| File: | jdk/src/java.desktop/share/native/liblcms/cmslut.c |
| Warning: | line 117, column 46 The left operand of '*' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
| 3 | * | |||
| 4 | * This code is free software; you can redistribute it and/or modify it | |||
| 5 | * under the terms of the GNU General Public License version 2 only, as | |||
| 6 | * published by the Free Software Foundation. Oracle designates this | |||
| 7 | * particular file as subject to the "Classpath" exception as provided | |||
| 8 | * by Oracle in the LICENSE file that accompanied this code. | |||
| 9 | * | |||
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
| 13 | * version 2 for more details (a copy is included in the LICENSE file that | |||
| 14 | * accompanied this code). | |||
| 15 | * | |||
| 16 | * You should have received a copy of the GNU General Public License version | |||
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
| 19 | * | |||
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
| 21 | * or visit www.oracle.com if you need additional information or have any | |||
| 22 | * questions. | |||
| 23 | */ | |||
| 24 | ||||
| 25 | // This file is available under and governed by the GNU General Public | |||
| 26 | // License version 2 only, as published by the Free Software Foundation. | |||
| 27 | // However, the following notice accompanied the original version of this | |||
| 28 | // file: | |||
| 29 | // | |||
| 30 | //--------------------------------------------------------------------------------- | |||
| 31 | // | |||
| 32 | // Little Color Management System | |||
| 33 | // Copyright (c) 1998-2020 Marti Maria Saguer | |||
| 34 | // | |||
| 35 | // Permission is hereby granted, free of charge, to any person obtaining | |||
| 36 | // a copy of this software and associated documentation files (the "Software"), | |||
| 37 | // to deal in the Software without restriction, including without limitation | |||
| 38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |||
| 39 | // and/or sell copies of the Software, and to permit persons to whom the Software | |||
| 40 | // is furnished to do so, subject to the following conditions: | |||
| 41 | // | |||
| 42 | // The above copyright notice and this permission notice shall be included in | |||
| 43 | // all copies or substantial portions of the Software. | |||
| 44 | // | |||
| 45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||
| 46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |||
| 47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
| 48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |||
| 49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |||
| 50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |||
| 51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
| 52 | // | |||
| 53 | //--------------------------------------------------------------------------------- | |||
| 54 | // | |||
| 55 | ||||
| 56 | #include "lcms2_internal.h" | |||
| 57 | ||||
| 58 | ||||
| 59 | // Allocates an empty multi profile element | |||
| 60 | cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID, | |||
| 61 | cmsStageSignature Type, | |||
| 62 | cmsUInt32Number InputChannels, | |||
| 63 | cmsUInt32Number OutputChannels, | |||
| 64 | _cmsStageEvalFn EvalPtr, | |||
| 65 | _cmsStageDupElemFn DupElemPtr, | |||
| 66 | _cmsStageFreeElemFn FreePtr, | |||
| 67 | void* Data) | |||
| 68 | { | |||
| 69 | cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage)); | |||
| 70 | ||||
| 71 | if (ph == NULL((void*)0)) return NULL((void*)0); | |||
| 72 | ||||
| 73 | ||||
| 74 | ph ->ContextID = ContextID; | |||
| 75 | ||||
| 76 | ph ->Type = Type; | |||
| 77 | ph ->Implements = Type; // By default, no clue on what is implementing | |||
| 78 | ||||
| 79 | ph ->InputChannels = InputChannels; | |||
| 80 | ph ->OutputChannels = OutputChannels; | |||
| 81 | ph ->EvalPtr = EvalPtr; | |||
| 82 | ph ->DupElemPtr = DupElemPtr; | |||
| 83 | ph ->FreePtr = FreePtr; | |||
| 84 | ph ->Data = Data; | |||
| 85 | ||||
| 86 | return ph; | |||
| 87 | } | |||
| 88 | ||||
| 89 | ||||
| 90 | static | |||
| 91 | void EvaluateIdentity(const cmsFloat32Number In[], | |||
| 92 | cmsFloat32Number Out[], | |||
| 93 | const cmsStage *mpe) | |||
| 94 | { | |||
| 95 | memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number)); | |||
| 96 | } | |||
| 97 | ||||
| 98 | ||||
| 99 | cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels) | |||
| 100 | { | |||
| 101 | return _cmsStageAllocPlaceholder(ContextID, | |||
| 102 | cmsSigIdentityElemType, | |||
| 103 | nChannels, nChannels, | |||
| 104 | EvaluateIdentity, | |||
| 105 | NULL((void*)0), | |||
| 106 | NULL((void*)0), | |||
| 107 | NULL((void*)0)); | |||
| 108 | } | |||
| 109 | ||||
| 110 | // Conversion functions. From floating point to 16 bits | |||
| 111 | static | |||
| 112 | void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n) | |||
| 113 | { | |||
| 114 | cmsUInt32Number i; | |||
| 115 | ||||
| 116 | for (i=0; i < n; i++) { | |||
| 117 | Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0); | |||
| ||||
| 118 | } | |||
| 119 | } | |||
| 120 | ||||
| 121 | // From 16 bits to floating point | |||
| 122 | static | |||
| 123 | void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n) | |||
| 124 | { | |||
| 125 | cmsUInt32Number i; | |||
| 126 | ||||
| 127 | for (i=0; i < n; i++) { | |||
| 128 | Out[i] = (cmsFloat32Number) In[i] / 65535.0F; | |||
| 129 | } | |||
| 130 | } | |||
| 131 | ||||
| 132 | ||||
| 133 | // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements | |||
| 134 | // that conform the LUT. It should be called with the LUT, the number of expected elements and | |||
| 135 | // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If | |||
| 136 | // the function founds a match with current pipeline, it fills the pointers and returns TRUE | |||
| 137 | // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass | |||
| 138 | // the storage process. | |||
| 139 | cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...) | |||
| 140 | { | |||
| 141 | va_list args; | |||
| 142 | cmsUInt32Number i; | |||
| 143 | cmsStage* mpe; | |||
| 144 | cmsStageSignature Type; | |||
| 145 | void** ElemPtr; | |||
| 146 | ||||
| 147 | // Make sure same number of elements | |||
| 148 | if (cmsPipelineStageCount(Lut) != n) return FALSE0; | |||
| 149 | ||||
| 150 | va_start(args, n)__builtin_va_start(args, n); | |||
| 151 | ||||
| 152 | // Iterate across asked types | |||
| 153 | mpe = Lut ->Elements; | |||
| 154 | for (i=0; i < n; i++) { | |||
| 155 | ||||
| 156 | // Get asked type. cmsStageSignature is promoted to int by compiler | |||
| 157 | Type = (cmsStageSignature)va_arg(args, int)__builtin_va_arg(args, int); | |||
| 158 | if (mpe ->Type != Type) { | |||
| 159 | ||||
| 160 | va_end(args)__builtin_va_end(args); // Mismatch. We are done. | |||
| 161 | return FALSE0; | |||
| 162 | } | |||
| 163 | mpe = mpe ->Next; | |||
| 164 | } | |||
| 165 | ||||
| 166 | // Found a combination, fill pointers if not NULL | |||
| 167 | mpe = Lut ->Elements; | |||
| 168 | for (i=0; i < n; i++) { | |||
| 169 | ||||
| 170 | ElemPtr = va_arg(args, void**)__builtin_va_arg(args, void**); | |||
| 171 | if (ElemPtr != NULL((void*)0)) | |||
| 172 | *ElemPtr = mpe; | |||
| 173 | ||||
| 174 | mpe = mpe ->Next; | |||
| 175 | } | |||
| 176 | ||||
| 177 | va_end(args)__builtin_va_end(args); | |||
| 178 | return TRUE1; | |||
| 179 | } | |||
| 180 | ||||
| 181 | // Below there are implementations for several types of elements. Each type may be implemented by a | |||
| 182 | // evaluation function, a duplication function, a function to free resources and a constructor. | |||
| 183 | ||||
| 184 | // ************************************************************************************************* | |||
| 185 | // Type cmsSigCurveSetElemType (curves) | |||
| 186 | // ************************************************************************************************* | |||
| 187 | ||||
| 188 | cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe) | |||
| 189 | { | |||
| 190 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; | |||
| 191 | ||||
| 192 | return Data ->TheCurves; | |||
| 193 | } | |||
| 194 | ||||
| 195 | static | |||
| 196 | void EvaluateCurves(const cmsFloat32Number In[], | |||
| 197 | cmsFloat32Number Out[], | |||
| 198 | const cmsStage *mpe) | |||
| 199 | { | |||
| 200 | _cmsStageToneCurvesData* Data; | |||
| 201 | cmsUInt32Number i; | |||
| 202 | ||||
| 203 | _cmsAssert(mpe != NULL)(((mpe != ((void*)0))) ? (void) (0) : __assert_fail ("(mpe != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 203, __extension__ __PRETTY_FUNCTION__)); | |||
| 204 | ||||
| 205 | Data = (_cmsStageToneCurvesData*) mpe ->Data; | |||
| 206 | if (Data == NULL((void*)0)) return; | |||
| 207 | ||||
| 208 | if (Data ->TheCurves == NULL((void*)0)) return; | |||
