem)) { | |||
| 323 | // This memory slice may be dead. | |||
| 324 | // Delay this mem node transformation until the memory is processed. | |||
| 325 | igvn->_worklist.push(this); | |||
| 326 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
| 327 | } | |||
| 328 | ||||
| 329 | Node *address = in(MemNode::Address); | |||
| 330 | const Type *t_adr = phase->type(address); | |||
| 331 | if (t_adr == Type::TOP) return NodeSentinel(Node*)-1; // caller will return NULL | |||
| 332 | ||||
| 333 | if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { | |||
| 334 | // Unsafe off-heap access with zero address. Remove access and other control users | |||
| 335 | // to not confuse optimizations and add a HaltNode to fail if this is ever executed. | |||
| 336 | assert(ctl != NULL, "unsafe accesses should be control dependent")do { if (!(ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 336, "assert(" "ctl != __null" ") failed", "unsafe accesses should be control dependent" ); ::breakpoint(); } } while (0); | |||
| 337 | for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { | |||
| 338 | Node* u = ctl->fast_out(i); | |||
| 339 | if (u != ctl) { | |||
| 340 | igvn->rehash_node_delayed(u); | |||
| 341 | int nb = u->replace_edge(ctl, phase->C->top(), igvn); | |||
| 342 | --i, imax -= nb; | |||
| 343 | } | |||
| 344 | } | |||
| 345 | Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); | |||
| 346 | Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); | |||
| 347 | phase->C->root()->add_req(halt); | |||
| 348 | return this; | |||
| 349 | } | |||
| 350 | ||||
| 351 | if (can_reshape && igvn != NULL__null && | |||
| 352 | (igvn->_worklist.member(address) || | |||
| 353 | (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { | |||
| 354 | // The address's base and type may change when the address is processed. | |||
| 355 | // Delay this mem node transformation until the address is processed. | |||
| 356 | igvn->_worklist.push(this); | |||
| 357 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
| 358 | } | |||
| 359 | ||||
| 360 | // Do NOT remove or optimize the next lines: ensure a new alias index | |||
| 361 | // is allocated for an oop pointer type before Escape Analysis. | |||
| 362 | // Note: C++ will not remove it since the call has side effect. | |||
| 363 | if (t_adr->isa_oopptr()) { | |||
| 364 | int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); | |||
| 365 | } | |||
| 366 | ||||
| 367 | Node* base = NULL__null; | |||
| 368 | if (address->is_AddP()) { | |||
| 369 | base = address->in(AddPNode::Base); | |||
| 370 | } | |||
| 371 | if (base != NULL__null && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && | |||
| 372 | !t_adr->isa_rawptr()) { | |||
| 373 | // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. | |||
| 374 | // Skip this node optimization if its address has TOP base. | |||
| 375 | return NodeSentinel(Node*)-1; // caller will return NULL | |||
| 376 | } | |||
| 377 | ||||
| 378 | // Avoid independent memory operations | |||
| 379 | Node* old_mem = mem; | |||
| 380 | ||||
| 381 | // The code which unhooks non-raw memories from complete (macro-expanded) | |||
| 382 | // initializations was removed. After macro-expansion all stores catched | |||
| 383 | // by Initialize node became raw stores and there is no information | |||
| 384 | // which memory slices they modify. So it is unsafe to move any memory | |||
| 385 | // operation above these stores. Also in most cases hooked non-raw memories | |||
| 386 | // were already unhooked by using information from detect_ptr_independence() | |||
| 387 | // and find_previous_store(). | |||
| 388 | ||||
| 389 | if (mem->is_MergeMem()) { | |||
| 390 | MergeMemNode* mmem = mem->as_MergeMem(); | |||
| 391 | const TypePtr *tp = t_adr->is_ptr(); | |||
| 392 | ||||
| 393 | mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); | |||
| 394 | } | |||
| 395 | ||||
| 396 | if (mem != old_mem) { | |||
| 397 | set_req(MemNode::Memory, mem); | |||
| 398 | if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL__null) { | |||
| 399 | igvn->_worklist.push(old_mem); | |||
| 400 | } | |||
| 401 | if (phase->type(mem) == Type::TOP) return NodeSentinel(Node*)-1; | |||
| 402 | return this; | |||
| 403 | } | |||
| 404 | ||||
| 405 | // let the subclass continue analyzing... | |||
| 406 | return NULL__null; | |||
| 407 | } | |||
| 408 | ||||
| 409 | // Helper function for proving some simple control dominations. | |||
| 410 | // Attempt to prove that all control inputs of 'dom' dominate 'sub'. | |||
| 411 | // Already assumes that 'dom' is available at 'sub', and that 'sub' | |||
| 412 | // is not a constant (dominated by the method's StartNode). | |||
| 413 | // Used by MemNode::find_previous_store to prove that the | |||
| 414 | // control input of a memory operation predates (dominates) | |||
| 415 | // an allocation it wants to look past. | |||
| 416 | bool MemNode::all_controls_dominate(Node* dom, Node* sub) { | |||
| 417 | if (dom == NULL__null || dom->is_top() || sub == NULL__null || sub->is_top()) | |||
| 418 | return false; // Conservative answer for dead code | |||
| 419 | ||||
| 420 | // Check 'dom'. Skip Proj and CatchProj nodes. | |||
| 421 | dom = dom->find_exact_control(dom); | |||
| 422 | if (dom == NULL__null || dom->is_top()) | |||
| 423 | return false; // Conservative answer for dead code | |||
| 424 | ||||
| 425 | if (dom == sub) { | |||
| 426 | // For the case when, for example, 'sub' is Initialize and the original | |||
| 427 | // 'dom' is Proj node of the 'sub'. | |||
| 428 | return false; | |||
| 429 | } | |||
| 430 | ||||
| 431 | if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) | |||
| 432 | return true; | |||
| 433 | ||||
| 434 | // 'dom' dominates 'sub' if its control edge and control edges | |||
| 435 | // of all its inputs dominate or equal to sub's control edge. | |||
| 436 | ||||
| 437 | // Currently 'sub' is either Allocate, Initialize or Start nodes. | |||
| 438 | // Or Region for the check in LoadNode::Ideal(); | |||
| 439 | // 'sub' should have sub->in(0) != NULL. | |||
| 440 | assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||do { if (!(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 441, "assert(" "sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call()" ") failed", "expecting only these nodes"); ::breakpoint(); } } while (0) | |||
| 441 | sub->is_Region() || sub->is_Call(), "expecting only these nodes")do { if (!(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 441, "assert(" "sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call()" ") failed", "expecting only these nodes"); ::breakpoint(); } } while (0); | |||
| 442 | ||||
| 443 | // Get control edge of 'sub'. | |||
| 444 | Node* orig_sub = sub; | |||
| 445 | sub = sub->find_exact_control(sub->in(0)); | |||
| 446 | if (sub == NULL__null || sub->is_top()) | |||
| 447 | return false; // Conservative answer for dead code | |||
| 448 | ||||
| 449 | assert(sub->is_CFG(), "expecting control")do { if (!(sub->is_CFG())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 449, "assert(" "sub->is_CFG()" ") failed", "expecting control" ); ::breakpoint(); } } while (0); | |||
| 450 | ||||
| 451 | if (sub == dom) | |||
| 452 | return true; | |||
| 453 | ||||
| 454 | if (sub->is_Start() || sub->is_Root()) | |||
| 455 | return false; | |||
| 456 | ||||
| 457 | { | |||
| 458 | // Check all control edges of 'dom'. | |||
| 459 | ||||
| 460 | ResourceMark rm; | |||
| 461 | Node_List nlist; | |||
| 462 | Unique_Node_List dom_list; | |||
| 463 | ||||
| 464 | dom_list.push(dom); | |||
| 465 | bool only_dominating_controls = false; | |||
| 466 | ||||
| 467 | for (uint next = 0; next < dom_list.size(); next++) { | |||
| 468 | Node* n = dom_list.at(next); | |||
| 469 | if (n == orig_sub) | |||
| 470 | return false; // One of dom's inputs dominated by sub. | |||
| 471 | if (!n->is_CFG() && n->pinned()) { | |||
| 472 | // Check only own control edge for pinned non-control nodes. | |||
| 473 | n = n->find_exact_control(n->in(0)); | |||
| 474 | if (n == NULL__null || n->is_top()) | |||
| 475 | return false; // Conservative answer for dead code | |||
| 476 | assert(n->is_CFG(), "expecting control")do { if (!(n->is_CFG())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 476, "assert(" "n->is_CFG()" ") failed", "expecting control" ); ::breakpoint(); } } while (0); | |||
| 477 | dom_list.push(n); | |||
| 478 | } else if (n->is_Con() || n->is_Start() || n->is_Root()) { | |||
| 479 | only_dominating_controls = true; | |||
| 480 | } else if (n->is_CFG()) { | |||
| 481 | if (n->dominates(sub, nlist)) | |||
| 482 | only_dominating_controls = true; | |||
| 483 | else | |||
| 484 | return false; | |||
| 485 | } else { | |||
| 486 | // First, own control edge. | |||
| 487 | Node* m = n->find_exact_control(n->in(0)); | |||
| 488 | if (m != NULL__null) { | |||
| 489 | if (m->is_top()) | |||
| 490 | return false; // Conservative answer for dead code | |||
| 491 | dom_list.push(m); | |||
| 492 | } | |||
| 493 | // Now, the rest of edges. | |||
| 494 | uint cnt = n->req(); | |||
| 495 | for (uint i = 1; i < cnt; i++) { | |||
| 496 | m = n->find_exact_control(n->in(i)); | |||
| 497 | if (m == NULL__null || m->is_top()) | |||
| 498 | continue; | |||
| 499 | dom_list.push(m); | |||
| 500 | } | |||
| 501 | } | |||
| 502 | } | |||
| 503 | return only_dominating_controls; | |||
| 504 | } | |||
| 505 | } | |||
| 506 | ||||
| 507 | //---------------------detect_ptr_independence--------------------------------- | |||
| 508 | // Used by MemNode::find_previous_store to prove that two base | |||
| 509 | // pointers are never equal. | |||
| 510 | // The pointers are accompanied by their associated allocations, | |||
| 511 | // if any, which have been previously discovered by the caller. | |||
| 512 | bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, | |||
| 513 | Node* p2, AllocateNode* a2, | |||
| 514 | PhaseTransform* phase) { | |||
| 515 | // Attempt to prove that these two pointers cannot be aliased. | |||
| 516 | // They may both manifestly be allocations, and they should differ. | |||
| 517 | // Or, if they are not both allocations, they can be distinct constants. | |||
| 518 | // Otherwise, one is an allocation and the other a pre-existing value. | |||
| 519 | if (a1 == NULL__null && a2 == NULL__null) { // neither an allocation | |||
| 520 | return (p1 != p2) && p1->is_Con() && p2->is_Con(); | |||
| 521 | } else if (a1 != NULL__null && a2 != NULL__null) { // both allocations | |||
| 522 | return (a1 != a2); | |||
| 523 | } else if (a1 != NULL__null) { // one allocation a1 | |||
| 524 | // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) | |||
| 525 | return all_controls_dominate(p2, a1); | |||
| 526 | } else { //(a2 != NULL) // one allocation a2 | |||
| 527 | return all_controls_dominate(p1, a2); | |||
| 528 | } | |||
| 529 | return false; | |||
| 530 | } | |||
| 531 | ||||
| 532 | ||||
| 533 | // Find an arraycopy ac that produces the memory state represented by parameter mem. | |||
| 534 | // Return ac if | |||
| 535 | // (a) can_see_stored_value=true and ac must have set the value for this load or if | |||
| 536 | // (b) can_see_stored_value=false and ac could have set the value for this load or if | |||
| 537 | // (c) can_see_stored_value=false and ac cannot have set the value for this load. | |||
| 538 | // In case (c) change the parameter mem to the memory input of ac to skip it | |||
| 539 | // when searching stored value. | |||
| 540 | // Otherwise return NULL. | |||
| 541 | Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { | |||
| 542 | ArrayCopyNode* ac = find_array_copy_clone(phase, ld_alloc, mem); | |||
| 543 | if (ac != NULL__null) { | |||
| 544 | Node* ld_addp = in(MemNode::Address); | |||
| 545 | Node* src = ac->in(ArrayCopyNode::Src); | |||
| 546 | const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); | |||
| 547 | ||||
| 548 | // This is a load from a cloned array. The corresponding arraycopy ac must | |||
| 549 | // have set the value for the load and we can return ac but only if the load | |||
| 550 | // is known to be within bounds. This is checked below. | |||
| 551 | if (ary_t != NULL__null && ld_addp->is_AddP()) { | |||
| 552 | Node* ld_offs = ld_addp->in(AddPNode::Offset); | |||
| 553 | BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type(); | |||
| 554 | jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); | |||
| 555 | jlong elemsize = type2aelembytes(ary_elem); | |||
| 556 | ||||
| 557 | const TypeXTypeLong* ld_offs_t = phase->type(ld_offs)->isa_intptr_tisa_long(); | |||
| 558 | const TypeInt* sizetype = ary_t->size(); | |||
| 559 | ||||
| 560 | if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { | |||
| 561 | // The load is known to be within bounds. It receives its value from ac. | |||
| 562 | return ac; | |||
| 563 | } | |||
| 564 | // The load is known to be out-of-bounds. | |||
| 565 | } | |||
| 566 | // The load could be out-of-bounds. It must not be hoisted but must remain | |||
| 567 | // dependent on the runtime range check. This is achieved by returning NULL. | |||
| 568 | } else if (mem->is_Proj() && mem->in(0) != NULL__null && mem->in(0)->is_ArrayCopy()) { | |||
| 569 | ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); | |||
| 570 | ||||
| 571 | if (ac->is_arraycopy_validated() || | |||
| 572 | ac->is_copyof_validated() || | |||
| 573 | ac->is_copyofrange_validated()) { | |||
| 574 | Node* ld_addp = in(MemNode::Address); | |||
| 575 | if (ld_addp->is_AddP()) { | |||
| 576 | Node* ld_base = ld_addp->in(AddPNode::Address); | |||
| 577 | Node* ld_offs = ld_addp->in(AddPNode::Offset); | |||
| 578 | ||||
| 579 | Node* dest = ac->in(ArrayCopyNode::Dest); | |||
| 580 | ||||
| 581 | if (dest == ld_base) { | |||
| 582 | const TypeXTypeLong *ld_offs_t = phase->type(ld_offs)->isa_intptr_tisa_long(); | |||
| 583 | if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) { | |||
| 584 | return ac; | |||
| 585 | } | |||
| 586 | if (!can_see_stored_value) { | |||
| 587 | mem = ac->in(TypeFunc::Memory); | |||
| 588 | return ac; | |||
| 589 | } | |||
| 590 | } | |||
| 591 | } | |||
| 592 | } | |||
| 593 | } | |||
| 594 | return NULL__null; | |||
| 595 | } | |||
| 596 | ||||
| 597 | ArrayCopyNode* MemNode::find_array_copy_clone(PhaseTransform* phase, Node* ld_alloc, Node* mem) const { | |||
| 598 | if (mem->is_Proj() && mem->in(0) != NULL__null && (mem->in(0)->Opcode() == Op_MemBarStoreStore || | |||
| 599 | mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { | |||
| 600 | if (ld_alloc != NULL__null) { | |||
| 601 | // Check if there is an array copy for a clone | |||
| 602 | Node* mb = mem->in(0); | |||
| 603 | ArrayCopyNode* ac = NULL__null; | |||
| 604 | if (mb->in(0) != NULL__null && mb->in(0)->is_Proj() && | |||
| 605 | mb->in(0)->in(0) != NULL__null && mb->in(0)->in(0)->is_ArrayCopy()) { | |||
| 606 | ac = mb->in(0)->in(0)->as_ArrayCopy(); | |||
| 607 | } else { | |||
| 608 | // Step over GC barrier when ReduceInitialCardMarks is disabled | |||
| 609 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
| 610 | Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); | |||
| 611 | ||||
| 612 | if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { | |||
| 613 | ac = control_proj_ac->in(0)->as_ArrayCopy(); | |||
| 614 | } | |||
| 615 | } | |||
| 616 | ||||
| 617 | if (ac != NULL__null && ac->is_clonebasic()) { | |||
| 618 | AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase); | |||
| 619 | if (alloc != NULL__null && alloc == ld_alloc) { | |||
| 620 | return ac; | |||
| 621 | } | |||
| 622 | } | |||
| 623 | } | |||
| 624 | } | |||
| 625 | return NULL__null; | |||
| 626 | } | |||
| 627 | ||||
| 628 | // The logic for reordering loads and stores uses four steps: | |||
| 629 | // (a) Walk carefully past stores and initializations which we | |||
| 630 | // can prove are independent of this load. | |||
| 631 | // (b) Observe that the next memory state makes an exact match | |||
| 632 | // with self (load or store), and locate the relevant store. | |||
| 633 | // (c) Ensure that, if we were to wire self directly to the store, | |||
| 634 | // the optimizer would fold it up somehow. | |||
| 635 | // (d) Do the rewiring, and return, depending on some other part of | |||
| 636 | // the optimizer to fold up the load. | |||
| 637 | // This routine handles steps (a) and (b). Steps (c) and (d) are | |||
| 638 | // specific to loads and stores, so they are handled by the callers. | |||
| 639 | // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) | |||
| 640 | // | |||
| 641 | Node* MemNode::find_previous_store(PhaseTransform* phase) { | |||
| 642 | Node* ctrl = in(MemNode::Control); | |||
| 643 | Node* adr = in(MemNode::Address); | |||
| 644 | intptr_t offset = 0; | |||
| 645 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
| 646 | AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); | |||
| 647 | ||||
| 648 | if (offset == Type::OffsetBot) | |||
| 649 | return NULL__null; // cannot unalias unless there are precise offsets | |||
| 650 | ||||
| 651 | const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); | |||
| 652 | const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); | |||
| 653 | ||||
| 654 | intptr_t size_in_bytes = memory_size(); | |||
| 655 | ||||
| 656 | Node* mem = in(MemNode::Memory); // start searching here... | |||
| 657 | ||||
| 658 | int cnt = 50; // Cycle limiter | |||
| 659 | for (;;) { // While we can dance past unrelated stores... | |||
| 660 | if (--cnt < 0) break; // Caught in cycle or a complicated dance? | |||
| 661 | ||||
| 662 | Node* prev = mem; | |||
| 663 | if (mem->is_Store()) { | |||
| 664 | Node* st_adr = mem->in(MemNode::Address); | |||
| 665 | intptr_t st_offset = 0; | |||
| 666 | Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); | |||
| 667 | if (st_base == NULL__null) | |||
| 668 | break; // inscrutable pointer | |||
| 669 | ||||
| 670 | // For raw accesses it's not enough to prove that constant offsets don't intersect. | |||
| 671 | // We need the bases to be the equal in order for the offset check to make sense. | |||
| 672 | if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { | |||
| 673 | break; | |||
| 674 | } | |||
| 675 | ||||
| 676 | if (st_offset != offset && st_offset != Type::OffsetBot) { | |||
| 677 | const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); | |||
| 678 | assert(mem->as_Store()->memory_size() <= MAX_STORE, "")do { if (!(mem->as_Store()->memory_size() <= MAX_STORE )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 678, "assert(" "mem->as_Store()->memory_size() <= MAX_STORE" ") failed", ""); ::breakpoint(); } } while (0); | |||
| 679 | if (st_offset >= offset + size_in_bytes || | |||
| 680 | st_offset <= offset - MAX_STORE || | |||
| 681 | st_offset <= offset - mem->as_Store()->memory_size()) { | |||
| 682 | // Success: The offsets are provably independent. | |||
| 683 | // (You may ask, why not just test st_offset != offset and be done? | |||
| 684 | // The answer is that stores of different sizes can co-exist | |||
| 685 | // in the same sequence of RawMem effects. We sometimes initialize | |||
| 686 | // a whole 'tile' of array elements with a single jint or jlong.) | |||
| 687 | mem = mem->in(MemNode::Memory); | |||
| 688 | continue; // (a) advance through independent store memory | |||
| 689 | } | |||
| 690 | } | |||
| 691 | if (st_base != base && | |||
| 692 | detect_ptr_independence(base, alloc, | |||
| 693 | st_base, | |||
| 694 | AllocateNode::Ideal_allocation(st_base, phase), | |||
| 695 | phase)) { | |||
| 696 | // Success: The bases are provably independent. | |||
| 697 | mem = mem->in(MemNode::Memory); | |||
| 698 | continue; // (a) advance through independent store memory | |||
| 699 | } | |||
| 700 | ||||
| 701 | // (b) At this point, if the bases or offsets do not agree, we lose, | |||
| 702 | // since we have not managed to prove 'this' and 'mem' independent. | |||
| 703 | if (st_base == base && st_offset == offset) { | |||
| 704 | return mem; // let caller handle steps (c), (d) | |||
| 705 | } | |||
| 706 | ||||
| 707 | } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { | |||
| 708 | InitializeNode* st_init = mem->in(0)->as_Initialize(); | |||
| 709 | AllocateNode* st_alloc = st_init->allocation(); | |||
| 710 | if (st_alloc == NULL__null) | |||
| 711 | break; // something degenerated | |||
| 712 | bool known_identical = false; | |||
| 713 | bool known_independent = false; | |||
| 714 | if (alloc == st_alloc) | |||
| 715 | known_identical = true; | |||
| 716 | else if (alloc != NULL__null) | |||
| 717 | known_independent = true; | |||
| 718 | else if (all_controls_dominate(this, st_alloc)) | |||
| 719 | known_independent = true; | |||
| 720 | ||||
| 721 | if (known_independent) { | |||
| 722 | // The bases are provably independent: Either they are | |||
| 723 | // manifestly distinct allocations, or else the control | |||
| 724 | // of this load dominates the store's allocation. | |||
| 725 | int alias_idx = phase->C->get_alias_index(adr_type()); | |||
| 726 | if (alias_idx == Compile::AliasIdxRaw) { | |||
| 727 | mem = st_alloc->in(TypeFunc::Memory); | |||
| 728 | } else { | |||
| 729 | mem = st_init->memory(alias_idx); | |||
| 730 | } | |||
| 731 | continue; // (a) advance through independent store memory | |||
| 732 | } | |||
| 733 | ||||
| 734 | // (b) at this point, if we are not looking at a store initializing | |||
| 735 | // the same allocation we are loading from, we lose. | |||
| 736 | if (known_identical) { | |||
| 737 | // From caller, can_see_stored_value will consult find_captured_store. | |||
| 738 | return mem; // let caller handle steps (c), (d) | |||
| 739 | } | |||
| 740 | ||||
| 741 | } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL__null) { | |||
| 742 | if (prev != mem) { | |||
| 743 | // Found an arraycopy but it doesn't affect that load | |||
| 744 | continue; | |||
| 745 | } | |||
| 746 | // Found an arraycopy that may affect that load | |||
| 747 | return mem; | |||
| 748 | } else if (addr_t != NULL__null && addr_t->is_known_instance_field()) { | |||
| 749 | // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. | |||
| 750 | if (mem->is_Proj() && mem->in(0)->is_Call()) { | |||
| 751 | // ArrayCopyNodes processed here as well. | |||
| 752 | CallNode *call = mem->in(0)->as_Call(); | |||
| 753 | if (!call->may_modify(addr_t, phase)) { | |||
| 754 | mem = call->in(TypeFunc::Memory); | |||
| 755 | continue; // (a) advance through independent call memory | |||
| 756 | } | |||
| 757 | } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { | |||
| 758 | ArrayCopyNode* ac = NULL__null; | |||
| 759 | if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { | |||
| 760 | break; | |||
| 761 | } | |||
| 762 | mem = mem->in(0)->in(TypeFunc::Memory); | |||
| 763 | continue; // (a) advance through independent MemBar memory | |||
| 764 | } else if (mem->is_ClearArray()) { | |||
| 765 | if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { | |||
| 766 | // (the call updated 'mem' value) | |||
| 767 | continue; // (a) advance through independent allocation memory | |||
| 768 | } else { | |||
| 769 | // Can not bypass initialization of the instance | |||
| 770 | // we are looking for. | |||
| 771 | return mem; | |||
| 772 | } | |||
| 773 | } else if (mem->is_MergeMem()) { | |||
| 774 | int alias_idx = phase->C->get_alias_index(adr_type()); | |||
| 775 | mem = mem->as_MergeMem()->memory_at(alias_idx); | |||
| 776 | continue; // (a) advance through independent MergeMem memory | |||
| 777 | } | |||
| 778 | } | |||
| 779 | ||||
| 780 | // Unless there is an explicit 'continue', we must bail out here, | |||
| 781 | // because 'mem' is an inscrutable memory state (e.g., a call). | |||
| 782 | break; | |||
| 783 | } | |||
| 784 | ||||
| 785 | return NULL__null; // bail out | |||
| 786 | } | |||
| 787 | ||||
| 788 | //----------------------calculate_adr_type------------------------------------- | |||
| 789 | // Helper function. Notices when the given type of address hits top or bottom. | |||
| 790 | // Also, asserts a cross-check of the type against the expected address type. | |||
| 791 | const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { | |||
| 792 | if (t == Type::TOP) return NULL__null; // does not touch memory any more? | |||
| 793 | #ifdef ASSERT1 | |||
| 794 | if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = NULL__null; | |||
| 795 | #endif | |||
| 796 | const TypePtr* tp = t->isa_ptr(); | |||
| 797 | if (tp == NULL__null) { | |||
| 798 | assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide")do { if (!(cross_check == __null || cross_check == TypePtr::BOTTOM )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 798, "assert(" "cross_check == __null || cross_check == TypePtr::BOTTOM" ") failed", "expected memory type must be wide"); ::breakpoint (); } } while (0); | |||
| 799 | return TypePtr::BOTTOM; // touches lots of memory | |||
| 800 | } else { | |||
| 801 | #ifdef ASSERT1 | |||
| 802 | // %%%% [phh] We don't check the alias index if cross_check is | |||
| 803 | // TypeRawPtr::BOTTOM. Needs to be investigated. | |||
| 804 | if (cross_check != NULL__null && | |||
| 805 | cross_check != TypePtr::BOTTOM && | |||
| 806 | cross_check != TypeRawPtr::BOTTOM) { | |||
| 807 | // Recheck the alias index, to see if it has changed (due to a bug). | |||
| 808 | Compile* C = Compile::current(); | |||
| 809 | assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),do { if (!(C->get_alias_index(cross_check) == C->get_alias_index (tp))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 810, "assert(" "C->get_alias_index(cross_check) == C->get_alias_index(tp)" ") failed", "must stay in the original alias category"); ::breakpoint (); } } while (0) | |||
| 810 | "must stay in the original alias category")do { if (!(C->get_alias_index(cross_check) == C->get_alias_index (tp))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 810, "assert(" "C->get_alias_index(cross_check) == C->get_alias_index(tp)" ") failed", "must stay in the original alias category"); ::breakpoint (); } } while (0); | |||
| 811 | // The type of the address must be contained in the adr_type, | |||
| 812 | // disregarding "null"-ness. | |||
| 813 | // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) | |||
| 814 | const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); | |||
| 815 | assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),do { if (!(cross_check->meet(tp_notnull) == cross_check-> remove_speculative())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 816, "assert(" "cross_check->meet(tp_notnull) == cross_check->remove_speculative()" ") failed", "real address must not escape from expected memory type" ); ::breakpoint(); } } while (0) | |||
| 816 | "real address must not escape from expected memory type")do { if (!(cross_check->meet(tp_notnull) == cross_check-> remove_speculative())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 816, "assert(" "cross_check->meet(tp_notnull) == cross_check->remove_speculative()" ") failed", "real address must not escape from expected memory type" ); ::breakpoint(); } } while (0); | |||
| 817 | } | |||
| 818 | #endif | |||
| 819 | return tp; | |||
| 820 | } | |||
| 821 | } | |||
| 822 | ||||
| 823 | //============================================================================= | |||
| 824 | // Should LoadNode::Ideal() attempt to remove control edges? | |||
| 825 | bool LoadNode::can_remove_control() const { | |||
| 826 | return true; | |||
| 827 | } | |||
| 828 | uint LoadNode::size_of() const { return sizeof(*this); } | |||
| 829 | bool LoadNode::cmp( const Node &n ) const | |||
| 830 | { return !Type::cmp( _type, ((LoadNode&)n)._type ); } | |||
| 831 | const Type *LoadNode::bottom_type() const { return _type; } | |||
| 832 | uint LoadNode::ideal_reg() const { | |||
| 833 | return _type->ideal_reg(); | |||
| 834 | } | |||
| 835 | ||||
| 836 | #ifndef PRODUCT | |||
| 837 | void LoadNode::dump_spec(outputStream *st) const { | |||
| 838 | MemNode::dump_spec(st); | |||
| 839 | if( !Verbose && !WizardMode ) { | |||
| 840 | // standard dump does this in Verbose and WizardMode | |||
| 841 | st->print(" #"); _type->dump_on(st); | |||
| 842 | } | |||
| 843 | if (!depends_only_on_test()) { | |||
| 844 | st->print(" (does not depend only on test)"); | |||
| 845 | } | |||
| 846 | } | |||
| 847 | #endif | |||
| 848 | ||||
| 849 | #ifdef ASSERT1 | |||
| 850 | //----------------------------is_immutable_value------------------------------- | |||
| 851 | // Helper function to allow a raw load without control edge for some cases | |||
| 852 | bool LoadNode::is_immutable_value(Node* adr) { | |||
| 853 | return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && | |||
| 854 | adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal && | |||
| 855 | (adr->in(AddPNode::Offset)->find_intptr_t_confind_long_con(-1) == | |||
| 856 | in_bytes(JavaThread::osthread_offset()) || | |||
| 857 | adr->in(AddPNode::Offset)->find_intptr_t_confind_long_con(-1) == | |||
| 858 | in_bytes(JavaThread::threadObj_offset()))); | |||
| 859 | } | |||
| 860 | #endif | |||
| 861 | ||||
| 862 | //----------------------------LoadNode::make----------------------------------- | |||
| 863 | // Polymorphic factory method: | |||
| 864 | Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo, | |||
| 865 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { | |||
| 866 | Compile* C = gvn.C; | |||
| 867 | ||||
| 868 | // sanity check the alias category against the created node type | |||
| 869 | assert(!(adr_type->isa_oopptr() &&do { if (!(!(adr_type->isa_oopptr() && adr_type-> offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())" ") failed", "use LoadKlassNode instead"); ::breakpoint(); } } while (0) | |||
| 870 | adr_type->offset() == oopDesc::klass_offset_in_bytes()),do { if (!(!(adr_type->isa_oopptr() && adr_type-> offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())" ") failed", "use LoadKlassNode instead"); ::breakpoint(); } } while (0) | |||
| 871 | "use LoadKlassNode instead")do { if (!(!(adr_type->isa_oopptr() && adr_type-> offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())" ") failed", "use LoadKlassNode instead"); ::breakpoint(); } } while (0); | |||
| 872 | assert(!(adr_type->isa_aryptr() &&do { if (!(!(adr_type->isa_aryptr() && adr_type-> offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())" ") failed", "use LoadRangeNode instead"); ::breakpoint(); } } while (0) | |||
| 873 | adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),do { if (!(!(adr_type->isa_aryptr() && adr_type-> offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())" ") failed", "use LoadRangeNode instead"); ::breakpoint(); } } while (0) | |||
| 874 | "use LoadRangeNode instead")do { if (!(!(adr_type->isa_aryptr() && adr_type-> offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())" ") failed", "use LoadRangeNode instead"); ::breakpoint(); } } while (0); | |||
| 875 | // Check control edge of raw loads | |||
| 876 | assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||do { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
| 877 | // oop will be recorded in oop map if load crosses safepointdo { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
| 878 | rt->isa_oopptr() || is_immutable_value(adr),do { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
| 879 | "raw memory operations should have control edge")do { if (!(ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value (adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0); | |||
| 880 | LoadNode* load = NULL__null; | |||
| 881 | switch (bt) { | |||
| 882 | case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
| 883 | case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
| 884 | case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
| 885 | case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
| 886 | case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; | |||
| 887 | case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break; | |||
| 888 | case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; | |||
| 889 | case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; | |||
| 890 | case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; | |||
| 891 | case T_OBJECT: | |||
| 892 | #ifdef _LP641 | |||
| 893 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { | |||
| 894 | load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); | |||
| 895 | } else | |||
| 896 | #endif | |||
| 897 | { | |||
| 898 | assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop")do { if (!(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 898, "assert(" "!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass()" ") failed", "should have got back a narrow oop"); ::breakpoint (); } } while (0); | |||
| 899 | load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); | |||
| 900 | } | |||
| 901 | break; | |||
| 902 | default: | |||
| 903 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 903); ::breakpoint(); } while (0); | |||
| 904 | break; | |||
| 905 | } | |||
| 906 | assert(load != NULL, "LoadNode should have been created")do { if (!(load != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 906, "assert(" "load != __null" ") failed", "LoadNode should have been created" ); ::breakpoint(); } } while (0); | |||
| 907 | if (unaligned) { | |||
| 908 | load->set_unaligned_access(); | |||
| 909 | } | |||
| 910 | if (mismatched) { | |||
| 911 | load->set_mismatched_access(); | |||
| 912 | } | |||
| 913 | if (unsafe) { | |||
| 914 | load->set_unsafe_access(); | |||
| 915 | } | |||
| 916 | load->set_barrier_data(barrier_data); | |||
| 917 | if (load->Opcode() == Op_LoadN) { | |||
| 918 | Node* ld = gvn.transform(load); | |||
| 919 | return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); | |||
| 920 | } | |||
| 921 | ||||
| 922 | return load; | |||
