File: | jdk/src/java.desktop/share/native/libjavajpeg/jccoefct.c |
Warning: | line 378, column 24 Dereference of undefined pointer value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * reserved comment block | |||
3 | * DO NOT REMOVE OR ALTER! | |||
4 | */ | |||
5 | /* | |||
6 | * jccoefct.c | |||
7 | * | |||
8 | * Copyright (C) 1994-1997, Thomas G. Lane. | |||
9 | * This file is part of the Independent JPEG Group's software. | |||
10 | * For conditions of distribution and use, see the accompanying README file. | |||
11 | * | |||
12 | * This file contains the coefficient buffer controller for compression. | |||
13 | * This controller is the top level of the JPEG compressor proper. | |||
14 | * The coefficient buffer lies between forward-DCT and entropy encoding steps. | |||
15 | */ | |||
16 | ||||
17 | #define JPEG_INTERNALS | |||
18 | #include "jinclude.h" | |||
19 | #include "jpeglib.h" | |||
20 | ||||
21 | ||||
22 | /* We use a full-image coefficient buffer when doing Huffman optimization, | |||
23 | * and also for writing multiple-scan JPEG files. In all cases, the DCT | |||
24 | * step is run during the first pass, and subsequent passes need only read | |||
25 | * the buffered coefficients. | |||
26 | */ | |||
27 | #ifdef ENTROPY_OPT_SUPPORTED | |||
28 | #define FULL_COEF_BUFFER_SUPPORTED | |||
29 | #else | |||
30 | #ifdef C_MULTISCAN_FILES_SUPPORTED | |||
31 | #define FULL_COEF_BUFFER_SUPPORTED | |||
32 | #endif | |||
33 | #endif | |||
34 | ||||
35 | ||||
36 | /* Private buffer controller object */ | |||
37 | ||||
38 | typedef struct { | |||
39 | struct jpeg_c_coef_controller pub; /* public fields */ | |||
40 | ||||
41 | JDIMENSION iMCU_row_num; /* iMCU row # within image */ | |||
42 | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ | |||
43 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |||
44 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |||
45 | ||||
46 | /* For single-pass compression, it's sufficient to buffer just one MCU | |||
47 | * (although this may prove a bit slow in practice). We allocate a | |||
48 | * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each | |||
49 | * MCU constructed and sent. (On 80x86, the workspace is FAR even though | |||
50 | * it's not really very big; this is to keep the module interfaces unchanged | |||
51 | * when a large coefficient buffer is necessary.) | |||
52 | * In multi-pass modes, this array points to the current MCU's blocks | |||
53 | * within the virtual arrays. | |||
54 | */ | |||
55 | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU10]; | |||
56 | ||||
57 | /* In multi-pass modes, we need a virtual block array for each component. */ | |||
58 | jvirt_barray_ptr whole_image[MAX_COMPONENTS10]; | |||
59 | } my_coef_controller; | |||
60 | ||||
61 | typedef my_coef_controller * my_coef_ptr; | |||
62 | ||||
63 | ||||
64 | /* Forward declarations */ | |||
65 | METHODDEF(boolean)static boolean compress_data | |||
66 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf))(j_compress_ptr cinfo, JSAMPIMAGE input_buf); | |||
67 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |||
68 | METHODDEF(boolean)static boolean compress_first_pass | |||
69 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf))(j_compress_ptr cinfo, JSAMPIMAGE input_buf); | |||
70 | METHODDEF(boolean)static boolean compress_output | |||
71 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf))(j_compress_ptr cinfo, JSAMPIMAGE input_buf); | |||
72 | #endif | |||
73 | ||||
74 | ||||
75 | LOCAL(void)static void | |||
76 | start_iMCU_row (j_compress_ptr cinfo) | |||
77 | /* Reset within-iMCU-row counters for a new row */ | |||
78 | { | |||
79 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
80 | ||||
81 | /* In an interleaved scan, an MCU row is the same as an iMCU row. | |||
82 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |||
83 | * But at the bottom of the image, process only what's left. | |||
84 | */ | |||
85 | if (cinfo->comps_in_scan > 1) { | |||
86 | coef->MCU_rows_per_iMCU_row = 1; | |||
87 | } else { | |||
88 | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | |||
89 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |||
90 | else | |||
91 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |||