| 209 | ||||
| 210 | for (i=0; i < Data ->nCurves; i++) { | |||
| 211 | Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]); | |||
| 212 | } | |||
| 213 | } | |||
| 214 | ||||
| 215 | static | |||
| 216 | void CurveSetElemTypeFree(cmsStage* mpe) | |||
| 217 | { | |||
| 218 | _cmsStageToneCurvesData* Data; | |||
| 219 | cmsUInt32Number i; | |||
| 220 | ||||
| 221 | _cmsAssert(mpe != NULL)(((mpe != ((void*)0))) ? (void) (0) : __assert_fail ("(mpe != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 221, __extension__ __PRETTY_FUNCTION__)); | |||
| 222 | ||||
| 223 | Data = (_cmsStageToneCurvesData*) mpe ->Data; | |||
| 224 | if (Data == NULL((void*)0)) return; | |||
| 225 | ||||
| 226 | if (Data ->TheCurves != NULL((void*)0)) { | |||
| 227 | for (i=0; i < Data ->nCurves; i++) { | |||
| 228 | if (Data ->TheCurves[i] != NULL((void*)0)) | |||
| 229 | cmsFreeToneCurve(Data ->TheCurves[i]); | |||
| 230 | } | |||
| 231 | } | |||
| 232 | _cmsFree(mpe ->ContextID, Data ->TheCurves); | |||
| 233 | _cmsFree(mpe ->ContextID, Data); | |||
| 234 | } | |||
| 235 | ||||
| 236 | ||||
| 237 | static | |||
| 238 | void* CurveSetDup(cmsStage* mpe) | |||
| 239 | { | |||
| 240 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; | |||
| 241 | _cmsStageToneCurvesData* NewElem; | |||
| 242 | cmsUInt32Number i; | |||
| 243 | ||||
| 244 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData)); | |||
| 245 | if (NewElem == NULL((void*)0)) return NULL((void*)0); | |||
| 246 | ||||
| 247 | NewElem ->nCurves = Data ->nCurves; | |||
| 248 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*)); | |||
| 249 | ||||
| 250 | if (NewElem ->TheCurves == NULL((void*)0)) goto Error; | |||
| 251 | ||||
| 252 | for (i=0; i < NewElem ->nCurves; i++) { | |||
| 253 | ||||
| 254 | // Duplicate each curve. It may fail. | |||
| 255 | NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]); | |||
| 256 | if (NewElem ->TheCurves[i] == NULL((void*)0)) goto Error; | |||
| 257 | ||||
| 258 | ||||
| 259 | } | |||
| 260 | return (void*) NewElem; | |||
| 261 | ||||
| 262 | Error: | |||
| 263 | ||||
| 264 | if (NewElem ->TheCurves != NULL((void*)0)) { | |||
| 265 | for (i=0; i < NewElem ->nCurves; i++) { | |||
| 266 | if (NewElem ->TheCurves[i]) | |||
| 267 | cmsFreeToneCurve(NewElem ->TheCurves[i]); | |||
| 268 | } | |||
| 269 | } | |||
| 270 | _cmsFree(mpe ->ContextID, NewElem ->TheCurves); | |||
| 271 | _cmsFree(mpe ->ContextID, NewElem); | |||
| 272 | return NULL((void*)0); | |||
| 273 | } | |||
| 274 | ||||
| 275 | ||||
| 276 | // Curves == NULL forces identity curves | |||
| 277 | cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[]) | |||
| 278 | { | |||
| 279 | cmsUInt32Number i; | |||
| 280 | _cmsStageToneCurvesData* NewElem; | |||
| 281 | cmsStage* NewMPE; | |||
| 282 | ||||
| 283 | ||||
| 284 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels, | |||
| 285 | EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL((void*)0) ); | |||
| 286 | if (NewMPE == NULL((void*)0)) return NULL((void*)0); | |||
| 287 | ||||
| 288 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData)); | |||
| 289 | if (NewElem == NULL((void*)0)) { | |||
| 290 | cmsStageFree(NewMPE); | |||
| 291 | return NULL((void*)0); | |||
| 292 | } | |||
| 293 | ||||
| 294 | NewMPE ->Data = (void*) NewElem; | |||
| 295 | ||||
| 296 | NewElem ->nCurves = nChannels; | |||
| 297 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*)); | |||
| 298 | if (NewElem ->TheCurves == NULL((void*)0)) { | |||
| 299 | cmsStageFree(NewMPE); | |||
| 300 | return NULL((void*)0); | |||
| 301 | } | |||
| 302 | ||||
| 303 | for (i=0; i < nChannels; i++) { | |||
| 304 | ||||
| 305 | if (Curves == NULL((void*)0)) { | |||
| 306 | NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0); | |||
| 307 | } | |||
| 308 | else { | |||
| 309 | NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]); | |||
| 310 | } | |||
| 311 | ||||
| 312 | if (NewElem ->TheCurves[i] == NULL((void*)0)) { | |||
| 313 | cmsStageFree(NewMPE); | |||
| 314 | return NULL((void*)0); | |||
| 315 | } | |||
| 316 | ||||
| 317 | } | |||
| 318 | ||||
| 319 | return NewMPE; | |||
| 320 | } | |||
| 321 | ||||
| 322 | ||||
| 323 | // Create a bunch of identity curves | |||
| 324 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels) | |||
| 325 | { | |||
| 326 | cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL((void*)0)); | |||
| 327 | ||||
| 328 | if (mpe == NULL((void*)0)) return NULL((void*)0); | |||
| 329 | mpe ->Implements = cmsSigIdentityElemType; | |||
| 330 | return mpe; | |||
| 331 | } | |||
| 332 | ||||
| 333 | ||||
| 334 | // ************************************************************************************************* | |||
| 335 | // Type cmsSigMatrixElemType (Matrices) | |||
| 336 | // ************************************************************************************************* | |||
| 337 | ||||
| 338 | ||||
| 339 | // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used | |||
| 340 | static | |||
| 341 | void EvaluateMatrix(const cmsFloat32Number In[], | |||
| 342 | cmsFloat32Number Out[], | |||
| 343 | const cmsStage *mpe) | |||
| 344 | { | |||
| 345 | cmsUInt32Number i, j; | |||
| 346 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; | |||
| 347 | cmsFloat64Number Tmp; | |||
| 348 | ||||
| 349 | // Input is already in 0..1.0 notation | |||
| 350 | for (i=0; i < mpe ->OutputChannels; i++) { | |||
| 351 | ||||
| 352 | Tmp = 0; | |||
| 353 | for (j=0; j < mpe->InputChannels; j++) { | |||
| 354 | Tmp += In[j] * Data->Double[i*mpe->InputChannels + j]; | |||
| 355 | } | |||
| 356 | ||||
| 357 | if (Data ->Offset != NULL((void*)0)) | |||
| 358 | Tmp += Data->Offset[i]; | |||
| 359 | ||||
| 360 | Out[i] = (cmsFloat32Number) Tmp; | |||
| 361 | } | |||
| 362 | ||||
| 363 | ||||
| 364 | // Output in 0..1.0 domain | |||
| 365 | } | |||
| 366 | ||||
| 367 | ||||
| 368 | // Duplicate a yet-existing matrix element | |||
| 369 | static | |||
| 370 | void* MatrixElemDup(cmsStage* mpe) | |||
| 371 | { | |||
| 372 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; | |||
| 373 | _cmsStageMatrixData* NewElem; | |||
| 374 | cmsUInt32Number sz; | |||
| 375 | ||||
| 376 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData)); | |||
| 377 | if (NewElem == NULL((void*)0)) return NULL((void*)0); | |||
| 378 | ||||
| 379 | sz = mpe ->InputChannels * mpe ->OutputChannels; | |||
| 380 | ||||
| 381 | NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ; | |||
| 382 | ||||
| 383 | if (Data ->Offset) | |||
| 384 | NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, | |||
| 385 | Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ; | |||
| 386 | ||||
| 387 | return (void*) NewElem; | |||
| 388 | } | |||
| 389 | ||||
| 390 | ||||
| 391 | static | |||
| 392 | void MatrixElemTypeFree(cmsStage* mpe) | |||
| 393 | { | |||
| 394 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; | |||
| 395 | if (Data == NULL((void*)0)) | |||
| 396 | return; | |||
| 397 | if (Data ->Double) | |||
| 398 | _cmsFree(mpe ->ContextID, Data ->Double); | |||
| 399 | ||||
| 400 | if (Data ->Offset) | |||
| 401 | _cmsFree(mpe ->ContextID, Data ->Offset); | |||
| 402 | ||||
| 403 | _cmsFree(mpe ->ContextID, mpe ->Data); | |||
| 404 | } | |||
| 405 | ||||
| 406 | ||||
| 407 | ||||
| 408 | cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols, | |||
| 409 | const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset) | |||
| 410 | { | |||
| 411 | cmsUInt32Number i, n; | |||
| 412 | _cmsStageMatrixData* NewElem; | |||
| 413 | cmsStage* NewMPE; | |||
| 414 | ||||
| 415 | n = Rows * Cols; | |||
| 416 | ||||
| 417 | // Check for overflow | |||
| 418 | if (n == 0) return NULL((void*)0); | |||
| 419 | if (n >= UINT_MAX(2147483647 *2U +1U) / Cols) return NULL((void*)0); | |||
| 420 | if (n >= UINT_MAX(2147483647 *2U +1U) / Rows) return NULL((void*)0); | |||
| 421 | if (n < Rows || n < Cols) return NULL((void*)0); | |||
| 422 | ||||
| 423 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows, | |||
| 424 | EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL((void*)0) ); | |||
| 425 | if (NewMPE == NULL((void*)0)) return NULL((void*)0); | |||
| 426 | ||||
| 427 | ||||
| 428 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData)); | |||
| 429 | if (NewElem == NULL((void*)0)) goto Error; | |||
| 430 | NewMPE->Data = (void*)NewElem; | |||
| 431 | ||||
| 432 | NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number)); | |||
| 433 | if (NewElem->Double == NULL((void*)0)) goto Error; | |||
| 434 | ||||
| 435 | for (i=0; i < n; i++) { | |||
| 436 | NewElem ->Double[i] = Matrix[i]; | |||
| 437 | } | |||
| 438 | ||||
| 439 | if (Offset != NULL((void*)0)) { | |||
| 440 | ||||
| 441 | NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number)); | |||
| 442 | if (NewElem->Offset == NULL((void*)0)) goto Error; | |||
| 443 | ||||