| 923 | } | |||
| 924 | ||||
| 925 | LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, | |||
| 926 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { | |||
| 927 | bool require_atomic = true; | |||
| 928 | LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic); | |||
| 929 | if (unaligned) { | |||
| 930 | load->set_unaligned_access(); | |||
| 931 | } | |||
| 932 | if (mismatched) { | |||
| 933 | load->set_mismatched_access(); | |||
| 934 | } | |||
| 935 | if (unsafe) { | |||
| 936 | load->set_unsafe_access(); | |||
| 937 | } | |||
| 938 | load->set_barrier_data(barrier_data); | |||
| 939 | return load; | |||
| 940 | } | |||
| 941 | ||||
| 942 | LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, | |||
| 943 | ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { | |||
| 944 | bool require_atomic = true; | |||
| 945 | LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic); | |||
| 946 | if (unaligned) { | |||
| 947 | load->set_unaligned_access(); | |||
| 948 | } | |||
| 949 | if (mismatched) { | |||
| 950 | load->set_mismatched_access(); | |||
| 951 | } | |||
| 952 | if (unsafe) { | |||
| 953 | load->set_unsafe_access(); | |||
| 954 | } | |||
| 955 | load->set_barrier_data(barrier_data); | |||
| 956 | return load; | |||
| 957 | } | |||
| 958 | ||||
| 959 | ||||
| 960 | ||||
| 961 | //------------------------------hash------------------------------------------- | |||
| 962 | uint LoadNode::hash() const { | |||
| 963 | // unroll addition of interesting fields | |||
| 964 | return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); | |||
| 965 | } | |||
| 966 | ||||
| 967 | static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { | |||
| 968 | if ((atp != NULL__null) && (atp->index() >= Compile::AliasIdxRaw)) { | |||
| 969 | bool non_volatile = (atp->field() != NULL__null) && !atp->field()->is_volatile(); | |||
| 970 | bool is_stable_ary = FoldStableValues && | |||
| 971 | (tp != NULL__null) && (tp->isa_aryptr() != NULL__null) && | |||
| 972 | tp->isa_aryptr()->is_stable(); | |||
| 973 | ||||
| 974 | return (eliminate_boxing && non_volatile) || is_stable_ary; | |||
| 975 | } | |||
| 976 | ||||
| 977 | return false; | |||
| 978 | } | |||
| 979 | ||||
| 980 | // Is the value loaded previously stored by an arraycopy? If so return | |||
| 981 | // a load node that reads from the source array so we may be able to | |||
| 982 | // optimize out the ArrayCopy node later. | |||
| 983 | Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { | |||
| 984 | Node* ld_adr = in(MemNode::Address); | |||
| 985 | intptr_t ld_off = 0; | |||
| 986 | AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); | |||
| 987 | Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); | |||
| 988 | if (ac != NULL__null) { | |||
| 989 | assert(ac->is_ArrayCopy(), "what kind of node can this be?")do { if (!(ac->is_ArrayCopy())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 989, "assert(" "ac->is_ArrayCopy()" ") failed", "what kind of node can this be?" ); ::breakpoint(); } } while (0); | |||
| 990 | ||||
| 991 | Node* mem = ac->in(TypeFunc::Memory); | |||
| 992 | Node* ctl = ac->in(0); | |||
| 993 | Node* src = ac->in(ArrayCopyNode::Src); | |||
| 994 | ||||
| 995 | if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { | |||
| 996 | return NULL__null; | |||
| 997 | } | |||
| 998 | ||||
| 999 | LoadNode* ld = clone()->as_Load(); | |||
| 1000 | Node* addp = in(MemNode::Address)->clone(); | |||
| 1001 | if (ac->as_ArrayCopy()->is_clonebasic()) { | |||
| 1002 | assert(ld_alloc != NULL, "need an alloc")do { if (!(ld_alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1002, "assert(" "ld_alloc != __null" ") failed", "need an alloc" ); ::breakpoint(); } } while (0); | |||
| 1003 | assert(addp->is_AddP(), "address must be addp")do { if (!(addp->is_AddP())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1003, "assert(" "addp->is_AddP()" ") failed", "address must be addp" ); ::breakpoint(); } } while (0); | |||
| 1004 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
| 1005 | assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern")do { if (!(bs->step_over_gc_barrier(addp->in(AddPNode:: Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode ::Dest)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1005, "assert(" "bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest))" ") failed", "strange pattern"); ::breakpoint(); } } while (0 ); | |||
| 1006 | assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern")do { if (!(bs->step_over_gc_barrier(addp->in(AddPNode:: Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode ::Dest)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1006, "assert(" "bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest))" ") failed", "strange pattern"); ::breakpoint(); } } while (0 ); | |||
| 1007 | addp->set_req(AddPNode::Base, src); | |||
| 1008 | addp->set_req(AddPNode::Address, src); | |||
| 1009 | } else { | |||
| 1010 | assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac-> as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()" ") failed", "only supported cases"); ::breakpoint(); } } while (0) | |||
| 1011 | ac->as_ArrayCopy()->is_copyof_validated() ||do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac-> as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()" ") failed", "only supported cases"); ::breakpoint(); } } while (0) | |||
| 1012 | ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases")do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac-> as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()" ") failed", "only supported cases"); ::breakpoint(); } } while (0); | |||
| 1013 | assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be")do { if (!(addp->in(AddPNode::Base) == addp->in(AddPNode ::Address))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1013, "assert(" "addp->in(AddPNode::Base) == addp->in(AddPNode::Address)" ") failed", "should be"); ::breakpoint(); } } while (0); | |||
| 1014 | addp->set_req(AddPNode::Base, src); | |||
| 1015 | addp->set_req(AddPNode::Address, src); | |||
| 1016 | ||||
| 1017 | const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); | |||
| 1018 | BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type(); | |||
| 1019 | uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); | |||
| 1020 | uint shift = exact_log2(type2aelembytes(ary_elem)); | |||
| 1021 | ||||
| 1022 | Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); | |||
| 1023 | #ifdef _LP641 | |||
| 1024 | diff = phase->transform(new ConvI2LNode(diff)); | |||
| 1025 | #endif | |||
| 1026 | diff = phase->transform(new LShiftXNodeLShiftLNode(diff, phase->intcon(shift))); | |||
| 1027 | ||||
| 1028 | Node* offset = phase->transform(new AddXNodeAddLNode(addp->in(AddPNode::Offset), diff)); | |||
| 1029 | addp->set_req(AddPNode::Offset, offset); | |||
| 1030 | } | |||
| 1031 | addp = phase->transform(addp); | |||
| 1032 | #ifdef ASSERT1 | |||
| 1033 | const TypePtr* adr_type = phase->type(addp)->is_ptr(); | |||
| 1034 | ld->_adr_type = adr_type; | |||
| 1035 | #endif | |||
| 1036 | ld->set_req(MemNode::Address, addp); | |||
| 1037 | ld->set_req(0, ctl); | |||
| 1038 | ld->set_req(MemNode::Memory, mem); | |||
| 1039 | // load depends on the tests that validate the arraycopy | |||
| 1040 | ld->_control_dependency = UnknownControl; | |||
| 1041 | return ld; | |||
| 1042 | } | |||
| 1043 | return NULL__null; | |||
| 1044 | } | |||
| 1045 | ||||
| 1046 | ||||
| 1047 | //---------------------------can_see_stored_value------------------------------ | |||
| 1048 | // This routine exists to make sure this set of tests is done the same | |||
| 1049 | // everywhere. We need to make a coordinated change: first LoadNode::Ideal | |||
| 1050 | // will change the graph shape in a way which makes memory alive twice at the | |||
| 1051 | // same time (uses the Oracle model of aliasing), then some | |||
| 1052 | // LoadXNode::Identity will fold things back to the equivalence-class model | |||
| 1053 | // of aliasing. | |||
| 1054 | Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const { | |||
| 1055 | Node* ld_adr = in(MemNode::Address); | |||
| 1056 | intptr_t ld_off = 0; | |||
| 1057 | Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); | |||
| 1058 | Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase); | |||
| 1059 | const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); | |||
| 1060 | Compile::AliasType* atp = (tp != NULL__null) ? phase->C->alias_type(tp) : NULL__null; | |||
| 1061 | // This is more general than load from boxing objects. | |||
| 1062 | if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { | |||
| 1063 | uint alias_idx = atp->index(); | |||
| 1064 | Node* result = NULL__null; | |||
| 1065 | Node* current = st; | |||
| 1066 | // Skip through chains of MemBarNodes checking the MergeMems for | |||
| 1067 | // new states for the slice of this load. Stop once any other | |||
| 1068 | // kind of node is encountered. Loads from final memory can skip | |||
| 1069 | // through any kind of MemBar but normal loads shouldn't skip | |||
| 1070 | // through MemBarAcquire since the could allow them to move out of | |||
| 1071 | // a synchronized region. It is not safe to step over MemBarCPUOrder, | |||
| 1072 | // because alias info above them may be inaccurate (e.g., due to | |||
| 1073 | // mixed/mismatched unsafe accesses). | |||
| 1074 | bool is_final_mem = !atp->is_rewritable(); | |||
| 1075 | while (current->is_Proj()) { | |||
| 1076 | int opc = current->in(0)->Opcode(); | |||
| 1077 | if ((is_final_mem && (opc == Op_MemBarAcquire || | |||
| 1078 | opc == Op_MemBarAcquireLock || | |||
| 1079 | opc == Op_LoadFence)) || | |||
| 1080 | opc == Op_MemBarRelease || | |||
| 1081 | opc == Op_StoreFence || | |||
| 1082 | opc == Op_MemBarReleaseLock || | |||
| 1083 | opc == Op_MemBarStoreStore || | |||
| 1084 | opc == Op_StoreStoreFence) { | |||
| 1085 | Node* mem = current->in(0)->in(TypeFunc::Memory); | |||
| 1086 | if (mem->is_MergeMem()) { | |||
| 1087 | MergeMemNode* merge = mem->as_MergeMem(); | |||
| 1088 | Node* new_st = merge->memory_at(alias_idx); | |||
| 1089 | if (new_st == merge->base_memory()) { | |||
| 1090 | // Keep searching | |||
| 1091 | current = new_st; | |||
| 1092 | continue; | |||
| 1093 | } | |||
| 1094 | // Save the new memory state for the slice and fall through | |||
| 1095 | // to exit. | |||
| 1096 | result = new_st; | |||
| 1097 | } | |||
| 1098 | } | |||
| 1099 | break; | |||
| 1100 | } | |||
| 1101 | if (result != NULL__null) { | |||
| 1102 | st = result; | |||
| 1103 | } | |||
| 1104 | } | |||
| 1105 | ||||
| 1106 | // Loop around twice in the case Load -> Initialize -> Store. | |||
| 1107 | // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) | |||
| 1108 | for (int trip = 0; trip <= 1; trip++) { | |||
| 1109 | ||||
| 1110 | if (st->is_Store()) { | |||
| 1111 | Node* st_adr = st->in(MemNode::Address); | |||
| 1112 | if (st_adr != ld_adr) { | |||
| 1113 | // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). | |||
| 1114 | intptr_t st_off = 0; | |||
| 1115 | Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); | |||
| 1116 | if (ld_base == NULL__null) return NULL__null; | |||
| 1117 | if (st_base == NULL__null) return NULL__null; | |||
| 1118 | if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return NULL__null; | |||
| 1119 | if (ld_off != st_off) return NULL__null; | |||
| 1120 | if (ld_off == Type::OffsetBot) return NULL__null; | |||
| 1121 | // Same base, same offset. | |||
| 1122 | // Possible improvement for arrays: check index value instead of absolute offset. | |||
| 1123 | ||||
| 1124 | // At this point we have proven something like this setup: | |||
| 1125 | // B = << base >> | |||
| 1126 | // L = LoadQ(AddP(Check/CastPP(B), #Off)) | |||
| 1127 | // S = StoreQ(AddP( B , #Off), V) | |||
| 1128 | // (Actually, we haven't yet proven the Q's are the same.) | |||
| 1129 | // In other words, we are loading from a casted version of | |||
| 1130 | // the same pointer-and-offset that we stored to. | |||
| 1131 | // Casted version may carry a dependency and it is respected. | |||
| 1132 | // Thus, we are able to replace L by V. | |||
| 1133 | } | |||
| 1134 | // Now prove that we have a LoadQ matched to a StoreQ, for some Q. | |||
| 1135 | if (store_Opcode() != st->Opcode()) { | |||
| 1136 | return NULL__null; | |||
| 1137 | } | |||
| 1138 | // LoadVector/StoreVector needs additional check to ensure the types match. | |||
| 1139 | if (st->is_StoreVector()) { | |||
| 1140 | const TypeVect* in_vt = st->as_StoreVector()->vect_type(); | |||
| 1141 | const TypeVect* out_vt = as_LoadVector()->vect_type(); | |||
| 1142 | if (in_vt != out_vt) { | |||
| 1143 | return NULL__null; | |||
| 1144 | } | |||
| 1145 | } | |||
| 1146 | return st->in(MemNode::ValueIn); | |||
| 1147 | } | |||
| 1148 | ||||
| 1149 | // A load from a freshly-created object always returns zero. | |||
| 1150 | // (This can happen after LoadNode::Ideal resets the load's memory input | |||
| 1151 | // to find_captured_store, which returned InitializeNode::zero_memory.) | |||
| 1152 | if (st->is_Proj() && st->in(0)->is_Allocate() && | |||
| 1153 | (st->in(0) == ld_alloc) && | |||
| 1154 | (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { | |||
| 1155 | // return a zero value for the load's basic type | |||
| 1156 | // (This is one of the few places where a generic PhaseTransform | |||
| 1157 | // can create new nodes. Think of it as lazily manifesting | |||
| 1158 | // virtually pre-existing constants.) | |||
| 1159 | if (memory_type() != T_VOID) { | |||
| 1160 | if (ReduceBulkZeroing || find_array_copy_clone(phase, ld_alloc, in(MemNode::Memory)) == NULL__null) { | |||
| 1161 | // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an | |||
| 1162 | // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done | |||
| 1163 | // by the ArrayCopyNode. | |||
| 1164 | return phase->zerocon(memory_type()); | |||
| 1165 | } | |||
| 1166 | } else { | |||
| 1167 | // TODO: materialize all-zero vector constant | |||
| 1168 | assert(!isa_Load() || as_Load()->type()->isa_vect(), "")do { if (!(!isa_Load() || as_Load()->type()->isa_vect() )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1168, "assert(" "!isa_Load() || as_Load()->type()->isa_vect()" ") failed", ""); ::breakpoint(); } } while (0); | |||
| 1169 | } | |||
| 1170 | } | |||
| 1171 | ||||
| 1172 | // A load from an initialization barrier can match a captured store. | |||
| 1173 | if (st->is_Proj() && st->in(0)->is_Initialize()) { | |||
| 1174 | InitializeNode* init = st->in(0)->as_Initialize(); | |||
| 1175 | AllocateNode* alloc = init->allocation(); | |||
| 1176 | if ((alloc != NULL__null) && (alloc == ld_alloc)) { | |||
| 1177 | // examine a captured store value | |||
| 1178 | st = init->find_captured_store(ld_off, memory_size(), phase); | |||
| 1179 | if (st != NULL__null) { | |||
| 1180 | continue; // take one more trip around | |||
| 1181 | } | |||
| 1182 | } | |||
| 1183 | } | |||
| 1184 | ||||
| 1185 | // Load boxed value from result of valueOf() call is input parameter. | |||
| 1186 | if (this->is_Load() && ld_adr->is_AddP() && | |||
| 1187 | (tp != NULL__null) && tp->is_ptr_to_boxed_value()) { | |||
| 1188 | intptr_t ignore = 0; | |||
| 1189 | Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); | |||
| 1190 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
| 1191 | base = bs->step_over_gc_barrier(base); | |||
| 1192 | if (base != NULL__null && base->is_Proj() && | |||
| 1193 | base->as_Proj()->_con == TypeFunc::Parms && | |||
| 1194 | base->in(0)->is_CallStaticJava() && | |||
| 1195 | base->in(0)->as_CallStaticJava()->is_boxing_method()) { | |||
| 1196 | return base->in(0)->in(TypeFunc::Parms); | |||
| 1197 | } | |||
| 1198 | } | |||
| 1199 | ||||
| 1200 | break; | |||
| 1201 | } | |||
| 1202 | ||||
| 1203 | return NULL__null; | |||
| 1204 | } | |||
| 1205 | ||||
| 1206 | //----------------------is_instance_field_load_with_local_phi------------------ | |||
| 1207 | bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { | |||
| 1208 | if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && | |||
| 1209 | in(Address)->is_AddP() ) { | |||
| 1210 | const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); | |||
| 1211 | // Only instances and boxed values. | |||
| 1212 | if( t_oop != NULL__null && | |||
| 1213 | (t_oop->is_ptr_to_boxed_value() || | |||
| 1214 | t_oop->is_known_instance_field()) && | |||
| 1215 | t_oop->offset() != Type::OffsetBot && | |||
| 1216 | t_oop->offset() != Type::OffsetTop) { | |||
| 1217 | return true; | |||
| 1218 | } | |||
| 1219 | } | |||
| 1220 | return false; | |||
| 1221 | } | |||
| 1222 | ||||
| 1223 | //------------------------------Identity--------------------------------------- | |||
| 1224 | // Loads are identity if previous store is to same address | |||
| 1225 | Node* LoadNode::Identity(PhaseGVN* phase) { | |||
| 1226 | // If the previous store-maker is the right kind of Store, and the store is | |||
| 1227 | // to the same address, then we are equal to the value stored. | |||
| 1228 | Node* mem = in(Memory); | |||
| 1229 | Node* value = can_see_stored_value(mem, phase); | |||
| 1230 | if( value ) { | |||
| 1231 | // byte, short & char stores truncate naturally. | |||
| 1232 | // A load has to load the truncated value which requires | |||
| 1233 | // some sort of masking operation and that requires an | |||
| 1234 | // Ideal call instead of an Identity call. | |||
| 1235 | if (memory_size() < BytesPerInt) { | |||
| 1236 | // If the input to the store does not fit with the load's result type, | |||
| 1237 | // it must be truncated via an Ideal call. | |||
| 1238 | if (!phase->type(value)->higher_equal(phase->type(this))) | |||
| 1239 | return this; | |||
| 1240 | } | |||
| 1241 | // (This works even when value is a Con, but LoadNode::Value | |||
| 1242 | // usually runs first, producing the singleton type of the Con.) | |||
| 1243 | return value; | |||
| 1244 | } | |||
| 1245 | ||||
| 1246 | // Search for an existing data phi which was generated before for the same | |||
| 1247 | // instance's field to avoid infinite generation of phis in a loop. | |||
| 1248 | Node *region = mem->in(0); | |||
| 1249 | if (is_instance_field_load_with_local_phi(region)) { | |||
| 1250 | const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); | |||
| 1251 | int this_index = phase->C->get_alias_index(addr_t); | |||
| 1252 | int this_offset = addr_t->offset(); | |||
| 1253 | int this_iid = addr_t->instance_id(); | |||
| 1254 | if (!addr_t->is_known_instance() && | |||
| 1255 | addr_t->is_ptr_to_boxed_value()) { | |||
| 1256 | // Use _idx of address base (could be Phi node) for boxed values. | |||
| 1257 | intptr_t ignore = 0; | |||
| 1258 | Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); | |||
| 1259 | if (base == NULL__null) { | |||
| 1260 | return this; | |||
| 1261 | } | |||
| 1262 | this_iid = base->_idx; | |||
| 1263 | } | |||
| 1264 | const Type* this_type = bottom_type(); | |||
| 1265 | for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { | |||
| 1266 | Node* phi = region->fast_out(i); | |||
| 1267 | if (phi->is_Phi() && phi != mem && | |||
| 1268 | phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { | |||
| 1269 | return phi; | |||
| 1270 | } | |||
| 1271 | } | |||
| 1272 | } | |||
| 1273 | ||||
| 1274 | return this; | |||
| 1275 | } | |||
| 1276 | ||||
| 1277 | // Construct an equivalent unsigned load. | |||
| 1278 | Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { | |||
| 1279 | BasicType bt = T_ILLEGAL; | |||
| 1280 | const Type* rt = NULL__null; | |||
| 1281 | switch (Opcode()) { | |||
| 1282 | case Op_LoadUB: return this; | |||
| 1283 | case Op_LoadUS: return this; | |||
| 1284 | case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; | |||
| 1285 | case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; | |||
| 1286 | default: | |||
| 1287 | assert(false, "no unsigned variant: %s", Name())do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1287, "assert(" "false" ") failed", "no unsigned variant: %s" , Name()); ::breakpoint(); } } while (0); | |||
| 1288 | return NULL__null; | |||
| 1289 | } | |||
| 1290 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | |||
| 1291 | raw_adr_type(), rt, bt, _mo, _control_dependency, | |||
| 1292 | is_unaligned_access(), is_mismatched_access()); | |||
| 1293 | } | |||
| 1294 | ||||
| 1295 | // Construct an equivalent signed load. | |||
| 1296 | Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { | |||
| 1297 | BasicType bt = T_ILLEGAL; | |||
| 1298 | const Type* rt = NULL__null; | |||
| 1299 | switch (Opcode()) { | |||
| 1300 | case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; | |||
| 1301 | case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; | |||
| 1302 | case Op_LoadB: // fall through | |||
| 1303 | case Op_LoadS: // fall through | |||
| 1304 | case Op_LoadI: // fall through | |||
| 1305 | case Op_LoadL: return this; | |||
| 1306 | default: | |||
| 1307 | assert(false, "no signed variant: %s", Name())do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1307, "assert(" "false" ") failed", "no signed variant: %s" , Name()); ::breakpoint(); } } while (0); | |||
| 1308 | return NULL__null; | |||
| 1309 | } | |||
| 1310 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | |||
| 1311 | raw_adr_type(), rt, bt, _mo, _control_dependency, | |||
| 1312 | is_unaligned_access(), is_mismatched_access()); | |||
| 1313 | } | |||
| 1314 | ||||
| 1315 | bool LoadNode::has_reinterpret_variant(const Type* rt) { | |||
| 1316 | BasicType bt = rt->basic_type(); | |||
| 1317 | switch (Opcode()) { | |||
| 1318 | case Op_LoadI: return (bt == T_FLOAT); | |||
| 1319 | case Op_LoadL: return (bt == T_DOUBLE); | |||
| 1320 | case Op_LoadF: return (bt == T_INT); | |||
| 1321 | case Op_LoadD: return (bt == T_LONG); | |||
| 1322 | ||||
| 1323 | default: return false; | |||
| 1324 | } | |||
| 1325 | } | |||
| 1326 | ||||
| 1327 | Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { | |||
| 1328 | BasicType bt = rt->basic_type(); | |||
| 1329 | assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt))do { if (!(has_reinterpret_variant(rt))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1329, "assert(" "has_reinterpret_variant(rt)" ") failed", "no reinterpret variant: %s %s" , Name(), type2name(bt)); ::breakpoint(); } } while (0); | |||
| 1330 | bool is_mismatched = is_mismatched_access(); | |||
| 1331 | const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); | |||
| 1332 | if (raw_type == NULL__null) { | |||
| 1333 | is_mismatched = true; // conservatively match all non-raw accesses as mismatched | |||
| 1334 | } | |||
| 1335 | return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), | |||
| 1336 | raw_adr_type(), rt, bt, _mo, _control_dependency, | |||
| 1337 | is_unaligned_access(), is_mismatched); | |||
| 1338 | } | |||
| 1339 | ||||
| 1340 | bool StoreNode::has_reinterpret_variant(const Type* vt) { | |||
| 1341 | BasicType bt = vt->basic_type(); | |||
| 1342 | switch (Opcode()) { | |||
| 1343 | case Op_StoreI: return (bt == T_FLOAT); | |||
| 1344 | case Op_StoreL: return (bt == T_DOUBLE); | |||
| 1345 | case Op_StoreF: return (bt == T_INT); | |||
| 1346 | case Op_StoreD: return (bt == T_LONG); | |||
| 1347 | ||||
| 1348 | default: return false; | |||
| 1349 | } | |||
| 1350 | } | |||
| 1351 | ||||
| 1352 | Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { | |||
| 1353 | BasicType bt = vt->basic_type(); | |||
| 1354 | assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt))do { if (!(has_reinterpret_variant(vt))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1354, "assert(" "has_reinterpret_variant(vt)" ") failed", "no reinterpret variant: %s %s" , Name(), type2name(bt)); ::breakpoint(); } } while (0); | |||
| 1355 | StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), raw_adr_type(), val, bt, _mo); | |||
| 1356 | ||||
| 1357 | bool is_mismatched = is_mismatched_access(); | |||
| 1358 | const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); | |||
| 1359 | if (raw_type == NULL__null) { | |||
| 1360 | is_mismatched = true; // conservatively match all non-raw accesses as mismatched | |||
| 1361 | } | |||
| 1362 | if (is_mismatched) { | |||
| 1363 | st->set_mismatched_access(); | |||
| 1364 | } | |||
| 1365 | return st; | |||
| 1366 | } | |||
| 1367 | ||||
| 1368 | // We're loading from an object which has autobox behaviour. | |||
| 1369 | // If this object is result of a valueOf call we'll have a phi | |||
| 1370 | // merging a newly allocated object and a load from the cache. | |||
| 1371 | // We want to replace this load with the original incoming | |||
| 1372 | // argument to the valueOf call. | |||
| 1373 | Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { | |||
| 1374 | assert(igvn->C->eliminate_boxing(), "sanity")do { if (!(igvn->C->eliminate_boxing())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1374, "assert(" "igvn->C->eliminate_boxing()" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
| 1375 | intptr_t ignore = 0; | |||
| 1376 | Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); | |||
| 1377 | if ((base == NULL__null) || base->is_Phi()) { | |||
| 1378 | // Push the loads from the phi that comes from valueOf up | |||
| 1379 | // through it to allow elimination of the loads and the recovery | |||
| 1380 | // of the original value. It is done in split_through_phi(). | |||
| 1381 | return NULL__null; | |||
| 1382 | } else if (base->is_Load() || | |||
| 1383 | (base->is_DecodeN() && base->in(1)->is_Load())) { | |||
| 1384 | // Eliminate the load of boxed value for integer types from the cache | |||
| 1385 | // array by deriving the value from the index into the array. | |||
| 1386 | // Capture the offset of the load and then reverse the computation. | |||
| 1387 | ||||
| 1388 | // Get LoadN node which loads a boxing object from 'cache' array. | |||
| 1389 | if (base->is_DecodeN()) { | |||
| 1390 | base = base->in(1); | |||
| 1391 | } | |||
| 1392 | if (!base->in(Address)->is_AddP()) { | |||
| 1393 | return NULL__null; // Complex address | |||
| 1394 | } | |||
| 1395 | AddPNode* address = base->in(Address)->as_AddP(); | |||
| 1396 | Node* cache_base = address->in(AddPNode::Base); | |||
| 1397 | if ((cache_base != NULL__null) && cache_base->is_DecodeN()) { | |||
| 1398 | // Get ConP node which is static 'cache' field. | |||
| 1399 | cache_base = cache_base->in(1); | |||
| 1400 | } | |||
| 1401 | if ((cache_base != NULL__null) && cache_base->is_Con()) { | |||
| 1402 | const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); | |||
| 1403 | if ((base_type != NULL__null) && base_type->is_autobox_cache()) { | |||
| 1404 | Node* elements[4]; | |||
| 1405 | int shift = exact_log2(type2aelembytes(T_OBJECT)); | |||
| 1406 | int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)sizeof(array_size_impl(elements))); | |||
| 1407 | if (count > 0 && elements[0]->is_Con() && | |||
| 1408 | (count == 1 || | |||
| 1409 | (count == 2 && elements[1]->Opcode() == Op_LShiftXOp_LShiftL && | |||
| 1410 | elements[1]->in(2) == igvn->intcon(shift)))) { | |||
| 1411 | ciObjArray* array = base_type->const_oop()->as_obj_array(); | |||
| 1412 | // Fetch the box object cache[0] at the base of the array and get its value | |||
| 1413 | ciInstance* box = array->obj_at(0)->as_instance(); | |||
| 1414 | ciInstanceKlass* ik = box->klass()->as_instance_klass(); | |||
| 1415 | assert(ik->is_box_klass(), "sanity")do { if (!(ik->is_box_klass())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1415, "assert(" "ik->is_box_klass()" ") failed", "sanity" ); ::breakpoint(); } } while (0); | |||
| 1416 | assert(ik->nof_nonstatic_fields() == 1, "change following code")do { if (!(ik->nof_nonstatic_fields() == 1)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1416, "assert(" "ik->nof_nonstatic_fields() == 1" ") failed" , "change following code"); ::breakpoint(); } } while (0); | |||
| 1417 | if (ik->nof_nonstatic_fields() == 1) { | |||
| 1418 | // This should be true nonstatic_field_at requires calling | |||
| 1419 | // nof_nonstatic_fields so check it anyway | |||
| 1420 | ciConstant c = box->field_value(ik->nonstatic_field_at(0)); | |||
| 1421 | BasicType bt = c.basic_type(); | |||
| 1422 | // Only integer types have boxing cache. | |||
| 1423 | assert(bt == T_BOOLEAN || bt == T_CHAR ||do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG" ") failed", "wrong type = %s", type2name(bt)); ::breakpoint( ); } } while (0) | |||
| 1424 | bt == T_BYTE || bt == T_SHORT ||do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG" ") failed", "wrong type = %s", type2name(bt)); ::breakpoint( ); } } while (0) | |||
| 1425 | bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt))do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG" ") failed", "wrong type = %s", type2name(bt)); ::breakpoint( ); } } while (0); | |||
| 1426 | jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); | |||
| 1427 | if (cache_low != (int)cache_low) { | |||
| 1428 | return NULL__null; // should not happen since cache is array indexed by value | |||
| 1429 | } | |||
| 1430 | jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); | |||
| 1431 | if (offset != (int)offset) { | |||
| 1432 | return NULL__null; // should not happen since cache is array indexed by value | |||
| 1433 | } | |||
| 1434 | // Add up all the offsets making of the address of the load | |||
| 1435 | Node* result = elements[0]; | |||
| 1436 | for (int i = 1; i < count; i++) { | |||
| 1437 | result = igvn->transform(new AddXNodeAddLNode(result, elements[i])); | |||
| 1438 | } | |||
| 1439 | // Remove the constant offset from the address and then | |||
| 1440 | result = igvn->transform(new AddXNodeAddLNode(result, igvn->MakeConXlongcon(-(int)offset))); | |||
| 1441 | // remove the scaling of the offset to recover the original index. | |||
| 1442 | if (result->Opcode() == Op_LShiftXOp_LShiftL && result->in(2) == igvn->intcon(shift)) { | |||
| 1443 | // Peel the shift off directly but wrap it in a dummy node | |||
| 1444 | // since Ideal can't return existing nodes | |||
| 1445 | igvn->_worklist.push(result); // remove dead node later | |||
| 1446 | result = new RShiftXNodeRShiftLNode(result->in(1), igvn->intcon(0)); | |||
| 1447 | } else if (result->is_Add() && result->in(2)->is_Con() && | |||
| 1448 | result->in(1)->Opcode() == Op_LShiftXOp_LShiftL && | |||
| 1449 | result->in(1)->in(2) == igvn->intcon(shift)) { | |||
| 1450 | // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) | |||
| 1451 | // but for boxing cache access we know that X<<Z will not overflow | |||
| 1452 | // (there is range check) so we do this optimizatrion by hand here. | |||
| 1453 | igvn->_worklist.push(result); // remove dead node later | |||
| 1454 | Node* add_con = new RShiftXNodeRShiftLNode(result->in(2), igvn->intcon(shift)); | |||
| 1455 | result = new AddXNodeAddLNode(result->in(1)->in(1), igvn->transform(add_con)); | |||
| 1456 | } else { | |||
| 1457 | result = new RShiftXNodeRShiftLNode(result, igvn->intcon(shift)); | |||
| 1458 | } | |||
| 1459 | #ifdef _LP641 | |||
| 1460 | if (bt != T_LONG) { | |||
| 1461 | result = new ConvL2INode(igvn->transform(result)); | |||
| 1462 | } | |||
| 1463 | #else | |||
| 1464 | if (bt == T_LONG) { | |||
| 1465 | result = new ConvI2LNode(igvn->transform(result)); | |||
| 1466 | } | |||
| 1467 | #endif | |||
| 1468 | // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). | |||
| 1469 | // Need to preserve unboxing load type if it is unsigned. | |||
| 1470 | switch(this->Opcode()) { | |||
| 1471 | case Op_LoadUB: | |||
| 1472 | result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); | |||
| 1473 | break; | |||
| 1474 | case Op_LoadUS: | |||
| 1475 | result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); | |||
| 1476 | break; | |||
| 1477 | } | |||
| 1478 | return result; | |||
| 1479 | } | |||
| 1480 | } | |||
| 1481 | } | |||
| 1482 | } | |||
| 1483 | } | |||
| 1484 | return NULL__null; | |||
| 1485 | } | |||
| 1486 | ||||
| 1487 | static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { | |||
| 1488 | Node* region = phi->in(0); | |||
| 1489 | if (region == NULL__null) { | |||
| 1490 | return false; // Wait stable graph | |||
| 1491 | } | |||
| 1492 | uint cnt = phi->req(); | |||
| 1493 | for (uint i = 1; i < cnt; i++) { | |||
| 1494 | Node* rc = region->in(i); | |||
| 1495 | if (rc == NULL__null || phase->type(rc) == Type::TOP) | |||
| 1496 | return false; // Wait stable graph | |||
| 1497 | Node* in = phi->in(i); | |||
| 1498 | if (in == NULL__null || phase->type(in) == Type::TOP) | |||
| 1499 | return false; // Wait stable graph | |||
| 1500 | } | |||
| 1501 | return true; | |||
| 1502 | } | |||
| 1503 | //------------------------------split_through_phi------------------------------ | |||
| 1504 | // Split instance or boxed field load through Phi. | |||
| 1505 | Node *LoadNode::split_through_phi(PhaseGVN *phase) { | |||
| 1506 | Node* mem = in(Memory); | |||
| 1507 | Node* address = in(Address); | |||
| 1508 | const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); | |||
| 1509 | ||||
| 1510 | assert((t_oop != NULL) &&do { if (!((t_oop != __null) && (t_oop->is_known_instance_field () || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())" ") failed", "invalide conditions"); ::breakpoint(); } } while (0) | |||
| 1511 | (t_oop->is_known_instance_field() ||do { if (!((t_oop != __null) && (t_oop->is_known_instance_field () || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())" ") failed", "invalide conditions"); ::breakpoint(); } } while (0) | |||
| 1512 | t_oop->is_ptr_to_boxed_value()), "invalide conditions")do { if (!((t_oop != __null) && (t_oop->is_known_instance_field () || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())" ") failed", "invalide conditions"); ::breakpoint(); } } while (0); | |||
| 1513 | ||||