92 | } | |||
93 | ||||
94 | coef->mcu_ctr = 0; | |||
95 | coef->MCU_vert_offset = 0; | |||
96 | } | |||
97 | ||||
98 | ||||
99 | /* | |||
100 | * Initialize for a processing pass. | |||
101 | */ | |||
102 | ||||
103 | METHODDEF(void)static void | |||
104 | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |||
105 | { | |||
106 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
107 | ||||
108 | coef->iMCU_row_num = 0; | |||
109 | start_iMCU_row(cinfo); | |||
110 | ||||
111 | switch (pass_mode) { | |||
112 | case JBUF_PASS_THRU: | |||
113 | if (coef->whole_image[0] != NULL((void*)0)) | |||
114 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE)((cinfo)->err->msg_code = (JERR_BAD_BUFFER_MODE), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
115 | coef->pub.compress_data = compress_data; | |||
116 | break; | |||
117 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |||
118 | case JBUF_SAVE_AND_PASS: | |||
119 | if (coef->whole_image[0] == NULL((void*)0)) | |||
120 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE)((cinfo)->err->msg_code = (JERR_BAD_BUFFER_MODE), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
121 | coef->pub.compress_data = compress_first_pass; | |||
122 | break; | |||
123 | case JBUF_CRANK_DEST: | |||
124 | if (coef->whole_image[0] == NULL((void*)0)) | |||
125 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE)((cinfo)->err->msg_code = (JERR_BAD_BUFFER_MODE), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
126 | coef->pub.compress_data = compress_output; | |||
127 | break; | |||
128 | #endif | |||
129 | default: | |||
130 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE)((cinfo)->err->msg_code = (JERR_BAD_BUFFER_MODE), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
131 | break; | |||
132 | } | |||
133 | } | |||
134 | ||||
135 | ||||
136 | /* | |||
137 | * Process some data in the single-pass case. | |||
138 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |||
139 | * per call, ie, v_samp_factor block rows for each component in the image. | |||
140 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |||
141 | * | |||
142 | * NB: input_buf contains a plane for each component in image, | |||
143 | * which we index according to the component's SOF position. | |||
144 | */ | |||
145 | ||||
146 | METHODDEF(boolean)static boolean | |||
147 | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |||
148 | { | |||
149 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
150 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |||
151 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |||
152 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
153 | int blkn, bi, ci, yindex, yoffset, blockcnt; | |||
154 | JDIMENSION ypos, xpos; | |||
155 | jpeg_component_info *compptr; | |||
156 | ||||
157 | /* Loop to write as much as one whole iMCU row */ | |||
158 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |||
159 | yoffset++) { | |||
160 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; | |||
161 | MCU_col_num++) { | |||
162 | /* Determine where data comes from in input_buf and do the DCT thing. | |||
163 | * Each call on forward_DCT processes a horizontal row of DCT blocks | |||
164 | * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks | |||
165 | * sequentially. Dummy blocks at the right or bottom edge are filled in | |||
166 | * specially. The data in them does not matter for image reconstruction, | |||
167 | * so we fill them with values that will encode to the smallest amount of | |||
168 | * data, viz: all zeroes in the AC entries, DC entries equal to previous | |||
169 | * block's DC value. (Thanks to Thomas Kinsman for this idea.) | |||
170 | */ | |||
171 | blkn = 0; | |||
172 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
173 | compptr = cinfo->cur_comp_info[ci]; | |||
174 | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |||
175 | : compptr->last_col_width; | |||
176 | xpos = MCU_col_num * compptr->MCU_sample_width; | |||
177 | ypos = yoffset * DCTSIZE8; /* ypos == (yoffset+yindex) * DCTSIZE */ | |||
178 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |||
179 | if (coef->iMCU_row_num < last_iMCU_row || | |||
180 | yoffset+yindex < compptr->last_row_height) { | |||