| 444 | for (i=0; i < Rows; i++) { | |||
| 445 | NewElem ->Offset[i] = Offset[i]; | |||
| 446 | } | |||
| 447 | } | |||
| 448 | ||||
| 449 | return NewMPE; | |||
| 450 | ||||
| 451 | Error: | |||
| 452 | cmsStageFree(NewMPE); | |||
| 453 | return NULL((void*)0); | |||
| 454 | } | |||
| 455 | ||||
| 456 | ||||
| 457 | // ************************************************************************************************* | |||
| 458 | // Type cmsSigCLutElemType | |||
| 459 | // ************************************************************************************************* | |||
| 460 | ||||
| 461 | ||||
| 462 | // Evaluate in true floating point | |||
| 463 | static | |||
| 464 | void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) | |||
| 465 | { | |||
| 466 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; | |||
| 467 | ||||
| 468 | Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params); | |||
| 469 | } | |||
| 470 | ||||
| 471 | ||||
| 472 | // Convert to 16 bits, evaluate, and back to floating point | |||
| 473 | static | |||
| 474 | void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) | |||
| 475 | { | |||
| 476 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; | |||
| 477 | cmsUInt16Number In16[MAX_STAGE_CHANNELS128], Out16[MAX_STAGE_CHANNELS128]; | |||
| 478 | ||||
| 479 | _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS)(((mpe ->InputChannels <= 128)) ? (void) (0) : __assert_fail ("(mpe ->InputChannels <= 128)", "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 479, __extension__ __PRETTY_FUNCTION__)); | |||
| 480 | _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS)(((mpe ->OutputChannels <= 128)) ? (void) (0) : __assert_fail ("(mpe ->OutputChannels <= 128)", "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 480, __extension__ __PRETTY_FUNCTION__)); | |||
| 481 | ||||
| 482 | FromFloatTo16(In, In16, mpe ->InputChannels); | |||
| 483 | Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params); | |||
| 484 | From16ToFloat(Out16, Out, mpe ->OutputChannels); | |||
| 485 | } | |||
| 486 | ||||
| 487 | ||||
| 488 | // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes | |||
| 489 | static | |||
| 490 | cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b) | |||
| 491 | { | |||
| 492 | cmsUInt32Number rv, dim; | |||
| 493 | ||||
| 494 | _cmsAssert(Dims != NULL)(((Dims != ((void*)0))) ? (void) (0) : __assert_fail ("(Dims != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 494, __extension__ __PRETTY_FUNCTION__)); | |||
| 495 | ||||
| 496 | for (rv = 1; b > 0; b--) { | |||
| 497 | ||||
| 498 | dim = Dims[b-1]; | |||
| 499 | if (dim == 0) return 0; // Error | |||
| 500 | ||||
| 501 | rv *= dim; | |||
| 502 | ||||
| 503 | // Check for overflow | |||
| 504 | if (rv > UINT_MAX(2147483647 *2U +1U) / dim) return 0; | |||
| 505 | } | |||
| 506 | ||||
| 507 | return rv; | |||
| 508 | } | |||
| 509 | ||||
| 510 | static | |||
| 511 | void* CLUTElemDup(cmsStage* mpe) | |||
| 512 | { | |||
| 513 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; | |||
| 514 | _cmsStageCLutData* NewElem; | |||
| 515 | ||||
| 516 | ||||
| 517 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData)); | |||
| 518 | if (NewElem == NULL((void*)0)) return NULL((void*)0); | |||
| 519 | ||||
| 520 | NewElem ->nEntries = Data ->nEntries; | |||
| 521 | NewElem ->HasFloatValues = Data ->HasFloatValues; | |||
| 522 | ||||
| 523 | if (Data ->Tab.T) { | |||
| 524 | ||||
| 525 | if (Data ->HasFloatValues) { | |||
| 526 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number)); | |||
| 527 | if (NewElem ->Tab.TFloat == NULL((void*)0)) | |||
| 528 | goto Error; | |||
| 529 | } else { | |||
| 530 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number)); | |||
| 531 | if (NewElem ->Tab.T == NULL((void*)0)) | |||
| 532 | goto Error; | |||
| 533 | } | |||
| 534 | } | |||
| 535 | ||||
| 536 | NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID, | |||
| 537 | Data ->Params ->nSamples, | |||
| 538 | Data ->Params ->nInputs, | |||
| 539 | Data ->Params ->nOutputs, | |||
| 540 | NewElem ->Tab.T, | |||
| 541 | Data ->Params ->dwFlags); | |||
| 542 | if (NewElem->Params != NULL((void*)0)) | |||
| 543 | return (void*) NewElem; | |||
| 544 | Error: | |||
| 545 | if (NewElem->Tab.T) | |||
| 546 | // This works for both types | |||
| 547 | _cmsFree(mpe ->ContextID, NewElem -> Tab.T); | |||
| 548 | _cmsFree(mpe ->ContextID, NewElem); | |||
| 549 | return NULL((void*)0); | |||
| 550 | } | |||
| 551 | ||||
| 552 | ||||
| 553 | static | |||
| 554 | void CLutElemTypeFree(cmsStage* mpe) | |||
| 555 | { | |||
| 556 | ||||
| 557 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; | |||
| 558 | ||||
| 559 | // Already empty | |||
| 560 | if (Data == NULL((void*)0)) return; | |||
| 561 | ||||
| 562 | // This works for both types | |||
| 563 | if (Data -> Tab.T) | |||
| 564 | _cmsFree(mpe ->ContextID, Data -> Tab.T); | |||
| 565 | ||||
| 566 | _cmsFreeInterpParams(Data ->Params); | |||
| 567 | _cmsFree(mpe ->ContextID, mpe ->Data); | |||
| 568 | } | |||
| 569 | ||||
| 570 | ||||
| 571 | // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different | |||
| 572 | // granularity on each dimension. | |||
| 573 | cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID, | |||
| 574 | const cmsUInt32Number clutPoints[], | |||
| 575 | cmsUInt32Number inputChan, | |||
| 576 | cmsUInt32Number outputChan, | |||
| 577 | const cmsUInt16Number* Table) | |||
| 578 | { | |||
| 579 | cmsUInt32Number i, n; | |||
| 580 | _cmsStageCLutData* NewElem; | |||
| 581 | cmsStage* NewMPE; | |||
| 582 | ||||
| 583 | _cmsAssert(clutPoints != NULL)(((clutPoints != ((void*)0))) ? (void) (0) : __assert_fail ("(clutPoints != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 583, __extension__ __PRETTY_FUNCTION__)); | |||
| 584 | ||||
| 585 | if (inputChan > MAX_INPUT_DIMENSIONS15) { | |||
| 586 | cmsSignalError(ContextID, cmsERROR_RANGE2, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS15); | |||
| 587 | return NULL((void*)0); | |||
| 588 | } | |||
| 589 | ||||
| 590 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, | |||
| 591 | EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL((void*)0) ); | |||
| 592 | ||||
| 593 | if (NewMPE == NULL((void*)0)) return NULL((void*)0); | |||
| 594 | ||||
| 595 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); | |||
| 596 | if (NewElem == NULL((void*)0)) { | |||
| 597 | cmsStageFree(NewMPE); | |||
| 598 | return NULL((void*)0); | |||
| 599 | } | |||
| 600 | ||||
| 601 | NewMPE ->Data = (void*) NewElem; | |||
| 602 | ||||
| 603 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); | |||
| 604 | NewElem -> HasFloatValues = FALSE0; | |||
| 605 | ||||
| 606 | if (n == 0) { | |||
| 607 | cmsStageFree(NewMPE); | |||
| 608 | return NULL((void*)0); | |||
| 609 | } | |||
| 610 | ||||
| 611 | ||||
| 612 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number)); | |||
| 613 | if (NewElem ->Tab.T == NULL((void*)0)) { | |||
| 614 | cmsStageFree(NewMPE); | |||
| 615 | return NULL((void*)0); | |||
| 616 | } | |||
| 617 | ||||
| 618 | if (Table != NULL((void*)0)) { | |||
| 619 | for (i=0; i < n; i++) { | |||
| 620 | NewElem ->Tab.T[i] = Table[i]; | |||
| 621 | } | |||
| 622 | } | |||
| 623 | ||||
| 624 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS0x0000); | |||
| 625 | if (NewElem ->Params == NULL((void*)0)) { | |||
| 626 | cmsStageFree(NewMPE); | |||
| 627 | return NULL((void*)0); | |||
| 628 | } | |||
| 629 | ||||
| 630 | return NewMPE; | |||
| 631 | } | |||
| 632 | ||||
| 633 | cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID, | |||
| 634 | cmsUInt32Number nGridPoints, | |||
| 635 | cmsUInt32Number inputChan, | |||
| 636 | cmsUInt32Number outputChan, | |||
| 637 | const cmsUInt16Number* Table) | |||
| 638 | { | |||
| 639 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS15]; | |||
| 640 | int i; | |||
| 641 | ||||
| 642 | // Our resulting LUT would be same gridpoints on all dimensions | |||
| 643 | for (i=0; i < MAX_INPUT_DIMENSIONS15; i++) | |||
| 644 | Dimensions[i] = nGridPoints; | |||
| 645 | ||||
| 646 | return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table); | |||
| 647 | } | |||
| 648 | ||||
| 649 | ||||
| 650 | cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID, | |||
| 651 | cmsUInt32Number nGridPoints, | |||
| 652 | cmsUInt32Number inputChan, | |||
| 653 | cmsUInt32Number outputChan, | |||
| 654 | const cmsFloat32Number* Table) | |||
| 655 | { | |||
| 656 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS15]; | |||
| 657 | int i; | |||
| 658 | ||||
| 659 | // Our resulting LUT would be same gridpoints on all dimensions | |||
| 660 | for (i=0; i < MAX_INPUT_DIMENSIONS15; i++) | |||
| 661 | Dimensions[i] = nGridPoints; | |||
| 662 | ||||
| 663 | return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table); | |||
| 664 | } | |||
| 665 | ||||