| 1514 | Compile* C = phase->C; | |||
| 1515 | intptr_t ignore = 0; | |||
| 1516 | Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); | |||
| 1517 | bool base_is_phi = (base != NULL__null) && base->is_Phi(); | |||
| 1518 | bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && | |||
| 1519 | (base != NULL__null) && (base == address->in(AddPNode::Base)) && | |||
| 1520 | phase->type(base)->higher_equal(TypePtr::NOTNULL); | |||
| 1521 | ||||
| 1522 | if (!((mem->is_Phi() || base_is_phi) && | |||
| 1523 | (load_boxed_values || t_oop->is_known_instance_field()))) { | |||
| 1524 | return NULL__null; // memory is not Phi | |||
| 1525 | } | |||
| 1526 | ||||
| 1527 | if (mem->is_Phi()) { | |||
| 1528 | if (!stable_phi(mem->as_Phi(), phase)) { | |||
| 1529 | return NULL__null; // Wait stable graph | |||
| 1530 | } | |||
| 1531 | uint cnt = mem->req(); | |||
| 1532 | // Check for loop invariant memory. | |||
| 1533 | if (cnt == 3) { | |||
| 1534 | for (uint i = 1; i < cnt; i++) { | |||
| 1535 | Node* in = mem->in(i); | |||
| 1536 | Node* m = optimize_memory_chain(in, t_oop, this, phase); | |||
| 1537 | if (m == mem) { | |||
| 1538 | if (i == 1) { | |||
| 1539 | // if the first edge was a loop, check second edge too. | |||
| 1540 | // If both are replaceable - we are in an infinite loop | |||
| 1541 | Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); | |||
| 1542 | if (n == mem) { | |||
| 1543 | break; | |||
| 1544 | } | |||
| 1545 | } | |||
| 1546 | set_req(Memory, mem->in(cnt - i)); | |||
| 1547 | return this; // made change | |||
| 1548 | } | |||
| 1549 | } | |||
| 1550 | } | |||
| 1551 | } | |||
| 1552 | if (base_is_phi) { | |||
| 1553 | if (!stable_phi(base->as_Phi(), phase)) { | |||
| 1554 | return NULL__null; // Wait stable graph | |||
| 1555 | } | |||
| 1556 | uint cnt = base->req(); | |||
| 1557 | // Check for loop invariant memory. | |||
| 1558 | if (cnt == 3) { | |||
| 1559 | for (uint i = 1; i < cnt; i++) { | |||
| 1560 | if (base->in(i) == base) { | |||
| 1561 | return NULL__null; // Wait stable graph | |||
| 1562 | } | |||
| 1563 | } | |||
| 1564 | } | |||
| 1565 | } | |||
| 1566 | ||||
| 1567 | // Split through Phi (see original code in loopopts.cpp). | |||
| 1568 | assert(C->have_alias_type(t_oop), "instance should have alias type")do { if (!(C->have_alias_type(t_oop))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1568, "assert(" "C->have_alias_type(t_oop)" ") failed", "instance should have alias type" ); ::breakpoint(); } } while (0); | |||
| 1569 | ||||
| 1570 | // Do nothing here if Identity will find a value | |||
| 1571 | // (to avoid infinite chain of value phis generation). | |||
| 1572 | if (this != Identity(phase)) { | |||
| 1573 | return NULL__null; | |||
| 1574 | } | |||
| 1575 | ||||
| 1576 | // Select Region to split through. | |||
| 1577 | Node* region; | |||
| 1578 | if (!base_is_phi) { | |||
| 1579 | assert(mem->is_Phi(), "sanity")do { if (!(mem->is_Phi())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1579, "assert(" "mem->is_Phi()" ") failed", "sanity"); :: breakpoint(); } } while (0); | |||
| 1580 | region = mem->in(0); | |||
| 1581 | // Skip if the region dominates some control edge of the address. | |||
| 1582 | if (!MemNode::all_controls_dominate(address, region)) | |||
| 1583 | return NULL__null; | |||
| 1584 | } else if (!mem->is_Phi()) { | |||
| 1585 | assert(base_is_phi, "sanity")do { if (!(base_is_phi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1585, "assert(" "base_is_phi" ") failed", "sanity"); ::breakpoint (); } } while (0); | |||
| 1586 | region = base->in(0); | |||
| 1587 | // Skip if the region dominates some control edge of the memory. | |||
| 1588 | if (!MemNode::all_controls_dominate(mem, region)) | |||
| 1589 | return NULL__null; | |||
| 1590 | } else if (base->in(0) != mem->in(0)) { | |||
| 1591 | assert(base_is_phi && mem->is_Phi(), "sanity")do { if (!(base_is_phi && mem->is_Phi())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1591, "assert(" "base_is_phi && mem->is_Phi()" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
| 1592 | if (MemNode::all_controls_dominate(mem, base->in(0))) { | |||
| 1593 | region = base->in(0); | |||
| 1594 | } else if (MemNode::all_controls_dominate(address, mem->in(0))) { | |||
| 1595 | region = mem->in(0); | |||
| 1596 | } else { | |||
| 1597 | return NULL__null; // complex graph | |||
| 1598 | } | |||
| 1599 | } else { | |||
| 1600 | assert(base->in(0) == mem->in(0), "sanity")do { if (!(base->in(0) == mem->in(0))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1600, "assert(" "base->in(0) == mem->in(0)" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
| 1601 | region = mem->in(0); | |||
| 1602 | } | |||
| 1603 | ||||
| 1604 | const Type* this_type = this->bottom_type(); | |||
| 1605 | int this_index = C->get_alias_index(t_oop); | |||
| 1606 | int this_offset = t_oop->offset(); | |||
| 1607 | int this_iid = t_oop->instance_id(); | |||
| 1608 | if (!t_oop->is_known_instance() && load_boxed_values) { | |||
| 1609 | // Use _idx of address base for boxed values. | |||
| 1610 | this_iid = base->_idx; | |||
| 1611 | } | |||
| 1612 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
| 1613 | Node* phi = new PhiNode(region, this_type, NULL__null, mem->_idx, this_iid, this_index, this_offset); | |||
| 1614 | for (uint i = 1; i < region->req(); i++) { | |||
| 1615 | Node* x; | |||
| 1616 | Node* the_clone = NULL__null; | |||
| 1617 | Node* in = region->in(i); | |||
| 1618 | if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && | |||
| 1619 | in != NULL__null && in->is_OuterStripMinedLoop()) { | |||
| 1620 | // No node should go in the outer strip mined loop | |||
| 1621 | in = in->in(LoopNode::EntryControl); | |||
| 1622 | } | |||
| 1623 | if (in == NULL__null || in == C->top()) { | |||
| 1624 | x = C->top(); // Dead path? Use a dead data op | |||
| 1625 | } else { | |||
| 1626 | x = this->clone(); // Else clone up the data op | |||
| 1627 | the_clone = x; // Remember for possible deletion. | |||
| 1628 | // Alter data node to use pre-phi inputs | |||
| 1629 | if (this->in(0) == region) { | |||
| 1630 | x->set_req(0, in); | |||
| 1631 | } else { | |||
| 1632 | x->set_req(0, NULL__null); | |||
| 1633 | } | |||
| 1634 | if (mem->is_Phi() && (mem->in(0) == region)) { | |||
| 1635 | x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. | |||
| 1636 | } | |||
| 1637 | if (address->is_Phi() && address->in(0) == region) { | |||
| 1638 | x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone | |||
| 1639 | } | |||
| 1640 | if (base_is_phi && (base->in(0) == region)) { | |||
| 1641 | Node* base_x = base->in(i); // Clone address for loads from boxed objects. | |||
| 1642 | Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); | |||
| 1643 | x->set_req(Address, adr_x); | |||
| 1644 | } | |||
| 1645 | } | |||
| 1646 | // Check for a 'win' on some paths | |||
| 1647 | const Type *t = x->Value(igvn); | |||
| 1648 | ||||
| 1649 | bool singleton = t->singleton(); | |||
| 1650 | ||||
| 1651 | // See comments in PhaseIdealLoop::split_thru_phi(). | |||
| 1652 | if (singleton && t == Type::TOP) { | |||
| 1653 | singleton &= region->is_Loop() && (i != LoopNode::EntryControl); | |||
| 1654 | } | |||
| 1655 | ||||
| 1656 | if (singleton) { | |||
| 1657 | x = igvn->makecon(t); | |||
| 1658 | } else { | |||
| 1659 | // We now call Identity to try to simplify the cloned node. | |||
| 1660 | // Note that some Identity methods call phase->type(this). | |||
| 1661 | // Make sure that the type array is big enough for | |||
| 1662 | // our new node, even though we may throw the node away. | |||
| 1663 | // (This tweaking with igvn only works because x is a new node.) | |||
| 1664 | igvn->set_type(x, t); | |||
| 1665 | // If x is a TypeNode, capture any more-precise type permanently into Node | |||
| 1666 | // otherwise it will be not updated during igvn->transform since | |||
| 1667 | // igvn->type(x) is set to x->Value() already. | |||
| 1668 | x->raise_bottom_type(t); | |||
| 1669 | Node* y = x->Identity(igvn); | |||
| 1670 | if (y != x) { | |||
| 1671 | x = y; | |||
| 1672 | } else { | |||
| 1673 | y = igvn->hash_find_insert(x); | |||
| 1674 | if (y) { | |||
| 1675 | x = y; | |||
| 1676 | } else { | |||
| 1677 | // Else x is a new node we are keeping | |||
| 1678 | // We do not need register_new_node_with_optimizer | |||
| 1679 | // because set_type has already been called. | |||
| 1680 | igvn->_worklist.push(x); | |||
| 1681 | } | |||
| 1682 | } | |||
| 1683 | } | |||
| 1684 | if (x != the_clone && the_clone != NULL__null) { | |||
| 1685 | igvn->remove_dead_node(the_clone); | |||
| 1686 | } | |||
| 1687 | phi->set_req(i, x); | |||
| 1688 | } | |||
| 1689 | // Record Phi | |||
| 1690 | igvn->register_new_node_with_optimizer(phi); | |||
| 1691 | return phi; | |||
| 1692 | } | |||
| 1693 | ||||
| 1694 | AllocateNode* LoadNode::is_new_object_mark_load(PhaseGVN *phase) const { | |||
| 1695 | if (Opcode() == Op_LoadXOp_LoadL) { | |||
| 1696 | Node* address = in(MemNode::Address); | |||
| 1697 | AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase); | |||
| 1698 | Node* mem = in(MemNode::Memory); | |||
| 1699 | if (alloc != NULL__null && mem->is_Proj() && | |||
| 1700 | mem->in(0) != NULL__null && | |||
| 1701 | mem->in(0) == alloc->initialization() && | |||
| 1702 | alloc->initialization()->proj_out_or_null(0) != NULL__null) { | |||
| 1703 | return alloc; | |||
| 1704 | } | |||
| 1705 | } | |||
| 1706 | return NULL__null; | |||
| 1707 | } | |||
| 1708 | ||||
| 1709 | ||||
| 1710 | //------------------------------Ideal------------------------------------------ | |||
| 1711 | // If the load is from Field memory and the pointer is non-null, it might be possible to | |||
| 1712 | // zero out the control input. | |||
| 1713 | // If the offset is constant and the base is an object allocation, | |||
| 1714 | // try to hook me up to the exact initializing store. | |||
| 1715 | Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
| 1716 | Node* p = MemNode::Ideal_common(phase, can_reshape); | |||
| 1717 | if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p; | |||
| 1718 | ||||
| 1719 | Node* ctrl = in(MemNode::Control); | |||
| 1720 | Node* address = in(MemNode::Address); | |||
| 1721 | bool progress = false; | |||
| 1722 | ||||
| 1723 | bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && | |||
| 1724 | phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); | |||
| 1725 | ||||
| 1726 | // Skip up past a SafePoint control. Cannot do this for Stores because | |||
| 1727 | // pointer stores & cardmarks must stay on the same side of a SafePoint. | |||
| 1728 | if( ctrl != NULL__null && ctrl->Opcode() == Op_SafePoint && | |||
| 1729 | phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && | |||
| 1730 | !addr_mark && | |||
| 1731 | (depends_only_on_test() || has_unknown_control_dependency())) { | |||
| 1732 | ctrl = ctrl->in(0); | |||
| 1733 | set_req(MemNode::Control,ctrl); | |||
| 1734 | progress = true; | |||
| 1735 | } | |||
| 1736 | ||||
| 1737 | intptr_t ignore = 0; | |||
| 1738 | Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); | |||
| 1739 | if (base != NULL__null | |||
| 1740 | && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { | |||
| 1741 | // Check for useless control edge in some common special cases | |||
| 1742 | if (in(MemNode::Control) != NULL__null | |||
| 1743 | && can_remove_control() | |||
| 1744 | && phase->type(base)->higher_equal(TypePtr::NOTNULL) | |||
| 1745 | && all_controls_dominate(base, phase->C->start())) { | |||
| 1746 | // A method-invariant, non-null address (constant or 'this' argument). | |||
| 1747 | set_req(MemNode::Control, NULL__null); | |||
| 1748 | progress = true; | |||
| 1749 | } | |||
| 1750 | } | |||
| 1751 | ||||
| 1752 | Node* mem = in(MemNode::Memory); | |||
| 1753 | const TypePtr *addr_t = phase->type(address)->isa_ptr(); | |||
| 1754 | ||||
| 1755 | if (can_reshape && (addr_t != NULL__null)) { | |||
| 1756 | // try to optimize our memory input | |||
| 1757 | Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); | |||
| 1758 | if (opt_mem != mem) { | |||
| 1759 | set_req_X(MemNode::Memory, opt_mem, phase); | |||
| 1760 | if (phase->type( opt_mem ) == Type::TOP) return NULL__null; | |||
| 1761 | return this; | |||
| 1762 | } | |||
| 1763 | const TypeOopPtr *t_oop = addr_t->isa_oopptr(); | |||
| 1764 | if ((t_oop != NULL__null) && | |||
| 1765 | (t_oop->is_known_instance_field() || | |||
| 1766 | t_oop->is_ptr_to_boxed_value())) { | |||
| 1767 | PhaseIterGVN *igvn = phase->is_IterGVN(); | |||
| 1768 | assert(igvn != NULL, "must be PhaseIterGVN when can_reshape is true")do { if (!(igvn != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1768, "assert(" "igvn != __null" ") failed", "must be PhaseIterGVN when can_reshape is true" ); ::breakpoint(); } } while (0); | |||
| 1769 | if (igvn->_worklist.member(opt_mem)) { | |||
| 1770 | // Delay this transformation until memory Phi is processed. | |||
| 1771 | igvn->_worklist.push(this); | |||
| 1772 | return NULL__null; | |||
| 1773 | } | |||
| 1774 | // Split instance field load through Phi. | |||
| 1775 | Node* result = split_through_phi(phase); | |||
| 1776 | if (result != NULL__null) return result; | |||
| 1777 | ||||
| 1778 | if (t_oop->is_ptr_to_boxed_value()) { | |||
| 1779 | Node* result = eliminate_autobox(igvn); | |||
| 1780 | if (result != NULL__null) return result; | |||
| 1781 | } | |||
| 1782 | } | |||
| 1783 | } | |||
| 1784 | ||||
| 1785 | // Is there a dominating load that loads the same value? Leave | |||
| 1786 | // anything that is not a load of a field/array element (like | |||
| 1787 | // barriers etc.) alone | |||
| 1788 | if (in(0) != NULL__null && !adr_type()->isa_rawptr() && can_reshape) { | |||
| 1789 | for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { | |||
| 1790 | Node *use = mem->fast_out(i); | |||
| 1791 | if (use != this && | |||
| 1792 | use->Opcode() == Opcode() && | |||
| 1793 | use->in(0) != NULL__null && | |||
| 1794 | use->in(0) != in(0) && | |||
| 1795 | use->in(Address) == in(Address)) { | |||
| 1796 | Node* ctl = in(0); | |||
| 1797 | for (int i = 0; i < 10 && ctl != NULL__null; i++) { | |||
| 1798 | ctl = IfNode::up_one_dom(ctl); | |||
| 1799 | if (ctl == use->in(0)) { | |||
| 1800 | set_req(0, use->in(0)); | |||
| 1801 | return this; | |||
| 1802 | } | |||
| 1803 | } | |||
| 1804 | } | |||
| 1805 | } | |||
| 1806 | } | |||
| 1807 | ||||
| 1808 | // Check for prior store with a different base or offset; make Load | |||
| 1809 | // independent. Skip through any number of them. Bail out if the stores | |||
| 1810 | // are in an endless dead cycle and report no progress. This is a key | |||
| 1811 | // transform for Reflection. However, if after skipping through the Stores | |||
| 1812 | // we can't then fold up against a prior store do NOT do the transform as | |||
| 1813 | // this amounts to using the 'Oracle' model of aliasing. It leaves the same | |||
| 1814 | // array memory alive twice: once for the hoisted Load and again after the | |||
| 1815 | // bypassed Store. This situation only works if EVERYBODY who does | |||
| 1816 | // anti-dependence work knows how to bypass. I.e. we need all | |||
| 1817 | // anti-dependence checks to ask the same Oracle. Right now, that Oracle is | |||
| 1818 | // the alias index stuff. So instead, peek through Stores and IFF we can | |||
| 1819 | // fold up, do so. | |||
| 1820 | Node* prev_mem = find_previous_store(phase); | |||
| 1821 | if (prev_mem != NULL__null) { | |||
| 1822 | Node* value = can_see_arraycopy_value(prev_mem, phase); | |||
| 1823 | if (value != NULL__null) { | |||
| 1824 | return value; | |||
| 1825 | } | |||
| 1826 | } | |||
| 1827 | // Steps (a), (b): Walk past independent stores to find an exact match. | |||
| 1828 | if (prev_mem != NULL__null && prev_mem != in(MemNode::Memory)) { | |||
| 1829 | // (c) See if we can fold up on the spot, but don't fold up here. | |||
| 1830 | // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or | |||
| 1831 | // just return a prior value, which is done by Identity calls. | |||
| 1832 | if (can_see_stored_value(prev_mem, phase)) { | |||
| 1833 | // Make ready for step (d): | |||
| 1834 | set_req_X(MemNode::Memory, prev_mem, phase); | |||
| 1835 | return this; | |||
| 1836 | } | |||
| 1837 | } | |||
| 1838 | ||||
| 1839 | return progress ? this : NULL__null; | |||
| 1840 | } | |||
| 1841 | ||||
| 1842 | // Helper to recognize certain Klass fields which are invariant across | |||
| 1843 | // some group of array types (e.g., int[] or all T[] where T < Object). | |||
| 1844 | const Type* | |||
| 1845 | LoadNode::load_array_final_field(const TypeKlassPtr *tkls, | |||
| 1846 | ciKlass* klass) const { | |||
| 1847 | if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { | |||
| 1848 | // The field is Klass::_modifier_flags. Return its (constant) value. | |||
| 1849 | // (Folds up the 2nd indirection in aClassConstant.getModifiers().) | |||
| 1850 | assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1850, "assert(" "this->Opcode() == Op_LoadI" ") failed", "must load an int from _modifier_flags"); ::breakpoint(); } } while (0); | |||
| 1851 | return TypeInt::make(klass->modifier_flags()); | |||
| 1852 | } | |||
| 1853 | if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { | |||
| 1854 | // The field is Klass::_access_flags. Return its (constant) value. | |||
| 1855 | // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) | |||
| 1856 | assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1856, "assert(" "this->Opcode() == Op_LoadI" ") failed", "must load an int from _access_flags"); ::breakpoint(); } } while (0); | |||
| 1857 | return TypeInt::make(klass->access_flags()); | |||
| 1858 | } | |||
| 1859 | if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { | |||
| 1860 | // The field is Klass::_layout_helper. Return its constant value if known. | |||
| 1861 | assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1861, "assert(" "this->Opcode() == Op_LoadI" ") failed", "must load an int from _layout_helper"); ::breakpoint(); } } while (0); | |||
| 1862 | return TypeInt::make(klass->layout_helper()); | |||
| 1863 | } | |||
| 1864 | ||||
| 1865 | // No match. | |||
| 1866 | return NULL__null; | |||
| 1867 | } | |||
| 1868 | ||||
| 1869 | //------------------------------Value----------------------------------------- | |||
| 1870 | const Type* LoadNode::Value(PhaseGVN* phase) const { | |||
| 1871 | // Either input is TOP ==> the result is TOP | |||
| 1872 | Node* mem = in(MemNode::Memory); | |||
| 1873 | const Type *t1 = phase->type(mem); | |||
| 1874 | if (t1 == Type::TOP) return Type::TOP; | |||
| 1875 | Node* adr = in(MemNode::Address); | |||
| 1876 | const TypePtr* tp = phase->type(adr)->isa_ptr(); | |||
| 1877 | if (tp == NULL__null || tp->empty()) return Type::TOP; | |||
| 1878 | int off = tp->offset(); | |||
| 1879 | assert(off != Type::OffsetTop, "case covered by TypePtr::empty")do { if (!(off != Type::OffsetTop)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1879, "assert(" "off != Type::OffsetTop" ") failed", "case covered by TypePtr::empty" ); ::breakpoint(); } } while (0); | |||
| 1880 | Compile* C = phase->C; | |||
| 1881 | ||||
| 1882 | // Try to guess loaded type from pointer type | |||
| 1883 | if (tp->isa_aryptr()) { | |||
| 1884 | const TypeAryPtr* ary = tp->is_aryptr(); | |||
| 1885 | const Type* t = ary->elem(); | |||
| 1886 | ||||
| 1887 | // Determine whether the reference is beyond the header or not, by comparing | |||
| 1888 | // the offset against the offset of the start of the array's data. | |||
| 1889 | // Different array types begin at slightly different offsets (12 vs. 16). | |||
| 1890 | // We choose T_BYTE as an example base type that is least restrictive | |||
| 1891 | // as to alignment, which will therefore produce the smallest | |||
| 1892 | // possible base offset. | |||
| 1893 | const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); | |||
| 1894 | const bool off_beyond_header = (off >= min_base_off); | |||
| 1895 | ||||
| 1896 | // Try to constant-fold a stable array element. | |||
| 1897 | if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { | |||
| 1898 | // Make sure the reference is not into the header and the offset is constant | |||
| 1899 | ciObject* aobj = ary->const_oop(); | |||
| 1900 | if (aobj != NULL__null && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { | |||
| 1901 | int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); | |||
| 1902 | const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, | |||
| 1903 | stable_dimension, | |||
| 1904 | memory_type(), is_unsigned()); | |||
| 1905 | if (con_type != NULL__null) { | |||
| 1906 | return con_type; | |||
| 1907 | } | |||
| 1908 | } | |||
| 1909 | } | |||
| 1910 | ||||
| 1911 | // Don't do this for integer types. There is only potential profit if | |||
| 1912 | // the element type t is lower than _type; that is, for int types, if _type is | |||
| 1913 | // more restrictive than t. This only happens here if one is short and the other | |||
| 1914 | // char (both 16 bits), and in those cases we've made an intentional decision | |||
| 1915 | // to use one kind of load over the other. See AndINode::Ideal and 4965907. | |||
| 1916 | // Also, do not try to narrow the type for a LoadKlass, regardless of offset. | |||
| 1917 | // | |||
| 1918 | // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) | |||
| 1919 | // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier | |||
| 1920 | // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been | |||
| 1921 | // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, | |||
| 1922 | // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. | |||
| 1923 | // In fact, that could have been the original type of p1, and p1 could have | |||
| 1924 | // had an original form like p1:(AddP x x (LShiftL quux 3)), where the | |||
| 1925 | // expression (LShiftL quux 3) independently optimized to the constant 8. | |||
| 1926 | if ((t->isa_int() == NULL__null) && (t->isa_long() == NULL__null) | |||
| 1927 | && (_type->isa_vect() == NULL__null) | |||
| 1928 | && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { | |||
| 1929 | // t might actually be lower than _type, if _type is a unique | |||
| 1930 | // concrete subclass of abstract class t. | |||
| 1931 | if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? | |||
| 1932 | const Type* jt = t->join_speculative(_type); | |||
| 1933 | // In any case, do not allow the join, per se, to empty out the type. | |||
| 1934 | if (jt->empty() && !t->empty()) { | |||
| 1935 | // This can happen if a interface-typed array narrows to a class type. | |||
| 1936 | jt = _type; | |||
| 1937 | } | |||
| 1938 | #ifdef ASSERT1 | |||
| 1939 | if (phase->C->eliminate_boxing() && adr->is_AddP()) { | |||
| 1940 | // The pointers in the autobox arrays are always non-null | |||
| 1941 | Node* base = adr->in(AddPNode::Base); | |||
| 1942 | if ((base != NULL__null) && base->is_DecodeN()) { | |||
| 1943 | // Get LoadN node which loads IntegerCache.cache field | |||
| 1944 | base = base->in(1); | |||
| 1945 | } | |||
| 1946 | if ((base != NULL__null) && base->is_Con()) { | |||
| 1947 | const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); | |||
| 1948 | if ((base_type != NULL__null) && base_type->is_autobox_cache()) { | |||
| 1949 | // It could be narrow oop | |||
| 1950 | assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity")do { if (!(jt->make_ptr()->ptr() == TypePtr::NotNull)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1950, "assert(" "jt->make_ptr()->ptr() == TypePtr::NotNull" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
| 1951 | } | |||
| 1952 | } | |||
| 1953 | } | |||
| 1954 | #endif | |||
| 1955 | return jt; | |||
| 1956 | } | |||
| 1957 | } | |||
| 1958 | } else if (tp->base() == Type::InstPtr) { | |||
| 1959 | assert( off != Type::OffsetBot ||do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1960 | // arrays can be cast to Objectsdo { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1961 | tp->is_oopptr()->klass()->is_java_lang_Object() ||do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1962 | // unsafe field access may not have a constant offsetdo { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1963 | C->has_unsafe_access(),do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1964 | "Field accesses must be precise" )do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass ()->is_java_lang_Object() || C->has_unsafe_access())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0); | |||
| 1965 | // For oop loads, we expect the _type to be precise. | |||
| 1966 | ||||
| 1967 | // Optimize loads from constant fields. | |||
| 1968 | const TypeInstPtr* tinst = tp->is_instptr(); | |||
| 1969 | ciObject* const_oop = tinst->const_oop(); | |||
| 1970 | if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL__null && const_oop->is_instance()) { | |||
| 1971 | const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type()); | |||
| 1972 | if (con_type != NULL__null) { | |||
| 1973 | return con_type; | |||
| 1974 | } | |||
| 1975 | } | |||
| 1976 | } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) { | |||
| 1977 | assert( off != Type::OffsetBot ||do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1978 | // arrays can be cast to Objectsdo { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1979 | tp->is_klassptr()->klass()->is_java_lang_Object() ||do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1980 | // also allow array-loading from the primary supertypedo { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1981 | // array during subtype checksdo { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1982 | Opcode() == Op_LoadKlass,do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0) | |||
| 1983 | "Field accesses must be precise" )do { if (!(off != Type::OffsetBot || tp->is_klassptr()-> klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass" ") failed", "Field accesses must be precise"); ::breakpoint( ); } } while (0); | |||
| 1984 | // For klass/static loads, we expect the _type to be precise | |||
| 1985 | } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { | |||
| 1986 | /* With mirrors being an indirect in the Klass* | |||
| 1987 | * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) | |||
| 1988 | * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). | |||
| 1989 | * | |||
| 1990 | * So check the type and klass of the node before the LoadP. | |||
| 1991 | */ | |||
| 1992 | Node* adr2 = adr->in(MemNode::Address); | |||
| 1993 | const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); | |||
| 1994 | if (tkls != NULL__null && !StressReflectiveCode) { | |||
| 1995 | ciKlass* klass = tkls->klass(); | |||
| 1996 | if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { | |||
| 1997 | assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror")do { if (!(adr->Opcode() == Op_LoadP)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1997, "assert(" "adr->Opcode() == Op_LoadP" ") failed", "must load an oop from _java_mirror" ); ::breakpoint(); } } while (0); | |||
| 1998 | assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror")do { if (!(Opcode() == Op_LoadP)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 1998, "assert(" "Opcode() == Op_LoadP" ") failed", "must load an oop from _java_mirror" ); ::breakpoint(); } } while (0); | |||
| 1999 | return TypeInstPtr::make(klass->java_mirror()); | |||
| 2000 | } | |||
| 2001 | } | |||
| 2002 | } | |||
| 2003 | ||||
| 2004 | const TypeKlassPtr *tkls = tp->isa_klassptr(); | |||
| 2005 | if (tkls != NULL__null && !StressReflectiveCode) { | |||
| 2006 | ciKlass* klass = tkls->klass(); | |||
| 2007 | if (klass->is_loaded() && tkls->klass_is_exact()) { | |||
| 2008 | // We are loading a field from a Klass metaobject whose identity | |||
| 2009 | // is known at compile time (the type is "exact" or "precise"). | |||
| 2010 | // Check for fields we know are maintained as constants by the VM. | |||
| 2011 | if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { | |||
| 2012 | // The field is Klass::_super_check_offset. Return its (constant) value. | |||
| 2013 | // (Folds up type checking code.) | |||
| 2014 | assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset")do { if (!(Opcode() == Op_LoadI)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2014, "assert(" "Opcode() == Op_LoadI" ") failed", "must load an int from _super_check_offset" ); ::breakpoint(); } } while (0); | |||
| 2015 | return TypeInt::make(klass->super_check_offset()); | |||
| 2016 | } | |||
| 2017 | // Compute index into primary_supers array | |||
| 2018 | juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); | |||
| 2019 | // Check for overflowing; use unsigned compare to handle the negative case. | |||
| 2020 | if( depth < ciKlass::primary_super_limit() ) { | |||
| 2021 | // The field is an element of Klass::_primary_supers. Return its (constant) value. | |||
| 2022 | // (Folds up type checking code.) | |||
| 2023 | assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers")do { if (!(Opcode() == Op_LoadKlass)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2023, "assert(" "Opcode() == Op_LoadKlass" ") failed", "must load a klass from _primary_supers" ); ::breakpoint(); } } while (0); | |||
| 2024 | ciKlass *ss = klass->super_of_depth(depth); | |||
| 2025 | return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; | |||
| 2026 | } | |||
| 2027 | const Type* aift = load_array_final_field(tkls, klass); | |||
| 2028 | if (aift != NULL__null) return aift; | |||
| 2029 | } | |||
| 2030 | ||||
| 2031 | // We can still check if we are loading from the primary_supers array at a | |||
| 2032 | // shallow enough depth. Even though the klass is not exact, entries less | |||
| 2033 | // than or equal to its super depth are correct. | |||
| 2034 | if (klass->is_loaded() ) { | |||
| 2035 | ciType *inner = klass; | |||
| 2036 | while( inner->is_obj_array_klass() ) | |||
| 2037 | inner = inner->as_obj_array_klass()->base_element_type(); | |||
| 2038 | if( inner->is_instance_klass() && | |||
| 2039 | !inner->as_instance_klass()->flags().is_interface() ) { | |||
| 2040 | // Compute index into primary_supers array | |||
| 2041 | juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); | |||
| 2042 | // Check for overflowing; use unsigned compare to handle the negative case. | |||
| 2043 | if( depth < ciKlass::primary_super_limit() && | |||
| 2044 | depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case | |||
| 2045 | // The field is an element of Klass::_primary_supers. Return its (constant) value. | |||
| 2046 | // (Folds up type checking code.) | |||
| 2047 | assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers")do { if (!(Opcode() == Op_LoadKlass)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2047, "assert(" "Opcode() == Op_LoadKlass" ") failed", "must load a klass from _primary_supers" ); ::breakpoint(); } } while (0); | |||
| 2048 | ciKlass *ss = klass->super_of_depth(depth); | |||
| 2049 | return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; | |||
| 2050 | } | |||
| 2051 | } | |||
| 2052 | } | |||
| 2053 | ||||
| 2054 | // If the type is enough to determine that the thing is not an array, | |||
| 2055 | // we can give the layout_helper a positive interval type. | |||
| 2056 | // This will help short-circuit some reflective code. | |||
| 2057 | if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) | |||
| 2058 | && !klass->is_array_klass() // not directly typed as an array | |||
| 2059 | && !klass->is_interface() // specifically not Serializable & Cloneable | |||
| 2060 | && !klass->is_java_lang_Object() // not the supertype of all T[] | |||
| 2061 | ) { | |||
| 2062 | // Note: When interfaces are reliable, we can narrow the interface | |||
| 2063 | // test to (klass != Serializable && klass != Cloneable). | |||
| 2064 | assert(Opcode() == Op_LoadI, "must load an int from _layout_helper")do { if (!(Opcode() == Op_LoadI)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2064, "assert(" "Opcode() == Op_LoadI" ") failed", "must load an int from _layout_helper" ); ::breakpoint(); } } while (0); | |||
| 2065 | jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); | |||
| 2066 | // The key property of this type is that it folds up tests | |||
| 2067 | // for array-ness, since it proves that the layout_helper is positive. | |||
| 2068 | // Thus, a generic value like the basic object layout helper works fine. | |||
| 2069 | return TypeInt::make(min_size, max_jint, Type::WidenMin); | |||
| 2070 | } | |||
| 2071 | } | |||
| 2072 | ||||
| 2073 | // If we are loading from a freshly-allocated object, produce a zero, | |||
| 2074 | // if the load is provably beyond the header of the object. | |||
| 2075 | // (Also allow a variable load from a fresh array to produce zero.) | |||
| 2076 | const TypeOopPtr *tinst = tp->isa_oopptr(); | |||
| 2077 | bool is_instance = (tinst != NULL__null) && tinst->is_known_instance_field(); | |||
| 2078 | bool is_boxed_value = (tinst != NULL__null) && tinst->is_ptr_to_boxed_value(); | |||
| 2079 | if (ReduceFieldZeroing || is_instance || is_boxed_value) { | |||
| 2080 | Node* value = can_see_stored_value(mem,phase); | |||
| 2081 | if (value != NULL__null && value->is_Con()) { | |||
| 2082 | assert(value->bottom_type()->higher_equal(_type),"sanity")do { if (!(value->bottom_type()->higher_equal(_type))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2082, "assert(" "value->bottom_type()->higher_equal(_type)" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
| 2083 | return value->bottom_type(); | |||
| 2084 | } | |||
| 2085 | } | |||
| 2086 | ||||
| 2087 | bool is_vect = (_type->isa_vect() != NULL__null); | |||
| 2088 | if (is_instance && !is_vect) { | |||