181 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, | |||
182 | input_buf[compptr->component_index], | |||
183 | coef->MCU_buffer[blkn], | |||
184 | ypos, xpos, (JDIMENSION) blockcnt); | |||
185 | if (blockcnt < compptr->MCU_width) { | |||
186 | /* Create some dummy blocks at the right edge of the image. */ | |||
187 | jzero_farjZeroFar((void FAR *) coef->MCU_buffer[blkn + blockcnt], | |||
188 | (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | |||
189 | for (bi = blockcnt; bi < compptr->MCU_width; bi++) { | |||
190 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; | |||
191 | } | |||
192 | } | |||
193 | } else { | |||
194 | /* Create a row of dummy blocks at the bottom of the image. */ | |||
195 | jzero_farjZeroFar((void FAR *) coef->MCU_buffer[blkn], | |||
196 | compptr->MCU_width * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | |||
197 | for (bi = 0; bi < compptr->MCU_width; bi++) { | |||
198 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; | |||
199 | } | |||
200 | } | |||
201 | blkn += compptr->MCU_width; | |||
202 | ypos += DCTSIZE8; | |||
203 | } | |||
204 | } | |||
205 | /* Try to write the MCU. In event of a suspension failure, we will | |||
206 | * re-DCT the MCU on restart (a bit inefficient, could be fixed...) | |||
207 | */ | |||
208 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |||
209 | /* Suspension forced; update state counters and exit */ | |||
210 | coef->MCU_vert_offset = yoffset; | |||
211 | coef->mcu_ctr = MCU_col_num; | |||
212 | return FALSE0; | |||
213 | } | |||
214 | } | |||
215 | /* Completed an MCU row, but perhaps not an iMCU row */ | |||
216 | coef->mcu_ctr = 0; | |||
217 | } | |||
218 | /* Completed the iMCU row, advance counters for next one */ | |||
219 | coef->iMCU_row_num++; | |||
220 | start_iMCU_row(cinfo); | |||
221 | return TRUE1; | |||
222 | } | |||
223 | ||||
224 | ||||
225 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |||
226 | ||||
227 | /* | |||
228 | * Process some data in the first pass of a multi-pass case. | |||
229 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |||
230 | * per call, ie, v_samp_factor block rows for each component in the image. | |||
231 | * This amount of data is read from the source buffer, DCT'd and quantized, | |||
232 | * and saved into the virtual arrays. We also generate suitable dummy blocks | |||
233 | * as needed at the right and lower edges. (The dummy blocks are constructed | |||
234 | * in the virtual arrays, which have been padded appropriately.) This makes | |||
235 | * it possible for subsequent passes not to worry about real vs. dummy blocks. | |||
236 | * | |||
237 | * We must also emit the data to the entropy encoder. This is conveniently | |||
238 | * done by calling compress_output() after we've loaded the current strip | |||
239 | * of the virtual arrays. | |||
240 | * | |||
241 | * NB: input_buf contains a plane for each component in image. All | |||
242 | * components are DCT'd and loaded into the virtual arrays in this pass. | |||
243 | * However, it may be that only a subset of the components are emitted to | |||
244 | * the entropy encoder during this first pass; be careful about looking | |||
245 | * at the scan-dependent variables (MCU dimensions, etc). | |||
246 | */ | |||
247 | ||||
248 | METHODDEF(boolean)static boolean | |||
249 | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |||
250 | { | |||
251 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
252 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
253 | JDIMENSION blocks_across, MCUs_across, MCUindex; | |||
254 | int bi, ci, h_samp_factor, block_row, block_rows, ndummy; | |||
255 | JCOEF lastDC; | |||
256 | jpeg_component_info *compptr; | |||
257 | JBLOCKARRAY buffer; | |||
258 | JBLOCKROW thisblockrow, lastblockrow; | |||
259 | ||||
260 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
| ||||
261 | ci++, compptr++) { | |||
262 | /* Align the virtual buffer for this component. */ | |||
263 | buffer = (*cinfo->mem->access_virt_barray) | |||
264 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |||
265 | coef->iMCU_row_num * compptr->v_samp_factor, | |||
266 | (JDIMENSION) compptr->v_samp_factor, TRUE1); | |||
267 | /* Count non-dummy DCT block rows in this iMCU row. */ | |||