| 666 | ||||
| 667 | ||||
| 668 | cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table) | |||
| 669 | { | |||
| 670 | cmsUInt32Number i, n; | |||
| 671 | _cmsStageCLutData* NewElem; | |||
| 672 | cmsStage* NewMPE; | |||
| 673 | ||||
| 674 | _cmsAssert(clutPoints != NULL)(((clutPoints != ((void*)0))) ? (void) (0) : __assert_fail ("(clutPoints != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 674, __extension__ __PRETTY_FUNCTION__)); | |||
| 675 | ||||
| 676 | if (inputChan > MAX_INPUT_DIMENSIONS15) { | |||
| 677 | cmsSignalError(ContextID, cmsERROR_RANGE2, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS15); | |||
| 678 | return NULL((void*)0); | |||
| 679 | } | |||
| 680 | ||||
| 681 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, | |||
| 682 | EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL((void*)0)); | |||
| 683 | if (NewMPE == NULL((void*)0)) return NULL((void*)0); | |||
| 684 | ||||
| 685 | ||||
| 686 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); | |||
| 687 | if (NewElem == NULL((void*)0)) { | |||
| 688 | cmsStageFree(NewMPE); | |||
| 689 | return NULL((void*)0); | |||
| 690 | } | |||
| 691 | ||||
| 692 | NewMPE ->Data = (void*) NewElem; | |||
| 693 | ||||
| 694 | // There is a potential integer overflow on conputing n and nEntries. | |||
| 695 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); | |||
| 696 | NewElem -> HasFloatValues = TRUE1; | |||
| 697 | ||||
| 698 | if (n == 0) { | |||
| 699 | cmsStageFree(NewMPE); | |||
| 700 | return NULL((void*)0); | |||
| 701 | } | |||
| 702 | ||||
| 703 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number)); | |||
| 704 | if (NewElem ->Tab.TFloat == NULL((void*)0)) { | |||
| 705 | cmsStageFree(NewMPE); | |||
| 706 | return NULL((void*)0); | |||
| 707 | } | |||
| 708 | ||||
| 709 | if (Table != NULL((void*)0)) { | |||
| 710 | for (i=0; i < n; i++) { | |||
| 711 | NewElem ->Tab.TFloat[i] = Table[i]; | |||
| 712 | } | |||
| 713 | } | |||
| 714 | ||||
| 715 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT0x0001); | |||
| 716 | if (NewElem ->Params == NULL((void*)0)) { | |||
| 717 | cmsStageFree(NewMPE); | |||
| 718 | return NULL((void*)0); | |||
| 719 | } | |||
| 720 | ||||
| 721 | return NewMPE; | |||
| 722 | } | |||
| 723 | ||||
| 724 | ||||
| 725 | static | |||
| 726 | int IdentitySampler(CMSREGISTERregister const cmsUInt16Number In[], CMSREGISTERregister cmsUInt16Number Out[], CMSREGISTERregister void * Cargo) | |||
| 727 | { | |||
| 728 | int nChan = *(int*) Cargo; | |||
| 729 | int i; | |||
| 730 | ||||
| 731 | for (i=0; i < nChan; i++) | |||
| 732 | Out[i] = In[i]; | |||
| 733 | ||||
| 734 | return 1; | |||
| 735 | } | |||
| 736 | ||||
| 737 | // Creates an MPE that just copies input to output | |||
| 738 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan) | |||
| 739 | { | |||
| 740 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS15]; | |||
| 741 | cmsStage* mpe ; | |||
| 742 | int i; | |||
| 743 | ||||
| 744 | for (i=0; i < MAX_INPUT_DIMENSIONS15; i++) | |||
| 745 | Dimensions[i] = 2; | |||
| 746 | ||||
| 747 | mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL((void*)0)); | |||
| 748 | if (mpe == NULL((void*)0)) return NULL((void*)0); | |||
| 749 | ||||
| 750 | if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) { | |||
| 751 | cmsStageFree(mpe); | |||
| 752 | return NULL((void*)0); | |||
| 753 | } | |||
| 754 | ||||
| 755 | mpe ->Implements = cmsSigIdentityElemType; | |||
| 756 | return mpe; | |||
| 757 | } | |||
| 758 | ||||
| 759 | ||||
| 760 | ||||
| 761 | // Quantize a value 0 <= i < MaxSamples to 0..0xffff | |||
| 762 | cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples) | |||
| 763 | { | |||
| 764 | cmsFloat64Number x; | |||
| 765 | ||||
| 766 | x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1); | |||
| 767 | return _cmsQuickSaturateWord(x); | |||
| 768 | } | |||
| 769 | ||||
| 770 | ||||
| 771 | // This routine does a sweep on whole input space, and calls its callback | |||
| 772 | // function on knots. returns TRUE if all ok, FALSE otherwise. | |||
| 773 | cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags) | |||
| 774 | { | |||
| 775 | int i, t, index, rest; | |||
| 776 | cmsUInt32Number nTotalPoints; | |||
| 777 | cmsUInt32Number nInputs, nOutputs; | |||
| 778 | cmsUInt32Number* nSamples; | |||
| 779 | cmsUInt16Number In[MAX_INPUT_DIMENSIONS15+1], Out[MAX_STAGE_CHANNELS128]; | |||
| 780 | _cmsStageCLutData* clut; | |||
| 781 | ||||
| 782 | if (mpe == NULL((void*)0)) return FALSE0; | |||
| 783 | ||||
| 784 | clut = (_cmsStageCLutData*) mpe->Data; | |||
| 785 | ||||
| 786 | if (clut == NULL((void*)0)) return FALSE0; | |||
| 787 | ||||
| 788 | nSamples = clut->Params ->nSamples; | |||
| 789 | nInputs = clut->Params ->nInputs; | |||
| 790 | nOutputs = clut->Params ->nOutputs; | |||
| 791 | ||||
| 792 | if (nInputs <= 0) return FALSE0; | |||
| 793 | if (nOutputs <= 0) return FALSE0; | |||
| 794 | if (nInputs > MAX_INPUT_DIMENSIONS15) return FALSE0; | |||
| 795 | if (nOutputs >= MAX_STAGE_CHANNELS128) return FALSE0; | |||
| 796 | ||||
| 797 | memset(In, 0, sizeof(In)); | |||
| 798 | memset(Out, 0, sizeof(Out)); | |||
| 799 | ||||
| 800 | nTotalPoints = CubeSize(nSamples, nInputs); | |||
| 801 | if (nTotalPoints == 0) return FALSE0; | |||
| 802 | ||||
| 803 | index = 0; | |||
| 804 | for (i = 0; i < (int) nTotalPoints; i++) { | |||
| 805 | ||||
| 806 | rest = i; | |||
| 807 | for (t = (int)nInputs - 1; t >= 0; --t) { | |||
| 808 | ||||
| 809 | cmsUInt32Number Colorant = rest % nSamples[t]; | |||
| 810 | ||||
| 811 | rest /= nSamples[t]; | |||
| 812 | ||||
| 813 | In[t] = _cmsQuantizeVal(Colorant, nSamples[t]); | |||
| 814 | } | |||
| 815 | ||||
| 816 | if (clut ->Tab.T != NULL((void*)0)) { | |||
| 817 | for (t = 0; t < (int)nOutputs; t++) | |||
| 818 | Out[t] = clut->Tab.T[index + t]; | |||
| 819 | } | |||
| 820 | ||||
| 821 | if (!Sampler(In, Out, Cargo)) | |||
| 822 | return FALSE0; | |||
| 823 | ||||
| 824 | if (!(dwFlags & SAMPLER_INSPECT0x01000000)) { | |||
| 825 | ||||
| 826 | if (clut ->Tab.T != NULL((void*)0)) { | |||
| 827 | for (t=0; t < (int) nOutputs; t++) | |||
| 828 | clut->Tab.T[index + t] = Out[t]; | |||
| 829 | } | |||
| 830 | } | |||
| 831 | ||||
| 832 | index += nOutputs; | |||
| 833 | } | |||
| 834 | ||||
| 835 | return TRUE1; | |||
| 836 | } | |||
| 837 | ||||
| 838 | // Same as anterior, but for floating point | |||
| 839 | cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags) | |||
| 840 | { | |||
| 841 | int i, t, index, rest; | |||
| 842 | cmsUInt32Number nTotalPoints; | |||
| 843 | cmsUInt32Number nInputs, nOutputs; | |||
| 844 | cmsUInt32Number* nSamples; | |||
| 845 | cmsFloat32Number In[MAX_INPUT_DIMENSIONS15+1], Out[MAX_STAGE_CHANNELS128]; | |||
| 846 | _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data; | |||
| 847 | ||||
| 848 | nSamples = clut->Params ->nSamples; | |||
| 849 | nInputs = clut->Params ->nInputs; | |||
| 850 | nOutputs = clut->Params ->nOutputs; | |||
| 851 | ||||
| 852 | if (nInputs <= 0) return FALSE0; | |||
| 853 | if (nOutputs <= 0) return FALSE0; | |||
| 854 | if (nInputs > MAX_INPUT_DIMENSIONS15) return FALSE0; | |||
| 855 | if (nOutputs >= MAX_STAGE_CHANNELS128) return FALSE0; | |||
| 856 | ||||
| 857 | nTotalPoints = CubeSize(nSamples, nInputs); | |||
| 858 | if (nTotalPoints == 0) return FALSE0; | |||
| 859 | ||||
| 860 | index = 0; | |||
| 861 | for (i = 0; i < (int)nTotalPoints; i++) { | |||
| 862 | ||||
| 863 | rest = i; | |||
| 864 | for (t = (int) nInputs-1; t >=0; --t) { | |||
| 865 | ||||
| 866 | cmsUInt32Number Colorant = rest % nSamples[t]; | |||
| 867 | ||||
| 868 | rest /= nSamples[t]; | |||
| 869 | ||||
| 870 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0); | |||
| 871 | } | |||
| 872 | ||||
| 873 | if (clut ->Tab.TFloat != NULL((void*)0)) { | |||
| 874 | for (t=0; t < (int) nOutputs; t++) | |||
| 875 | Out[t] = clut->Tab.TFloat[index + t]; | |||
| 876 | } | |||
| 877 | ||||
| 878 | if (!Sampler(In, Out, Cargo)) | |||
| 879 | return FALSE0; | |||
| 880 | ||||
| 881 | if (!(dwFlags & SAMPLER_INSPECT0x01000000)) { | |||
| 882 | ||||
| 883 | if (clut ->Tab.TFloat != NULL((void*)0)) { | |||
| 884 | for (t=0; t < (int) nOutputs; t++) | |||
| 885 | clut->Tab.TFloat[index + t] = Out[t]; | |||
| 886 | } | |||
| 887 | } | |||
| 888 | ||||
| 889 | index += nOutputs; | |||
| 890 | } | |||
| 891 | ||||
| 892 | return TRUE1; | |||
| 893 | } | |||
| 894 | ||||
| 895 | ||||
| 896 | ||||
| 897 | // This routine does a sweep on whole input space, and calls its callback | |||
| 898 | // function on knots. returns TRUE if all ok, FALSE otherwise. | |||
| 899 | cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], | |||
| 900 | cmsSAMPLER16 Sampler, void * Cargo) | |||
| 901 | { | |||
| 902 | int i, t, rest; | |||
| 903 | cmsUInt32Number nTotalPoints; | |||
