| File: | jdk/src/java.desktop/share/native/liblcms/cmsintrp.c |
| Warning: | line 1184, column 1 Assigned value is garbage or undefined |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
| 3 | * | |||
| 4 | * This code is free software; you can redistribute it and/or modify it | |||
| 5 | * under the terms of the GNU General Public License version 2 only, as | |||
| 6 | * published by the Free Software Foundation. Oracle designates this | |||
| 7 | * particular file as subject to the "Classpath" exception as provided | |||
| 8 | * by Oracle in the LICENSE file that accompanied this code. | |||
| 9 | * | |||
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
| 13 | * version 2 for more details (a copy is included in the LICENSE file that | |||
| 14 | * accompanied this code). | |||
| 15 | * | |||
| 16 | * You should have received a copy of the GNU General Public License version | |||
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
| 19 | * | |||
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
| 21 | * or visit www.oracle.com if you need additional information or have any | |||
| 22 | * questions. | |||
| 23 | */ | |||
| 24 | ||||
| 25 | // This file is available under and governed by the GNU General Public | |||
| 26 | // License version 2 only, as published by the Free Software Foundation. | |||
| 27 | // However, the following notice accompanied the original version of this | |||
| 28 | // file: | |||
| 29 | // | |||
| 30 | //--------------------------------------------------------------------------------- | |||
| 31 | // | |||
| 32 | // Little Color Management System | |||
| 33 | // Copyright (c) 1998-2020 Marti Maria Saguer | |||
| 34 | // | |||
| 35 | // Permission is hereby granted, free of charge, to any person obtaining | |||
| 36 | // a copy of this software and associated documentation files (the "Software"), | |||
| 37 | // to deal in the Software without restriction, including without limitation | |||
| 38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |||
| 39 | // and/or sell copies of the Software, and to permit persons to whom the Software | |||
| 40 | // is furnished to do so, subject to the following conditions: | |||
| 41 | // | |||
| 42 | // The above copyright notice and this permission notice shall be included in | |||
| 43 | // all copies or substantial portions of the Software. | |||
| 44 | // | |||
| 45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||
| 46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |||
| 47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
| 48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |||
| 49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |||
| 50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |||
| 51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
| 52 | // | |||
| 53 | //--------------------------------------------------------------------------------- | |||
| 54 | // | |||
| 55 | ||||
| 56 | #include "lcms2_internal.h" | |||
| 57 | ||||
| 58 | // This module incorporates several interpolation routines, for 1 to 8 channels on input and | |||
| 59 | // up to 65535 channels on output. The user may change those by using the interpolation plug-in | |||
| 60 | ||||
| 61 | // Some people may want to compile as C++ with all warnings on, in this case make compiler silent | |||
| 62 | #ifdef _MSC_VER | |||
| 63 | # if (_MSC_VER >= 1400) | |||
| 64 | # pragma warning( disable : 4365 ) | |||
| 65 | # endif | |||
| 66 | #endif | |||
| 67 | ||||
| 68 | // Interpolation routines by default | |||
| 69 | static cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags); | |||
| 70 | ||||
| 71 | // This is the default factory | |||
| 72 | _cmsInterpPluginChunkType _cmsInterpPluginChunk = { NULL((void*)0) }; | |||
| 73 | ||||
| 74 | // The interpolation plug-in memory chunk allocator/dup | |||
| 75 | void _cmsAllocInterpPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) | |||
| 76 | { | |||
| 77 | void* from; | |||
| 78 | ||||