268 | if (coef->iMCU_row_num < last_iMCU_row) | |||
269 | block_rows = compptr->v_samp_factor; | |||
270 | else { | |||
271 | /* NB: can't use last_row_height here, since may not be set! */ | |||
272 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |||
273 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | |||
274 | } | |||
275 | blocks_across = compptr->width_in_blocks; | |||
276 | h_samp_factor = compptr->h_samp_factor; | |||
277 | /* Count number of dummy blocks to be added at the right margin. */ | |||
278 | ndummy = (int) (blocks_across % h_samp_factor); | |||
279 | if (ndummy > 0) | |||
280 | ndummy = h_samp_factor - ndummy; | |||
281 | /* Perform DCT for all non-dummy blocks in this iMCU row. Each call | |||
282 | * on forward_DCT processes a complete horizontal row of DCT blocks. | |||
283 | */ | |||
284 | for (block_row = 0; block_row < block_rows; block_row++) { | |||
285 | thisblockrow = buffer[block_row]; | |||
286 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, | |||
287 | input_buf[ci], thisblockrow, | |||
288 | (JDIMENSION) (block_row * DCTSIZE8), | |||
289 | (JDIMENSION) 0, blocks_across); | |||
290 | if (ndummy > 0) { | |||
291 | /* Create dummy blocks at the right edge of the image. */ | |||
292 | thisblockrow += blocks_across; /* => first dummy block */ | |||
293 | jzero_farjZeroFar((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | |||
294 | lastDC = thisblockrow[-1][0]; | |||
295 | for (bi = 0; bi < ndummy; bi++) { | |||
296 | thisblockrow[bi][0] = lastDC; | |||
297 | } | |||
298 | } | |||
299 | } | |||
300 | /* If at end of image, create dummy block rows as needed. | |||
301 | * The tricky part here is that within each MCU, we want the DC values | |||
302 | * of the dummy blocks to match the last real block's DC value. | |||
303 | * This squeezes a few more bytes out of the resulting file... | |||
304 | */ | |||
305 | if (coef->iMCU_row_num == last_iMCU_row) { | |||
306 | blocks_across += ndummy; /* include lower right corner */ | |||
307 | MCUs_across = blocks_across / h_samp_factor; | |||
308 | for (block_row = block_rows; block_row < compptr->v_samp_factor; | |||
309 | block_row++) { | |||
310 | thisblockrow = buffer[block_row]; | |||
311 | lastblockrow = buffer[block_row-1]; | |||
312 | jzero_farjZeroFar((void FAR *) thisblockrow, | |||
313 | (size_t) (blocks_across * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)))); | |||
314 | for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | |||
315 | lastDC = lastblockrow[h_samp_factor-1][0]; | |||
316 | for (bi = 0; bi < h_samp_factor; bi++) { | |||
317 | thisblockrow[bi][0] = lastDC; | |||
318 | } | |||
319 | thisblockrow += h_samp_factor; /* advance to next MCU in row */ | |||
320 | lastblockrow += h_samp_factor; | |||
321 | } | |||
322 | } | |||
323 | } | |||
324 | } | |||
325 | /* NB: compress_output will increment iMCU_row_num if successful. | |||
326 | * A suspension return will result in redoing all the work above next time. | |||
327 | */ | |||
328 | ||||
329 | /* Emit data to the entropy encoder, sharing code with subsequent passes */ | |||
330 | return compress_output(cinfo, input_buf); | |||
331 | } | |||
332 | ||||
333 | ||||
334 | /* | |||
335 | * Process some data in subsequent passes of a multi-pass case. | |||
336 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |||
337 | * per call, ie, v_samp_factor block rows for each component in the scan. | |||
338 | * The data is obtained from the virtual arrays and fed to the entropy coder. | |||
339 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |||
340 | * | |||
341 | * NB: input_buf is ignored; it is likely to be a NULL pointer. | |||
342 | */ | |||
343 | ||||
344 | METHODDEF(boolean)static boolean | |||
345 | compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |||
346 | { | |||
347 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
348 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |||
349 | int blkn, ci, xindex, yindex, yoffset; | |||
350 | JDIMENSION start_col; | |||
351 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN4]; | |||
352 | JBLOCKROW buffer_ptr; | |||
353 | jpeg_component_info *compptr; | |||
354 | ||||
355 | /* Align the virtual buffers for the components used in this scan. | |||