| 904 | cmsUInt16Number In[cmsMAXCHANNELS16]; | |||
| 905 | ||||
| 906 | if (nInputs >= cmsMAXCHANNELS16) return FALSE0; | |||
| 907 | ||||
| 908 | nTotalPoints = CubeSize(clutPoints, nInputs); | |||
| 909 | if (nTotalPoints == 0) return FALSE0; | |||
| 910 | ||||
| 911 | for (i = 0; i < (int) nTotalPoints; i++) { | |||
| 912 | ||||
| 913 | rest = i; | |||
| 914 | for (t = (int) nInputs-1; t >=0; --t) { | |||
| 915 | ||||
| 916 | cmsUInt32Number Colorant = rest % clutPoints[t]; | |||
| 917 | ||||
| 918 | rest /= clutPoints[t]; | |||
| 919 | In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]); | |||
| 920 | ||||
| 921 | } | |||
| 922 | ||||
| 923 | if (!Sampler(In, NULL((void*)0), Cargo)) | |||
| 924 | return FALSE0; | |||
| 925 | } | |||
| 926 | ||||
| 927 | return TRUE1; | |||
| 928 | } | |||
| 929 | ||||
| 930 | cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], | |||
| 931 | cmsSAMPLERFLOAT Sampler, void * Cargo) | |||
| 932 | { | |||
| 933 | int i, t, rest; | |||
| 934 | cmsUInt32Number nTotalPoints; | |||
| 935 | cmsFloat32Number In[cmsMAXCHANNELS16]; | |||
| 936 | ||||
| 937 | if (nInputs >= cmsMAXCHANNELS16) return FALSE0; | |||
| 938 | ||||
| 939 | nTotalPoints = CubeSize(clutPoints, nInputs); | |||
| 940 | if (nTotalPoints == 0) return FALSE0; | |||
| 941 | ||||
| 942 | for (i = 0; i < (int) nTotalPoints; i++) { | |||
| 943 | ||||
| 944 | rest = i; | |||
| 945 | for (t = (int) nInputs-1; t >=0; --t) { | |||
| 946 | ||||
| 947 | cmsUInt32Number Colorant = rest % clutPoints[t]; | |||
| 948 | ||||
| 949 | rest /= clutPoints[t]; | |||
| 950 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0); | |||
| 951 | ||||
| 952 | } | |||
| 953 | ||||
| 954 | if (!Sampler(In, NULL((void*)0), Cargo)) | |||
| 955 | return FALSE0; | |||
| 956 | } | |||
| 957 | ||||
| 958 | return TRUE1; | |||
| 959 | } | |||
| 960 | ||||
| 961 | // ******************************************************************************** | |||
| 962 | // Type cmsSigLab2XYZElemType | |||
| 963 | // ******************************************************************************** | |||
| 964 | ||||
| 965 | ||||
| 966 | static | |||
| 967 | void EvaluateLab2XYZ(const cmsFloat32Number In[], | |||
| 968 | cmsFloat32Number Out[], | |||
| 969 | const cmsStage *mpe) | |||
| 970 | { | |||
| 971 | cmsCIELab Lab; | |||
| 972 | cmsCIEXYZ XYZ; | |||
| 973 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ(1.0 + 32767.0/32768.0); | |||
| 974 | ||||
| 975 | // V4 rules | |||
| 976 | Lab.L = In[0] * 100.0; | |||
| 977 | Lab.a = In[1] * 255.0 - 128.0; | |||
| 978 | Lab.b = In[2] * 255.0 - 128.0; | |||
| 979 | ||||
| 980 | cmsLab2XYZ(NULL((void*)0), &XYZ, &Lab); | |||
| 981 | ||||
| 982 | // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff | |||
| 983 | // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0) | |||
| 984 | ||||
| 985 | Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj); | |||
| 986 | Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj); | |||
| 987 | Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj); | |||
| 988 | return; | |||
| 989 | ||||
| 990 | cmsUNUSED_PARAMETER(mpe)((void)mpe); | |||
| 991 | } | |||
| 992 | ||||
| 993 | ||||
| 994 | // No dup or free routines needed, as the structure has no pointers in it. | |||
| 995 | cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID) | |||
| 996 | { | |||
| 997 | return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 998 | } | |||
| 999 | ||||
| 1000 | // ******************************************************************************** | |||
| 1001 | ||||
| 1002 | // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable | |||
| 1003 | // number of gridpoints that would make exact match. However, a prelinearization | |||
| 1004 | // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot. | |||
| 1005 | // Almost all what we need but unfortunately, the rest of entries should be scaled by | |||
| 1006 | // (255*257/256) and this is not exact. | |||
| 1007 | ||||
| 1008 | cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID) | |||
| 1009 | { | |||
| 1010 | cmsStage* mpe; | |||
| 1011 | cmsToneCurve* LabTable[3]; | |||
| 1012 | int i, j; | |||
| 1013 | ||||
| 1014 | LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL((void*)0)); | |||
| 1015 | LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL((void*)0)); | |||
| 1016 | LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL((void*)0)); | |||
| 1017 | ||||
| 1018 | for (j=0; j < 3; j++) { | |||
| 1019 | ||||
| 1020 | if (LabTable[j] == NULL((void*)0)) { | |||
| 1021 | cmsFreeToneCurveTriple(LabTable); | |||
| 1022 | return NULL((void*)0); | |||
| 1023 | } | |||
| 1024 | ||||
| 1025 | // We need to map * (0xffff / 0xff00), that's same as (257 / 256) | |||
| 1026 | // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256); | |||
| 1027 | for (i=0; i < 257; i++) { | |||
| 1028 | ||||
| 1029 | LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8); | |||
| 1030 | } | |||
| 1031 | ||||
| 1032 | LabTable[j] ->Table16[257] = 0xffff; | |||
| 1033 | } | |||
| 1034 | ||||
| 1035 | mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable); | |||
| 1036 | cmsFreeToneCurveTriple(LabTable); | |||
| 1037 | ||||
| 1038 | if (mpe == NULL((void*)0)) return NULL((void*)0); | |||
| 1039 | mpe ->Implements = cmsSigLabV2toV4; | |||
| 1040 | return mpe; | |||
| 1041 | } | |||
| 1042 | ||||
| 1043 | // ******************************************************************************** | |||
| 1044 | ||||
| 1045 | // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles | |||
| 1046 | cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID) | |||
| 1047 | { | |||
| 1048 | static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0, | |||
| 1049 | 0, 65535.0/65280.0, 0, | |||
| 1050 | 0, 0, 65535.0/65280.0 | |||
| 1051 | }; | |||
| 1052 | ||||
| 1053 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL((void*)0)); | |||
| 1054 | ||||
| 1055 | if (mpe == NULL((void*)0)) return mpe; | |||
| 1056 | mpe ->Implements = cmsSigLabV2toV4; | |||
| 1057 | return mpe; | |||
| 1058 | } | |||
| 1059 | ||||
| 1060 | ||||
| 1061 | // Reverse direction | |||
| 1062 | cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID) | |||
| 1063 | { | |||
| 1064 | static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0, | |||
| 1065 | 0, 65280.0/65535.0, 0, | |||
| 1066 | 0, 0, 65280.0/65535.0 | |||
| 1067 | }; | |||
| 1068 | ||||
| 1069 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL((void*)0)); | |||
| 1070 | ||||
| 1071 | if (mpe == NULL((void*)0)) return mpe; | |||
| 1072 | mpe ->Implements = cmsSigLabV4toV2; | |||
| 1073 | return mpe; | |||
| 1074 | } | |||
| 1075 | ||||
| 1076 | ||||
| 1077 | // To Lab to float. Note that the MPE gives numbers in normal Lab range | |||
| 1078 | // and we need 0..1.0 range for the formatters | |||
| 1079 | // L* : 0...100 => 0...1.0 (L* / 100) | |||
| 1080 | // ab* : -128..+127 to 0..1 ((ab* + 128) / 255) | |||
| 1081 | ||||
| 1082 | cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID) | |||
| 1083 | { | |||
| 1084 | static const cmsFloat64Number a1[] = { | |||
| 1085 | 1.0/100.0, 0, 0, | |||
| 1086 | 0, 1.0/255.0, 0, | |||
| 1087 | 0, 0, 1.0/255.0 | |||
| 1088 | }; | |||
| 1089 | ||||
| 1090 | static const cmsFloat64Number o1[] = { | |||
| 1091 | 0, | |||
| 1092 | 128.0/255.0, | |||
| 1093 | 128.0/255.0 | |||
| 1094 | }; | |||
| 1095 | ||||
| 1096 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); | |||
| 1097 | ||||
| 1098 | if (mpe == NULL((void*)0)) return mpe; | |||
| 1099 | mpe ->Implements = cmsSigLab2FloatPCS; | |||
| 1100 | return mpe; | |||
| 1101 | } | |||
| 1102 | ||||
| 1103 | // Fom XYZ to floating point PCS | |||
| 1104 | cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID) | |||
| 1105 | { | |||
| 1106 | #define n (32768.0/65535.0) | |||
| 1107 | static const cmsFloat64Number a1[] = { | |||
| 1108 | n, 0, 0, | |||
| 1109 | 0, n, 0, | |||
| 1110 | 0, 0, n | |||
| 1111 | }; | |||
| 1112 | #undef n | |||
| 1113 | ||||
| 1114 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL((void*)0)); | |||
| 1115 | ||||
| 1116 | if (mpe == NULL((void*)0)) return mpe; | |||
| 1117 | mpe ->Implements = cmsSigXYZ2FloatPCS; | |||
| 1118 | return mpe; | |||
| 1119 | } | |||
| 1120 | ||||
| 1121 | cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID) | |||
| 1122 | { | |||
| 1123 | static const cmsFloat64Number a1[] = { | |||
| 1124 | 100.0, 0, 0, | |||
| 1125 | 0, 255.0, 0, | |||
| 1126 | 0, 0, 255.0 | |||
| 1127 | }; | |||
| 1128 | ||||
| 1129 | static const cmsFloat64Number o1[] = { | |||
| 1130 | 0, | |||
| 1131 | -128.0, | |||
| 1132 | -128.0 | |||
| 1133 | }; | |||
| 1134 | ||||
| 1135 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); | |||
| 1136 | if (mpe == NULL((void*)0)) return mpe; | |||
| 1137 | mpe ->Implements = cmsSigFloatPCS2Lab; | |||
| 1138 | return mpe; | |||
| 1139 | } | |||