| 2089 | // If we have an instance type and our memory input is the | |||
| 2090 | // programs's initial memory state, there is no matching store, | |||
| 2091 | // so just return a zero of the appropriate type - | |||
| 2092 | // except if it is vectorized - then we have no zero constant. | |||
| 2093 | Node *mem = in(MemNode::Memory); | |||
| 2094 | if (mem->is_Parm() && mem->in(0)->is_Start()) { | |||
| 2095 | assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm")do { if (!(mem->as_Parm()->_con == TypeFunc::Memory)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2095, "assert(" "mem->as_Parm()->_con == TypeFunc::Memory" ") failed", "must be memory Parm"); ::breakpoint(); } } while (0); | |||
| 2096 | return Type::get_zero_type(_type->basic_type()); | |||
| 2097 | } | |||
| 2098 | } | |||
| 2099 | ||||
| 2100 | Node* alloc = is_new_object_mark_load(phase); | |||
| 2101 | if (alloc != NULL__null) { | |||
| 2102 | return TypeXTypeLong::make(markWord::prototype().value()); | |||
| 2103 | } | |||
| 2104 | ||||
| 2105 | return _type; | |||
| 2106 | } | |||
| 2107 | ||||
| 2108 | //------------------------------match_edge------------------------------------- | |||
| 2109 | // Do we Match on this edge index or not? Match only the address. | |||
| 2110 | uint LoadNode::match_edge(uint idx) const { | |||
| 2111 | return idx == MemNode::Address; | |||
| 2112 | } | |||
| 2113 | ||||
| 2114 | //--------------------------LoadBNode::Ideal-------------------------------------- | |||
| 2115 | // | |||
| 2116 | // If the previous store is to the same address as this load, | |||
| 2117 | // and the value stored was larger than a byte, replace this load | |||
| 2118 | // with the value stored truncated to a byte. If no truncation is | |||
| 2119 | // needed, the replacement is done in LoadNode::Identity(). | |||
| 2120 | // | |||
| 2121 | Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
| 2122 | Node* mem = in(MemNode::Memory); | |||
| 2123 | Node* value = can_see_stored_value(mem,phase); | |||
| 2124 | if (value != NULL__null) { | |||
| 2125 | Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); | |||
| 2126 | if (narrow != value) { | |||
| 2127 | return narrow; | |||
| 2128 | } | |||
| 2129 | } | |||
| 2130 | // Identity call will handle the case where truncation is not needed. | |||
| 2131 | return LoadNode::Ideal(phase, can_reshape); | |||
| 2132 | } | |||
| 2133 | ||||
| 2134 | const Type* LoadBNode::Value(PhaseGVN* phase) const { | |||
| 2135 | Node* mem = in(MemNode::Memory); | |||
| 2136 | Node* value = can_see_stored_value(mem,phase); | |||
| 2137 | if (value != NULL__null && value->is_Con() && | |||
| 2138 | !value->bottom_type()->higher_equal(_type)) { | |||
| 2139 | // If the input to the store does not fit with the load's result type, | |||
| 2140 | // it must be truncated. We can't delay until Ideal call since | |||
| 2141 | // a singleton Value is needed for split_thru_phi optimization. | |||
| 2142 | int con = value->get_int(); | |||
| 2143 | return TypeInt::make((con << 24) >> 24); | |||
| 2144 | } | |||
| 2145 | return LoadNode::Value(phase); | |||
| 2146 | } | |||
| 2147 | ||||
| 2148 | //--------------------------LoadUBNode::Ideal------------------------------------- | |||
| 2149 | // | |||
| 2150 | // If the previous store is to the same address as this load, | |||
| 2151 | // and the value stored was larger than a byte, replace this load | |||
| 2152 | // with the value stored truncated to a byte. If no truncation is | |||
| 2153 | // needed, the replacement is done in LoadNode::Identity(). | |||
| 2154 | // | |||
| 2155 | Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
| 2156 | Node* mem = in(MemNode::Memory); | |||
| 2157 | Node* value = can_see_stored_value(mem, phase); | |||
| 2158 | if (value != NULL__null) { | |||
| 2159 | Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); | |||
| 2160 | if (narrow != value) { | |||
| 2161 | return narrow; | |||
| 2162 | } | |||
| 2163 | } | |||
| 2164 | // Identity call will handle the case where truncation is not needed. | |||
| 2165 | return LoadNode::Ideal(phase, can_reshape); | |||
| 2166 | } | |||
| 2167 | ||||
| 2168 | const Type* LoadUBNode::Value(PhaseGVN* phase) const { | |||
| 2169 | Node* mem = in(MemNode::Memory); | |||
| 2170 | Node* value = can_see_stored_value(mem,phase); | |||
| 2171 | if (value != NULL__null && value->is_Con() && | |||
| 2172 | !value->bottom_type()->higher_equal(_type)) { | |||
| 2173 | // If the input to the store does not fit with the load's result type, | |||
| 2174 | // it must be truncated. We can't delay until Ideal call since | |||
| 2175 | // a singleton Value is needed for split_thru_phi optimization. | |||
| 2176 | int con = value->get_int(); | |||
| 2177 | return TypeInt::make(con & 0xFF); | |||
| 2178 | } | |||
| 2179 | return LoadNode::Value(phase); | |||
| 2180 | } | |||
| 2181 | ||||
| 2182 | //--------------------------LoadUSNode::Ideal------------------------------------- | |||
| 2183 | // | |||
| 2184 | // If the previous store is to the same address as this load, | |||
| 2185 | // and the value stored was larger than a char, replace this load | |||
| 2186 | // with the value stored truncated to a char. If no truncation is | |||
| 2187 | // needed, the replacement is done in LoadNode::Identity(). | |||
| 2188 | // | |||
| 2189 | Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
| 2190 | Node* mem = in(MemNode::Memory); | |||
| 2191 | Node* value = can_see_stored_value(mem,phase); | |||
| 2192 | if (value != NULL__null) { | |||
| 2193 | Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); | |||
| 2194 | if (narrow != value) { | |||
| 2195 | return narrow; | |||
| 2196 | } | |||
| 2197 | } | |||
| 2198 | // Identity call will handle the case where truncation is not needed. | |||
| 2199 | return LoadNode::Ideal(phase, can_reshape); | |||
| 2200 | } | |||
| 2201 | ||||
| 2202 | const Type* LoadUSNode::Value(PhaseGVN* phase) const { | |||
| 2203 | Node* mem = in(MemNode::Memory); | |||
| 2204 | Node* value = can_see_stored_value(mem,phase); | |||
| 2205 | if (value != NULL__null && value->is_Con() && | |||
| 2206 | !value->bottom_type()->higher_equal(_type)) { | |||
| 2207 | // If the input to the store does not fit with the load's result type, | |||
| 2208 | // it must be truncated. We can't delay until Ideal call since | |||
| 2209 | // a singleton Value is needed for split_thru_phi optimization. | |||
| 2210 | int con = value->get_int(); | |||
| 2211 | return TypeInt::make(con & 0xFFFF); | |||
| 2212 | } | |||
| 2213 | return LoadNode::Value(phase); | |||
| 2214 | } | |||
| 2215 | ||||
| 2216 | //--------------------------LoadSNode::Ideal-------------------------------------- | |||
| 2217 | // | |||
| 2218 | // If the previous store is to the same address as this load, | |||
| 2219 | // and the value stored was larger than a short, replace this load | |||
| 2220 | // with the value stored truncated to a short. If no truncation is | |||
| 2221 | // needed, the replacement is done in LoadNode::Identity(). | |||
| 2222 | // | |||
| 2223 | Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
| 2224 | Node* mem = in(MemNode::Memory); | |||
| 2225 | Node* value = can_see_stored_value(mem,phase); | |||
| 2226 | if (value != NULL__null) { | |||
| 2227 | Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); | |||
| 2228 | if (narrow != value) { | |||
| 2229 | return narrow; | |||
| 2230 | } | |||
| 2231 | } | |||
| 2232 | // Identity call will handle the case where truncation is not needed. | |||
| 2233 | return LoadNode::Ideal(phase, can_reshape); | |||
| 2234 | } | |||
| 2235 | ||||
| 2236 | const Type* LoadSNode::Value(PhaseGVN* phase) const { | |||
| 2237 | Node* mem = in(MemNode::Memory); | |||
| 2238 | Node* value = can_see_stored_value(mem,phase); | |||
| 2239 | if (value != NULL__null && value->is_Con() && | |||
| 2240 | !value->bottom_type()->higher_equal(_type)) { | |||
| 2241 | // If the input to the store does not fit with the load's result type, | |||
| 2242 | // it must be truncated. We can't delay until Ideal call since | |||
| 2243 | // a singleton Value is needed for split_thru_phi optimization. | |||
| 2244 | int con = value->get_int(); | |||
| 2245 | return TypeInt::make((con << 16) >> 16); | |||
| 2246 | } | |||
| 2247 | return LoadNode::Value(phase); | |||
| 2248 | } | |||
| 2249 | ||||
| 2250 | //============================================================================= | |||
| 2251 | //----------------------------LoadKlassNode::make------------------------------ | |||
| 2252 | // Polymorphic factory method: | |||
| 2253 | Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { | |||
| 2254 | // sanity check the alias category against the created node type | |||
| 2255 | const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); | |||
| 2256 | assert(adr_type != NULL, "expecting TypeKlassPtr")do { if (!(adr_type != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2256, "assert(" "adr_type != __null" ") failed", "expecting TypeKlassPtr" ); ::breakpoint(); } } while (0); | |||
| 2257 | #ifdef _LP641 | |||
| 2258 | if (adr_type->is_ptr_to_narrowklass()) { | |||
| 2259 | assert(UseCompressedClassPointers, "no compressed klasses")do { if (!(UseCompressedClassPointers)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2259, "assert(" "UseCompressedClassPointers" ") failed", "no compressed klasses" ); ::breakpoint(); } } while (0); | |||
| 2260 | Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); | |||
| 2261 | return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); | |||
| 2262 | } | |||
| 2263 | #endif | |||
| 2264 | assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop")do { if (!(!adr_type->is_ptr_to_narrowklass() && ! adr_type->is_ptr_to_narrowoop())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2264, "assert(" "!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop()" ") failed", "should have got back a narrow oop"); ::breakpoint (); } } while (0); | |||
| 2265 | return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); | |||
| 2266 | } | |||
| 2267 | ||||
| 2268 | //------------------------------Value------------------------------------------ | |||
| 2269 | const Type* LoadKlassNode::Value(PhaseGVN* phase) const { | |||
| 2270 | return klass_value_common(phase); | |||
| 2271 | } | |||
| 2272 | ||||
| 2273 | // In most cases, LoadKlassNode does not have the control input set. If the control | |||
| 2274 | // input is set, it must not be removed (by LoadNode::Ideal()). | |||
| 2275 | bool LoadKlassNode::can_remove_control() const { | |||
| 2276 | return false; | |||
| 2277 | } | |||
| 2278 | ||||
| 2279 | const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { | |||
| 2280 | // Either input is TOP ==> the result is TOP | |||
| 2281 | const Type *t1 = phase->type( in(MemNode::Memory) ); | |||
| 2282 | if (t1 == Type::TOP) return Type::TOP; | |||
| 2283 | Node *adr = in(MemNode::Address); | |||
| 2284 | const Type *t2 = phase->type( adr ); | |||
| 2285 | if (t2 == Type::TOP) return Type::TOP; | |||
| 2286 | const TypePtr *tp = t2->is_ptr(); | |||
| 2287 | if (TypePtr::above_centerline(tp->ptr()) || | |||
| 2288 | tp->ptr() == TypePtr::Null) return Type::TOP; | |||
| 2289 | ||||
| 2290 | // Return a more precise klass, if possible | |||
| 2291 | const TypeInstPtr *tinst = tp->isa_instptr(); | |||
| 2292 | if (tinst != NULL__null) { | |||
| 2293 | ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); | |||
| 2294 | int offset = tinst->offset(); | |||
| 2295 | if (ik == phase->C->env()->Class_klass() | |||
| 2296 | && (offset == java_lang_Class::klass_offset() || | |||
| 2297 | offset == java_lang_Class::array_klass_offset())) { | |||
| 2298 | // We are loading a special hidden field from a Class mirror object, | |||
| 2299 | // the field which points to the VM's Klass metaobject. | |||
| 2300 | ciType* t = tinst->java_mirror_type(); | |||
| 2301 | // java_mirror_type returns non-null for compile-time Class constants. | |||
| 2302 | if (t != NULL__null) { | |||
| 2303 | // constant oop => constant klass | |||
| 2304 | if (offset == java_lang_Class::array_klass_offset()) { | |||
| 2305 | if (t->is_void()) { | |||
| 2306 | // We cannot create a void array. Since void is a primitive type return null | |||
| 2307 | // klass. Users of this result need to do a null check on the returned klass. | |||
| 2308 | return TypePtr::NULL_PTR; | |||
| 2309 | } | |||
| 2310 | return TypeKlassPtr::make(ciArrayKlass::make(t)); | |||
| 2311 | } | |||
| 2312 | if (!t->is_klass()) { | |||
| 2313 | // a primitive Class (e.g., int.class) has NULL for a klass field | |||
| 2314 | return TypePtr::NULL_PTR; | |||
| 2315 | } | |||
| 2316 | // (Folds up the 1st indirection in aClassConstant.getModifiers().) | |||
| 2317 | return TypeKlassPtr::make(t->as_klass()); | |||
| 2318 | } | |||
| 2319 | // non-constant mirror, so we can't tell what's going on | |||
| 2320 | } | |||
| 2321 | if( !ik->is_loaded() ) | |||
| 2322 | return _type; // Bail out if not loaded | |||
| 2323 | if (offset == oopDesc::klass_offset_in_bytes()) { | |||
| 2324 | if (tinst->klass_is_exact()) { | |||
| 2325 | return TypeKlassPtr::make(ik); | |||
| 2326 | } | |||
| 2327 | // See if we can become precise: no subklasses and no interface | |||
| 2328 | // (Note: We need to support verified interfaces.) | |||
| 2329 | if (!ik->is_interface() && !ik->has_subklass()) { | |||
| 2330 | // Add a dependence; if any subclass added we need to recompile | |||
| 2331 | if (!ik->is_final()) { | |||
| 2332 | // %%% should use stronger assert_unique_concrete_subtype instead | |||
| 2333 | phase->C->dependencies()->assert_leaf_type(ik); | |||
| 2334 | } | |||
| 2335 | // Return precise klass | |||
| 2336 | return TypeKlassPtr::make(ik); | |||
| 2337 | } | |||
| 2338 | ||||
| 2339 | // Return root of possible klass | |||
| 2340 | return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/); | |||
| 2341 | } | |||
| 2342 | } | |||
| 2343 | ||||
| 2344 | // Check for loading klass from an array | |||
| 2345 | const TypeAryPtr *tary = tp->isa_aryptr(); | |||
| 2346 | if( tary != NULL__null ) { | |||
| 2347 | ciKlass *tary_klass = tary->klass(); | |||
| 2348 | if (tary_klass != NULL__null // can be NULL when at BOTTOM or TOP | |||
| 2349 | && tary->offset() == oopDesc::klass_offset_in_bytes()) { | |||
| 2350 | if (tary->klass_is_exact()) { | |||
| 2351 | return TypeKlassPtr::make(tary_klass); | |||
| 2352 | } | |||
| 2353 | ciArrayKlass *ak = tary->klass()->as_array_klass(); | |||
| 2354 | // If the klass is an object array, we defer the question to the | |||
| 2355 | // array component klass. | |||
| 2356 | if( ak->is_obj_array_klass() ) { | |||
| 2357 | assert( ak->is_loaded(), "" )do { if (!(ak->is_loaded())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2357, "assert(" "ak->is_loaded()" ") failed", ""); ::breakpoint (); } } while (0); | |||
| 2358 | ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass(); | |||
| 2359 | if( base_k->is_loaded() && base_k->is_instance_klass() ) { | |||
| 2360 | ciInstanceKlass* ik = base_k->as_instance_klass(); | |||
| 2361 | // See if we can become precise: no subklasses and no interface | |||
| 2362 | if (!ik->is_interface() && !ik->has_subklass()) { | |||
| 2363 | // Add a dependence; if any subclass added we need to recompile | |||
| 2364 | if (!ik->is_final()) { | |||
| 2365 | phase->C->dependencies()->assert_leaf_type(ik); | |||
| 2366 | } | |||
| 2367 | // Return precise array klass | |||
| 2368 | return TypeKlassPtr::make(ak); | |||
| 2369 | } | |||
| 2370 | } | |||
| 2371 | return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); | |||
| 2372 | } else { // Found a type-array? | |||
| 2373 | assert( ak->is_type_array_klass(), "" )do { if (!(ak->is_type_array_klass())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2373, "assert(" "ak->is_type_array_klass()" ") failed", "" ); ::breakpoint(); } } while (0); | |||
| 2374 | return TypeKlassPtr::make(ak); // These are always precise | |||
| 2375 | } | |||
| 2376 | } | |||
| 2377 | } | |||
| 2378 | ||||
| 2379 | // Check for loading klass from an array klass | |||
| 2380 | const TypeKlassPtr *tkls = tp->isa_klassptr(); | |||
| 2381 | if (tkls != NULL__null && !StressReflectiveCode) { | |||
| 2382 | ciKlass* klass = tkls->klass(); | |||
| 2383 | if( !klass->is_loaded() ) | |||
| 2384 | return _type; // Bail out if not loaded | |||
| 2385 | if( klass->is_obj_array_klass() && | |||
| 2386 | tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { | |||
| 2387 | ciKlass* elem = klass->as_obj_array_klass()->element_klass(); | |||
| 2388 | // // Always returning precise element type is incorrect, | |||
| 2389 | // // e.g., element type could be object and array may contain strings | |||
| 2390 | // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); | |||
| 2391 | ||||
| 2392 | // The array's TypeKlassPtr was declared 'precise' or 'not precise' | |||
| 2393 | // according to the element type's subclassing. | |||
| 2394 | return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/); | |||
| 2395 | } | |||
| 2396 | if( klass->is_instance_klass() && tkls->klass_is_exact() && | |||
| 2397 | tkls->offset() == in_bytes(Klass::super_offset())) { | |||
| 2398 | ciKlass* sup = klass->as_instance_klass()->super(); | |||
| 2399 | // The field is Klass::_super. Return its (constant) value. | |||
| 2400 | // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) | |||
| 2401 | return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR; | |||
| 2402 | } | |||
| 2403 | } | |||
| 2404 | ||||
| 2405 | // Bailout case | |||
| 2406 | return LoadNode::Value(phase); | |||
| 2407 | } | |||
| 2408 | ||||
| 2409 | //------------------------------Identity--------------------------------------- | |||
| 2410 | // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. | |||
| 2411 | // Also feed through the klass in Allocate(...klass...)._klass. | |||
| 2412 | Node* LoadKlassNode::Identity(PhaseGVN* phase) { | |||
| 2413 | return klass_identity_common(phase); | |||
| 2414 | } | |||
| 2415 | ||||
| 2416 | Node* LoadNode::klass_identity_common(PhaseGVN* phase) { | |||
| 2417 | Node* x = LoadNode::Identity(phase); | |||
| 2418 | if (x != this) return x; | |||
| 2419 | ||||
| 2420 | // Take apart the address into an oop and and offset. | |||
| 2421 | // Return 'this' if we cannot. | |||
| 2422 | Node* adr = in(MemNode::Address); | |||
| 2423 | intptr_t offset = 0; | |||
| 2424 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
| 2425 | if (base == NULL__null) return this; | |||
| 2426 | const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); | |||
| 2427 | if (toop == NULL__null) return this; | |||
| 2428 | ||||
| 2429 | // Step over potential GC barrier for OopHandle resolve | |||
| 2430 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); | |||
| 2431 | if (bs->is_gc_barrier_node(base)) { | |||
| 2432 | base = bs->step_over_gc_barrier(base); | |||
| 2433 | } | |||
| 2434 | ||||
| 2435 | // We can fetch the klass directly through an AllocateNode. | |||
| 2436 | // This works even if the klass is not constant (clone or newArray). | |||
| 2437 | if (offset == oopDesc::klass_offset_in_bytes()) { | |||
| 2438 | Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); | |||
| 2439 | if (allocated_klass != NULL__null) { | |||
| 2440 | return allocated_klass; | |||
| 2441 | } | |||
| 2442 | } | |||
| 2443 | ||||
| 2444 | // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. | |||
| 2445 | // See inline_native_Class_query for occurrences of these patterns. | |||
| 2446 | // Java Example: x.getClass().isAssignableFrom(y) | |||
| 2447 | // | |||
| 2448 | // This improves reflective code, often making the Class | |||
| 2449 | // mirror go completely dead. (Current exception: Class | |||
| 2450 | // mirrors may appear in debug info, but we could clean them out by | |||
| 2451 | // introducing a new debug info operator for Klass.java_mirror). | |||
| 2452 | ||||
| 2453 | if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass() | |||
| 2454 | && offset == java_lang_Class::klass_offset()) { | |||
| 2455 | if (base->is_Load()) { | |||
| 2456 | Node* base2 = base->in(MemNode::Address); | |||
| 2457 | if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ | |||
| 2458 | Node* adr2 = base2->in(MemNode::Address); | |||
| 2459 | const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); | |||
| 2460 | if (tkls != NULL__null && !tkls->empty() | |||
| 2461 | && (tkls->klass()->is_instance_klass() || | |||
| 2462 | tkls->klass()->is_array_klass()) | |||
| 2463 | && adr2->is_AddP() | |||
| 2464 | ) { | |||
| 2465 | int mirror_field = in_bytes(Klass::java_mirror_offset()); | |||
| 2466 | if (tkls->offset() == mirror_field) { | |||
| 2467 | return adr2->in(AddPNode::Base); | |||
| 2468 | } | |||
| 2469 | } | |||
| 2470 | } | |||
| 2471 | } | |||
| 2472 | } | |||
| 2473 | ||||
| 2474 | return this; | |||
| 2475 | } | |||
| 2476 | ||||
| 2477 | ||||
| 2478 | //------------------------------Value------------------------------------------ | |||
| 2479 | const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { | |||
| 2480 | const Type *t = klass_value_common(phase); | |||
| 2481 | if (t == Type::TOP) | |||
| 2482 | return t; | |||
| 2483 | ||||
| 2484 | return t->make_narrowklass(); | |||
| 2485 | } | |||
| 2486 | ||||
| 2487 | //------------------------------Identity--------------------------------------- | |||
| 2488 | // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. | |||
| 2489 | // Also feed through the klass in Allocate(...klass...)._klass. | |||
| 2490 | Node* LoadNKlassNode::Identity(PhaseGVN* phase) { | |||
| 2491 | Node *x = klass_identity_common(phase); | |||
| 2492 | ||||
| 2493 | const Type *t = phase->type( x ); | |||
| 2494 | if( t == Type::TOP ) return x; | |||
| 2495 | if( t->isa_narrowklass()) return x; | |||
| 2496 | assert (!t->isa_narrowoop(), "no narrow oop here")do { if (!(!t->isa_narrowoop())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2496, "assert(" "!t->isa_narrowoop()" ") failed", "no narrow oop here" ); ::breakpoint(); } } while (0); | |||
| 2497 | ||||
| 2498 | return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); | |||
| 2499 | } | |||
| 2500 | ||||
| 2501 | //------------------------------Value----------------------------------------- | |||
| 2502 | const Type* LoadRangeNode::Value(PhaseGVN* phase) const { | |||
| 2503 | // Either input is TOP ==> the result is TOP | |||
| 2504 | const Type *t1 = phase->type( in(MemNode::Memory) ); | |||
| 2505 | if( t1 == Type::TOP ) return Type::TOP; | |||
| 2506 | Node *adr = in(MemNode::Address); | |||
| 2507 | const Type *t2 = phase->type( adr ); | |||
| 2508 | if( t2 == Type::TOP ) return Type::TOP; | |||
| 2509 | const TypePtr *tp = t2->is_ptr(); | |||
| 2510 | if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; | |||
| 2511 | const TypeAryPtr *tap = tp->isa_aryptr(); | |||
| 2512 | if( !tap ) return _type; | |||
| 2513 | return tap->size(); | |||
| 2514 | } | |||
| 2515 | ||||
| 2516 | //-------------------------------Ideal--------------------------------------- | |||
| 2517 | // Feed through the length in AllocateArray(...length...)._length. | |||
| 2518 | Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
| 2519 | Node* p = MemNode::Ideal_common(phase, can_reshape); | |||
| 2520 | if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p; | |||
| 2521 | ||||
| 2522 | // Take apart the address into an oop and and offset. | |||
| 2523 | // Return 'this' if we cannot. | |||
| 2524 | Node* adr = in(MemNode::Address); | |||
| 2525 | intptr_t offset = 0; | |||
| 2526 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
| 2527 | if (base == NULL__null) return NULL__null; | |||
| 2528 | const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); | |||
| 2529 | if (tary == NULL__null) return NULL__null; | |||
| 2530 | ||||
| 2531 | // We can fetch the length directly through an AllocateArrayNode. | |||
| 2532 | // This works even if the length is not constant (clone or newArray). | |||
| 2533 | if (offset == arrayOopDesc::length_offset_in_bytes()) { | |||
| 2534 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); | |||
| 2535 | if (alloc != NULL__null) { | |||
| 2536 | Node* allocated_length = alloc->Ideal_length(); | |||
| 2537 | Node* len = alloc->make_ideal_length(tary, phase); | |||
| 2538 | if (allocated_length != len) { | |||
| 2539 | // New CastII improves on this. | |||
| 2540 | return len; | |||
| 2541 | } | |||
| 2542 | } | |||
| 2543 | } | |||
| 2544 | ||||
| 2545 | return NULL__null; | |||
| 2546 | } | |||
| 2547 | ||||
| 2548 | //------------------------------Identity--------------------------------------- | |||
| 2549 | // Feed through the length in AllocateArray(...length...)._length. | |||
| 2550 | Node* LoadRangeNode::Identity(PhaseGVN* phase) { | |||
| 2551 | Node* x = LoadINode::Identity(phase); | |||
| 2552 | if (x != this) return x; | |||
| 2553 | ||||
| 2554 | // Take apart the address into an oop and and offset. | |||
| 2555 | // Return 'this' if we cannot. | |||
| 2556 | Node* adr = in(MemNode::Address); | |||
| 2557 | intptr_t offset = 0; | |||
| 2558 | Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); | |||
| 2559 | if (base == NULL__null) return this; | |||
| 2560 | const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); | |||
| 2561 | if (tary == NULL__null) return this; | |||
| 2562 | ||||
| 2563 | // We can fetch the length directly through an AllocateArrayNode. | |||
| 2564 | // This works even if the length is not constant (clone or newArray). | |||
| 2565 | if (offset == arrayOopDesc::length_offset_in_bytes()) { | |||
| 2566 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); | |||
| 2567 | if (alloc != NULL__null) { | |||
| 2568 | Node* allocated_length = alloc->Ideal_length(); | |||
| 2569 | // Do not allow make_ideal_length to allocate a CastII node. | |||
| 2570 | Node* len = alloc->make_ideal_length(tary, phase, false); | |||
| 2571 | if (allocated_length == len) { | |||
| 2572 | // Return allocated_length only if it would not be improved by a CastII. | |||
| 2573 | return allocated_length; | |||
| 2574 | } | |||
| 2575 | } | |||
| 2576 | } | |||
| 2577 | ||||
| 2578 | return this; | |||
| 2579 | ||||
| 2580 | } | |||
| 2581 | ||||
| 2582 | //============================================================================= | |||
| 2583 | //---------------------------StoreNode::make----------------------------------- | |||
| 2584 | // Polymorphic factory method: | |||
| 2585 | StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) { | |||
| 2586 | assert((mo == unordered || mo == release), "unexpected")do { if (!((mo == unordered || mo == release))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2586, "assert(" "(mo == unordered || mo == release)" ") failed" , "unexpected"); ::breakpoint(); } } while (0); | |||
| 2587 | Compile* C = gvn.C; | |||
| 2588 | assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||do { if (!(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2589, "assert(" "C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0) | |||
| 2589 | ctl != NULL, "raw memory operations should have control edge")do { if (!(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2589, "assert(" "C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null" ") failed", "raw memory operations should have control edge" ); ::breakpoint(); } } while (0); | |||
| 2590 | ||||
| 2591 | switch (bt) { | |||
| 2592 | case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case | |||
| 2593 | case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2594 | case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); | |||
| 2595 | case T_CHAR: | |||
| 2596 | case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2597 | case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2598 | case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2599 | case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2600 | case T_METADATA: | |||
| 2601 | case T_ADDRESS: | |||
| 2602 | case T_OBJECT: | |||
| 2603 | #ifdef _LP641 | |||
| 2604 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { | |||
| 2605 | val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); | |||
| 2606 | return new StoreNNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2607 | } else if (adr->bottom_type()->is_ptr_to_narrowklass() || | |||
| 2608 | (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && | |||
| 2609 | adr->bottom_type()->isa_rawptr())) { | |||
| 2610 | val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); | |||
| 2611 | return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2612 | } | |||
| 2613 | #endif | |||
| 2614 | { | |||
| 2615 | return new StorePNode(ctl, mem, adr, adr_type, val, mo); | |||
| 2616 | } | |||
| 2617 | default: | |||
| 2618 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2618); ::breakpoint(); } while (0); | |||
| 2619 | return (StoreNode*)NULL__null; | |||
| 2620 | } | |||
| 2621 | } | |||
| 2622 | ||||
| 2623 | StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { | |||
| 2624 | bool require_atomic = true; | |||
| 2625 | return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic); | |||
| 2626 | } | |||
| 2627 | ||||
| 2628 | StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) { | |||
| 2629 | bool require_atomic = true; | |||
| 2630 | return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic); | |||
| 2631 | } | |||
| 2632 | ||||
| 2633 | ||||
| 2634 | //--------------------------bottom_type---------------------------------------- | |||
| 2635 | const Type *StoreNode::bottom_type() const { | |||
| 2636 | return Type::MEMORY; | |||
| 2637 | } | |||
| 2638 | ||||
| 2639 | //------------------------------hash------------------------------------------- | |||
| 2640 | uint StoreNode::hash() const { | |||
| 2641 | // unroll addition of interesting fields | |||
| 2642 | //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); | |||
| 2643 | ||||
| 2644 | // Since they are not commoned, do not hash them: | |||
| 2645 | return NO_HASH; | |||
| 2646 | } | |||
| 2647 | ||||
| 2648 | //------------------------------Ideal------------------------------------------ | |||
| 2649 | // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). | |||
| 2650 | // When a store immediately follows a relevant allocation/initialization, | |||
| 2651 | // try to capture it into the initialization, or hoist it above. | |||
| 2652 | Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
| 2653 | Node* p = MemNode::Ideal_common(phase, can_reshape); | |||
| 2654 | if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p; | |||
| 2655 | ||||
| 2656 | Node* mem = in(MemNode::Memory); | |||
| 2657 | Node* address = in(MemNode::Address); | |||
| 2658 | Node* value = in(MemNode::ValueIn); | |||
| 2659 | // Back-to-back stores to same address? Fold em up. Generally | |||
| 2660 | // unsafe if I have intervening uses... Also disallowed for StoreCM | |||
| 2661 | // since they must follow each StoreP operation. Redundant StoreCMs | |||
| 2662 | // are eliminated just before matching in final_graph_reshape. | |||
| 2663 | { | |||
| 2664 | Node* st = mem; | |||
| 2665 | // If Store 'st' has more than one use, we cannot fold 'st' away. | |||
| 2666 | // For example, 'st' might be the final state at a conditional | |||
| 2667 | // return. Or, 'st' might be used by some node which is live at | |||
| 2668 | // the same time 'st' is live, which might be unschedulable. So, | |||
| 2669 | // require exactly ONE user until such time as we clone 'mem' for | |||
| 2670 | // each of 'mem's uses (thus making the exactly-1-user-rule hold | |||
| 2671 | // true). | |||
| 2672 | while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) { | |||
| 2673 | // Looking at a dead closed cycle of memory? | |||
| 2674 | assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal")do { if (!(st != st->in(MemNode::Memory))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2674, "assert(" "st != st->in(MemNode::Memory)" ") failed" , "dead loop in StoreNode::Ideal"); ::breakpoint(); } } while (0); | |||
| 2675 | assert(Opcode() == st->Opcode() ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2676 | st->Opcode() == Op_StoreVector ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2677 | Opcode() == Op_StoreVector ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2678 | st->Opcode() == Op_StoreVectorScatter ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2679 | Opcode() == Op_StoreVectorScatter ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2680 | phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2681 | (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNodedo { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2682 | (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopydo { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2683 | (is_mismatched_access() || st->as_Store()->is_mismatched_access()),do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0) | |||
| 2684 | "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()])do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index (adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access () || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())" ") failed", "no mismatched stores, except on raw memory: %s %s" , NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); ::breakpoint(); } } while (0); | |||
| 2685 | ||||
| 2686 | if (st->in(MemNode::Address)->eqv_uncast(address) && | |||
| 2687 | st->as_Store()->memory_size() <= this->memory_size()) { | |||
| 2688 | Node* use = st->raw_out(0); | |||
| 2689 | if (phase->is_IterGVN()) { | |||
| 2690 | phase->is_IterGVN()->rehash_node_delayed(use); | |||
| 2691 | } | |||
| 2692 | // It's OK to do this in the parser, since DU info is always accurate, | |||
| 2693 | // and the parser always refers to nodes via SafePointNode maps. | |||