| 79 | _cmsAssert(ctx != NULL)(((ctx != ((void*)0))) ? (void) (0) : __assert_fail ("(ctx != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsintrp.c" , 79, __extension__ __PRETTY_FUNCTION__)); | |||
| 80 | ||||
| 81 | if (src != NULL((void*)0)) { | |||
| 82 | from = src ->chunks[InterpPlugin]; | |||
| 83 | } | |||
| 84 | else { | |||
| 85 | static _cmsInterpPluginChunkType InterpPluginChunk = { NULL((void*)0) }; | |||
| 86 | ||||
| 87 | from = &InterpPluginChunk; | |||
| 88 | } | |||
| 89 | ||||
| 90 | _cmsAssert(from != NULL)(((from != ((void*)0))) ? (void) (0) : __assert_fail ("(from != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsintrp.c" , 90, __extension__ __PRETTY_FUNCTION__)); | |||
| 91 | ctx ->chunks[InterpPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsInterpPluginChunkType)); | |||
| 92 | } | |||
| 93 | ||||
| 94 | ||||
| 95 | // Main plug-in entry | |||
| 96 | cmsBool _cmsRegisterInterpPlugin(cmsContext ContextID, cmsPluginBase* Data) | |||
| 97 | { | |||
| 98 | cmsPluginInterpolation* Plugin = (cmsPluginInterpolation*) Data; | |||
| 99 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); | |||
| 100 | ||||
| 101 | if (Data == NULL((void*)0)) { | |||
| 102 | ||||
| 103 | ptr ->Interpolators = NULL((void*)0); | |||
| 104 | return TRUE1; | |||
| 105 | } | |||
| 106 | ||||
| 107 | // Set replacement functions | |||
| 108 | ptr ->Interpolators = Plugin ->InterpolatorsFactory; | |||
| 109 | return TRUE1; | |||
| 110 | } | |||
| 111 | ||||
| 112 | ||||
| 113 | // Set the interpolation method | |||
| 114 | cmsBool _cmsSetInterpolationRoutine(cmsContext ContextID, cmsInterpParams* p) | |||
| 115 | { | |||
| 116 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); | |||
| 117 | ||||
| 118 | p ->Interpolation.Lerp16 = NULL((void*)0); | |||
| 119 | ||||
| 120 | // Invoke factory, possibly in the Plug-in | |||
| 121 | if (ptr ->Interpolators != NULL((void*)0)) | |||
| 122 | p ->Interpolation = ptr->Interpolators(p -> nInputs, p ->nOutputs, p ->dwFlags); | |||
| 123 | ||||
| 124 | // If unsupported by the plug-in, go for the LittleCMS default. | |||
| 125 | // If happens only if an extern plug-in is being used | |||
| 126 | if (p ->Interpolation.Lerp16 == NULL((void*)0)) | |||
| 127 | p ->Interpolation = DefaultInterpolatorsFactory(p ->nInputs, p ->nOutputs, p ->dwFlags); | |||
| 128 | ||||
| 129 | // Check for valid interpolator (we just check one member of the union) | |||
| 130 | if (p ->Interpolation.Lerp16 == NULL((void*)0)) { | |||
| 131 | return FALSE0; | |||
| 132 | } | |||
| 133 | ||||
| 134 | return TRUE1; | |||
| 135 | } | |||
| 136 | ||||
| 137 | ||||
| 138 | // This function precalculates as many parameters as possible to speed up the interpolation. | |||
| 139 | cmsInterpParams* _cmsComputeInterpParamsEx(cmsContext ContextID, | |||
| 140 | const cmsUInt32Number nSamples[], | |||
| 141 | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, | |||
| 142 | const void *Table, | |||
| 143 | cmsUInt32Number dwFlags) | |||
| 144 | { | |||
| 145 | cmsInterpParams* p; | |||
| 146 | cmsUInt32Number i; | |||
| 147 | ||||
| 148 | // Check for maximum inputs | |||
| 149 | if (InputChan > MAX_INPUT_DIMENSIONS15) { | |||
| 150 | cmsSignalError(ContextID, cmsERROR_RANGE2, "Too many input channels (%d channels, max=%d)", InputChan, MAX_INPUT_DIMENSIONS15); | |||
| 151 | return NULL((void*)0); | |||
| 152 | } | |||
| 153 | ||||
| 154 | // Creates an empty object | |||
| 155 | p = (cmsInterpParams*) _cmsMallocZero(ContextID, sizeof(cmsInterpParams)); | |||
| 156 | if (p == NULL((void*)0)) return NULL((void*)0); | |||
| 157 | ||||
| 158 | // Keep original parameters | |||
| 159 | p -> dwFlags = dwFlags; | |||
| 160 | p -> nInputs = InputChan; | |||
| 161 | p -> nOutputs = OutputChan; | |||
| 162 | p ->Table = Table; | |||
| 163 | p ->ContextID = ContextID; | |||
| 164 | ||||
| 165 | // Fill samples per input direction and domain (which is number of nodes minus one) | |||
| 166 | for (i=0; i < InputChan; i++) { | |||