| 1140 | ||||
| 1141 | cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID) | |||
| 1142 | { | |||
| 1143 | #define n (65535.0/32768.0) | |||
| 1144 | ||||
| 1145 | static const cmsFloat64Number a1[] = { | |||
| 1146 | n, 0, 0, | |||
| 1147 | 0, n, 0, | |||
| 1148 | 0, 0, n | |||
| 1149 | }; | |||
| 1150 | #undef n | |||
| 1151 | ||||
| 1152 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL((void*)0)); | |||
| 1153 | if (mpe == NULL((void*)0)) return mpe; | |||
| 1154 | mpe ->Implements = cmsSigFloatPCS2XYZ; | |||
| 1155 | return mpe; | |||
| 1156 | } | |||
| 1157 | ||||
| 1158 | // Clips values smaller than zero | |||
| 1159 | static | |||
| 1160 | void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) | |||
| 1161 | { | |||
| 1162 | cmsUInt32Number i; | |||
| 1163 | for (i = 0; i < mpe->InputChannels; i++) { | |||
| 1164 | ||||
| 1165 | cmsFloat32Number n = In[i]; | |||
| 1166 | Out[i] = n < 0 ? 0 : n; | |||
| 1167 | } | |||
| 1168 | } | |||
| 1169 | ||||
| 1170 | cmsStage* _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels) | |||
| 1171 | { | |||
| 1172 | return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType, | |||
| 1173 | nChannels, nChannels, Clipper, NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 1174 | } | |||
| 1175 | ||||
| 1176 | // ******************************************************************************** | |||
| 1177 | // Type cmsSigXYZ2LabElemType | |||
| 1178 | // ******************************************************************************** | |||
| 1179 | ||||
| 1180 | static | |||
| 1181 | void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) | |||
| 1182 | { | |||
| 1183 | cmsCIELab Lab; | |||
| 1184 | cmsCIEXYZ XYZ; | |||
| 1185 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ(1.0 + 32767.0/32768.0); | |||
| 1186 | ||||
| 1187 | // From 0..1.0 to XYZ | |||
| 1188 | ||||
| 1189 | XYZ.X = In[0] * XYZadj; | |||
| 1190 | XYZ.Y = In[1] * XYZadj; | |||
| 1191 | XYZ.Z = In[2] * XYZadj; | |||
| 1192 | ||||
| 1193 | cmsXYZ2Lab(NULL((void*)0), &Lab, &XYZ); | |||
| 1194 | ||||
| 1195 | // From V4 Lab to 0..1.0 | |||
| 1196 | ||||
| 1197 | Out[0] = (cmsFloat32Number) (Lab.L / 100.0); | |||
| 1198 | Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0); | |||
| 1199 | Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0); | |||
| 1200 | return; | |||
| 1201 | ||||
| 1202 | cmsUNUSED_PARAMETER(mpe)((void)mpe); | |||
| 1203 | } | |||
| 1204 | ||||
| 1205 | cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID) | |||
| 1206 | { | |||
| 1207 | return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 1208 | ||||
| 1209 | } | |||
| 1210 | ||||
| 1211 | // ******************************************************************************** | |||
| 1212 | ||||
| 1213 | // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray | |||
| 1214 | ||||
| 1215 | cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID) | |||
| 1216 | { | |||
| 1217 | cmsToneCurve* LabTable[3]; | |||
| 1218 | cmsFloat64Number Params[1] = {2.4} ; | |||
| 1219 | ||||
| 1220 | LabTable[0] = cmsBuildGamma(ContextID, 1.0); | |||
| 1221 | LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params); | |||
| 1222 | LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params); | |||
| 1223 | ||||
| 1224 | return cmsStageAllocToneCurves(ContextID, 3, LabTable); | |||
| 1225 | } | |||
| 1226 | ||||
| 1227 | ||||
| 1228 | // Free a single MPE | |||
| 1229 | void CMSEXPORT cmsStageFree(cmsStage* mpe) | |||
| 1230 | { | |||
| 1231 | if (mpe ->FreePtr) | |||
| 1232 | mpe ->FreePtr(mpe); | |||
| 1233 | ||||
| 1234 | _cmsFree(mpe ->ContextID, mpe); | |||
| 1235 | } | |||
| 1236 | ||||
| 1237 | ||||
| 1238 | cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe) | |||
| 1239 | { | |||
| 1240 | return mpe ->InputChannels; | |||
| 1241 | } | |||
| 1242 | ||||
| 1243 | cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe) | |||
| 1244 | { | |||
| 1245 | return mpe ->OutputChannels; | |||
| 1246 | } | |||
| 1247 | ||||
| 1248 | cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe) | |||
| 1249 | { | |||
| 1250 | return mpe -> Type; | |||
| 1251 | } | |||
| 1252 | ||||
| 1253 | void* CMSEXPORT cmsStageData(const cmsStage* mpe) | |||
| 1254 | { | |||
| 1255 | return mpe -> Data; | |||
| 1256 | } | |||
| 1257 | ||||
| 1258 | cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe) | |||
| 1259 | { | |||
| 1260 | return mpe -> Next; | |||
| 1261 | } | |||
| 1262 | ||||
| 1263 | ||||
| 1264 | // Duplicates an MPE | |||
| 1265 | cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe) | |||
| 1266 | { | |||
| 1267 | cmsStage* NewMPE; | |||
| 1268 | ||||
| 1269 | if (mpe == NULL((void*)0)) return NULL((void*)0); | |||
| 1270 | NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID, | |||
| 1271 | mpe ->Type, | |||
| 1272 | mpe ->InputChannels, | |||
| 1273 | mpe ->OutputChannels, | |||
| 1274 | mpe ->EvalPtr, | |||
| 1275 | mpe ->DupElemPtr, | |||
| 1276 | mpe ->FreePtr, | |||
| 1277 | NULL((void*)0)); | |||
| 1278 | if (NewMPE == NULL((void*)0)) return NULL((void*)0); | |||
| 1279 | ||||
| 1280 | NewMPE ->Implements = mpe ->Implements; | |||
| 1281 | ||||
| 1282 | if (mpe ->DupElemPtr) { | |||
| 1283 | ||||
| 1284 | NewMPE ->Data = mpe ->DupElemPtr(mpe); | |||
| 1285 | ||||
| 1286 | if (NewMPE->Data == NULL((void*)0)) { | |||
| 1287 | ||||
| 1288 | cmsStageFree(NewMPE); | |||
| 1289 | return NULL((void*)0); | |||
| 1290 | } | |||
| 1291 | ||||
| 1292 | } else { | |||
| 1293 | ||||
| 1294 | NewMPE ->Data = NULL((void*)0); | |||
| 1295 | } | |||
| 1296 | ||||
| 1297 | return NewMPE; | |||
| 1298 | } | |||
| 1299 | ||||
| 1300 | ||||
| 1301 | // *********************************************************************************************************** | |||
| 1302 | ||||
| 1303 | // This function sets up the channel count | |||
| 1304 | static | |||
| 1305 | cmsBool BlessLUT(cmsPipeline* lut) | |||
| 1306 | { | |||
| 1307 | // We can set the input/output channels only if we have elements. | |||
| 1308 | if (lut ->Elements != NULL((void*)0)) { | |||
| 1309 | ||||
| 1310 | cmsStage* prev; | |||
| 1311 | cmsStage* next; | |||
| 1312 | cmsStage* First; | |||
| 1313 | cmsStage* Last; | |||
| 1314 | ||||
| 1315 | First = cmsPipelineGetPtrToFirstStage(lut); | |||
| 1316 | Last = cmsPipelineGetPtrToLastStage(lut); | |||
| 1317 | ||||
| 1318 | if (First == NULL((void*)0) || Last == NULL((void*)0)) return FALSE0; | |||
| 1319 | ||||
| 1320 | lut->InputChannels = First->InputChannels; | |||
| 1321 | lut->OutputChannels = Last->OutputChannels; | |||
| 1322 | ||||
| 1323 | // Check chain consistency | |||
| 1324 | prev = First; | |||
| 1325 | next = prev->Next; | |||
| 1326 | ||||
| 1327 | while (next != NULL((void*)0)) | |||
| 1328 | { | |||
| 1329 | if (next->InputChannels != prev->OutputChannels) | |||
| 1330 | return FALSE0; | |||
| 1331 | ||||
| 1332 | next = next->Next; | |||
| 1333 | prev = prev->Next; | |||
| 1334 | } | |||
| 1335 | } | |||
| 1336 | ||||
| 1337 | return TRUE1; | |||
| 1338 | } | |||
| 1339 | ||||
| 1340 | ||||
| 1341 | // Default to evaluate the LUT on 16 bit-basis. Precision is retained. | |||
| 1342 | static | |||
| 1343 | void _LUTeval16(CMSREGISTERregister const cmsUInt16Number In[], CMSREGISTERregister cmsUInt16Number Out[], CMSREGISTERregister const void* D) | |||
| 1344 | { | |||
| 1345 | cmsPipeline* lut = (cmsPipeline*) D; | |||
| 1346 | cmsStage *mpe; | |||
| 1347 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS128]; | |||
| 1348 | int Phase = 0, NextPhase; | |||
| 1349 | ||||
| 1350 | From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels); | |||
| ||||
| 1351 | ||||
| 1352 | for (mpe = lut ->Elements; | |||
| 1353 | mpe != NULL((void*)0); | |||
| 1354 | mpe = mpe ->Next) { | |||
| 1355 | ||||
| 1356 | NextPhase = Phase ^ 1; | |||
| 1357 | mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); | |||
| 1358 | Phase = NextPhase; | |||
| 1359 | } | |||
| 1360 | ||||
| 1361 | ||||
| 1362 | FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels); | |||
| 1363 | } | |||
| 1364 | ||||
| 1365 | ||||
| 1366 | ||||
| 1367 | // Does evaluate the LUT on cmsFloat32Number-basis. | |||
| 1368 | static | |||
| 1369 | void _LUTevalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const void* D) | |||
| 1370 | { | |||
| 1371 | cmsPipeline* lut = (cmsPipeline*) D; | |||
| 1372 | cmsStage *mpe; | |||
| 1373 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS128]; | |||
| 1374 | int Phase = 0, NextPhase; | |||
| 1375 | ||||
| 1376 | memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number)); | |||
| 1377 | ||||
| 1378 | for (mpe = lut ->Elements; | |||
| 1379 | mpe != NULL((void*)0); | |||
| 1380 | mpe = mpe ->Next) { | |||
| 1381 | ||||
| 1382 | NextPhase = Phase ^ 1; | |||
| 1383 | mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); | |||