| 2694 | use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); | |||
| 2695 | return this; | |||
| 2696 | } | |||
| 2697 | st = st->in(MemNode::Memory); | |||
| 2698 | } | |||
| 2699 | } | |||
| 2700 | ||||
| 2701 | ||||
| 2702 | // Capture an unaliased, unconditional, simple store into an initializer. | |||
| 2703 | // Or, if it is independent of the allocation, hoist it above the allocation. | |||
| 2704 | if (ReduceFieldZeroing && /*can_reshape &&*/ | |||
| 2705 | mem->is_Proj() && mem->in(0)->is_Initialize()) { | |||
| 2706 | InitializeNode* init = mem->in(0)->as_Initialize(); | |||
| 2707 | intptr_t offset = init->can_capture_store(this, phase, can_reshape); | |||
| 2708 | if (offset > 0) { | |||
| 2709 | Node* moved = init->capture_store(this, offset, phase, can_reshape); | |||
| 2710 | // If the InitializeNode captured me, it made a raw copy of me, | |||
| 2711 | // and I need to disappear. | |||
| 2712 | if (moved != NULL__null) { | |||
| 2713 | // %%% hack to ensure that Ideal returns a new node: | |||
| 2714 | mem = MergeMemNode::make(mem); | |||
| 2715 | return mem; // fold me away | |||
| 2716 | } | |||
| 2717 | } | |||
| 2718 | } | |||
| 2719 | ||||
| 2720 | // Fold reinterpret cast into memory operation: | |||
| 2721 | // StoreX mem (MoveY2X v) => StoreY mem v | |||
| 2722 | if (value->is_Move()) { | |||
| 2723 | const Type* vt = value->in(1)->bottom_type(); | |||
| 2724 | if (has_reinterpret_variant(vt)) { | |||
| 2725 | if (phase->C->post_loop_opts_phase()) { | |||
| 2726 | return convert_to_reinterpret_store(*phase, value->in(1), vt); | |||
| 2727 | } else { | |||
| 2728 | phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over | |||
| 2729 | } | |||
| 2730 | } | |||
| 2731 | } | |||
| 2732 | ||||
| 2733 | return NULL__null; // No further progress | |||
| 2734 | } | |||
| 2735 | ||||
| 2736 | //------------------------------Value----------------------------------------- | |||
| 2737 | const Type* StoreNode::Value(PhaseGVN* phase) const { | |||
| 2738 | // Either input is TOP ==> the result is TOP | |||
| 2739 | const Type *t1 = phase->type( in(MemNode::Memory) ); | |||
| 2740 | if( t1 == Type::TOP ) return Type::TOP; | |||
| 2741 | const Type *t2 = phase->type( in(MemNode::Address) ); | |||
| 2742 | if( t2 == Type::TOP ) return Type::TOP; | |||
| 2743 | const Type *t3 = phase->type( in(MemNode::ValueIn) ); | |||
| 2744 | if( t3 == Type::TOP ) return Type::TOP; | |||
| 2745 | return Type::MEMORY; | |||
| 2746 | } | |||
| 2747 | ||||
| 2748 | //------------------------------Identity--------------------------------------- | |||
| 2749 | // Remove redundant stores: | |||
| 2750 | // Store(m, p, Load(m, p)) changes to m. | |||
| 2751 | // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). | |||
| 2752 | Node* StoreNode::Identity(PhaseGVN* phase) { | |||
| 2753 | Node* mem = in(MemNode::Memory); | |||
| 2754 | Node* adr = in(MemNode::Address); | |||
| 2755 | Node* val = in(MemNode::ValueIn); | |||
| 2756 | ||||
| 2757 | Node* result = this; | |||
| 2758 | ||||
| 2759 | // Load then Store? Then the Store is useless | |||
| 2760 | if (val->is_Load() && | |||
| 2761 | val->in(MemNode::Address)->eqv_uncast(adr) && | |||
| 2762 | val->in(MemNode::Memory )->eqv_uncast(mem) && | |||
| 2763 | val->as_Load()->store_Opcode() == Opcode()) { | |||
| 2764 | result = mem; | |||
| 2765 | } | |||
| 2766 | ||||
| 2767 | // Two stores in a row of the same value? | |||
| 2768 | if (result == this && | |||
| 2769 | mem->is_Store() && | |||
| 2770 | mem->in(MemNode::Address)->eqv_uncast(adr) && | |||
| 2771 | mem->in(MemNode::ValueIn)->eqv_uncast(val) && | |||
| 2772 | mem->Opcode() == Opcode()) { | |||
| 2773 | result = mem; | |||
| 2774 | } | |||
| 2775 | ||||
| 2776 | // Store of zero anywhere into a freshly-allocated object? | |||
| 2777 | // Then the store is useless. | |||
| 2778 | // (It must already have been captured by the InitializeNode.) | |||
| 2779 | if (result == this && | |||
| 2780 | ReduceFieldZeroing && phase->type(val)->is_zero_type()) { | |||
| 2781 | // a newly allocated object is already all-zeroes everywhere | |||
| 2782 | if (mem->is_Proj() && mem->in(0)->is_Allocate()) { | |||
| 2783 | result = mem; | |||
| 2784 | } | |||
| 2785 | ||||
| 2786 | if (result == this) { | |||
| 2787 | // the store may also apply to zero-bits in an earlier object | |||
| 2788 | Node* prev_mem = find_previous_store(phase); | |||
| 2789 | // Steps (a), (b): Walk past independent stores to find an exact match. | |||
| 2790 | if (prev_mem != NULL__null) { | |||
| 2791 | Node* prev_val = can_see_stored_value(prev_mem, phase); | |||
| 2792 | if (prev_val != NULL__null && prev_val == val) { | |||
| 2793 | // prev_val and val might differ by a cast; it would be good | |||
| 2794 | // to keep the more informative of the two. | |||
| 2795 | result = mem; | |||
| 2796 | } | |||
| 2797 | } | |||
| 2798 | } | |||
| 2799 | } | |||
| 2800 | ||||
| 2801 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
| 2802 | if (result != this && igvn != NULL__null) { | |||
| 2803 | MemBarNode* trailing = trailing_membar(); | |||
| 2804 | if (trailing != NULL__null) { | |||
| 2805 | #ifdef ASSERT1 | |||
| 2806 | const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); | |||
| 2807 | assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects")do { if (!(t_oop == __null || t_oop->is_known_instance_field ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2807, "assert(" "t_oop == __null || t_oop->is_known_instance_field()" ") failed", "only for non escaping objects"); ::breakpoint() ; } } while (0); | |||
| 2808 | #endif | |||
| 2809 | trailing->remove(igvn); | |||
| 2810 | } | |||
| 2811 | } | |||
| 2812 | ||||
| 2813 | return result; | |||
| 2814 | } | |||
| 2815 | ||||
| 2816 | //------------------------------match_edge------------------------------------- | |||
| 2817 | // Do we Match on this edge index or not? Match only memory & value | |||
| 2818 | uint StoreNode::match_edge(uint idx) const { | |||
| 2819 | return idx == MemNode::Address || idx == MemNode::ValueIn; | |||
| 2820 | } | |||
| 2821 | ||||
| 2822 | //------------------------------cmp-------------------------------------------- | |||
| 2823 | // Do not common stores up together. They generally have to be split | |||
| 2824 | // back up anyways, so do not bother. | |||
| 2825 | bool StoreNode::cmp( const Node &n ) const { | |||
| 2826 | return (&n == this); // Always fail except on self | |||
| 2827 | } | |||
| 2828 | ||||
| 2829 | //------------------------------Ideal_masked_input----------------------------- | |||
| 2830 | // Check for a useless mask before a partial-word store | |||
| 2831 | // (StoreB ... (AndI valIn conIa) ) | |||
| 2832 | // If (conIa & mask == mask) this simplifies to | |||
| 2833 | // (StoreB ... (valIn) ) | |||
| 2834 | Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { | |||
| 2835 | Node *val = in(MemNode::ValueIn); | |||
| 2836 | if( val->Opcode() == Op_AndI ) { | |||
| 2837 | const TypeInt *t = phase->type( val->in(2) )->isa_int(); | |||
| 2838 | if( t && t->is_con() && (t->get_con() & mask) == mask ) { | |||
| 2839 | set_req_X(MemNode::ValueIn, val->in(1), phase); | |||
| 2840 | return this; | |||
| 2841 | } | |||
| 2842 | } | |||
| 2843 | return NULL__null; | |||
| 2844 | } | |||
| 2845 | ||||
| 2846 | ||||
| 2847 | //------------------------------Ideal_sign_extended_input---------------------- | |||
| 2848 | // Check for useless sign-extension before a partial-word store | |||
| 2849 | // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) | |||
| 2850 | // If (conIL == conIR && conIR <= num_bits) this simplifies to | |||
| 2851 | // (StoreB ... (valIn) ) | |||
| 2852 | Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { | |||
| 2853 | Node *val = in(MemNode::ValueIn); | |||
| 2854 | if( val->Opcode() == Op_RShiftI ) { | |||
| 2855 | const TypeInt *t = phase->type( val->in(2) )->isa_int(); | |||
| 2856 | if( t && t->is_con() && (t->get_con() <= num_bits) ) { | |||
| 2857 | Node *shl = val->in(1); | |||
| 2858 | if( shl->Opcode() == Op_LShiftI ) { | |||
| 2859 | const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); | |||
| 2860 | if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { | |||
| 2861 | set_req_X(MemNode::ValueIn, shl->in(1), phase); | |||
| 2862 | return this; | |||
| 2863 | } | |||
| 2864 | } | |||
| 2865 | } | |||
| 2866 | } | |||
| 2867 | return NULL__null; | |||
| 2868 | } | |||
| 2869 | ||||
| 2870 | //------------------------------value_never_loaded----------------------------------- | |||
| 2871 | // Determine whether there are any possible loads of the value stored. | |||
| 2872 | // For simplicity, we actually check if there are any loads from the | |||
| 2873 | // address stored to, not just for loads of the value stored by this node. | |||
| 2874 | // | |||
| 2875 | bool StoreNode::value_never_loaded( PhaseTransform *phase) const { | |||
| 2876 | Node *adr = in(Address); | |||
| 2877 | const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); | |||
| 2878 | if (adr_oop == NULL__null) | |||
| 2879 | return false; | |||
| 2880 | if (!adr_oop->is_known_instance_field()) | |||
| 2881 | return false; // if not a distinct instance, there may be aliases of the address | |||
| 2882 | for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { | |||
| 2883 | Node *use = adr->fast_out(i); | |||
| 2884 | if (use->is_Load() || use->is_LoadStore()) { | |||
| 2885 | return false; | |||
| 2886 | } | |||
| 2887 | } | |||
| 2888 | return true; | |||
| 2889 | } | |||
| 2890 | ||||
| 2891 | MemBarNode* StoreNode::trailing_membar() const { | |||
| 2892 | if (is_release()) { | |||
| 2893 | MemBarNode* trailing_mb = NULL__null; | |||
| 2894 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { | |||
| 2895 | Node* u = fast_out(i); | |||
| 2896 | if (u->is_MemBar()) { | |||
| 2897 | if (u->as_MemBar()->trailing_store()) { | |||
| 2898 | assert(u->Opcode() == Op_MemBarVolatile, "")do { if (!(u->Opcode() == Op_MemBarVolatile)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2898, "assert(" "u->Opcode() == Op_MemBarVolatile" ") failed" , ""); ::breakpoint(); } } while (0); | |||
| 2899 | assert(trailing_mb == NULL, "only one")do { if (!(trailing_mb == __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2899, "assert(" "trailing_mb == __null" ") failed", "only one" ); ::breakpoint(); } } while (0); | |||
| 2900 | trailing_mb = u->as_MemBar(); | |||
| 2901 | #ifdef ASSERT1 | |||
| 2902 | Node* leading = u->as_MemBar()->leading_membar(); | |||
| 2903 | assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar")do { if (!(leading->Opcode() == Op_MemBarRelease)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2903, "assert(" "leading->Opcode() == Op_MemBarRelease" ") failed" , "incorrect membar"); ::breakpoint(); } } while (0); | |||
| 2904 | assert(leading->as_MemBar()->leading_store(), "incorrect membar pair")do { if (!(leading->as_MemBar()->leading_store())) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2904, "assert(" "leading->as_MemBar()->leading_store()" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
| 2905 | assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair")do { if (!(leading->as_MemBar()->trailing_membar() == u )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2905, "assert(" "leading->as_MemBar()->trailing_membar() == u" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
| 2906 | #endif | |||
| 2907 | } else { | |||
| 2908 | assert(u->as_MemBar()->standalone(), "")do { if (!(u->as_MemBar()->standalone())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 2908, "assert(" "u->as_MemBar()->standalone()" ") failed" , ""); ::breakpoint(); } } while (0); | |||
| 2909 | } | |||
| 2910 | } | |||
| 2911 | } | |||
| 2912 | return trailing_mb; | |||
| 2913 | } | |||
| 2914 | return NULL__null; | |||
| 2915 | } | |||
| 2916 | ||||
| 2917 | ||||
| 2918 | //============================================================================= | |||
| 2919 | //------------------------------Ideal------------------------------------------ | |||
| 2920 | // If the store is from an AND mask that leaves the low bits untouched, then | |||
| 2921 | // we can skip the AND operation. If the store is from a sign-extension | |||
| 2922 | // (a left shift, then right shift) we can skip both. | |||
| 2923 | Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ | |||
| 2924 | Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); | |||
| 2925 | if( progress != NULL__null ) return progress; | |||
| 2926 | ||||
| 2927 | progress = StoreNode::Ideal_sign_extended_input(phase, 24); | |||
| 2928 | if( progress != NULL__null ) return progress; | |||
| 2929 | ||||
| 2930 | // Finally check the default case | |||
| 2931 | return StoreNode::Ideal(phase, can_reshape); | |||
| 2932 | } | |||
| 2933 | ||||
| 2934 | //============================================================================= | |||
| 2935 | //------------------------------Ideal------------------------------------------ | |||
| 2936 | // If the store is from an AND mask that leaves the low bits untouched, then | |||
| 2937 | // we can skip the AND operation | |||
| 2938 | Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ | |||
| 2939 | Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); | |||
| 2940 | if( progress != NULL__null ) return progress; | |||
| 2941 | ||||
| 2942 | progress = StoreNode::Ideal_sign_extended_input(phase, 16); | |||
| 2943 | if( progress != NULL__null ) return progress; | |||
| 2944 | ||||
| 2945 | // Finally check the default case | |||
| 2946 | return StoreNode::Ideal(phase, can_reshape); | |||
| 2947 | } | |||
| 2948 | ||||
| 2949 | //============================================================================= | |||
| 2950 | //------------------------------Identity--------------------------------------- | |||
| 2951 | Node* StoreCMNode::Identity(PhaseGVN* phase) { | |||
| 2952 | // No need to card mark when storing a null ptr | |||
| 2953 | Node* my_store = in(MemNode::OopStore); | |||
| 2954 | if (my_store->is_Store()) { | |||
| 2955 | const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) ); | |||
| 2956 | if( t1 == TypePtr::NULL_PTR ) { | |||
| 2957 | return in(MemNode::Memory); | |||
| 2958 | } | |||
| 2959 | } | |||
| 2960 | return this; | |||
| 2961 | } | |||
| 2962 | ||||
| 2963 | //============================================================================= | |||
| 2964 | //------------------------------Ideal--------------------------------------- | |||
| 2965 | Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){ | |||
| 2966 | Node* progress = StoreNode::Ideal(phase, can_reshape); | |||
| 2967 | if (progress != NULL__null) return progress; | |||
| 2968 | ||||
| 2969 | Node* my_store = in(MemNode::OopStore); | |||
| 2970 | if (my_store->is_MergeMem()) { | |||
| 2971 | Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx()); | |||
| 2972 | set_req_X(MemNode::OopStore, mem, phase); | |||
| 2973 | return this; | |||
| 2974 | } | |||
| 2975 | ||||
| 2976 | return NULL__null; | |||
| 2977 | } | |||
| 2978 | ||||
| 2979 | //------------------------------Value----------------------------------------- | |||
| 2980 | const Type* StoreCMNode::Value(PhaseGVN* phase) const { | |||
| 2981 | // Either input is TOP ==> the result is TOP (checked in StoreNode::Value). | |||
| 2982 | // If extra input is TOP ==> the result is TOP | |||
| 2983 | const Type* t = phase->type(in(MemNode::OopStore)); | |||
| 2984 | if (t == Type::TOP) { | |||
| 2985 | return Type::TOP; | |||
| 2986 | } | |||
| 2987 | return StoreNode::Value(phase); | |||
| 2988 | } | |||
| 2989 | ||||
| 2990 | ||||
| 2991 | //============================================================================= | |||
| 2992 | //----------------------------------SCMemProjNode------------------------------ | |||
| 2993 | const Type* SCMemProjNode::Value(PhaseGVN* phase) const | |||
| 2994 | { | |||
| 2995 | if (in(0) == NULL__null || phase->type(in(0)) == Type::TOP) { | |||
| 2996 | return Type::TOP; | |||
| 2997 | } | |||
| 2998 | return bottom_type(); | |||
| 2999 | } | |||
| 3000 | ||||
| 3001 | //============================================================================= | |||
| 3002 | //----------------------------------LoadStoreNode------------------------------ | |||
| 3003 | LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) | |||
| 3004 | : Node(required), | |||
| 3005 | _type(rt), | |||
| 3006 | _adr_type(at), | |||
| 3007 | _barrier_data(0) | |||
| 3008 | { | |||
| 3009 | init_req(MemNode::Control, c ); | |||
| 3010 | init_req(MemNode::Memory , mem); | |||
| 3011 | init_req(MemNode::Address, adr); | |||
| 3012 | init_req(MemNode::ValueIn, val); | |||
| 3013 | init_class_id(Class_LoadStore); | |||
| 3014 | } | |||
| 3015 | ||||
| 3016 | //------------------------------Value----------------------------------------- | |||
| 3017 | const Type* LoadStoreNode::Value(PhaseGVN* phase) const { | |||
| 3018 | // Either input is TOP ==> the result is TOP | |||
| 3019 | if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { | |||
| 3020 | return Type::TOP; | |||
| 3021 | } | |||
| 3022 | const Type* t = phase->type(in(MemNode::Memory)); | |||
| 3023 | if (t == Type::TOP) { | |||
| 3024 | return Type::TOP; | |||
| 3025 | } | |||
| 3026 | t = phase->type(in(MemNode::Address)); | |||
| 3027 | if (t == Type::TOP) { | |||
| 3028 | return Type::TOP; | |||
| 3029 | } | |||
| 3030 | t = phase->type(in(MemNode::ValueIn)); | |||
| 3031 | if (t == Type::TOP) { | |||
| 3032 | return Type::TOP; | |||
| 3033 | } | |||
| 3034 | return bottom_type(); | |||
| 3035 | } | |||
| 3036 | ||||
| 3037 | uint LoadStoreNode::ideal_reg() const { | |||
| 3038 | return _type->ideal_reg(); | |||
| 3039 | } | |||
| 3040 | ||||
| 3041 | bool LoadStoreNode::result_not_used() const { | |||
| 3042 | for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { | |||
| 3043 | Node *x = fast_out(i); | |||
| 3044 | if (x->Opcode() == Op_SCMemProj) continue; | |||
| 3045 | return false; | |||
| 3046 | } | |||
| 3047 | return true; | |||
| 3048 | } | |||
| 3049 | ||||
| 3050 | MemBarNode* LoadStoreNode::trailing_membar() const { | |||
| 3051 | MemBarNode* trailing = NULL__null; | |||
| 3052 | for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { | |||
| ||||
| 3053 | Node* u = fast_out(i); | |||
| 3054 | if (u->is_MemBar()) { | |||
| 3055 | if (u->as_MemBar()->trailing_load_store()) { | |||
| 3056 | assert(u->Opcode() == Op_MemBarAcquire, "")do { if (!(u->Opcode() == Op_MemBarAcquire)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3056, "assert(" "u->Opcode() == Op_MemBarAcquire" ") failed" , ""); ::breakpoint(); } } while (0); | |||
| 3057 | assert(trailing == NULL, "only one")do { if (!(trailing == __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3057, "assert(" "trailing == __null" ") failed", "only one" ); ::breakpoint(); } } while (0); | |||
| 3058 | trailing = u->as_MemBar(); | |||
| 3059 | #ifdef ASSERT1 | |||
| 3060 | Node* leading = trailing->leading_membar(); | |||
| 3061 | assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar")do { if (!(support_IRIW_for_not_multiple_copy_atomic_cpu || leading ->Opcode() == Op_MemBarRelease)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3061, "assert(" "support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease" ") failed", "incorrect membar"); ::breakpoint(); } } while ( 0); | |||
| 3062 | assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair")do { if (!(leading->as_MemBar()->leading_load_store())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3062, "assert(" "leading->as_MemBar()->leading_load_store()" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
| 3063 | assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair")do { if (!(leading->as_MemBar()->trailing_membar() == trailing )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3063, "assert(" "leading->as_MemBar()->trailing_membar() == trailing" ") failed", "incorrect membar pair"); ::breakpoint(); } } while (0); | |||
| 3064 | #endif | |||
| 3065 | } else { | |||
| 3066 | assert(u->as_MemBar()->standalone(), "wrong barrier kind")do { if (!(u->as_MemBar()->standalone())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3066, "assert(" "u->as_MemBar()->standalone()" ") failed" , "wrong barrier kind"); ::breakpoint(); } } while (0); | |||
| 3067 | } | |||
| 3068 | } | |||
| 3069 | } | |||
| 3070 | ||||
| 3071 | return trailing; | |||
| 3072 | } | |||
| 3073 | ||||
| 3074 | uint LoadStoreNode::size_of() const { return sizeof(*this); } | |||
| 3075 | ||||
| 3076 | //============================================================================= | |||
| 3077 | //----------------------------------LoadStoreConditionalNode-------------------- | |||
| 3078 | LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL__null, TypeInt::BOOL, 5) { | |||
| 3079 | init_req(ExpectedIn, ex ); | |||
| 3080 | } | |||
| 3081 | ||||
| 3082 | const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { | |||
| 3083 | // Either input is TOP ==> the result is TOP | |||
| 3084 | const Type* t = phase->type(in(ExpectedIn)); | |||
| 3085 | if (t == Type::TOP) { | |||
| 3086 | return Type::TOP; | |||
| 3087 | } | |||
| 3088 | return LoadStoreNode::Value(phase); | |||
| 3089 | } | |||
| 3090 | ||||
| 3091 | //============================================================================= | |||
| 3092 | //-------------------------------adr_type-------------------------------------- | |||
| 3093 | const TypePtr* ClearArrayNode::adr_type() const { | |||
| 3094 | Node *adr = in(3); | |||
| 3095 | if (adr == NULL__null) return NULL__null; // node is dead | |||
| 3096 | return MemNode::calculate_adr_type(adr->bottom_type()); | |||
| 3097 | } | |||
| 3098 | ||||
| 3099 | //------------------------------match_edge------------------------------------- | |||
| 3100 | // Do we Match on this edge index or not? Do not match memory | |||
| 3101 | uint ClearArrayNode::match_edge(uint idx) const { | |||
| 3102 | return idx > 1; | |||
| 3103 | } | |||
| 3104 | ||||
| 3105 | //------------------------------Identity--------------------------------------- | |||
| 3106 | // Clearing a zero length array does nothing | |||
| 3107 | Node* ClearArrayNode::Identity(PhaseGVN* phase) { | |||
| 3108 | return phase->type(in(2))->higher_equal(TypeXTypeLong::ZERO) ? in(1) : this; | |||
| 3109 | } | |||
| 3110 | ||||
| 3111 | //------------------------------Idealize--------------------------------------- | |||
| 3112 | // Clearing a short array is faster with stores | |||
| 3113 | Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
| 3114 | // Already know this is a large node, do not try to ideal it | |||
| 3115 | if (!IdealizeClearArrayNode || _is_large) return NULL__null; | |||
| 3116 | ||||
| 3117 | const int unit = BytesPerLong; | |||
| 3118 | const TypeXTypeLong* t = phase->type(in(2))->isa_intptr_tisa_long(); | |||
| 3119 | if (!t) return NULL__null; | |||
| 3120 | if (!t->is_con()) return NULL__null; | |||
| 3121 | intptr_t raw_count = t->get_con(); | |||
| 3122 | intptr_t size = raw_count; | |||
| 3123 | if (!Matcher::init_array_count_is_in_bytes) size *= unit; | |||
| 3124 | // Clearing nothing uses the Identity call. | |||
| 3125 | // Negative clears are possible on dead ClearArrays | |||
| 3126 | // (see jck test stmt114.stmt11402.val). | |||
| 3127 | if (size <= 0 || size % unit != 0) return NULL__null; | |||
| 3128 | intptr_t count = size / unit; | |||
| 3129 | // Length too long; communicate this to matchers and assemblers. | |||
| 3130 | // Assemblers are responsible to produce fast hardware clears for it. | |||
| 3131 | if (size > InitArrayShortSize) { | |||
| 3132 | return new ClearArrayNode(in(0), in(1), in(2), in(3), true); | |||
| 3133 | } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { | |||
| 3134 | return NULL__null; | |||
| 3135 | } | |||
| 3136 | Node *mem = in(1); | |||
| 3137 | if( phase->type(mem)==Type::TOP ) return NULL__null; | |||
| 3138 | Node *adr = in(3); | |||
| 3139 | const Type* at = phase->type(adr); | |||
| 3140 | if( at==Type::TOP ) return NULL__null; | |||
| 3141 | const TypePtr* atp = at->isa_ptr(); | |||
| 3142 | // adjust atp to be the correct array element address type | |||
| 3143 | if (atp == NULL__null) atp = TypePtr::BOTTOM; | |||
| 3144 | else atp = atp->add_offset(Type::OffsetBot); | |||
| 3145 | // Get base for derived pointer purposes | |||
| 3146 | if( adr->Opcode() != Op_AddP ) Unimplemented()do { (*g_assert_poison) = 'X';; report_unimplemented("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3146); ::breakpoint(); } while (0); | |||
| 3147 | Node *base = adr->in(1); | |||
| 3148 | ||||
| 3149 | Node *zero = phase->makecon(TypeLong::ZERO); | |||
| 3150 | Node *off = phase->MakeConXlongcon(BytesPerLong); | |||
| 3151 | mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); | |||
| 3152 | count--; | |||
| 3153 | while( count-- ) { | |||
| 3154 | mem = phase->transform(mem); | |||
| 3155 | adr = phase->transform(new AddPNode(base,adr,off)); | |||
| 3156 | mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); | |||
| 3157 | } | |||
| 3158 | return mem; | |||
| 3159 | } | |||
| 3160 | ||||
| 3161 | //----------------------------step_through---------------------------------- | |||
| 3162 | // Return allocation input memory edge if it is different instance | |||
| 3163 | // or itself if it is the one we are looking for. | |||
| 3164 | bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) { | |||
| 3165 | Node* n = *np; | |||
| 3166 | assert(n->is_ClearArray(), "sanity")do { if (!(n->is_ClearArray())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3166, "assert(" "n->is_ClearArray()" ") failed", "sanity" ); ::breakpoint(); } } while (0); | |||
| 3167 | intptr_t offset; | |||
| 3168 | AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); | |||
| 3169 | // This method is called only before Allocate nodes are expanded | |||
| 3170 | // during macro nodes expansion. Before that ClearArray nodes are | |||
| 3171 | // only generated in PhaseMacroExpand::generate_arraycopy() (before | |||
| 3172 | // Allocate nodes are expanded) which follows allocations. | |||
| 3173 | assert(alloc != NULL, "should have allocation")do { if (!(alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3173, "assert(" "alloc != __null" ") failed", "should have allocation" ); ::breakpoint(); } } while (0); | |||
| 3174 | if (alloc->_idx == instance_id) { | |||
| 3175 | // Can not bypass initialization of the instance we are looking for. | |||
| 3176 | return false; | |||
| 3177 | } | |||
| 3178 | // Otherwise skip it. | |||
| 3179 | InitializeNode* init = alloc->initialization(); | |||
| 3180 | if (init != NULL__null) | |||
| 3181 | *np = init->in(TypeFunc::Memory); | |||
| 3182 | else | |||
| 3183 | *np = alloc->in(TypeFunc::Memory); | |||
| 3184 | return true; | |||
| 3185 | } | |||
| 3186 | ||||
| 3187 | //----------------------------clear_memory------------------------------------- | |||
| 3188 | // Generate code to initialize object storage to zero. | |||
| 3189 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | |||
| 3190 | intptr_t start_offset, | |||
| 3191 | Node* end_offset, | |||
| 3192 | PhaseGVN* phase) { | |||
| 3193 | intptr_t offset = start_offset; | |||
| 3194 | ||||
| 3195 | int unit = BytesPerLong; | |||
| 3196 | if ((offset % unit) != 0) { | |||
| 3197 | Node* adr = new AddPNode(dest, dest, phase->MakeConXlongcon(offset)); | |||
| 3198 | adr = phase->transform(adr); | |||
| 3199 | const TypePtr* atp = TypeRawPtr::BOTTOM; | |||
| 3200 | mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); | |||
| 3201 | mem = phase->transform(mem); | |||
| 3202 | offset += BytesPerInt; | |||
| 3203 | } | |||
| 3204 | assert((offset % unit) == 0, "")do { if (!((offset % unit) == 0)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3204, "assert(" "(offset % unit) == 0" ") failed", ""); ::breakpoint (); } } while (0); | |||
| 3205 | ||||
| 3206 | // Initialize the remaining stuff, if any, with a ClearArray. | |||
| 3207 | return clear_memory(ctl, mem, dest, phase->MakeConXlongcon(offset), end_offset, phase); | |||
| 3208 | } | |||
| 3209 | ||||
| 3210 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | |||
| 3211 | Node* start_offset, | |||
| 3212 | Node* end_offset, | |||
| 3213 | PhaseGVN* phase) { | |||
| 3214 | if (start_offset == end_offset) { | |||
| 3215 | // nothing to do | |||
| 3216 | return mem; | |||
| 3217 | } | |||
| 3218 | ||||
| 3219 | int unit = BytesPerLong; | |||
| 3220 | Node* zbase = start_offset; | |||
| 3221 | Node* zend = end_offset; | |||
| 3222 | ||||
| 3223 | // Scale to the unit required by the CPU: | |||
| 3224 | if (!Matcher::init_array_count_is_in_bytes) { | |||
| 3225 | Node* shift = phase->intcon(exact_log2(unit)); | |||
| 3226 | zbase = phase->transform(new URShiftXNodeURShiftLNode(zbase, shift) ); | |||
| 3227 | zend = phase->transform(new URShiftXNodeURShiftLNode(zend, shift) ); | |||
| 3228 | } | |||
| 3229 | ||||
| 3230 | // Bulk clear double-words | |||
| 3231 | Node* zsize = phase->transform(new SubXNodeSubLNode(zend, zbase) ); | |||
| 3232 | Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); | |||
| 3233 | mem = new ClearArrayNode(ctl, mem, zsize, adr, false); | |||
| 3234 | return phase->transform(mem); | |||
| 3235 | } | |||
| 3236 | ||||
| 3237 | Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, | |||
| 3238 | intptr_t start_offset, | |||
| 3239 | intptr_t end_offset, | |||
| 3240 | PhaseGVN* phase) { | |||
| 3241 | if (start_offset == end_offset) { | |||
| 3242 | // nothing to do | |||
| 3243 | return mem; | |||
| 3244 | } | |||
| 3245 | ||||
| 3246 | assert((end_offset % BytesPerInt) == 0, "odd end offset")do { if (!((end_offset % BytesPerInt) == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3246, "assert(" "(end_offset % BytesPerInt) == 0" ") failed" , "odd end offset"); ::breakpoint(); } } while (0); | |||
| 3247 | intptr_t done_offset = end_offset; | |||
| 3248 | if ((done_offset % BytesPerLong) != 0) { | |||
| 3249 | done_offset -= BytesPerInt; | |||
| 3250 | } | |||
| 3251 | if (done_offset > start_offset) { | |||
| 3252 | mem = clear_memory(ctl, mem, dest, | |||
| 3253 | start_offset, phase->MakeConXlongcon(done_offset), phase); | |||
| 3254 | } | |||
| 3255 | if (done_offset < end_offset) { // emit the final 32-bit store | |||
| 3256 | Node* adr = new AddPNode(dest, dest, phase->MakeConXlongcon(done_offset)); | |||
| 3257 | adr = phase->transform(adr); | |||
| 3258 | const TypePtr* atp = TypeRawPtr::BOTTOM; | |||
| 3259 | mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); | |||
| 3260 | mem = phase->transform(mem); | |||
| 3261 | done_offset += BytesPerInt; | |||
| 3262 | } | |||
| 3263 | assert(done_offset == end_offset, "")do { if (!(done_offset == end_offset)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3263, "assert(" "done_offset == end_offset" ") failed", "") ; ::breakpoint(); } } while (0); | |||
| 3264 | return mem; | |||
| 3265 | } | |||
| 3266 | ||||
| 3267 | //============================================================================= | |||
| 3268 | MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) | |||
| 3269 | : MultiNode(TypeFunc::Parms + (precedent == NULL__null? 0: 1)), | |||
| 3270 | _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) | |||
| 3271 | #ifdef ASSERT1 | |||
| 3272 | , _pair_idx(0) | |||
| 3273 | #endif | |||
| 3274 | { | |||
| 3275 | init_class_id(Class_MemBar); | |||
| 3276 | Node* top = C->top(); | |||
| 3277 | init_req(TypeFunc::I_O,top); | |||
| 3278 | init_req(TypeFunc::FramePtr,top); | |||
| 3279 | init_req(TypeFunc::ReturnAdr,top); | |||
| 3280 | if (precedent != NULL__null) | |||
| 3281 | init_req(TypeFunc::Parms, precedent); | |||
| 3282 | } | |||
| 3283 | ||||
| 3284 | //------------------------------cmp-------------------------------------------- | |||
| 3285 | uint MemBarNode::hash() const { return NO_HASH; } | |||
| 3286 | bool MemBarNode::cmp( const Node &n ) const { | |||
| 3287 | return (&n == this); // Always fail except on self | |||
| 3288 | } | |||
| 3289 | ||||
| 3290 | //------------------------------make------------------------------------------- | |||
| 3291 | MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { | |||
| 3292 | switch (opcode) { | |||
| 3293 | case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); | |||
| 3294 | case Op_LoadFence: return new LoadFenceNode(C, atp, pn); | |||
| 3295 | case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); | |||
| 3296 | case Op_StoreFence: return new StoreFenceNode(C, atp, pn); | |||
| 3297 | case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); | |||
| 3298 | case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); | |||
| 3299 | case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); | |||
| 3300 | case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); | |||
| 3301 | case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); | |||
| 3302 | case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); | |||
| 3303 | case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); | |||
| 3304 | case Op_Initialize: return new InitializeNode(C, atp, pn); | |||
| 3305 | case Op_Blackhole: return new BlackholeNode(C, atp, pn); | |||
| 3306 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3306); ::breakpoint(); } while (0); return NULL__null; | |||
| 3307 | } | |||
| 3308 | } | |||
| 3309 | ||||
| 3310 | void MemBarNode::remove(PhaseIterGVN *igvn) { | |||
| 3311 | if (outcnt() != 2) { | |||
| 3312 | assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory")do { if (!(Opcode() == Op_Initialize)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3312, "assert(" "Opcode() == Op_Initialize" ") failed", "Only seen when there are no use of init memory" ); ::breakpoint(); } } while (0); | |||