356 | * NB: during first pass, this is safe only because the buffers will | |||
357 | * already be aligned properly, so jmemmgr.c won't need to do any I/O. | |||
358 | */ | |||
359 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
360 | compptr = cinfo->cur_comp_info[ci]; | |||
361 | buffer[ci] = (*cinfo->mem->access_virt_barray) | |||
362 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |||
363 | coef->iMCU_row_num * compptr->v_samp_factor, | |||
364 | (JDIMENSION) compptr->v_samp_factor, FALSE0); | |||
365 | } | |||
366 | ||||
367 | /* Loop to process one whole iMCU row */ | |||
368 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |||
369 | yoffset++) { | |||
370 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; | |||
371 | MCU_col_num++) { | |||
372 | /* Construct list of pointers to DCT blocks belonging to this MCU */ | |||
373 | blkn = 0; /* index of current DCT block within MCU */ | |||
374 | for (ci = 0; ci
| |||
375 | compptr = cinfo->cur_comp_info[ci]; | |||
376 | start_col = MCU_col_num * compptr->MCU_width; | |||
377 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |||
378 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |||
| ||||
379 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | |||
380 | coef->MCU_buffer[blkn++] = buffer_ptr++; | |||
381 | } | |||
382 | } | |||
383 | } | |||
384 | /* Try to write the MCU. */ | |||
385 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |||
386 | /* Suspension forced; update state counters and exit */ | |||
387 | coef->MCU_vert_offset = yoffset; | |||
388 | coef->mcu_ctr = MCU_col_num; | |||
389 | return FALSE0; | |||
390 | } | |||
391 | } | |||
392 | /* Completed an MCU row, but perhaps not an iMCU row */ | |||
393 | coef->mcu_ctr = 0; | |||
394 | } | |||
395 | /* Completed the iMCU row, advance counters for next one */ | |||
396 | coef->iMCU_row_num++; | |||
397 | start_iMCU_row(cinfo); | |||
398 | return TRUE1; | |||
399 | } | |||
400 | ||||
401 | #endif /* FULL_COEF_BUFFER_SUPPORTED */ | |||
402 | ||||
403 | ||||
404 | /* | |||
405 | * Initialize coefficient buffer controller. | |||
406 | */ | |||
407 | ||||
408 | GLOBAL(void)void | |||
409 | jinit_c_coef_controllerjICCoefC (j_compress_ptr cinfo, boolean need_full_buffer) | |||
410 | { | |||
411 | my_coef_ptr coef; | |||
412 | ||||
413 | coef = (my_coef_ptr) | |||
414 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
415 | SIZEOF(my_coef_controller)((size_t) sizeof(my_coef_controller))); | |||
416 | cinfo->coef = (struct jpeg_c_coef_controller *) coef; | |||
417 | coef->pub.start_pass = start_pass_coef; | |||
418 | ||||
419 | /* Create the coefficient buffer. */ | |||
420 | if (need_full_buffer) { | |||
421 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |||
422 | /* Allocate a full-image virtual array for each component, */ | |||
423 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ | |||
424 | int ci; | |||
425 | jpeg_component_info *compptr; | |||
426 | ||||
427 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
428 | ci++, compptr++) { | |||
429 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |||
430 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, FALSE0, | |||
431 | (JDIMENSION) jround_upjRound((long) compptr->width_in_blocks, | |||
432 | (long) compptr->h_samp_factor), | |||
433 | (JDIMENSION) jround_upjRound((long) compptr->height_in_blocks, | |||
434 | (long) compptr->v_samp_factor), | |||
435 | (JDIMENSION) compptr->v_samp_factor); | |||
436 | } | |||
437 | #else | |||
438 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE)((cinfo)->err->msg_code = (JERR_BAD_BUFFER_MODE), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
439 | #endif | |||
440 | } else { | |||
441 | /* We only need a single-MCU buffer. */ | |||
442 | JBLOCKROW buffer; | |||
443 | int i; | |||
444 | ||||
445 | buffer = (JBLOCKROW) | |||
446 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
447 | C_MAX_BLOCKS_IN_MCU10 * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | |||
448 | for (i = 0; i < C_MAX_BLOCKS_IN_MCU10; i++) { | |||
449 | coef->MCU_buffer[i] = buffer + i; | |||
450 | } | |||
451 | coef->whole_image[0] = NULL((void*)0); /* flag for no virtual arrays */ | |||
452 | } | |||
453 | } |