| 1384 | Phase = NextPhase; | |||
| 1385 | } | |||
| 1386 | ||||
| 1387 | memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number)); | |||
| 1388 | } | |||
| 1389 | ||||
| 1390 | ||||
| 1391 | // LUT Creation & Destruction | |||
| 1392 | cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels) | |||
| 1393 | { | |||
| 1394 | cmsPipeline* NewLUT; | |||
| 1395 | ||||
| 1396 | // A value of zero in channels is allowed as placeholder | |||
| 1397 | if (InputChannels >= cmsMAXCHANNELS16 || | |||
| 1398 | OutputChannels >= cmsMAXCHANNELS16) return NULL((void*)0); | |||
| 1399 | ||||
| 1400 | NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline)); | |||
| 1401 | if (NewLUT == NULL((void*)0)) return NULL((void*)0); | |||
| 1402 | ||||
| 1403 | NewLUT -> InputChannels = InputChannels; | |||
| 1404 | NewLUT -> OutputChannels = OutputChannels; | |||
| 1405 | ||||
| 1406 | NewLUT ->Eval16Fn = _LUTeval16; | |||
| 1407 | NewLUT ->EvalFloatFn = _LUTevalFloat; | |||
| 1408 | NewLUT ->DupDataFn = NULL((void*)0); | |||
| 1409 | NewLUT ->FreeDataFn = NULL((void*)0); | |||
| 1410 | NewLUT ->Data = NewLUT; | |||
| 1411 | NewLUT ->ContextID = ContextID; | |||
| 1412 | ||||
| 1413 | if (!BlessLUT(NewLUT)) | |||
| 1414 | { | |||
| 1415 | _cmsFree(ContextID, NewLUT); | |||
| 1416 | return NULL((void*)0); | |||
| 1417 | } | |||
| 1418 | ||||
| 1419 | return NewLUT; | |||
| 1420 | } | |||
| 1421 | ||||
| 1422 | cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut) | |||
| 1423 | { | |||
| 1424 | _cmsAssert(lut != NULL)(((lut != ((void*)0))) ? (void) (0) : __assert_fail ("(lut != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 1424, __extension__ __PRETTY_FUNCTION__)); | |||
| 1425 | return lut ->ContextID; | |||
| 1426 | } | |||
| 1427 | ||||
| 1428 | cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut) | |||
| 1429 | { | |||
| 1430 | _cmsAssert(lut != NULL)(((lut != ((void*)0))) ? (void) (0) : __assert_fail ("(lut != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 1430, __extension__ __PRETTY_FUNCTION__)); | |||
| 1431 | return lut ->InputChannels; | |||
| 1432 | } | |||
| 1433 | ||||
| 1434 | cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut) | |||
| 1435 | { | |||
| 1436 | _cmsAssert(lut != NULL)(((lut != ((void*)0))) ? (void) (0) : __assert_fail ("(lut != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 1436, __extension__ __PRETTY_FUNCTION__)); | |||
| 1437 | return lut ->OutputChannels; | |||
| 1438 | } | |||
| 1439 | ||||
| 1440 | // Free a profile elements LUT | |||
| 1441 | void CMSEXPORT cmsPipelineFree(cmsPipeline* lut) | |||
| 1442 | { | |||
| 1443 | cmsStage *mpe, *Next; | |||
| 1444 | ||||
| 1445 | if (lut == NULL((void*)0)) return; | |||
| 1446 | ||||
| 1447 | for (mpe = lut ->Elements; | |||
| 1448 | mpe != NULL((void*)0); | |||
| 1449 | mpe = Next) { | |||
| 1450 | ||||
| 1451 | Next = mpe ->Next; | |||
| 1452 | cmsStageFree(mpe); | |||
| 1453 | } | |||
| 1454 | ||||
| 1455 | if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data); | |||
| 1456 | ||||
| 1457 | _cmsFree(lut ->ContextID, lut); | |||
| 1458 | } | |||
| 1459 | ||||
| 1460 | ||||
| 1461 | // Default to evaluate the LUT on 16 bit-basis. | |||
| 1462 | void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut) | |||
| 1463 | { | |||
| 1464 | _cmsAssert(lut != NULL)(((lut != ((void*)0))) ? (void) (0) : __assert_fail ("(lut != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 1464, __extension__ __PRETTY_FUNCTION__)); | |||
| 1465 | lut ->Eval16Fn(In, Out, lut->Data); | |||
| 1466 | } | |||
| 1467 | ||||
| 1468 | ||||
| 1469 | // Does evaluate the LUT on cmsFloat32Number-basis. | |||
| 1470 | void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut) | |||
| 1471 | { | |||
| 1472 | _cmsAssert(lut != NULL)(((lut != ((void*)0))) ? (void) (0) : __assert_fail ("(lut != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmslut.c" , 1472, __extension__ __PRETTY_FUNCTION__)); | |||
| 1473 | lut ->EvalFloatFn(In, Out, lut); | |||
| 1474 | } | |||
| 1475 | ||||
| 1476 | ||||
| 1477 | ||||
| 1478 | // Duplicates a LUT | |||
| 1479 | cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut) | |||
| 1480 | { | |||
| 1481 | cmsPipeline* NewLUT; | |||
| 1482 | cmsStage *NewMPE, *Anterior = NULL((void*)0), *mpe; | |||
| 1483 | cmsBool First = TRUE1; | |||
| 1484 | ||||
| 1485 | if (lut == NULL((void*)0)) return NULL((void*)0); | |||
| 1486 | ||||
| 1487 | NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels); | |||
| 1488 | if (NewLUT == NULL((void*)0)) return NULL((void*)0); | |||
| 1489 | ||||
| 1490 | for (mpe = lut ->Elements; | |||
| 1491 | mpe != NULL((void*)0); | |||
| 1492 | mpe = mpe ->Next) { | |||
| 1493 | ||||
| 1494 | NewMPE = cmsStageDup(mpe); | |||
| 1495 | ||||
| 1496 | if (NewMPE == NULL((void*)0)) { | |||
| 1497 | cmsPipelineFree(NewLUT); | |||
| 1498 | return NULL((void*)0); | |||
| 1499 | } | |||
| 1500 | ||||
| 1501 | if (First) { | |||
| 1502 | NewLUT ->Elements = NewMPE; | |||
| 1503 | First = FALSE0; | |||
| 1504 | } | |||
| 1505 | else { | |||
| 1506 | if (Anterior != NULL((void*)0)) | |||
| 1507 | Anterior ->Next = NewMPE; | |||
| 1508 | } | |||
| 1509 | ||||
| 1510 | Anterior = NewMPE; | |||
| 1511 | } | |||
| 1512 | ||||
| 1513 | NewLUT ->Eval16Fn = lut ->Eval16Fn; | |||
| 1514 | NewLUT ->EvalFloatFn = lut ->EvalFloatFn; | |||
| 1515 | NewLUT ->DupDataFn = lut ->DupDataFn; | |||
| 1516 | NewLUT ->FreeDataFn = lut ->FreeDataFn; | |||
| 1517 | ||||
| 1518 | if (NewLUT ->DupDataFn != NULL((void*)0)) | |||
| 1519 | NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data); | |||
| 1520 | ||||
| 1521 | ||||
| 1522 | NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits; | |||
| 1523 | ||||
| 1524 | if (!BlessLUT(NewLUT)) | |||
| 1525 | { | |||
| 1526 | _cmsFree(lut->ContextID, NewLUT); | |||
| 1527 | return NULL((void*)0); | |||
| 1528 | } | |||
| 1529 | ||||
| 1530 | return NewLUT; | |||
| 1531 | } | |||
| 1532 | ||||
| 1533 | ||||
| 1534 | int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe) | |||
| 1535 | { | |||
| 1536 | cmsStage* Anterior = NULL((void*)0), *pt; | |||
| 1537 | ||||
| 1538 | if (lut == NULL((void*)0) || mpe == NULL((void*)0)) | |||
| 1539 | return FALSE0; | |||
| 1540 | ||||
| 1541 | switch (loc) { | |||
| 1542 | ||||
| 1543 | case cmsAT_BEGIN: | |||
| 1544 | mpe ->Next = lut ->Elements; | |||
| 1545 | lut ->Elements = mpe; | |||
| 1546 | break; | |||
| 1547 | ||||
| 1548 | case cmsAT_END: | |||
| 1549 | ||||
| 1550 | if (lut ->Elements == NULL((void*)0)) | |||
| 1551 | lut ->Elements = mpe; | |||
| 1552 | else { | |||
| 1553 | ||||
| 1554 | for (pt = lut ->Elements; | |||
| 1555 | pt != NULL((void*)0); | |||
| 1556 | pt = pt -> Next) Anterior = pt; | |||
| 1557 | ||||
| 1558 | Anterior ->Next = mpe; | |||
| 1559 | mpe ->Next = NULL((void*)0); | |||
| 1560 | } | |||
| 1561 | break; | |||
| 1562 | default:; | |||
| 1563 | return FALSE0; | |||
| 1564 | } | |||
| 1565 | ||||
| 1566 | return BlessLUT(lut); | |||
| 1567 | } | |||
| 1568 | ||||
| 1569 | // Unlink an element and return the pointer to it | |||
| 1570 | void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe) | |||
| 1571 | { | |||
| 1572 | cmsStage *Anterior, *pt, *Last; | |||
| 1573 | cmsStage *Unlinked = NULL((void*)0); | |||
| 1574 | ||||
| 1575 | ||||
| 1576 | // If empty LUT, there is nothing to remove | |||
| 1577 | if (lut ->Elements == NULL((void*)0)) { | |||
| 1578 | if (mpe) *mpe = NULL((void*)0); | |||
| 1579 | return; | |||
| 1580 | } | |||
| 1581 | ||||
| 1582 | // On depending on the strategy... | |||
| 1583 | switch (loc) { | |||
| 1584 | ||||
| 1585 | case cmsAT_BEGIN: | |||
| 1586 | { | |||
| 1587 | cmsStage* elem = lut ->Elements; | |||
| 1588 | ||||
| 1589 | lut ->Elements = elem -> Next; | |||
| 1590 | elem ->Next = NULL((void*)0); | |||
| 1591 | Unlinked = elem; | |||
| 1592 | ||||
| 1593 | } | |||
| 1594 | break; | |||
| 1595 | ||||
| 1596 | case cmsAT_END: | |||
| 1597 | Anterior = Last = NULL((void*)0); | |||
| 1598 | for (pt = lut ->Elements; | |||
| 1599 | pt != NULL((void*)0); | |||
| 1600 | pt = pt -> Next) { | |||
| 1601 | Anterior = Last; | |||
| 1602 | Last = pt; | |||
| 1603 | } | |||
| 1604 | ||||
| 1605 | Unlinked = Last; // Next already points to NULL | |||
| 1606 | ||||
| 1607 | // Truncate the chain | |||
| 1608 | if (Anterior) | |||
| 1609 | Anterior ->Next = NULL((void*)0); | |||
| 1610 | else | |||
| 1611 | lut ->Elements = NULL((void*)0); | |||
| 1612 | break; | |||
| 1613 | default:; | |||
| 1614 | } | |||
| 1615 | ||||
| 1616 | if (mpe) | |||
| 1617 | *mpe = Unlinked; | |||
| 1618 | else | |||
| 1619 | cmsStageFree(Unlinked); | |||
| 1620 | ||||
| 1621 | // May fail, but we ignore it | |||
| 1622 | BlessLUT(lut); | |||
| 1623 | } | |||
| 1624 | ||||
| 1625 | ||||
| 1626 | // Concatenate two LUT into a new single one | |||
| 1627 | cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2) | |||