| 3313 | assert(outcnt() == 1, "Only control then")do { if (!(outcnt() == 1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3313, "assert(" "outcnt() == 1" ") failed", "Only control then" ); ::breakpoint(); } } while (0); | |||
| 3314 | } | |||
| 3315 | if (trailing_store() || trailing_load_store()) { | |||
| 3316 | MemBarNode* leading = leading_membar(); | |||
| 3317 | if (leading != NULL__null) { | |||
| 3318 | assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars")do { if (!(leading->trailing_membar() == this)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3318, "assert(" "leading->trailing_membar() == this" ") failed" , "inconsistent leading/trailing membars"); ::breakpoint(); } } while (0); | |||
| 3319 | leading->remove(igvn); | |||
| 3320 | } | |||
| 3321 | } | |||
| 3322 | if (proj_out_or_null(TypeFunc::Memory) != NULL__null) { | |||
| 3323 | igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); | |||
| 3324 | } | |||
| 3325 | if (proj_out_or_null(TypeFunc::Control) != NULL__null) { | |||
| 3326 | igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); | |||
| 3327 | } | |||
| 3328 | } | |||
| 3329 | ||||
| 3330 | //------------------------------Ideal------------------------------------------ | |||
| 3331 | // Return a node which is more "ideal" than the current node. Strip out | |||
| 3332 | // control copies | |||
| 3333 | Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
| 3334 | if (remove_dead_region(phase, can_reshape)) return this; | |||
| 3335 | // Don't bother trying to transform a dead node | |||
| 3336 | if (in(0) && in(0)->is_top()) { | |||
| 3337 | return NULL__null; | |||
| 3338 | } | |||
| 3339 | ||||
| 3340 | bool progress = false; | |||
| 3341 | // Eliminate volatile MemBars for scalar replaced objects. | |||
| 3342 | if (can_reshape && req() == (Precedent+1)) { | |||
| 3343 | bool eliminate = false; | |||
| 3344 | int opc = Opcode(); | |||
| 3345 | if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { | |||
| 3346 | // Volatile field loads and stores. | |||
| 3347 | Node* my_mem = in(MemBarNode::Precedent); | |||
| 3348 | // The MembarAquire may keep an unused LoadNode alive through the Precedent edge | |||
| 3349 | if ((my_mem != NULL__null) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { | |||
| 3350 | // if the Precedent is a decodeN and its input (a Load) is used at more than one place, | |||
| 3351 | // replace this Precedent (decodeN) with the Load instead. | |||
| 3352 | if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { | |||
| 3353 | Node* load_node = my_mem->in(1); | |||
| 3354 | set_req(MemBarNode::Precedent, load_node); | |||
| 3355 | phase->is_IterGVN()->_worklist.push(my_mem); | |||
| 3356 | my_mem = load_node; | |||
| 3357 | } else { | |||
| 3358 | assert(my_mem->unique_out() == this, "sanity")do { if (!(my_mem->unique_out() == this)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3358, "assert(" "my_mem->unique_out() == this" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
| 3359 | del_req(Precedent); | |||
| 3360 | phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later | |||
| 3361 | my_mem = NULL__null; | |||
| 3362 | } | |||
| 3363 | progress = true; | |||
| 3364 | } | |||
| 3365 | if (my_mem != NULL__null && my_mem->is_Mem()) { | |||
| 3366 | const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); | |||
| 3367 | // Check for scalar replaced object reference. | |||
| 3368 | if( t_oop != NULL__null && t_oop->is_known_instance_field() && | |||
| 3369 | t_oop->offset() != Type::OffsetBot && | |||
| 3370 | t_oop->offset() != Type::OffsetTop) { | |||
| 3371 | eliminate = true; | |||
| 3372 | } | |||
| 3373 | } | |||
| 3374 | } else if (opc == Op_MemBarRelease) { | |||
| 3375 | // Final field stores. | |||
| 3376 | Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase); | |||
| 3377 | if ((alloc != NULL__null) && alloc->is_Allocate() && | |||
| 3378 | alloc->as_Allocate()->does_not_escape_thread()) { | |||
| 3379 | // The allocated object does not escape. | |||
| 3380 | eliminate = true; | |||
| 3381 | } | |||
| 3382 | } | |||
| 3383 | if (eliminate) { | |||
| 3384 | // Replace MemBar projections by its inputs. | |||
| 3385 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
| 3386 | remove(igvn); | |||
| 3387 | // Must return either the original node (now dead) or a new node | |||
| 3388 | // (Do not return a top here, since that would break the uniqueness of top.) | |||
| 3389 | return new ConINode(TypeInt::ZERO); | |||
| 3390 | } | |||
| 3391 | } | |||
| 3392 | return progress ? this : NULL__null; | |||
| 3393 | } | |||
| 3394 | ||||
| 3395 | //------------------------------Value------------------------------------------ | |||
| 3396 | const Type* MemBarNode::Value(PhaseGVN* phase) const { | |||
| 3397 | if( !in(0) ) return Type::TOP; | |||
| 3398 | if( phase->type(in(0)) == Type::TOP ) | |||
| 3399 | return Type::TOP; | |||
| 3400 | return TypeTuple::MEMBAR; | |||
| 3401 | } | |||
| 3402 | ||||
| 3403 | //------------------------------match------------------------------------------ | |||
| 3404 | // Construct projections for memory. | |||
| 3405 | Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { | |||
| 3406 | switch (proj->_con) { | |||
| 3407 | case TypeFunc::Control: | |||
| 3408 | case TypeFunc::Memory: | |||
| 3409 | return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); | |||
| 3410 | } | |||
| 3411 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3411); ::breakpoint(); } while (0); | |||
| 3412 | return NULL__null; | |||
| 3413 | } | |||
| 3414 | ||||
| 3415 | void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { | |||
| 3416 | trailing->_kind = TrailingStore; | |||
| 3417 | leading->_kind = LeadingStore; | |||
| 3418 | #ifdef ASSERT1 | |||
| 3419 | trailing->_pair_idx = leading->_idx; | |||
| 3420 | leading->_pair_idx = leading->_idx; | |||
| 3421 | #endif | |||
| 3422 | } | |||
| 3423 | ||||
| 3424 | void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { | |||
| 3425 | trailing->_kind = TrailingLoadStore; | |||
| 3426 | leading->_kind = LeadingLoadStore; | |||
| 3427 | #ifdef ASSERT1 | |||
| 3428 | trailing->_pair_idx = leading->_idx; | |||
| 3429 | leading->_pair_idx = leading->_idx; | |||
| 3430 | #endif | |||
| 3431 | } | |||
| 3432 | ||||
| 3433 | MemBarNode* MemBarNode::trailing_membar() const { | |||
| 3434 | ResourceMark rm; | |||
| 3435 | Node* trailing = (Node*)this; | |||
| 3436 | VectorSet seen; | |||
| 3437 | Node_Stack multis(0); | |||
| 3438 | do { | |||
| 3439 | Node* c = trailing; | |||
| 3440 | uint i = 0; | |||
| 3441 | do { | |||
| 3442 | trailing = NULL__null; | |||
| 3443 | for (; i < c->outcnt(); i++) { | |||
| 3444 | Node* next = c->raw_out(i); | |||
| 3445 | if (next != c && next->is_CFG()) { | |||
| 3446 | if (c->is_MultiBranch()) { | |||
| 3447 | if (multis.node() == c) { | |||
| 3448 | multis.set_index(i+1); | |||
| 3449 | } else { | |||
| 3450 | multis.push(c, i+1); | |||
| 3451 | } | |||
| 3452 | } | |||
| 3453 | trailing = next; | |||
| 3454 | break; | |||
| 3455 | } | |||
| 3456 | } | |||
| 3457 | if (trailing
| |||
| 3458 | break; | |||
| 3459 | } | |||
| 3460 | while (multis.size() > 0) { | |||
| 3461 | c = multis.node(); | |||
| 3462 | i = multis.index(); | |||
| 3463 | if (i < c->req()) { | |||
| 3464 | break; | |||
| 3465 | } | |||
| 3466 | multis.pop(); | |||
| 3467 | } | |||
| 3468 | } while (multis.size() > 0); | |||
| 3469 | } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); | |||
| ||||
| 3470 | ||||
| 3471 | MemBarNode* mb = trailing->as_MemBar(); | |||
| 3472 | assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||do { if (!((mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3473, "assert(" "(mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore)" ") failed", "bad trailing membar"); ::breakpoint(); } } while (0) | |||
| 3473 | (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar")do { if (!((mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3473, "assert(" "(mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore)" ") failed", "bad trailing membar"); ::breakpoint(); } } while (0); | |||
| 3474 | assert(mb->_pair_idx == _pair_idx, "bad trailing membar")do { if (!(mb->_pair_idx == _pair_idx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3474, "assert(" "mb->_pair_idx == _pair_idx" ") failed", "bad trailing membar"); ::breakpoint(); } } while (0); | |||
| 3475 | return mb; | |||
| 3476 | } | |||
| 3477 | ||||
| 3478 | MemBarNode* MemBarNode::leading_membar() const { | |||
| 3479 | ResourceMark rm; | |||
| 3480 | VectorSet seen; | |||
| 3481 | Node_Stack regions(0); | |||
| 3482 | Node* leading = in(0); | |||
| 3483 | while (leading != NULL__null && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { | |||
| 3484 | while (leading == NULL__null || leading->is_top() || seen.test_set(leading->_idx)) { | |||
| 3485 | leading = NULL__null; | |||
| 3486 | while (regions.size() > 0 && leading == NULL__null) { | |||
| 3487 | Node* r = regions.node(); | |||
| 3488 | uint i = regions.index(); | |||
| 3489 | if (i < r->req()) { | |||
| 3490 | leading = r->in(i); | |||
| 3491 | regions.set_index(i+1); | |||
| 3492 | } else { | |||
| 3493 | regions.pop(); | |||
| 3494 | } | |||
| 3495 | } | |||
| 3496 | if (leading == NULL__null) { | |||
| 3497 | assert(regions.size() == 0, "all paths should have been tried")do { if (!(regions.size() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3497, "assert(" "regions.size() == 0" ") failed", "all paths should have been tried" ); ::breakpoint(); } } while (0); | |||
| 3498 | return NULL__null; | |||
| 3499 | } | |||
| 3500 | } | |||
| 3501 | if (leading->is_Region()) { | |||
| 3502 | regions.push(leading, 2); | |||
| 3503 | leading = leading->in(1); | |||
| 3504 | } else { | |||
| 3505 | leading = leading->in(0); | |||
| 3506 | } | |||
| 3507 | } | |||
| 3508 | #ifdef ASSERT1 | |||
| 3509 | Unique_Node_List wq; | |||
| 3510 | wq.push((Node*)this); | |||
| 3511 | uint found = 0; | |||
| 3512 | for (uint i = 0; i < wq.size(); i++) { | |||
| 3513 | Node* n = wq.at(i); | |||
| 3514 | if (n->is_Region()) { | |||
| 3515 | for (uint j = 1; j < n->req(); j++) { | |||
| 3516 | Node* in = n->in(j); | |||
| 3517 | if (in != NULL__null && !in->is_top()) { | |||
| 3518 | wq.push(in); | |||
| 3519 | } | |||
| 3520 | } | |||
| 3521 | } else { | |||
| 3522 | if (n->is_MemBar() && n->as_MemBar()->leading()) { | |||
| 3523 | assert(n == leading, "consistency check failed")do { if (!(n == leading)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3523, "assert(" "n == leading" ") failed", "consistency check failed" ); ::breakpoint(); } } while (0); | |||
| 3524 | found++; | |||
| 3525 | } else { | |||
| 3526 | Node* in = n->in(0); | |||
| 3527 | if (in != NULL__null && !in->is_top()) { | |||
| 3528 | wq.push(in); | |||
| 3529 | } | |||
| 3530 | } | |||
| 3531 | } | |||
| 3532 | } | |||
| 3533 | assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed")do { if (!(found == 1 || (found == 0 && leading == __null ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3533, "assert(" "found == 1 || (found == 0 && leading == __null)" ") failed", "consistency check failed"); ::breakpoint(); } } while (0); | |||
| 3534 | #endif | |||
| 3535 | if (leading == NULL__null) { | |||
| 3536 | return NULL__null; | |||
| 3537 | } | |||
| 3538 | MemBarNode* mb = leading->as_MemBar(); | |||
| 3539 | assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||do { if (!((mb->_kind == LeadingStore && _kind == TrailingStore ) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3540, "assert(" "(mb->_kind == LeadingStore && _kind == TrailingStore) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore)" ") failed", "bad leading membar"); ::breakpoint(); } } while (0) | |||
| 3540 | (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar")do { if (!((mb->_kind == LeadingStore && _kind == TrailingStore ) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3540, "assert(" "(mb->_kind == LeadingStore && _kind == TrailingStore) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore)" ") failed", "bad leading membar"); ::breakpoint(); } } while (0); | |||
| 3541 | assert(mb->_pair_idx == _pair_idx, "bad leading membar")do { if (!(mb->_pair_idx == _pair_idx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3541, "assert(" "mb->_pair_idx == _pair_idx" ") failed", "bad leading membar"); ::breakpoint(); } } while (0); | |||
| 3542 | return mb; | |||
| 3543 | } | |||
| 3544 | ||||
| 3545 | #ifndef PRODUCT | |||
| 3546 | void BlackholeNode::format(PhaseRegAlloc* ra, outputStream* st) const { | |||
| 3547 | st->print("blackhole "); | |||
| 3548 | bool first = true; | |||
| 3549 | for (uint i = 0; i < req(); i++) { | |||
| 3550 | Node* n = in(i); | |||
| 3551 | if (n != NULL__null && OptoReg::is_valid(ra->get_reg_first(n))) { | |||
| 3552 | if (first) { | |||
| 3553 | first = false; | |||
| 3554 | } else { | |||
| 3555 | st->print(", "); | |||
| 3556 | } | |||
| 3557 | char buf[128]; | |||
| 3558 | ra->dump_register(n, buf); | |||
| 3559 | st->print("%s", buf); | |||
| 3560 | } | |||
| 3561 | } | |||
| 3562 | st->cr(); | |||
| 3563 | } | |||
| 3564 | #endif | |||
| 3565 | ||||
| 3566 | //===========================InitializeNode==================================== | |||
| 3567 | // SUMMARY: | |||
| 3568 | // This node acts as a memory barrier on raw memory, after some raw stores. | |||
| 3569 | // The 'cooked' oop value feeds from the Initialize, not the Allocation. | |||
| 3570 | // The Initialize can 'capture' suitably constrained stores as raw inits. | |||
| 3571 | // It can coalesce related raw stores into larger units (called 'tiles'). | |||
| 3572 | // It can avoid zeroing new storage for memory units which have raw inits. | |||
| 3573 | // At macro-expansion, it is marked 'complete', and does not optimize further. | |||
| 3574 | // | |||
| 3575 | // EXAMPLE: | |||
| 3576 | // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. | |||
| 3577 | // ctl = incoming control; mem* = incoming memory | |||
| 3578 | // (Note: A star * on a memory edge denotes I/O and other standard edges.) | |||
| 3579 | // First allocate uninitialized memory and fill in the header: | |||
| 3580 | // alloc = (Allocate ctl mem* 16 #short[].klass ...) | |||
| 3581 | // ctl := alloc.Control; mem* := alloc.Memory* | |||
| 3582 | // rawmem = alloc.Memory; rawoop = alloc.RawAddress | |||
| 3583 | // Then initialize to zero the non-header parts of the raw memory block: | |||
| 3584 | // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) | |||
| 3585 | // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory | |||
| 3586 | // After the initialize node executes, the object is ready for service: | |||
| 3587 | // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) | |||
| 3588 | // Suppose its body is immediately initialized as {1,2}: | |||
| 3589 | // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) | |||
| 3590 | // store2 = (StoreC init.Control store1 (+ oop 14) 2) | |||
| 3591 | // mem.SLICE(#short[*]) := store2 | |||
| 3592 | // | |||
| 3593 | // DETAILS: | |||
| 3594 | // An InitializeNode collects and isolates object initialization after | |||
| 3595 | // an AllocateNode and before the next possible safepoint. As a | |||
| 3596 | // memory barrier (MemBarNode), it keeps critical stores from drifting | |||
| 3597 | // down past any safepoint or any publication of the allocation. | |||
| 3598 | // Before this barrier, a newly-allocated object may have uninitialized bits. | |||
| 3599 | // After this barrier, it may be treated as a real oop, and GC is allowed. | |||
| 3600 | // | |||
| 3601 | // The semantics of the InitializeNode include an implicit zeroing of | |||
| 3602 | // the new object from object header to the end of the object. | |||
| 3603 | // (The object header and end are determined by the AllocateNode.) | |||
| 3604 | // | |||
| 3605 | // Certain stores may be added as direct inputs to the InitializeNode. | |||
| 3606 | // These stores must update raw memory, and they must be to addresses | |||
| 3607 | // derived from the raw address produced by AllocateNode, and with | |||
| 3608 | // a constant offset. They must be ordered by increasing offset. | |||
| 3609 | // The first one is at in(RawStores), the last at in(req()-1). | |||
| 3610 | // Unlike most memory operations, they are not linked in a chain, | |||
| 3611 | // but are displayed in parallel as users of the rawmem output of | |||
| 3612 | // the allocation. | |||
| 3613 | // | |||
| 3614 | // (See comments in InitializeNode::capture_store, which continue | |||
| 3615 | // the example given above.) | |||
| 3616 | // | |||
| 3617 | // When the associated Allocate is macro-expanded, the InitializeNode | |||
| 3618 | // may be rewritten to optimize collected stores. A ClearArrayNode | |||
| 3619 | // may also be created at that point to represent any required zeroing. | |||
| 3620 | // The InitializeNode is then marked 'complete', prohibiting further | |||
| 3621 | // capturing of nearby memory operations. | |||
| 3622 | // | |||
| 3623 | // During macro-expansion, all captured initializations which store | |||
| 3624 | // constant values of 32 bits or smaller are coalesced (if advantageous) | |||
| 3625 | // into larger 'tiles' 32 or 64 bits. This allows an object to be | |||
| 3626 | // initialized in fewer memory operations. Memory words which are | |||
| 3627 | // covered by neither tiles nor non-constant stores are pre-zeroed | |||
| 3628 | // by explicit stores of zero. (The code shape happens to do all | |||
| 3629 | // zeroing first, then all other stores, with both sequences occurring | |||
| 3630 | // in order of ascending offsets.) | |||
| 3631 | // | |||
| 3632 | // Alternatively, code may be inserted between an AllocateNode and its | |||
| 3633 | // InitializeNode, to perform arbitrary initialization of the new object. | |||
| 3634 | // E.g., the object copying intrinsics insert complex data transfers here. | |||
| 3635 | // The initialization must then be marked as 'complete' disable the | |||
| 3636 | // built-in zeroing semantics and the collection of initializing stores. | |||
| 3637 | // | |||
| 3638 | // While an InitializeNode is incomplete, reads from the memory state | |||
| 3639 | // produced by it are optimizable if they match the control edge and | |||
| 3640 | // new oop address associated with the allocation/initialization. | |||
| 3641 | // They return a stored value (if the offset matches) or else zero. | |||
| 3642 | // A write to the memory state, if it matches control and address, | |||
| 3643 | // and if it is to a constant offset, may be 'captured' by the | |||
| 3644 | // InitializeNode. It is cloned as a raw memory operation and rewired | |||
| 3645 | // inside the initialization, to the raw oop produced by the allocation. | |||
| 3646 | // Operations on addresses which are provably distinct (e.g., to | |||
| 3647 | // other AllocateNodes) are allowed to bypass the initialization. | |||
| 3648 | // | |||
| 3649 | // The effect of all this is to consolidate object initialization | |||
| 3650 | // (both arrays and non-arrays, both piecewise and bulk) into a | |||
| 3651 | // single location, where it can be optimized as a unit. | |||
| 3652 | // | |||
| 3653 | // Only stores with an offset less than TrackedInitializationLimit words | |||
| 3654 | // will be considered for capture by an InitializeNode. This puts a | |||
| 3655 | // reasonable limit on the complexity of optimized initializations. | |||
| 3656 | ||||
| 3657 | //---------------------------InitializeNode------------------------------------ | |||
| 3658 | InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) | |||
| 3659 | : MemBarNode(C, adr_type, rawoop), | |||
| 3660 | _is_complete(Incomplete), _does_not_escape(false) | |||
| 3661 | { | |||
| 3662 | init_class_id(Class_Initialize); | |||
| 3663 | ||||
| 3664 | assert(adr_type == Compile::AliasIdxRaw, "only valid atp")do { if (!(adr_type == Compile::AliasIdxRaw)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3664, "assert(" "adr_type == Compile::AliasIdxRaw" ") failed" , "only valid atp"); ::breakpoint(); } } while (0); | |||
| 3665 | assert(in(RawAddress) == rawoop, "proper init")do { if (!(in(RawAddress) == rawoop)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3665, "assert(" "in(RawAddress) == rawoop" ") failed", "proper init" ); ::breakpoint(); } } while (0); | |||
| 3666 | // Note: allocation() can be NULL, for secondary initialization barriers | |||
| 3667 | } | |||
| 3668 | ||||
| 3669 | // Since this node is not matched, it will be processed by the | |||
| 3670 | // register allocator. Declare that there are no constraints | |||
| 3671 | // on the allocation of the RawAddress edge. | |||
| 3672 | const RegMask &InitializeNode::in_RegMask(uint idx) const { | |||
| 3673 | // This edge should be set to top, by the set_complete. But be conservative. | |||
| 3674 | if (idx == InitializeNode::RawAddress) | |||
| 3675 | return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); | |||
| 3676 | return RegMask::Empty; | |||
| 3677 | } | |||
| 3678 | ||||
| 3679 | Node* InitializeNode::memory(uint alias_idx) { | |||
| 3680 | Node* mem = in(Memory); | |||
| 3681 | if (mem->is_MergeMem()) { | |||
| 3682 | return mem->as_MergeMem()->memory_at(alias_idx); | |||
| 3683 | } else { | |||
| 3684 | // incoming raw memory is not split | |||
| 3685 | return mem; | |||
| 3686 | } | |||
| 3687 | } | |||
| 3688 | ||||
| 3689 | bool InitializeNode::is_non_zero() { | |||
| 3690 | if (is_complete()) return false; | |||
| 3691 | remove_extra_zeroes(); | |||
| 3692 | return (req() > RawStores); | |||
| 3693 | } | |||
| 3694 | ||||
| 3695 | void InitializeNode::set_complete(PhaseGVN* phase) { | |||
| 3696 | assert(!is_complete(), "caller responsibility")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3696, "assert(" "!is_complete()" ") failed", "caller responsibility" ); ::breakpoint(); } } while (0); | |||
| 3697 | _is_complete = Complete; | |||
| 3698 | ||||
| 3699 | // After this node is complete, it contains a bunch of | |||
| 3700 | // raw-memory initializations. There is no need for | |||
| 3701 | // it to have anything to do with non-raw memory effects. | |||
| 3702 | // Therefore, tell all non-raw users to re-optimize themselves, | |||
| 3703 | // after skipping the memory effects of this initialization. | |||
| 3704 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
| 3705 | if (igvn) igvn->add_users_to_worklist(this); | |||
| 3706 | } | |||
| 3707 | ||||
| 3708 | // convenience function | |||
| 3709 | // return false if the init contains any stores already | |||
| 3710 | bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { | |||
| 3711 | InitializeNode* init = initialization(); | |||
| 3712 | if (init == NULL__null || init->is_complete()) return false; | |||
| 3713 | init->remove_extra_zeroes(); | |||
| 3714 | // for now, if this allocation has already collected any inits, bail: | |||
| 3715 | if (init->is_non_zero()) return false; | |||
| 3716 | init->set_complete(phase); | |||
| 3717 | return true; | |||
| 3718 | } | |||
| 3719 | ||||
| 3720 | void InitializeNode::remove_extra_zeroes() { | |||
| 3721 | if (req() == RawStores) return; | |||
| 3722 | Node* zmem = zero_memory(); | |||
| 3723 | uint fill = RawStores; | |||
| 3724 | for (uint i = fill; i < req(); i++) { | |||
| 3725 | Node* n = in(i); | |||
| 3726 | if (n->is_top() || n == zmem) continue; // skip | |||
| 3727 | if (fill < i) set_req(fill, n); // compact | |||
| 3728 | ++fill; | |||
| 3729 | } | |||
| 3730 | // delete any empty spaces created: | |||
| 3731 | while (fill < req()) { | |||
| 3732 | del_req(fill); | |||
| 3733 | } | |||
| 3734 | } | |||
| 3735 | ||||
| 3736 | // Helper for remembering which stores go with which offsets. | |||
| 3737 | intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) { | |||
| 3738 | if (!st->is_Store()) return -1; // can happen to dead code via subsume_node | |||
| 3739 | intptr_t offset = -1; | |||
| 3740 | Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), | |||
| 3741 | phase, offset); | |||
| 3742 | if (base == NULL__null) return -1; // something is dead, | |||
| 3743 | if (offset < 0) return -1; // dead, dead | |||
| 3744 | return offset; | |||
| 3745 | } | |||
| 3746 | ||||
| 3747 | // Helper for proving that an initialization expression is | |||
| 3748 | // "simple enough" to be folded into an object initialization. | |||
| 3749 | // Attempts to prove that a store's initial value 'n' can be captured | |||
| 3750 | // within the initialization without creating a vicious cycle, such as: | |||
| 3751 | // { Foo p = new Foo(); p.next = p; } | |||
| 3752 | // True for constants and parameters and small combinations thereof. | |||
| 3753 | bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { | |||
| 3754 | ResourceMark rm; | |||
| 3755 | Unique_Node_List worklist; | |||
| 3756 | worklist.push(value); | |||
| 3757 | ||||
| 3758 | uint complexity_limit = 20; | |||
| 3759 | for (uint j = 0; j < worklist.size(); j++) { | |||
| 3760 | if (j >= complexity_limit) { | |||
| 3761 | return false; // Bail out if processed too many nodes | |||
| 3762 | } | |||
| 3763 | ||||
| 3764 | Node* n = worklist.at(j); | |||
| 3765 | if (n == NULL__null) continue; // (can this really happen?) | |||
| 3766 | if (n->is_Proj()) n = n->in(0); | |||
| 3767 | if (n == this) return false; // found a cycle | |||
| 3768 | if (n->is_Con()) continue; | |||
| 3769 | if (n->is_Start()) continue; // params, etc., are OK | |||
| 3770 | if (n->is_Root()) continue; // even better | |||
| 3771 | ||||
| 3772 | // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation | |||
| 3773 | if (n->is_CFG() && phase->is_dominator(n, allocation())) { | |||
| 3774 | continue; | |||
| 3775 | } | |||
| 3776 | ||||
| 3777 | Node* ctl = n->in(0); | |||
| 3778 | if (ctl != NULL__null && !ctl->is_top()) { | |||
| 3779 | if (ctl->is_Proj()) ctl = ctl->in(0); | |||
| 3780 | if (ctl == this) return false; | |||
| 3781 | ||||
| 3782 | // If we already know that the enclosing memory op is pinned right after | |||
| 3783 | // the init, then any control flow that the store has picked up | |||
| 3784 | // must have preceded the init, or else be equal to the init. | |||
| 3785 | // Even after loop optimizations (which might change control edges) | |||
| 3786 | // a store is never pinned *before* the availability of its inputs. | |||
| 3787 | if (!MemNode::all_controls_dominate(n, this)) | |||
| 3788 | return false; // failed to prove a good control | |||
| 3789 | } | |||
| 3790 | ||||
| 3791 | // Check data edges for possible dependencies on 'this'. | |||
| 3792 | for (uint i = 1; i < n->req(); i++) { | |||
| 3793 | Node* m = n->in(i); | |||
| 3794 | if (m == NULL__null || m == n || m->is_top()) continue; | |||
| 3795 | ||||
| 3796 | // Only process data inputs once | |||
| 3797 | worklist.push(m); | |||
| 3798 | } | |||
| 3799 | } | |||
| 3800 | ||||
| 3801 | return true; | |||
| 3802 | } | |||
| 3803 | ||||
| 3804 | // Here are all the checks a Store must pass before it can be moved into | |||
| 3805 | // an initialization. Returns zero if a check fails. | |||
| 3806 | // On success, returns the (constant) offset to which the store applies, | |||
| 3807 | // within the initialized memory. | |||
| 3808 | intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { | |||
| 3809 | const int FAIL = 0; | |||
| 3810 | if (st->req() != MemNode::ValueIn + 1) | |||
| 3811 | return FAIL; // an inscrutable StoreNode (card mark?) | |||
| 3812 | Node* ctl = st->in(MemNode::Control); | |||
| 3813 | if (!(ctl != NULL__null && ctl->is_Proj() && ctl->in(0) == this)) | |||
| 3814 | return FAIL; // must be unconditional after the initialization | |||
| 3815 | Node* mem = st->in(MemNode::Memory); | |||
| 3816 | if (!(mem->is_Proj() && mem->in(0) == this)) | |||
| 3817 | return FAIL; // must not be preceded by other stores | |||
| 3818 | Node* adr = st->in(MemNode::Address); | |||
| 3819 | intptr_t offset; | |||
| 3820 | AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); | |||
| 3821 | if (alloc == NULL__null) | |||
| 3822 | return FAIL; // inscrutable address | |||
| 3823 | if (alloc != allocation()) | |||
| 3824 | return FAIL; // wrong allocation! (store needs to float up) | |||
| 3825 | int size_in_bytes = st->memory_size(); | |||
| 3826 | if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { | |||
| 3827 | return FAIL; // mismatched access | |||
| 3828 | } | |||
| 3829 | Node* val = st->in(MemNode::ValueIn); | |||
| 3830 | ||||
| 3831 | if (!detect_init_independence(val, phase)) | |||
| 3832 | return FAIL; // stored value must be 'simple enough' | |||
| 3833 | ||||
| 3834 | // The Store can be captured only if nothing after the allocation | |||
| 3835 | // and before the Store is using the memory location that the store | |||
| 3836 | // overwrites. | |||
| 3837 | bool failed = false; | |||
| 3838 | // If is_complete_with_arraycopy() is true the shape of the graph is | |||
| 3839 | // well defined and is safe so no need for extra checks. | |||
| 3840 | if (!is_complete_with_arraycopy()) { | |||
| 3841 | // We are going to look at each use of the memory state following | |||
| 3842 | // the allocation to make sure nothing reads the memory that the | |||
| 3843 | // Store writes. | |||
| 3844 | const TypePtr* t_adr = phase->type(adr)->isa_ptr(); | |||
| 3845 | int alias_idx = phase->C->get_alias_index(t_adr); | |||
| 3846 | ResourceMark rm; | |||
| 3847 | Unique_Node_List mems; | |||
| 3848 | mems.push(mem); | |||
| 3849 | Node* unique_merge = NULL__null; | |||
| 3850 | for (uint next = 0; next < mems.size(); ++next) { | |||
| 3851 | Node *m = mems.at(next); | |||
| 3852 | for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { | |||
| 3853 | Node *n = m->fast_out(j); | |||
| 3854 | if (n->outcnt() == 0) { | |||
| 3855 | continue; | |||
| 3856 | } | |||
| 3857 | if (n == st) { | |||
| 3858 | continue; | |||
| 3859 | } else if (n->in(0) != NULL__null && n->in(0) != ctl) { | |||
| 3860 | // If the control of this use is different from the control | |||
| 3861 | // of the Store which is right after the InitializeNode then | |||
| 3862 | // this node cannot be between the InitializeNode and the | |||
| 3863 | // Store. | |||
| 3864 | continue; | |||
| 3865 | } else if (n->is_MergeMem()) { | |||
| 3866 | if (n->as_MergeMem()->memory_at(alias_idx) == m) { | |||
| 3867 | // We can hit a MergeMemNode (that will likely go away | |||
| 3868 | // later) that is a direct use of the memory state | |||
| 3869 | // following the InitializeNode on the same slice as the | |||
| 3870 | // store node that we'd like to capture. We need to check | |||
| 3871 | // the uses of the MergeMemNode. | |||
| 3872 | mems.push(n); | |||
| 3873 | } | |||
| 3874 | } else if (n->is_Mem()) { | |||
| 3875 | Node* other_adr = n->in(MemNode::Address); | |||
| 3876 | if (other_adr == adr) { | |||
| 3877 | failed = true; | |||
| 3878 | break; | |||
| 3879 | } else { | |||
| 3880 | const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); | |||
| 3881 | if (other_t_adr != NULL__null) { | |||
| 3882 | int other_alias_idx = phase->C->get_alias_index(other_t_adr); | |||
| 3883 | if (other_alias_idx == alias_idx) { | |||
| 3884 | // A load from the same memory slice as the store right | |||
| 3885 | // after the InitializeNode. We check the control of the | |||
| 3886 | // object/array that is loaded from. If it's the same as | |||
| 3887 | // the store control then we cannot capture the store. | |||
| 3888 | assert(!n->is_Store(), "2 stores to same slice on same control?")do { if (!(!n->is_Store())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3888, "assert(" "!n->is_Store()" ") failed", "2 stores to same slice on same control?" ); ::breakpoint(); } } while (0); | |||
| 3889 | Node* base = other_adr; | |||
| 3890 | assert(base->is_AddP(), "should be addp but is %s", base->Name())do { if (!(base->is_AddP())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3890, "assert(" "base->is_AddP()" ") failed", "should be addp but is %s" , base->Name()); ::breakpoint(); } } while (0); | |||
| 3891 | base = base->in(AddPNode::Base); | |||
| 3892 | if (base != NULL__null) { | |||
| 3893 | base = base->uncast(); | |||
| 3894 | if (base->is_Proj() && base->in(0) == alloc) { | |||
| 3895 | failed = true; | |||
| 3896 | break; | |||
| 3897 | } | |||
| 3898 | } | |||
| 3899 | } | |||
| 3900 | } | |||
| 3901 | } | |||
| 3902 | } else { | |||
| 3903 | failed = true; | |||
| 3904 | break; | |||
| 3905 | } | |||
| 3906 | } | |||
| 3907 | } | |||
| 3908 | } | |||
| 3909 | if (failed) { | |||
| 3910 | if (!can_reshape) { | |||
| 3911 | // We decided we couldn't capture the store during parsing. We | |||
| 3912 | // should try again during the next IGVN once the graph is | |||
| 3913 | // cleaner. | |||
| 3914 | phase->C->record_for_igvn(st); | |||
| 3915 | } | |||
| 3916 | return FAIL; | |||
| 3917 | } | |||
| 3918 | ||||
| 3919 | return offset; // success | |||
| 3920 | } | |||
| 3921 | ||||
| 3922 | // Find the captured store in(i) which corresponds to the range | |||
| 3923 | // [start..start+size) in the initialized object. | |||
| 3924 | // If there is one, return its index i. If there isn't, return the | |||
| 3925 | // negative of the index where it should be inserted. | |||
| 3926 | // Return 0 if the queried range overlaps an initialization boundary | |||
| 3927 | // or if dead code is encountered. | |||
| 3928 | // If size_in_bytes is zero, do not bother with overlap checks. | |||
| 3929 | int InitializeNode::captured_store_insertion_point(intptr_t start, | |||
| 3930 | int size_in_bytes, | |||
| 3931 | PhaseTransform* phase) { | |||
| 3932 | const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); | |||
| 3933 | ||||
| 3934 | if (is_complete()) | |||
| 3935 | return FAIL; // arraycopy got here first; punt | |||
| 3936 | ||||