| 1628 | { | |||
| 1629 | cmsStage* mpe; | |||
| 1630 | ||||
| 1631 | // If both LUTS does not have elements, we need to inherit | |||
| 1632 | // the number of channels | |||
| 1633 | if (l1 ->Elements == NULL((void*)0) && l2 ->Elements == NULL((void*)0)) { | |||
| 1634 | l1 ->InputChannels = l2 ->InputChannels; | |||
| 1635 | l1 ->OutputChannels = l2 ->OutputChannels; | |||
| 1636 | } | |||
| 1637 | ||||
| 1638 | // Cat second | |||
| 1639 | for (mpe = l2 ->Elements; | |||
| 1640 | mpe != NULL((void*)0); | |||
| 1641 | mpe = mpe ->Next) { | |||
| 1642 | ||||
| 1643 | // We have to dup each element | |||
| 1644 | if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe))) | |||
| 1645 | return FALSE0; | |||
| 1646 | } | |||
| 1647 | ||||
| 1648 | return BlessLUT(l1); | |||
| 1649 | } | |||
| 1650 | ||||
| 1651 | ||||
| 1652 | cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On) | |||
| 1653 | { | |||
| 1654 | cmsBool Anterior = lut ->SaveAs8Bits; | |||
| 1655 | ||||
| 1656 | lut ->SaveAs8Bits = On; | |||
| 1657 | return Anterior; | |||
| 1658 | } | |||
| 1659 | ||||
| 1660 | ||||
| 1661 | cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut) | |||
| 1662 | { | |||
| 1663 | return lut ->Elements; | |||
| 1664 | } | |||
| 1665 | ||||
| 1666 | cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut) | |||
| 1667 | { | |||
| 1668 | cmsStage *mpe, *Anterior = NULL((void*)0); | |||
| 1669 | ||||
| 1670 | for (mpe = lut ->Elements; mpe != NULL((void*)0); mpe = mpe ->Next) | |||
| 1671 | Anterior = mpe; | |||
| 1672 | ||||
| 1673 | return Anterior; | |||
| 1674 | } | |||
| 1675 | ||||
| 1676 | cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut) | |||
| 1677 | { | |||
| 1678 | cmsStage *mpe; | |||
| 1679 | cmsUInt32Number n; | |||
| 1680 | ||||
| 1681 | for (n=0, mpe = lut ->Elements; mpe != NULL((void*)0); mpe = mpe ->Next) | |||
| 1682 | n++; | |||
| 1683 | ||||
| 1684 | return n; | |||
| 1685 | } | |||
| 1686 | ||||
| 1687 | // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional | |||
| 1688 | // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality. | |||
| 1689 | void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut, | |||
| 1690 | _cmsPipelineEval16Fn Eval16, | |||
| 1691 | void* PrivateData, | |||
| 1692 | _cmsFreeUserDataFn FreePrivateDataFn, | |||
| 1693 | _cmsDupUserDataFn DupPrivateDataFn) | |||
| 1694 | { | |||
| 1695 | ||||
| 1696 | Lut ->Eval16Fn = Eval16; | |||
| 1697 | Lut ->DupDataFn = DupPrivateDataFn; | |||
| 1698 | Lut ->FreeDataFn = FreePrivateDataFn; | |||
| 1699 | Lut ->Data = PrivateData; | |||
| 1700 | } | |||
| 1701 | ||||
| 1702 | ||||
| 1703 | // ----------------------------------------------------------- Reverse interpolation | |||
| 1704 | // Here's how it goes. The derivative Df(x) of the function f is the linear | |||
| 1705 | // transformation that best approximates f near the point x. It can be represented | |||
| 1706 | // by a matrix A whose entries are the partial derivatives of the components of f | |||
| 1707 | // with respect to all the coordinates. This is know as the Jacobian | |||
| 1708 | // | |||
| 1709 | // The best linear approximation to f is given by the matrix equation: | |||
| 1710 | // | |||
| 1711 | // y-y0 = A (x-x0) | |||
| 1712 | // | |||
| 1713 | // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this | |||
| 1714 | // linear approximation will give a "better guess" for the zero of f. Thus let y=0, | |||
| 1715 | // and since y0=f(x0) one can solve the above equation for x. This leads to the | |||
| 1716 | // Newton's method formula: | |||
| 1717 | // | |||
| 1718 | // xn+1 = xn - A-1 f(xn) | |||
| 1719 | // | |||
| 1720 | // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the | |||
| 1721 | // fashion described above. Iterating this will give better and better approximations | |||
| 1722 | // if you have a "good enough" initial guess. | |||
| 1723 | ||||
| 1724 | ||||
| 1725 | #define JACOBIAN_EPSILON0.001f 0.001f | |||
| 1726 | #define INVERSION_MAX_ITERATIONS30 30 | |||
| 1727 | ||||
| 1728 | // Increment with reflexion on boundary | |||
| 1729 | static | |||
| 1730 | void IncDelta(cmsFloat32Number *Val) | |||
| 1731 | { | |||
| 1732 | if (*Val < (1.0 - JACOBIAN_EPSILON0.001f)) | |||
| 1733 | ||||
| 1734 | *Val += JACOBIAN_EPSILON0.001f; | |||
| 1735 | ||||
| 1736 | else | |||
| 1737 | *Val -= JACOBIAN_EPSILON0.001f; | |||
| 1738 | ||||
| 1739 | } | |||
| 1740 | ||||
| 1741 | ||||
| 1742 | ||||
| 1743 | // Euclidean distance between two vectors of n elements each one | |||
| 1744 | static | |||
| 1745 | cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n) | |||
| 1746 | { | |||
| 1747 | cmsFloat32Number sum = 0; | |||
| 1748 | int i; | |||
| 1749 | ||||
| 1750 | for (i=0; i < n; i++) { | |||
| 1751 | cmsFloat32Number dif = b[i] - a[i]; | |||
| 1752 | sum += dif * dif; | |||
| 1753 | } | |||
| 1754 | ||||
| 1755 | return sqrtf(sum); | |||
| 1756 | } | |||
| 1757 | ||||
| 1758 | ||||
| 1759 | // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method | |||
| 1760 | // | |||
| 1761 | // x1 <- x - [J(x)]^-1 * f(x) | |||
| 1762 | // | |||
| 1763 | // lut: The LUT on where to do the search | |||
| 1764 | // Target: LabK, 3 values of Lab plus destination K which is fixed | |||
| 1765 | // Result: The obtained CMYK | |||
| 1766 | // Hint: Location where begin the search | |||
| 1767 | ||||
| 1768 | cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[], | |||
| 1769 | cmsFloat32Number Result[], | |||
| 1770 | cmsFloat32Number Hint[], | |||
| 1771 | const cmsPipeline* lut) | |||
| 1772 | { | |||
| 1773 | cmsUInt32Number i, j; | |||
| 1774 | cmsFloat64Number error, LastError = 1E20; | |||
| 1775 | cmsFloat32Number fx[4], x[4], xd[4], fxd[4]; | |||
| 1776 | cmsVEC3 tmp, tmp2; | |||
| 1777 | cmsMAT3 Jacobian; | |||
| 1778 | ||||
| 1779 | // Only 3->3 and 4->3 are supported | |||
| 1780 | if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE0; | |||
| 1781 | if (lut ->OutputChannels != 3) return FALSE0; | |||
| 1782 | ||||
| 1783 | // Take the hint as starting point if specified | |||
| 1784 | if (Hint == NULL((void*)0)) { | |||
| 1785 | ||||
| 1786 | // Begin at any point, we choose 1/3 of CMY axis | |||
| 1787 | x[0] = x[1] = x[2] = 0.3f; | |||
| 1788 | } | |||
| 1789 | else { | |||
| 1790 | ||||
| 1791 | // Only copy 3 channels from hint... | |||
| 1792 | for (j=0; j < 3; j++) | |||
| 1793 | x[j] = Hint[j]; | |||
| 1794 | } | |||
| 1795 | ||||
| 1796 | // If Lut is 4-dimensions, then grab target[3], which is fixed | |||
| 1797 | if (lut ->InputChannels == 4) { | |||
| 1798 | x[3] = Target[3]; | |||
| 1799 | } | |||
| 1800 | else x[3] = 0; // To keep lint happy | |||
| 1801 | ||||
| 1802 | ||||
| 1803 | // Iterate | |||
| 1804 | for (i = 0; i < INVERSION_MAX_ITERATIONS30; i++) { | |||
| 1805 | ||||
| 1806 | // Get beginning fx | |||
| 1807 | cmsPipelineEvalFloat(x, fx, lut); | |||
| 1808 | ||||
| 1809 | // Compute error | |||
| 1810 | error = EuclideanDistance(fx, Target, 3); | |||
| 1811 | ||||
| 1812 | // If not convergent, return last safe value | |||
| 1813 | if (error >= LastError) | |||
| 1814 | break; | |||
| 1815 | ||||
| 1816 | // Keep latest values | |||
| 1817 | LastError = error; | |||
| 1818 | for (j=0; j < lut ->InputChannels; j++) | |||
| 1819 | Result[j] = x[j]; | |||
| 1820 | ||||
| 1821 | // Found an exact match? | |||
| 1822 | if (error <= 0) | |||
| 1823 | break; | |||
| 1824 | ||||
| 1825 | // Obtain slope (the Jacobian) | |||
| 1826 | for (j = 0; j < 3; j++) { | |||
| 1827 | ||||
| 1828 | xd[0] = x[0]; | |||
| 1829 | xd[1] = x[1]; | |||
| 1830 | xd[2] = x[2]; | |||
| 1831 | xd[3] = x[3]; // Keep fixed channel | |||
| 1832 | ||||
| 1833 | IncDelta(&xd[j]); | |||
| 1834 | ||||
| 1835 | cmsPipelineEvalFloat(xd, fxd, lut); | |||
| 1836 | ||||
| 1837 | Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON0.001f); | |||
| 1838 | Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON0.001f); | |||
| 1839 | Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON0.001f); | |||
| 1840 | } | |||
| 1841 | ||||
| 1842 | // Solve system | |||
| 1843 | tmp2.n[0] = fx[0] - Target[0]; | |||
| 1844 | tmp2.n[1] = fx[1] - Target[1]; | |||
| 1845 | tmp2.n[2] = fx[2] - Target[2]; | |||
| 1846 | ||||
| 1847 | if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2)) | |||
| 1848 | return FALSE0; | |||
| 1849 | ||||
| 1850 | // Move our guess | |||
| 1851 | x[0] -= (cmsFloat32Number) tmp.n[0]; | |||
| 1852 | x[1] -= (cmsFloat32Number) tmp.n[1]; | |||
| 1853 | x[2] -= (cmsFloat32Number) tmp.n[2]; | |||
| 1854 | ||||
| 1855 | // Some clipping.... | |||
| 1856 | for (j=0; j < 3; j++) { | |||
| 1857 | if (x[j] < 0) x[j] = 0; | |||
| 1858 | else | |||
| 1859 | if (x[j] > 1.0) x[j] = 1.0; | |||
| 1860 | } | |||
| 1861 | } | |||
| 1862 | ||||
| 1863 | return TRUE1; | |||
| 1864 | } | |||
| 1865 | ||||
| 1866 |