| 3937 | assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3937, "assert(" "allocation() != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
| 3938 | ||||
| 3939 | // no negatives, no header fields: | |||
| 3940 | if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; | |||
| 3941 | ||||
| 3942 | // after a certain size, we bail out on tracking all the stores: | |||
| 3943 | intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); | |||
| 3944 | if (start >= ti_limit) return FAIL; | |||
| 3945 | ||||
| 3946 | for (uint i = InitializeNode::RawStores, limit = req(); ; ) { | |||
| 3947 | if (i >= limit) return -(int)i; // not found; here is where to put it | |||
| 3948 | ||||
| 3949 | Node* st = in(i); | |||
| 3950 | intptr_t st_off = get_store_offset(st, phase); | |||
| 3951 | if (st_off < 0) { | |||
| 3952 | if (st != zero_memory()) { | |||
| 3953 | return FAIL; // bail out if there is dead garbage | |||
| 3954 | } | |||
| 3955 | } else if (st_off > start) { | |||
| 3956 | // ...we are done, since stores are ordered | |||
| 3957 | if (st_off < start + size_in_bytes) { | |||
| 3958 | return FAIL; // the next store overlaps | |||
| 3959 | } | |||
| 3960 | return -(int)i; // not found; here is where to put it | |||
| 3961 | } else if (st_off < start) { | |||
| 3962 | assert(st->as_Store()->memory_size() <= MAX_STORE, "")do { if (!(st->as_Store()->memory_size() <= MAX_STORE )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3962, "assert(" "st->as_Store()->memory_size() <= MAX_STORE" ") failed", ""); ::breakpoint(); } } while (0); | |||
| 3963 | if (size_in_bytes != 0 && | |||
| 3964 | start < st_off + MAX_STORE && | |||
| 3965 | start < st_off + st->as_Store()->memory_size()) { | |||
| 3966 | return FAIL; // the previous store overlaps | |||
| 3967 | } | |||
| 3968 | } else { | |||
| 3969 | if (size_in_bytes != 0 && | |||
| 3970 | st->as_Store()->memory_size() != size_in_bytes) { | |||
| 3971 | return FAIL; // mismatched store size | |||
| 3972 | } | |||
| 3973 | return i; | |||
| 3974 | } | |||
| 3975 | ||||
| 3976 | ++i; | |||
| 3977 | } | |||
| 3978 | } | |||
| 3979 | ||||
| 3980 | // Look for a captured store which initializes at the offset 'start' | |||
| 3981 | // with the given size. If there is no such store, and no other | |||
| 3982 | // initialization interferes, then return zero_memory (the memory | |||
| 3983 | // projection of the AllocateNode). | |||
| 3984 | Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, | |||
| 3985 | PhaseTransform* phase) { | |||
| 3986 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3986, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
| 3987 | int i = captured_store_insertion_point(start, size_in_bytes, phase); | |||
| 3988 | if (i == 0) { | |||
| 3989 | return NULL__null; // something is dead | |||
| 3990 | } else if (i < 0) { | |||
| 3991 | return zero_memory(); // just primordial zero bits here | |||
| 3992 | } else { | |||
| 3993 | Node* st = in(i); // here is the store at this position | |||
| 3994 | assert(get_store_offset(st->as_Store(), phase) == start, "sanity")do { if (!(get_store_offset(st->as_Store(), phase) == start )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 3994, "assert(" "get_store_offset(st->as_Store(), phase) == start" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
| 3995 | return st; | |||
| 3996 | } | |||
| 3997 | } | |||
| 3998 | ||||
| 3999 | // Create, as a raw pointer, an address within my new object at 'offset'. | |||
| 4000 | Node* InitializeNode::make_raw_address(intptr_t offset, | |||
| 4001 | PhaseTransform* phase) { | |||
| 4002 | Node* addr = in(RawAddress); | |||
| 4003 | if (offset != 0) { | |||
| 4004 | Compile* C = phase->C; | |||
| 4005 | addr = phase->transform( new AddPNode(C->top(), addr, | |||
| 4006 | phase->MakeConXlongcon(offset)) ); | |||
| 4007 | } | |||
| 4008 | return addr; | |||
| 4009 | } | |||
| 4010 | ||||
| 4011 | // Clone the given store, converting it into a raw store | |||
| 4012 | // initializing a field or element of my new object. | |||
| 4013 | // Caller is responsible for retiring the original store, | |||
| 4014 | // with subsume_node or the like. | |||
| 4015 | // | |||
| 4016 | // From the example above InitializeNode::InitializeNode, | |||
| 4017 | // here are the old stores to be captured: | |||
| 4018 | // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) | |||
| 4019 | // store2 = (StoreC init.Control store1 (+ oop 14) 2) | |||
| 4020 | // | |||
| 4021 | // Here is the changed code; note the extra edges on init: | |||
| 4022 | // alloc = (Allocate ...) | |||
| 4023 | // rawoop = alloc.RawAddress | |||
| 4024 | // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) | |||
| 4025 | // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) | |||
| 4026 | // init = (Initialize alloc.Control alloc.Memory rawoop | |||
| 4027 | // rawstore1 rawstore2) | |||
| 4028 | // | |||
| 4029 | Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, | |||
| 4030 | PhaseGVN* phase, bool can_reshape) { | |||
| 4031 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4031, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
| 4032 | ||||
| 4033 | if (start < 0) return NULL__null; | |||
| 4034 | assert(can_capture_store(st, phase, can_reshape) == start, "sanity")do { if (!(can_capture_store(st, phase, can_reshape) == start )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4034, "assert(" "can_capture_store(st, phase, can_reshape) == start" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
| 4035 | ||||
| 4036 | Compile* C = phase->C; | |||
| 4037 | int size_in_bytes = st->memory_size(); | |||
| 4038 | int i = captured_store_insertion_point(start, size_in_bytes, phase); | |||
| 4039 | if (i == 0) return NULL__null; // bail out | |||
| 4040 | Node* prev_mem = NULL__null; // raw memory for the captured store | |||
| 4041 | if (i > 0) { | |||
| 4042 | prev_mem = in(i); // there is a pre-existing store under this one | |||
| 4043 | set_req(i, C->top()); // temporarily disconnect it | |||
| 4044 | // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. | |||
| 4045 | } else { | |||
| 4046 | i = -i; // no pre-existing store | |||
| 4047 | prev_mem = zero_memory(); // a slice of the newly allocated object | |||
| 4048 | if (i > InitializeNode::RawStores && in(i-1) == prev_mem) | |||
| 4049 | set_req(--i, C->top()); // reuse this edge; it has been folded away | |||
| 4050 | else | |||
| 4051 | ins_req(i, C->top()); // build a new edge | |||
| 4052 | } | |||
| 4053 | Node* new_st = st->clone(); | |||
| 4054 | new_st->set_req(MemNode::Control, in(Control)); | |||
| 4055 | new_st->set_req(MemNode::Memory, prev_mem); | |||
| 4056 | new_st->set_req(MemNode::Address, make_raw_address(start, phase)); | |||
| 4057 | new_st = phase->transform(new_st); | |||
| 4058 | ||||
| 4059 | // At this point, new_st might have swallowed a pre-existing store | |||
| 4060 | // at the same offset, or perhaps new_st might have disappeared, | |||
| 4061 | // if it redundantly stored the same value (or zero to fresh memory). | |||
| 4062 | ||||
| 4063 | // In any case, wire it in: | |||
| 4064 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
| 4065 | if (igvn) { | |||
| 4066 | igvn->rehash_node_delayed(this); | |||
| 4067 | } | |||
| 4068 | set_req(i, new_st); | |||
| 4069 | ||||
| 4070 | // The caller may now kill the old guy. | |||
| 4071 | DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase))Node* check_st = find_captured_store(start, size_in_bytes, phase ); | |||
| 4072 | assert(check_st == new_st || check_st == NULL, "must be findable")do { if (!(check_st == new_st || check_st == __null)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4072, "assert(" "check_st == new_st || check_st == __null" ") failed" , "must be findable"); ::breakpoint(); } } while (0); | |||
| 4073 | assert(!is_complete(), "")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4073, "assert(" "!is_complete()" ") failed", ""); ::breakpoint (); } } while (0); | |||
| 4074 | return new_st; | |||
| 4075 | } | |||
| 4076 | ||||
| 4077 | static bool store_constant(jlong* tiles, int num_tiles, | |||
| 4078 | intptr_t st_off, int st_size, | |||
| 4079 | jlong con) { | |||
| 4080 | if ((st_off & (st_size-1)) != 0) | |||
| 4081 | return false; // strange store offset (assume size==2**N) | |||
| 4082 | address addr = (address)tiles + st_off; | |||
| 4083 | assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob")do { if (!(st_off >= 0 && addr+st_size <= (address )&tiles[num_tiles])) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4083, "assert(" "st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles]" ") failed", "oob"); ::breakpoint(); } } while (0); | |||
| 4084 | switch (st_size) { | |||
| 4085 | case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; | |||
| 4086 | case sizeof(jchar): *(jchar*) addr = (jchar) con; break; | |||
| 4087 | case sizeof(jint): *(jint*) addr = (jint) con; break; | |||
| 4088 | case sizeof(jlong): *(jlong*) addr = (jlong) con; break; | |||
| 4089 | default: return false; // strange store size (detect size!=2**N here) | |||
| 4090 | } | |||
| 4091 | return true; // return success to caller | |||
| 4092 | } | |||
| 4093 | ||||
| 4094 | // Coalesce subword constants into int constants and possibly | |||
| 4095 | // into long constants. The goal, if the CPU permits, | |||
| 4096 | // is to initialize the object with a small number of 64-bit tiles. | |||
| 4097 | // Also, convert floating-point constants to bit patterns. | |||
| 4098 | // Non-constants are not relevant to this pass. | |||
| 4099 | // | |||
| 4100 | // In terms of the running example on InitializeNode::InitializeNode | |||
| 4101 | // and InitializeNode::capture_store, here is the transformation | |||
| 4102 | // of rawstore1 and rawstore2 into rawstore12: | |||
| 4103 | // alloc = (Allocate ...) | |||
| 4104 | // rawoop = alloc.RawAddress | |||
| 4105 | // tile12 = 0x00010002 | |||
| 4106 | // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) | |||
| 4107 | // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) | |||
| 4108 | // | |||
| 4109 | void | |||
| 4110 | InitializeNode::coalesce_subword_stores(intptr_t header_size, | |||
| 4111 | Node* size_in_bytes, | |||
| 4112 | PhaseGVN* phase) { | |||
| 4113 | Compile* C = phase->C; | |||
| 4114 | ||||
| 4115 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4115, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
| 4116 | // Note: After this pass, they are not completely sane, | |||
| 4117 | // since there may be some overlaps. | |||
| 4118 | ||||
| 4119 | int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; | |||
| 4120 | ||||
| 4121 | intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); | |||
| 4122 | intptr_t size_limit = phase->find_intptr_t_confind_long_con(size_in_bytes, ti_limit); | |||
| 4123 | size_limit = MIN2(size_limit, ti_limit); | |||
| 4124 | size_limit = align_up(size_limit, BytesPerLong); | |||
| 4125 | int num_tiles = size_limit / BytesPerLong; | |||
| 4126 | ||||
| 4127 | // allocate space for the tile map: | |||
| 4128 | const int small_len = DEBUG_ONLY(true ? 3 :)true ? 3 : 30; // keep stack frames small | |||
| 4129 | jlong tiles_buf[small_len]; | |||
| 4130 | Node* nodes_buf[small_len]; | |||
| 4131 | jlong inits_buf[small_len]; | |||
| 4132 | jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] | |||
| 4133 | : NEW_RESOURCE_ARRAY(jlong, num_tiles)(jlong*) resource_allocate_bytes((num_tiles) * sizeof(jlong))); | |||
| 4134 | Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] | |||
| 4135 | : NEW_RESOURCE_ARRAY(Node*, num_tiles)(Node**) resource_allocate_bytes((num_tiles) * sizeof(Node*))); | |||
| 4136 | jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] | |||
| 4137 | : NEW_RESOURCE_ARRAY(jlong, num_tiles)(jlong*) resource_allocate_bytes((num_tiles) * sizeof(jlong))); | |||
| 4138 | // tiles: exact bitwise model of all primitive constants | |||
| 4139 | // nodes: last constant-storing node subsumed into the tiles model | |||
| 4140 | // inits: which bytes (in each tile) are touched by any initializations | |||
| 4141 | ||||
| 4142 | //// Pass A: Fill in the tile model with any relevant stores. | |||
| 4143 | ||||
| 4144 | Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); | |||
| 4145 | Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); | |||
| 4146 | Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); | |||
| 4147 | Node* zmem = zero_memory(); // initially zero memory state | |||
| 4148 | for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { | |||
| 4149 | Node* st = in(i); | |||
| 4150 | intptr_t st_off = get_store_offset(st, phase); | |||
| 4151 | ||||
| 4152 | // Figure out the store's offset and constant value: | |||
| 4153 | if (st_off < header_size) continue; //skip (ignore header) | |||
| 4154 | if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) | |||
| 4155 | int st_size = st->as_Store()->memory_size(); | |||
| 4156 | if (st_off + st_size > size_limit) break; | |||
| 4157 | ||||
| 4158 | // Record which bytes are touched, whether by constant or not. | |||
| 4159 | if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) | |||
| 4160 | continue; // skip (strange store size) | |||
| 4161 | ||||
| 4162 | const Type* val = phase->type(st->in(MemNode::ValueIn)); | |||
| 4163 | if (!val->singleton()) continue; //skip (non-con store) | |||
| 4164 | BasicType type = val->basic_type(); | |||
| 4165 | ||||
| 4166 | jlong con = 0; | |||
| 4167 | switch (type) { | |||
| 4168 | case T_INT: con = val->is_int()->get_con(); break; | |||
| 4169 | case T_LONG: con = val->is_long()->get_con(); break; | |||
| 4170 | case T_FLOAT: con = jint_cast(val->getf()); break; | |||
| 4171 | case T_DOUBLE: con = jlong_cast(val->getd()); break; | |||
| 4172 | default: continue; //skip (odd store type) | |||
| 4173 | } | |||
| 4174 | ||||
| 4175 | if (type == T_LONG && Matcher::isSimpleConstant64(con) && | |||
| 4176 | st->Opcode() == Op_StoreL) { | |||
| 4177 | continue; // This StoreL is already optimal. | |||
| 4178 | } | |||
| 4179 | ||||
| 4180 | // Store down the constant. | |||
| 4181 | store_constant(tiles, num_tiles, st_off, st_size, con); | |||
| 4182 | ||||
| 4183 | intptr_t j = st_off >> LogBytesPerLong; | |||
| 4184 | ||||
| 4185 | if (type == T_INT && st_size == BytesPerInt | |||
| 4186 | && (st_off & BytesPerInt) == BytesPerInt) { | |||
| 4187 | jlong lcon = tiles[j]; | |||
| 4188 | if (!Matcher::isSimpleConstant64(lcon) && | |||
| 4189 | st->Opcode() == Op_StoreI) { | |||
| 4190 | // This StoreI is already optimal by itself. | |||
| 4191 | jint* intcon = (jint*) &tiles[j]; | |||
| 4192 | intcon[1] = 0; // undo the store_constant() | |||
| 4193 | ||||
| 4194 | // If the previous store is also optimal by itself, back up and | |||
| 4195 | // undo the action of the previous loop iteration... if we can. | |||
| 4196 | // But if we can't, just let the previous half take care of itself. | |||
| 4197 | st = nodes[j]; | |||
| 4198 | st_off -= BytesPerInt; | |||
| 4199 | con = intcon[0]; | |||
| 4200 | if (con != 0 && st != NULL__null && st->Opcode() == Op_StoreI) { | |||
| 4201 | assert(st_off >= header_size, "still ignoring header")do { if (!(st_off >= header_size)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4201, "assert(" "st_off >= header_size" ") failed", "still ignoring header" ); ::breakpoint(); } } while (0); | |||
| 4202 | assert(get_store_offset(st, phase) == st_off, "must be")do { if (!(get_store_offset(st, phase) == st_off)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4202, "assert(" "get_store_offset(st, phase) == st_off" ") failed" , "must be"); ::breakpoint(); } } while (0); | |||
| 4203 | assert(in(i-1) == zmem, "must be")do { if (!(in(i-1) == zmem)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4203, "assert(" "in(i-1) == zmem" ") failed", "must be"); :: breakpoint(); } } while (0); | |||
| 4204 | DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)))const Type* tcon = phase->type(st->in(MemNode::ValueIn) ); | |||
| 4205 | assert(con == tcon->is_int()->get_con(), "must be")do { if (!(con == tcon->is_int()->get_con())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4205, "assert(" "con == tcon->is_int()->get_con()" ") failed" , "must be"); ::breakpoint(); } } while (0); | |||
| 4206 | // Undo the effects of the previous loop trip, which swallowed st: | |||
| 4207 | intcon[0] = 0; // undo store_constant() | |||
| 4208 | set_req(i-1, st); // undo set_req(i, zmem) | |||
| 4209 | nodes[j] = NULL__null; // undo nodes[j] = st | |||
| 4210 | --old_subword; // undo ++old_subword | |||
| 4211 | } | |||
| 4212 | continue; // This StoreI is already optimal. | |||
| 4213 | } | |||
| 4214 | } | |||
| 4215 | ||||
| 4216 | // This store is not needed. | |||
| 4217 | set_req(i, zmem); | |||
| 4218 | nodes[j] = st; // record for the moment | |||
| 4219 | if (st_size < BytesPerLong) // something has changed | |||
| 4220 | ++old_subword; // includes int/float, but who's counting... | |||
| 4221 | else ++old_long; | |||
| 4222 | } | |||
| 4223 | ||||
| 4224 | if ((old_subword + old_long) == 0) | |||
| 4225 | return; // nothing more to do | |||
| 4226 | ||||
| 4227 | //// Pass B: Convert any non-zero tiles into optimal constant stores. | |||
| 4228 | // Be sure to insert them before overlapping non-constant stores. | |||
| 4229 | // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) | |||
| 4230 | for (int j = 0; j < num_tiles; j++) { | |||
| 4231 | jlong con = tiles[j]; | |||
| 4232 | jlong init = inits[j]; | |||
| 4233 | if (con == 0) continue; | |||
| 4234 | jint con0, con1; // split the constant, address-wise | |||
| 4235 | jint init0, init1; // split the init map, address-wise | |||
| 4236 | { union { jlong con; jint intcon[2]; } u; | |||
| 4237 | u.con = con; | |||
| 4238 | con0 = u.intcon[0]; | |||
| 4239 | con1 = u.intcon[1]; | |||
| 4240 | u.con = init; | |||
| 4241 | init0 = u.intcon[0]; | |||
| 4242 | init1 = u.intcon[1]; | |||
| 4243 | } | |||
| 4244 | ||||
| 4245 | Node* old = nodes[j]; | |||
| 4246 | assert(old != NULL, "need the prior store")do { if (!(old != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4246, "assert(" "old != __null" ") failed", "need the prior store" ); ::breakpoint(); } } while (0); | |||
| 4247 | intptr_t offset = (j * BytesPerLong); | |||
| 4248 | ||||
| 4249 | bool split = !Matcher::isSimpleConstant64(con); | |||
| 4250 | ||||
| 4251 | if (offset < header_size) { | |||
| 4252 | assert(offset + BytesPerInt >= header_size, "second int counts")do { if (!(offset + BytesPerInt >= header_size)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4252, "assert(" "offset + BytesPerInt >= header_size" ") failed" , "second int counts"); ::breakpoint(); } } while (0); | |||
| 4253 | assert(*(jint*)&tiles[j] == 0, "junk in header")do { if (!(*(jint*)&tiles[j] == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4253, "assert(" "*(jint*)&tiles[j] == 0" ") failed", "junk in header" ); ::breakpoint(); } } while (0); | |||
| 4254 | split = true; // only the second word counts | |||
| 4255 | // Example: int a[] = { 42 ... } | |||
| 4256 | } else if (con0 == 0 && init0 == -1) { | |||
| 4257 | split = true; // first word is covered by full inits | |||
| 4258 | // Example: int a[] = { ... foo(), 42 ... } | |||
| 4259 | } else if (con1 == 0 && init1 == -1) { | |||
| 4260 | split = true; // second word is covered by full inits | |||
| 4261 | // Example: int a[] = { ... 42, foo() ... } | |||
| 4262 | } | |||
| 4263 | ||||
| 4264 | // Here's a case where init0 is neither 0 nor -1: | |||
| 4265 | // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } | |||
| 4266 | // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. | |||
| 4267 | // In this case the tile is not split; it is (jlong)42. | |||
| 4268 | // The big tile is stored down, and then the foo() value is inserted. | |||
| 4269 | // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) | |||
| 4270 | ||||
| 4271 | Node* ctl = old->in(MemNode::Control); | |||
| 4272 | Node* adr = make_raw_address(offset, phase); | |||
| 4273 | const TypePtr* atp = TypeRawPtr::BOTTOM; | |||
| 4274 | ||||
| 4275 | // One or two coalesced stores to plop down. | |||
| 4276 | Node* st[2]; | |||
| 4277 | intptr_t off[2]; | |||
| 4278 | int nst = 0; | |||
| 4279 | if (!split) { | |||
| 4280 | ++new_long; | |||
| 4281 | off[nst] = offset; | |||
| 4282 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | |||
| 4283 | phase->longcon(con), T_LONG, MemNode::unordered); | |||
| 4284 | } else { | |||
| 4285 | // Omit either if it is a zero. | |||
| 4286 | if (con0 != 0) { | |||
| 4287 | ++new_int; | |||
| 4288 | off[nst] = offset; | |||
| 4289 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | |||
| 4290 | phase->intcon(con0), T_INT, MemNode::unordered); | |||
| 4291 | } | |||
| 4292 | if (con1 != 0) { | |||
| 4293 | ++new_int; | |||
| 4294 | offset += BytesPerInt; | |||
| 4295 | adr = make_raw_address(offset, phase); | |||
| 4296 | off[nst] = offset; | |||
| 4297 | st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, | |||
| 4298 | phase->intcon(con1), T_INT, MemNode::unordered); | |||
| 4299 | } | |||
| 4300 | } | |||
| 4301 | ||||
| 4302 | // Insert second store first, then the first before the second. | |||
| 4303 | // Insert each one just before any overlapping non-constant stores. | |||
| 4304 | while (nst > 0) { | |||
| 4305 | Node* st1 = st[--nst]; | |||
| 4306 | C->copy_node_notes_to(st1, old); | |||
| 4307 | st1 = phase->transform(st1); | |||
| 4308 | offset = off[nst]; | |||
| 4309 | assert(offset >= header_size, "do not smash header")do { if (!(offset >= header_size)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4309, "assert(" "offset >= header_size" ") failed", "do not smash header" ); ::breakpoint(); } } while (0); | |||
| 4310 | int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); | |||
| 4311 | guarantee(ins_idx != 0, "must re-insert constant store")do { if (!(ins_idx != 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4311, "guarantee(" "ins_idx != 0" ") failed", "must re-insert constant store" ); ::breakpoint(); } } while (0); | |||
| 4312 | if (ins_idx < 0) ins_idx = -ins_idx; // never overlap | |||
| 4313 | if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) | |||
| 4314 | set_req(--ins_idx, st1); | |||
| 4315 | else | |||
| 4316 | ins_req(ins_idx, st1); | |||
| 4317 | } | |||
| 4318 | } | |||
| 4319 | ||||
| 4320 | if (PrintCompilation && WizardMode) | |||
| 4321 | tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", | |||
| 4322 | old_subword, old_long, new_int, new_long); | |||
| 4323 | if (C->log() != NULL__null) | |||
| 4324 | C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", | |||
| 4325 | old_subword, old_long, new_int, new_long); | |||
| 4326 | ||||
| 4327 | // Clean up any remaining occurrences of zmem: | |||
| 4328 | remove_extra_zeroes(); | |||
| 4329 | } | |||
| 4330 | ||||
| 4331 | // Explore forward from in(start) to find the first fully initialized | |||
| 4332 | // word, and return its offset. Skip groups of subword stores which | |||
| 4333 | // together initialize full words. If in(start) is itself part of a | |||
| 4334 | // fully initialized word, return the offset of in(start). If there | |||
| 4335 | // are no following full-word stores, or if something is fishy, return | |||
| 4336 | // a negative value. | |||
| 4337 | intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { | |||
| 4338 | int int_map = 0; | |||
| 4339 | intptr_t int_map_off = 0; | |||
| 4340 | const int FULL_MAP = right_n_bits(BytesPerInt)((((BytesPerInt) >= BitsPerWord) ? 0 : (OneBit << (BytesPerInt ))) - 1); // the int_map we hope for | |||
| 4341 | ||||
| 4342 | for (uint i = start, limit = req(); i < limit; i++) { | |||
| 4343 | Node* st = in(i); | |||
| 4344 | ||||
| 4345 | intptr_t st_off = get_store_offset(st, phase); | |||
| 4346 | if (st_off < 0) break; // return conservative answer | |||
| 4347 | ||||
| 4348 | int st_size = st->as_Store()->memory_size(); | |||
| 4349 | if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { | |||
| 4350 | return st_off; // we found a complete word init | |||
| 4351 | } | |||
| 4352 | ||||
| 4353 | // update the map: | |||
| 4354 | ||||
| 4355 | intptr_t this_int_off = align_down(st_off, BytesPerInt); | |||
| 4356 | if (this_int_off != int_map_off) { | |||
| 4357 | // reset the map: | |||
| 4358 | int_map = 0; | |||
| 4359 | int_map_off = this_int_off; | |||
| 4360 | } | |||
| 4361 | ||||
| 4362 | int subword_off = st_off - this_int_off; | |||
| 4363 | int_map |= right_n_bits(st_size)((((st_size) >= BitsPerWord) ? 0 : (OneBit << (st_size ))) - 1) << subword_off; | |||
| 4364 | if ((int_map & FULL_MAP) == FULL_MAP) { | |||
| 4365 | return this_int_off; // we found a complete word init | |||
| 4366 | } | |||
| 4367 | ||||
| 4368 | // Did this store hit or cross the word boundary? | |||
| 4369 | intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); | |||
| 4370 | if (next_int_off == this_int_off + BytesPerInt) { | |||
| 4371 | // We passed the current int, without fully initializing it. | |||
| 4372 | int_map_off = next_int_off; | |||
| 4373 | int_map >>= BytesPerInt; | |||
| 4374 | } else if (next_int_off > this_int_off + BytesPerInt) { | |||
| 4375 | // We passed the current and next int. | |||
| 4376 | return this_int_off + BytesPerInt; | |||
| 4377 | } | |||
| 4378 | } | |||
| 4379 | ||||
| 4380 | return -1; | |||
| 4381 | } | |||
| 4382 | ||||
| 4383 | ||||
| 4384 | // Called when the associated AllocateNode is expanded into CFG. | |||
| 4385 | // At this point, we may perform additional optimizations. | |||
| 4386 | // Linearize the stores by ascending offset, to make memory | |||
| 4387 | // activity as coherent as possible. | |||
| 4388 | Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, | |||
| 4389 | intptr_t header_size, | |||
| 4390 | Node* size_in_bytes, | |||
| 4391 | PhaseIterGVN* phase) { | |||
| 4392 | assert(!is_complete(), "not already complete")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4392, "assert(" "!is_complete()" ") failed", "not already complete" ); ::breakpoint(); } } while (0); | |||
| 4393 | assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4393, "assert(" "stores_are_sane(phase)" ") failed", ""); :: breakpoint(); } } while (0); | |||
| 4394 | assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4394, "assert(" "allocation() != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
| 4395 | ||||
| 4396 | remove_extra_zeroes(); | |||
| 4397 | ||||
| 4398 | if (ReduceFieldZeroing || ReduceBulkZeroing) | |||
| 4399 | // reduce instruction count for common initialization patterns | |||
| 4400 | coalesce_subword_stores(header_size, size_in_bytes, phase); | |||
| 4401 | ||||
| 4402 | Node* zmem = zero_memory(); // initially zero memory state | |||
| 4403 | Node* inits = zmem; // accumulating a linearized chain of inits | |||
| 4404 | #ifdef ASSERT1 | |||
| 4405 | intptr_t first_offset = allocation()->minimum_header_size(); | |||
| 4406 | intptr_t last_init_off = first_offset; // previous init offset | |||
| 4407 | intptr_t last_init_end = first_offset; // previous init offset+size | |||
| 4408 | intptr_t last_tile_end = first_offset; // previous tile offset+size | |||
| 4409 | #endif | |||
| 4410 | intptr_t zeroes_done = header_size; | |||
| 4411 | ||||
| 4412 | bool do_zeroing = true; // we might give up if inits are very sparse | |||
| 4413 | int big_init_gaps = 0; // how many large gaps have we seen? | |||
| 4414 | ||||
| 4415 | if (UseTLAB && ZeroTLAB) do_zeroing = false; | |||
| 4416 | if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; | |||
| 4417 | ||||
| 4418 | for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { | |||
| 4419 | Node* st = in(i); | |||
| 4420 | intptr_t st_off = get_store_offset(st, phase); | |||
| 4421 | if (st_off < 0) | |||
| 4422 | break; // unknown junk in the inits | |||
| 4423 | if (st->in(MemNode::Memory) != zmem) | |||
| 4424 | break; // complicated store chains somehow in list | |||
| 4425 | ||||
| 4426 | int st_size = st->as_Store()->memory_size(); | |||
| 4427 | intptr_t next_init_off = st_off + st_size; | |||
| 4428 | ||||
| 4429 | if (do_zeroing && zeroes_done < next_init_off) { | |||
| 4430 | // See if this store needs a zero before it or under it. | |||
| 4431 | intptr_t zeroes_needed = st_off; | |||
| 4432 | ||||
| 4433 | if (st_size < BytesPerInt) { | |||
| 4434 | // Look for subword stores which only partially initialize words. | |||
| 4435 | // If we find some, we must lay down some word-level zeroes first, | |||
| 4436 | // underneath the subword stores. | |||
| 4437 | // | |||
| 4438 | // Examples: | |||
| 4439 | // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s | |||
| 4440 | // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y | |||
| 4441 | // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z | |||
| 4442 | // | |||
| 4443 | // Note: coalesce_subword_stores may have already done this, | |||
| 4444 | // if it was prompted by constant non-zero subword initializers. | |||
| 4445 | // But this case can still arise with non-constant stores. | |||
| 4446 | ||||
| 4447 | intptr_t next_full_store = find_next_fullword_store(i, phase); | |||
| 4448 | ||||
| 4449 | // In the examples above: | |||
| 4450 | // in(i) p q r s x y z | |||
| 4451 | // st_off 12 13 14 15 12 13 14 | |||
| 4452 | // st_size 1 1 1 1 1 1 1 | |||
| 4453 | // next_full_s. 12 16 16 16 16 16 16 | |||
| 4454 | // z's_done 12 16 16 16 12 16 12 | |||
| 4455 | // z's_needed 12 16 16 16 16 16 16 | |||
| 4456 | // zsize 0 0 0 0 4 0 4 | |||
| 4457 | if (next_full_store < 0) { | |||
| 4458 | // Conservative tack: Zero to end of current word. | |||
| 4459 | zeroes_needed = align_up(zeroes_needed, BytesPerInt); | |||
| 4460 | } else { | |||
| 4461 | // Zero to beginning of next fully initialized word. | |||
| 4462 | // Or, don't zero at all, if we are already in that word. | |||
| 4463 | assert(next_full_store >= zeroes_needed, "must go forward")do { if (!(next_full_store >= zeroes_needed)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4463, "assert(" "next_full_store >= zeroes_needed" ") failed" , "must go forward"); ::breakpoint(); } } while (0); | |||
| 4464 | assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary")do { if (!((next_full_store & (BytesPerInt-1)) == 0)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4464, "assert(" "(next_full_store & (BytesPerInt-1)) == 0" ") failed", "even boundary"); ::breakpoint(); } } while (0); | |||
| 4465 | zeroes_needed = next_full_store; | |||
| 4466 | } | |||
| 4467 | } | |||
| 4468 | ||||
| 4469 | if (zeroes_needed > zeroes_done) { | |||
| 4470 | intptr_t zsize = zeroes_needed - zeroes_done; | |||
| 4471 | // Do some incremental zeroing on rawmem, in parallel with inits. | |||
| 4472 | zeroes_done = align_down(zeroes_done, BytesPerInt); | |||
| 4473 | rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, | |||
| 4474 | zeroes_done, zeroes_needed, | |||
| 4475 | phase); | |||
| 4476 | zeroes_done = zeroes_needed; | |||
| 4477 | if (zsize > InitArrayShortSize && ++big_init_gaps > 2) | |||
| 4478 | do_zeroing = false; // leave the hole, next time | |||
| 4479 | } | |||
| 4480 | } | |||
| 4481 | ||||
| 4482 | // Collect the store and move on: | |||
| 4483 | phase->replace_input_of(st, MemNode::Memory, inits); | |||
| 4484 | inits = st; // put it on the linearized chain | |||
| 4485 | set_req(i, zmem); // unhook from previous position | |||
| 4486 | ||||
| 4487 | if (zeroes_done == st_off) | |||
| 4488 | zeroes_done = next_init_off; | |||
| 4489 | ||||
| 4490 | assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any")do { if (!(!do_zeroing || zeroes_done >= next_init_off)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4490, "assert(" "!do_zeroing || zeroes_done >= next_init_off" ") failed", "don't miss any"); ::breakpoint(); } } while (0); | |||
| 4491 | ||||
| 4492 | #ifdef ASSERT1 | |||
| 4493 | // Various order invariants. Weaker than stores_are_sane because | |||
| 4494 | // a large constant tile can be filled in by smaller non-constant stores. | |||
| 4495 | assert(st_off >= last_init_off, "inits do not reverse")do { if (!(st_off >= last_init_off)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4495, "assert(" "st_off >= last_init_off" ") failed", "inits do not reverse" ); ::breakpoint(); } } while (0); | |||
| 4496 | last_init_off = st_off; | |||
| 4497 | const Type* val = NULL__null; | |||
| 4498 | if (st_size >= BytesPerInt && | |||
| 4499 | (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && | |||
| 4500 | (int)val->basic_type() < (int)T_OBJECT) { | |||
| 4501 | assert(st_off >= last_tile_end, "tiles do not overlap")do { if (!(st_off >= last_tile_end)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4501, "assert(" "st_off >= last_tile_end" ") failed", "tiles do not overlap" ); ::breakpoint(); } } while (0); | |||
| 4502 | assert(st_off >= last_init_end, "tiles do not overwrite inits")do { if (!(st_off >= last_init_end)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4502, "assert(" "st_off >= last_init_end" ") failed", "tiles do not overwrite inits" ); ::breakpoint(); } } while (0); | |||
| 4503 | last_tile_end = MAX2(last_tile_end, next_init_off); | |||
| 4504 | } else { | |||
| 4505 | intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); | |||
| 4506 | assert(st_tile_end >= last_tile_end, "inits stay with tiles")do { if (!(st_tile_end >= last_tile_end)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4506, "assert(" "st_tile_end >= last_tile_end" ") failed" , "inits stay with tiles"); ::breakpoint(); } } while (0); | |||
| 4507 | assert(st_off >= last_init_end, "inits do not overlap")do { if (!(st_off >= last_init_end)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4507, "assert(" "st_off >= last_init_end" ") failed", "inits do not overlap" ); ::breakpoint(); } } while (0); | |||
| 4508 | last_init_end = next_init_off; // it's a non-tile | |||
| 4509 | } | |||
| 4510 | #endif //ASSERT | |||
| 4511 | } | |||
| 4512 | ||||
| 4513 | remove_extra_zeroes(); // clear out all the zmems left over | |||
| 4514 | add_req(inits); | |||
| 4515 | ||||
| 4516 | if (!(UseTLAB && ZeroTLAB)) { | |||
| 4517 | // If anything remains to be zeroed, zero it all now. | |||
| 4518 | zeroes_done = align_down(zeroes_done, BytesPerInt); | |||
| 4519 | // if it is the last unused 4 bytes of an instance, forget about it | |||
| 4520 | intptr_t size_limit = phase->find_intptr_t_confind_long_con(size_in_bytes, max_jint); | |||
| 4521 | if (zeroes_done + BytesPerLong >= size_limit) { | |||
| 4522 | AllocateNode* alloc = allocation(); | |||
| 4523 | assert(alloc != NULL, "must be present")do { if (!(alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4523, "assert(" "alloc != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
| 4524 | if (alloc != NULL__null && alloc->Opcode() == Op_Allocate) { | |||
| 4525 | Node* klass_node = alloc->in(AllocateNode::KlassNode); | |||
| 4526 | ciKlass* k = phase->type(klass_node)->is_klassptr()->klass(); | |||
| 4527 | if (zeroes_done == k->layout_helper()) | |||
| 4528 | zeroes_done = size_limit; | |||
| 4529 | } | |||
| 4530 | } | |||
| 4531 | if (zeroes_done < size_limit) { | |||
| 4532 | rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, | |||
| 4533 | zeroes_done, size_in_bytes, phase); | |||
| 4534 | } | |||
| 4535 | } | |||
| 4536 | ||||
| 4537 | set_complete(phase); | |||
| 4538 | return rawmem; | |||
| 4539 | } | |||
| 4540 | ||||
| 4541 | ||||
| 4542 | #ifdef ASSERT1 | |||
| 4543 | bool InitializeNode::stores_are_sane(PhaseTransform* phase) { | |||
| 4544 | if (is_complete()) | |||
| 4545 | return true; // stores could be anything at this point | |||
| 4546 | assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4546, "assert(" "allocation() != __null" ") failed", "must be present" ); ::breakpoint(); } } while (0); | |||
| 4547 | intptr_t last_off = allocation()->minimum_header_size(); | |||
| 4548 | for (uint i = InitializeNode::RawStores; i < req(); i++) { | |||
| 4549 | Node* st = in(i); | |||
| 4550 | intptr_t st_off = get_store_offset(st, phase); | |||
| 4551 | if (st_off < 0) continue; // ignore dead garbage | |||
| 4552 | if (last_off > st_off) { | |||
| 4553 | tty->print_cr("*** bad store offset at %d: " INTX_FORMAT"%" "l" "d" " > " INTX_FORMAT"%" "l" "d", i, last_off, st_off); | |||
| 4554 | this->dump(2); | |||
| 4555 | assert(false, "ascending store offsets")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4555, "assert(" "false" ") failed", "ascending store offsets" ); ::breakpoint(); } } while (0); | |||
| 4556 | return false; | |||
| 4557 | } | |||
| 4558 | last_off = st_off + st->as_Store()->memory_size(); | |||
| 4559 | } | |||
| 4560 | return true; | |||
| 4561 | } | |||
| 4562 | #endif //ASSERT | |||
| 4563 | ||||
| 4564 | ||||
| 4565 | ||||
| 4566 | ||||
| 4567 | //============================MergeMemNode===================================== | |||
| 4568 | // | |||
| 4569 | // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several | |||
| 4570 | // contributing store or call operations. Each contributor provides the memory | |||
| 4571 | // state for a particular "alias type" (see Compile::alias_type). For example, | |||
| 4572 | // if a MergeMem has an input X for alias category #6, then any memory reference | |||
| 4573 | // to alias category #6 may use X as its memory state input, as an exact equivalent | |||
| 4574 | // to using the MergeMem as a whole. | |||
| 4575 | // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) | |||
| 4576 | // | |||
| 4577 | // (Here, the <N> notation gives the index of the relevant adr_type.) | |||
| 4578 | // | |||
| 4579 | // In one special case (and more cases in the future), alias categories overlap. | |||
| 4580 | // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory | |||
| 4581 | // states. Therefore, if a MergeMem has only one contributing input W for Bot, | |||
| 4582 | // it is exactly equivalent to that state W: | |||
| 4583 | // MergeMem(<Bot>: W) <==> W | |||
| 4584 | // | |||
| 4585 | // Usually, the merge has more than one input. In that case, where inputs | |||
| 4586 | // overlap (i.e., one is Bot), the narrower alias type determines the memory | |||
| 4587 | // state for that type, and the wider alias type (Bot) fills in everywhere else: | |||
| 4588 | // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) | |||
| 4589 | // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) | |||
| 4590 | // | |||
| 4591 | // A merge can take a "wide" memory state as one of its narrow inputs. | |||
| 4592 | // This simply means that the merge observes out only the relevant parts of | |||
| 4593 | // the wide input. That is, wide memory states arriving at narrow merge inputs | |||
| 4594 | // are implicitly "filtered" or "sliced" as necessary. (This is rare.) | |||
| 4595 | // | |||
| 4596 | // These rules imply that MergeMem nodes may cascade (via their <Bot> links), | |||
| 4597 | // and that memory slices "leak through": | |||
| 4598 | // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) | |||
| 4599 | // | |||
| 4600 | // But, in such a cascade, repeated memory slices can "block the leak": | |||
| 4601 | // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') | |||
| 4602 | // | |||
| 4603 | // In the last example, Y is not part of the combined memory state of the | |||
| 4604 | // outermost MergeMem. The system must, of course, prevent unschedulable | |||
| 4605 | // memory states from arising, so you can be sure that the state Y is somehow | |||
| 4606 | // a precursor to state Y'. | |||
| 4607 | // | |||
| 4608 | // | |||
| 4609 | // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array | |||
| 4610 | // of each MergeMemNode array are exactly the numerical alias indexes, including | |||
| 4611 | // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions | |||
| 4612 | // Compile::alias_type (and kin) produce and manage these indexes. | |||
| 4613 | // | |||
| 4614 | // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. | |||
| 4615 | // (Note that this provides quick access to the top node inside MergeMem methods, | |||
| 4616 | // without the need to reach out via TLS to Compile::current.) | |||
| 4617 | // | |||
| 4618 | // As a consequence of what was just described, a MergeMem that represents a full | |||
| 4619 | // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, | |||
| 4620 | // containing all alias categories. | |||
| 4621 | // | |||
| 4622 | // MergeMem nodes never (?) have control inputs, so in(0) is NULL. | |||
| 4623 | // | |||
| 4624 | // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either | |||
| 4625 | // a memory state for the alias type <N>, or else the top node, meaning that | |||
| 4626 | // there is no particular input for that alias type. Note that the length of | |||
| 4627 | // a MergeMem is variable, and may be extended at any time to accommodate new | |||
| 4628 | // memory states at larger alias indexes. When merges grow, they are of course | |||
| 4629 | // filled with "top" in the unused in() positions. | |||
| 4630 | // | |||
| 4631 | // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. | |||
| 4632 | // (Top was chosen because it works smoothly with passes like GCM.) | |||
| 4633 | // | |||
| 4634 | // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is | |||
| 4635 | // the type of random VM bits like TLS references.) Since it is always the | |||
| 4636 | // first non-Bot memory slice, some low-level loops use it to initialize an | |||
| 4637 | // index variable: for (i = AliasIdxRaw; i < req(); i++). | |||
| 4638 | // | |||
| 4639 | // | |||
| 4640 | // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns | |||
| 4641 | // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns | |||
| 4642 | // the memory state for alias type <N>, or (if there is no particular slice at <N>, | |||
| 4643 | // it returns the base memory. To prevent bugs, memory_at does not accept <Top> | |||
| 4644 | // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over | |||
| 4645 | // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. | |||
| 4646 | // | |||
| 4647 | // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't | |||
| 4648 | // really that different from the other memory inputs. An abbreviation called | |||
| 4649 | // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. | |||
| 4650 | // | |||
| 4651 | // | |||
| 4652 | // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent | |||
| 4653 | // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi | |||
| 4654 | // that "emerges though" the base memory will be marked as excluding the alias types | |||
| 4655 | // of the other (narrow-memory) copies which "emerged through" the narrow edges: | |||
| 4656 | // | |||
| 4657 | // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) | |||
| 4658 | // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) | |||
| 4659 | // | |||
| 4660 | // This strange "subtraction" effect is necessary to ensure IGVN convergence. | |||
| 4661 | // (It is currently unimplemented.) As you can see, the resulting merge is | |||
| 4662 | // actually a disjoint union of memory states, rather than an overlay. | |||
| 4663 | // | |||
| 4664 | ||||
| 4665 | //------------------------------MergeMemNode----------------------------------- | |||
| 4666 | Node* MergeMemNode::make_empty_memory() { | |||
| 4667 | Node* empty_memory = (Node*) Compile::current()->top(); | |||
| 4668 | assert(empty_memory->is_top(), "correct sentinel identity")do { if (!(empty_memory->is_top())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4668, "assert(" "empty_memory->is_top()" ") failed", "correct sentinel identity" ); ::breakpoint(); } } while (0); | |||
| 4669 | return empty_memory; | |||
| 4670 | } | |||
| 4671 | ||||
| 4672 | MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { | |||
| 4673 | init_class_id(Class_MergeMem); | |||
| 4674 | // all inputs are nullified in Node::Node(int) | |||
| 4675 | // set_input(0, NULL); // no control input | |||
| 4676 | ||||
| 4677 | // Initialize the edges uniformly to top, for starters. | |||
| 4678 | Node* empty_mem = make_empty_memory(); | |||
| 4679 | for (uint i = Compile::AliasIdxTop; i < req(); i++) { | |||
| 4680 | init_req(i,empty_mem); | |||
| 4681 | } | |||
| 4682 | assert(empty_memory() == empty_mem, "")do { if (!(empty_memory() == empty_mem)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4682, "assert(" "empty_memory() == empty_mem" ") failed", "" ); ::breakpoint(); } } while (0); | |||
| 4683 | ||||
| 4684 | if( new_base != NULL__null && new_base->is_MergeMem() ) { | |||
| 4685 | MergeMemNode* mdef = new_base->as_MergeMem(); | |||
| 4686 | assert(mdef->empty_memory() == empty_mem, "consistent sentinels")do { if (!(mdef->empty_memory() == empty_mem)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4686, "assert(" "mdef->empty_memory() == empty_mem" ") failed" , "consistent sentinels"); ::breakpoint(); } } while (0); | |||
| 4687 | for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { | |||
| 4688 | mms.set_memory(mms.memory2()); | |||
| 4689 | } | |||
| 4690 | assert(base_memory() == mdef->base_memory(), "")do { if (!(base_memory() == mdef->base_memory())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4690, "assert(" "base_memory() == mdef->base_memory()" ") failed" , ""); ::breakpoint(); } } while (0); | |||
| 4691 | } else { | |||
| 4692 | set_base_memory(new_base); | |||
| 4693 | } | |||
| 4694 | } | |||
| 4695 | ||||
| 4696 | // Make a new, untransformed MergeMem with the same base as 'mem'. | |||
| 4697 | // If mem is itself a MergeMem, populate the result with the same edges. | |||
| 4698 | MergeMemNode* MergeMemNode::make(Node* mem) { | |||
| 4699 | return new MergeMemNode(mem); | |||
| 4700 | } | |||
| 4701 | ||||
| 4702 | //------------------------------cmp-------------------------------------------- | |||
| 4703 | uint MergeMemNode::hash() const { return NO_HASH; } | |||
| 4704 | bool MergeMemNode::cmp( const Node &n ) const { | |||
| 4705 | return (&n == this); // Always fail except on self | |||
| 4706 | } | |||
| 4707 | ||||
| 4708 | //------------------------------Identity--------------------------------------- | |||
| 4709 | Node* MergeMemNode::Identity(PhaseGVN* phase) { | |||
| 4710 | // Identity if this merge point does not record any interesting memory | |||
| 4711 | // disambiguations. | |||
| 4712 | Node* base_mem = base_memory(); | |||
| 4713 | Node* empty_mem = empty_memory(); | |||
| 4714 | if (base_mem != empty_mem) { // Memory path is not dead? | |||
| 4715 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
| 4716 | Node* mem = in(i); | |||
| 4717 | if (mem != empty_mem && mem != base_mem) { | |||
| 4718 | return this; // Many memory splits; no change | |||
| 4719 | } | |||
| 4720 | } | |||
| 4721 | } | |||
| 4722 | return base_mem; // No memory splits; ID on the one true input | |||
| 4723 | } | |||
| 4724 | ||||
| 4725 | //------------------------------Ideal------------------------------------------ | |||
| 4726 | // This method is invoked recursively on chains of MergeMem nodes | |||
| 4727 | Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
| 4728 | // Remove chain'd MergeMems | |||
| 4729 | // | |||
| 4730 | // This is delicate, because the each "in(i)" (i >= Raw) is interpreted | |||
| 4731 | // relative to the "in(Bot)". Since we are patching both at the same time, | |||
| 4732 | // we have to be careful to read each "in(i)" relative to the old "in(Bot)", | |||
| 4733 | // but rewrite each "in(i)" relative to the new "in(Bot)". | |||
| 4734 | Node *progress = NULL__null; | |||
| 4735 | ||||
| 4736 | ||||
| 4737 | Node* old_base = base_memory(); | |||
| 4738 | Node* empty_mem = empty_memory(); | |||
| 4739 | if (old_base == empty_mem) | |||
| 4740 | return NULL__null; // Dead memory path. | |||
| 4741 | ||||
| 4742 | MergeMemNode* old_mbase; | |||
| 4743 | if (old_base != NULL__null && old_base->is_MergeMem()) | |||
| 4744 | old_mbase = old_base->as_MergeMem(); | |||
| 4745 | else | |||
| 4746 | old_mbase = NULL__null; | |||
| 4747 | Node* new_base = old_base; | |||
| 4748 | ||||
| 4749 | // simplify stacked MergeMems in base memory | |||
| 4750 | if (old_mbase) new_base = old_mbase->base_memory(); | |||
| 4751 | ||||
| 4752 | // the base memory might contribute new slices beyond my req() | |||
| 4753 | if (old_mbase) grow_to_match(old_mbase); | |||
| 4754 | ||||
| 4755 | // Look carefully at the base node if it is a phi. | |||
| 4756 | PhiNode* phi_base; | |||
| 4757 | if (new_base != NULL__null && new_base->is_Phi()) | |||
| 4758 | phi_base = new_base->as_Phi(); | |||
| 4759 | else | |||
| 4760 | phi_base = NULL__null; | |||
| 4761 | ||||
| 4762 | Node* phi_reg = NULL__null; | |||
| 4763 | uint phi_len = (uint)-1; | |||
| 4764 | if (phi_base != NULL__null) { | |||
| 4765 | phi_reg = phi_base->region(); | |||
| 4766 | phi_len = phi_base->req(); | |||
| 4767 | // see if the phi is unfinished | |||
| 4768 | for (uint i = 1; i < phi_len; i++) { | |||
| 4769 | if (phi_base->in(i) == NULL__null) { | |||
| 4770 | // incomplete phi; do not look at it yet! | |||
| 4771 | phi_reg = NULL__null; | |||
| 4772 | phi_len = (uint)-1; | |||
| 4773 | break; | |||
| 4774 | } | |||
| 4775 | } | |||
| 4776 | } | |||
| 4777 | ||||
| 4778 | // Note: We do not call verify_sparse on entry, because inputs | |||
| 4779 | // can normalize to the base_memory via subsume_node or similar | |||
| 4780 | // mechanisms. This method repairs that damage. | |||
| 4781 | ||||
| 4782 | assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels")do { if (!(!old_mbase || old_mbase->is_empty_memory(empty_mem ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4782, "assert(" "!old_mbase || old_mbase->is_empty_memory(empty_mem)" ") failed", "consistent sentinels"); ::breakpoint(); } } while (0); | |||
| 4783 | ||||
| 4784 | // Look at each slice. | |||
| 4785 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
| 4786 | Node* old_in = in(i); | |||
| 4787 | // calculate the old memory value | |||
| 4788 | Node* old_mem = old_in; | |||
| 4789 | if (old_mem == empty_mem) old_mem = old_base; | |||
| 4790 | assert(old_mem == memory_at(i), "")do { if (!(old_mem == memory_at(i))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4790, "assert(" "old_mem == memory_at(i)" ") failed", ""); :: breakpoint(); } } while (0); | |||
| 4791 | ||||
| 4792 | // maybe update (reslice) the old memory value | |||
| 4793 | ||||
| 4794 | // simplify stacked MergeMems | |||
| 4795 | Node* new_mem = old_mem; | |||
| 4796 | MergeMemNode* old_mmem; | |||
| 4797 | if (old_mem != NULL__null && old_mem->is_MergeMem()) | |||
| 4798 | old_mmem = old_mem->as_MergeMem(); | |||
| 4799 | else | |||
| 4800 | old_mmem = NULL__null; | |||
| 4801 | if (old_mmem == this) { | |||
| 4802 | // This can happen if loops break up and safepoints disappear. | |||
| 4803 | // A merge of BotPtr (default) with a RawPtr memory derived from a | |||
| 4804 | // safepoint can be rewritten to a merge of the same BotPtr with | |||
| 4805 | // the BotPtr phi coming into the loop. If that phi disappears | |||
| 4806 | // also, we can end up with a self-loop of the mergemem. | |||
| 4807 | // In general, if loops degenerate and memory effects disappear, | |||
| 4808 | // a mergemem can be left looking at itself. This simply means | |||
| 4809 | // that the mergemem's default should be used, since there is | |||
| 4810 | // no longer any apparent effect on this slice. | |||
| 4811 | // Note: If a memory slice is a MergeMem cycle, it is unreachable | |||
| 4812 | // from start. Update the input to TOP. | |||
| 4813 | new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; | |||
| 4814 | } | |||
| 4815 | else if (old_mmem != NULL__null) { | |||
| 4816 | new_mem = old_mmem->memory_at(i); | |||
| 4817 | } | |||
| 4818 | // else preceding memory was not a MergeMem | |||
| 4819 | ||||
| 4820 | // maybe store down a new value | |||
| 4821 | Node* new_in = new_mem; | |||
| 4822 | if (new_in == new_base) new_in = empty_mem; | |||
| 4823 | ||||
| 4824 | if (new_in != old_in) { | |||
| 4825 | // Warning: Do not combine this "if" with the previous "if" | |||
| 4826 | // A memory slice might have be be rewritten even if it is semantically | |||
| 4827 | // unchanged, if the base_memory value has changed. | |||
| 4828 | set_req_X(i, new_in, phase); | |||
| 4829 | progress = this; // Report progress | |||
| 4830 | } | |||
| 4831 | } | |||
| 4832 | ||||
| 4833 | if (new_base != old_base) { | |||
| 4834 | set_req_X(Compile::AliasIdxBot, new_base, phase); | |||
| 4835 | // Don't use set_base_memory(new_base), because we need to update du. | |||
| 4836 | assert(base_memory() == new_base, "")do { if (!(base_memory() == new_base)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4836, "assert(" "base_memory() == new_base" ") failed", "") ; ::breakpoint(); } } while (0); | |||
| 4837 | progress = this; | |||
| 4838 | } | |||
| 4839 | ||||
| 4840 | if( base_memory() == this ) { | |||
| 4841 | // a self cycle indicates this memory path is dead | |||
| 4842 | set_req(Compile::AliasIdxBot, empty_mem); | |||
| 4843 | } | |||
| 4844 | ||||
| 4845 | // Resolve external cycles by calling Ideal on a MergeMem base_memory | |||
| 4846 | // Recursion must occur after the self cycle check above | |||
| 4847 | if( base_memory()->is_MergeMem() ) { | |||
| 4848 | MergeMemNode *new_mbase = base_memory()->as_MergeMem(); | |||
| 4849 | Node *m = phase->transform(new_mbase); // Rollup any cycles | |||
| 4850 | if( m != NULL__null && | |||
| 4851 | (m->is_top() || | |||
| 4852 | (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { | |||
| 4853 | // propagate rollup of dead cycle to self | |||
| 4854 | set_req(Compile::AliasIdxBot, empty_mem); | |||
| 4855 | } | |||
| 4856 | } | |||
| 4857 | ||||
| 4858 | if( base_memory() == empty_mem ) { | |||
| 4859 | progress = this; | |||
| 4860 | // Cut inputs during Parse phase only. | |||
| 4861 | // During Optimize phase a dead MergeMem node will be subsumed by Top. | |||
| 4862 | if( !can_reshape ) { | |||
| 4863 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
| 4864 | if( in(i) != empty_mem ) { set_req(i, empty_mem); } | |||
| 4865 | } | |||
| 4866 | } | |||
| 4867 | } | |||
| 4868 | ||||
| 4869 | if( !progress && base_memory()->is_Phi() && can_reshape ) { | |||
| 4870 | // Check if PhiNode::Ideal's "Split phis through memory merges" | |||
| 4871 | // transform should be attempted. Look for this->phi->this cycle. | |||
| 4872 | uint merge_width = req(); | |||
| 4873 | if (merge_width > Compile::AliasIdxRaw) { | |||
| 4874 | PhiNode* phi = base_memory()->as_Phi(); | |||
| 4875 | for( uint i = 1; i < phi->req(); ++i ) {// For all paths in | |||
| 4876 | if (phi->in(i) == this) { | |||
| 4877 | phase->is_IterGVN()->_worklist.push(phi); | |||
| 4878 | break; | |||
| 4879 | } | |||
| 4880 | } | |||
| 4881 | } | |||
| 4882 | } | |||
| 4883 | ||||
| 4884 | assert(progress || verify_sparse(), "please, no dups of base")do { if (!(progress || verify_sparse())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4884, "assert(" "progress || verify_sparse()" ") failed", "please, no dups of base" ); ::breakpoint(); } } while (0); | |||
| 4885 | return progress; | |||
| 4886 | } | |||
| 4887 | ||||
| 4888 | //-------------------------set_base_memory------------------------------------- | |||
| 4889 | void MergeMemNode::set_base_memory(Node *new_base) { | |||
| 4890 | Node* empty_mem = empty_memory(); | |||
| 4891 | set_req(Compile::AliasIdxBot, new_base); | |||
| 4892 | assert(memory_at(req()) == new_base, "must set default memory")do { if (!(memory_at(req()) == new_base)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4892, "assert(" "memory_at(req()) == new_base" ") failed", "must set default memory" ); ::breakpoint(); } } while (0); | |||
| 4893 | // Clear out other occurrences of new_base: | |||
| 4894 | if (new_base != empty_mem) { | |||
| 4895 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
| 4896 | if (in(i) == new_base) set_req(i, empty_mem); | |||
| 4897 | } | |||
| 4898 | } | |||
| 4899 | } | |||
| 4900 | ||||
| 4901 | //------------------------------out_RegMask------------------------------------ | |||
| 4902 | const RegMask &MergeMemNode::out_RegMask() const { | |||
| 4903 | return RegMask::Empty; | |||
| 4904 | } | |||
| 4905 | ||||
| 4906 | //------------------------------dump_spec-------------------------------------- | |||
| 4907 | #ifndef PRODUCT | |||
| 4908 | void MergeMemNode::dump_spec(outputStream *st) const { | |||
| 4909 | st->print(" {"); | |||
| 4910 | Node* base_mem = base_memory(); | |||
| 4911 | for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { | |||
| 4912 | Node* mem = (in(i) != NULL__null) ? memory_at(i) : base_mem; | |||
| 4913 | if (mem == base_mem) { st->print(" -"); continue; } | |||
| 4914 | st->print( " N%d:", mem->_idx ); | |||
| 4915 | Compile::current()->get_adr_type(i)->dump_on(st); | |||
| 4916 | } | |||
| 4917 | st->print(" }"); | |||
| 4918 | } | |||
| 4919 | #endif // !PRODUCT | |||
| 4920 | ||||
| 4921 | ||||
| 4922 | #ifdef ASSERT1 | |||
| 4923 | static bool might_be_same(Node* a, Node* b) { | |||
| 4924 | if (a == b) return true; | |||
| 4925 | if (!(a->is_Phi() || b->is_Phi())) return false; | |||
| 4926 | // phis shift around during optimization | |||
| 4927 | return true; // pretty stupid... | |||
| 4928 | } | |||
| 4929 | ||||
| 4930 | // verify a narrow slice (either incoming or outgoing) | |||
| 4931 | static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { | |||
| 4932 | if (!VerifyAliases) return; // don't bother to verify unless requested | |||
| 4933 | if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error | |||
| 4934 | if (Node::in_dump()) return; // muzzle asserts when printing | |||
| 4935 | assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel")do { if (!(alias_idx >= Compile::AliasIdxRaw)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4935, "assert(" "alias_idx >= Compile::AliasIdxRaw" ") failed" , "must not disturb base_memory or sentinel"); ::breakpoint() ; } } while (0); | |||
| 4936 | assert(n != NULL, "")do { if (!(n != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4936, "assert(" "n != __null" ") failed", ""); ::breakpoint (); } } while (0); | |||
| 4937 | // Elide intervening MergeMem's | |||
| 4938 | while (n->is_MergeMem()) { | |||
| 4939 | n = n->as_MergeMem()->memory_at(alias_idx); | |||
| 4940 | } | |||
| 4941 | Compile* C = Compile::current(); | |||
| 4942 | const TypePtr* n_adr_type = n->adr_type(); | |||
| 4943 | if (n == m->empty_memory()) { | |||
| 4944 | // Implicit copy of base_memory() | |||
| 4945 | } else if (n_adr_type != TypePtr::BOTTOM) { | |||
| 4946 | assert(n_adr_type != NULL, "new memory must have a well-defined adr_type")do { if (!(n_adr_type != __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4946, "assert(" "n_adr_type != __null" ") failed", "new memory must have a well-defined adr_type" ); ::breakpoint(); } } while (0); | |||
| 4947 | assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice")do { if (!(C->must_alias(n_adr_type, alias_idx))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4947, "assert(" "C->must_alias(n_adr_type, alias_idx)" ") failed" , "new memory must match selected slice"); ::breakpoint(); } } while (0); | |||
| 4948 | } else { | |||
| 4949 | // A few places like make_runtime_call "know" that VM calls are narrow, | |||
| 4950 | // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. | |||
| 4951 | bool expected_wide_mem = false; | |||
| 4952 | if (n == m->base_memory()) { | |||
| 4953 | expected_wide_mem = true; | |||
| 4954 | } else if (alias_idx == Compile::AliasIdxRaw || | |||
| 4955 | n == m->memory_at(Compile::AliasIdxRaw)) { | |||
| 4956 | expected_wide_mem = true; | |||
| 4957 | } else if (!C->alias_type(alias_idx)->is_rewritable()) { | |||
| 4958 | // memory can "leak through" calls on channels that | |||
| 4959 | // are write-once. Allow this also. | |||
| 4960 | expected_wide_mem = true; | |||
| 4961 | } | |||
| 4962 | assert(expected_wide_mem, "expected narrow slice replacement")do { if (!(expected_wide_mem)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4962, "assert(" "expected_wide_mem" ") failed", "expected narrow slice replacement" ); ::breakpoint(); } } while (0); | |||
| 4963 | } | |||
| 4964 | } | |||
| 4965 | #else // !ASSERT | |||
| 4966 | #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op | |||
| 4967 | #endif | |||
| 4968 | ||||
| 4969 | ||||
| 4970 | //-----------------------------memory_at--------------------------------------- | |||
| 4971 | Node* MergeMemNode::memory_at(uint alias_idx) const { | |||
| 4972 | assert(alias_idx >= Compile::AliasIdxRaw ||do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel () == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0" ") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint (); } } while (0) | |||
| 4973 | alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel () == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0" ") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint (); } } while (0) | |||
| 4974 | "must avoid base_memory and AliasIdxTop")do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel () == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0" ") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint (); } } while (0); | |||
| 4975 | ||||
| 4976 | // Otherwise, it is a narrow slice. | |||
| 4977 | Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); | |||
| 4978 | Compile *C = Compile::current(); | |||
| 4979 | if (is_empty_memory(n)) { | |||
| 4980 | // the array is sparse; empty slots are the "top" node | |||
| 4981 | n = base_memory(); | |||
| 4982 | assert(Node::in_dump()do { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
| 4983 | || n == NULL || n->bottom_type() == Type::TOPdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
| 4984 | || n->adr_type() == NULL // address is TOPdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
| 4985 | || n->adr_type() == TypePtr::BOTTOMdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
| 4986 | || n->adr_type() == TypeRawPtr::BOTTOMdo { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
| 4987 | || Compile::current()->AliasLevel() == 0,do { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0) | |||
| 4988 | "must be a wide memory")do { if (!(Node::in_dump() || n == __null || n->bottom_type () == Type::TOP || n->adr_type() == __null || n->adr_type () == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0" ") failed", "must be a wide memory"); ::breakpoint(); } } while (0); | |||
| 4989 | // AliasLevel == 0 if we are organizing the memory states manually. | |||
| 4990 | // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. | |||
| 4991 | } else { | |||
| 4992 | // make sure the stored slice is sane | |||
| 4993 | #ifdef ASSERT1 | |||
| 4994 | if (VMError::is_error_reported() || Node::in_dump()) { | |||
| 4995 | } else if (might_be_same(n, base_memory())) { | |||
| 4996 | // Give it a pass: It is a mostly harmless repetition of the base. | |||
| 4997 | // This can arise normally from node subsumption during optimization. | |||
| 4998 | } else { | |||
| 4999 | verify_memory_slice(this, alias_idx, n); | |||
| 5000 | } | |||
| 5001 | #endif | |||
| 5002 | } | |||
| 5003 | return n; | |||
| 5004 | } | |||
| 5005 | ||||
| 5006 | //---------------------------set_memory_at------------------------------------- | |||
| 5007 | void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { | |||
| 5008 | verify_memory_slice(this, alias_idx, n); | |||
| 5009 | Node* empty_mem = empty_memory(); | |||
| 5010 | if (n == base_memory()) n = empty_mem; // collapse default | |||
| 5011 | uint need_req = alias_idx+1; | |||
| 5012 | if (req() < need_req) { | |||
| 5013 | if (n == empty_mem) return; // already the default, so do not grow me | |||
| 5014 | // grow the sparse array | |||
| 5015 | do { | |||
| 5016 | add_req(empty_mem); | |||
| 5017 | } while (req() < need_req); | |||
| 5018 | } | |||
| 5019 | set_req( alias_idx, n ); | |||
| 5020 | } | |||
| 5021 | ||||
| 5022 | ||||
| 5023 | ||||
| 5024 | //--------------------------iteration_setup------------------------------------ | |||
| 5025 | void MergeMemNode::iteration_setup(const MergeMemNode* other) { | |||
| 5026 | if (other != NULL__null) { | |||
| 5027 | grow_to_match(other); | |||
| 5028 | // invariant: the finite support of mm2 is within mm->req() | |||
| 5029 | #ifdef ASSERT1 | |||
| 5030 | for (uint i = req(); i < other->req(); i++) { | |||
| 5031 | assert(other->is_empty_memory(other->in(i)), "slice left uncovered")do { if (!(other->is_empty_memory(other->in(i)))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5031, "assert(" "other->is_empty_memory(other->in(i))" ") failed", "slice left uncovered"); ::breakpoint(); } } while (0); | |||
| 5032 | } | |||
| 5033 | #endif | |||
| 5034 | } | |||
| 5035 | // Replace spurious copies of base_memory by top. | |||
| 5036 | Node* base_mem = base_memory(); | |||
| 5037 | if (base_mem != NULL__null && !base_mem->is_top()) { | |||
| 5038 | for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { | |||
| 5039 | if (in(i) == base_mem) | |||
| 5040 | set_req(i, empty_memory()); | |||
| 5041 | } | |||
| 5042 | } | |||
| 5043 | } | |||
| 5044 | ||||
| 5045 | //---------------------------grow_to_match------------------------------------- | |||
| 5046 | void MergeMemNode::grow_to_match(const MergeMemNode* other) { | |||
| 5047 | Node* empty_mem = empty_memory(); | |||
| 5048 | assert(other->is_empty_memory(empty_mem), "consistent sentinels")do { if (!(other->is_empty_memory(empty_mem))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5048, "assert(" "other->is_empty_memory(empty_mem)" ") failed" , "consistent sentinels"); ::breakpoint(); } } while (0); | |||
| 5049 | // look for the finite support of the other memory | |||
| 5050 | for (uint i = other->req(); --i >= req(); ) { | |||
| 5051 | if (other->in(i) != empty_mem) { | |||
| 5052 | uint new_len = i+1; | |||
| 5053 | while (req() < new_len) add_req(empty_mem); | |||
| 5054 | break; | |||
| 5055 | } | |||
| 5056 | } | |||
| 5057 | } | |||
| 5058 | ||||
| 5059 | //---------------------------verify_sparse------------------------------------- | |||
| 5060 | #ifndef PRODUCT | |||
| 5061 | bool MergeMemNode::verify_sparse() const { | |||
| 5062 | assert(is_empty_memory(make_empty_memory()), "sane sentinel")do { if (!(is_empty_memory(make_empty_memory()))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5062, "assert(" "is_empty_memory(make_empty_memory())" ") failed" , "sane sentinel"); ::breakpoint(); } } while (0); | |||
| 5063 | Node* base_mem = base_memory(); | |||
| 5064 | // The following can happen in degenerate cases, since empty==top. | |||
| 5065 | if (is_empty_memory(base_mem)) return true; | |||
| 5066 | for (uint i = Compile::AliasIdxRaw; i < req(); i++) { | |||
| 5067 | assert(in(i) != NULL, "sane slice")do { if (!(in(i) != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp" , 5067, "assert(" "in(i) != __null" ") failed", "sane slice") ; ::breakpoint(); } } while (0); | |||
| 5068 | if (in(i) == base_mem) return false; // should have been the sentinel value! | |||
| 5069 | } | |||
| 5070 | return true; | |||
| 5071 | } | |||
| 5072 | ||||
| 5073 | bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { | |||
| 5074 | Node* n; | |||
| 5075 | n = mm->in(idx); | |||
| 5076 | if (mem == n) return true; // might be empty_memory() | |||
| 5077 | n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); | |||
| 5078 | if (mem == n) return true; | |||
| 5079 | return false; | |||
| 5080 | } | |||
| 5081 | #endif // !PRODUCT |