| 167 | ||||
| 168 | p -> nSamples[i] = nSamples[i]; | |||
| 169 | p -> Domain[i] = nSamples[i] - 1; | |||
| 170 | } | |||
| 171 | ||||
| 172 | // Compute factors to apply to each component to index the grid array | |||
| 173 | p -> opta[0] = p -> nOutputs; | |||
| 174 | for (i=1; i < InputChan; i++) | |||
| 175 | p ->opta[i] = p ->opta[i-1] * nSamples[InputChan-i]; | |||
| 176 | ||||
| 177 | ||||
| 178 | if (!_cmsSetInterpolationRoutine(ContextID, p)) { | |||
| 179 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION8, "Unsupported interpolation (%d->%d channels)", InputChan, OutputChan); | |||
| 180 | _cmsFree(ContextID, p); | |||
| 181 | return NULL((void*)0); | |||
| 182 | } | |||
| 183 | ||||
| 184 | // All seems ok | |||
| 185 | return p; | |||
| 186 | } | |||
| 187 | ||||
| 188 | ||||
| 189 | // This one is a wrapper on the anterior, but assuming all directions have same number of nodes | |||
| 190 | cmsInterpParams* CMSEXPORT _cmsComputeInterpParams(cmsContext ContextID, cmsUInt32Number nSamples, | |||
| 191 | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, const void* Table, cmsUInt32Number dwFlags) | |||
| 192 | { | |||
| 193 | int i; | |||
| 194 | cmsUInt32Number Samples[MAX_INPUT_DIMENSIONS15]; | |||
| 195 | ||||
| 196 | // Fill the auxiliary array | |||
| 197 | for (i=0; i < MAX_INPUT_DIMENSIONS15; i++) | |||
| 198 | Samples[i] = nSamples; | |||
| 199 | ||||
| 200 | // Call the extended function | |||
| 201 | return _cmsComputeInterpParamsEx(ContextID, Samples, InputChan, OutputChan, Table, dwFlags); | |||
| 202 | } | |||
| 203 | ||||
| 204 | ||||
| 205 | // Free all associated memory | |||
| 206 | void CMSEXPORT _cmsFreeInterpParams(cmsInterpParams* p) | |||
| 207 | { | |||
| 208 | if (p != NULL((void*)0)) _cmsFree(p ->ContextID, p); | |||
| 209 | } | |||
| 210 | ||||
| 211 | ||||
| 212 | // Inline fixed point interpolation | |||
| 213 | cmsINLINEstatic inline CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) cmsUInt16Number LinearInterp(cmsS15Fixed16Number a, cmsS15Fixed16Number l, cmsS15Fixed16Number h) | |||
| 214 | { | |||
| 215 | cmsUInt32Number dif = (cmsUInt32Number) (h - l) * a + 0x8000; | |||
| 216 | dif = (dif >> 16) + l; | |||
| 217 | return (cmsUInt16Number) (dif); | |||
| 218 | } | |||
| 219 | ||||
| 220 | ||||
| 221 | // Linear interpolation (Fixed-point optimized) | |||
| 222 | static | |||
| 223 | void LinLerp1D(CMSREGISTERregister const cmsUInt16Number Value[], | |||
| 224 | CMSREGISTERregister cmsUInt16Number Output[], | |||
| 225 | CMSREGISTERregister const cmsInterpParams* p) | |||
| 226 | { | |||
| 227 | cmsUInt16Number y1, y0; | |||
| 228 | int cell0, rest; | |||
| 229 | int val3; | |||
| 230 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; | |||
| 231 | ||||
| 232 | // if last value... | |||
| 233 | if (Value[0] == 0xffff) { | |||
| 234 | ||||
| 235 | Output[0] = LutTable[p -> Domain[0]]; | |||
| 236 | } | |||
| 237 | else | |||
| 238 | { | |||
| 239 | val3 = p->Domain[0] * Value[0]; | |||
| 240 | val3 = _cmsToFixedDomain(val3); // To fixed 15.16 | |||
| 241 | ||||
| 242 | cell0 = FIXED_TO_INT(val3)((val3)>>16); // Cell is 16 MSB bits | |||
| 243 | rest = FIXED_REST_TO_INT(val3)((val3)&0xFFFFU); // Rest is 16 LSB bits | |||
| 244 | ||||
| 245 | y0 = LutTable[cell0]; | |||
| 246 | y1 = LutTable[cell0 + 1]; | |||
| 247 | ||||
| 248 | Output[0] = LinearInterp(rest, y0, y1); | |||
| 249 | } | |||
| 250 | } | |||
| 251 | ||||
| 252 | // To prevent out of bounds indexing | |||
| 253 | cmsINLINEstatic inline cmsFloat32Number fclamp(cmsFloat32Number v) | |||
| 254 | { | |||
| 255 | return ((v < 1.0e-9f) || isnan(v)(sizeof ((v)) == sizeof (float) ? __isnanf (v) : sizeof ((v)) == sizeof (double) ? __isnan (v) : __isnanl (v))) ? 0.0f : (v > 1.0f ? 1.0f : v); | |||
| 256 | } | |||
| 257 | ||||
| 258 | // Floating-point version of 1D interpolation | |||
| 259 | static | |||
| 260 | void LinLerp1Dfloat(const cmsFloat32Number Value[], | |||
| 261 | cmsFloat32Number Output[], | |||
| 262 | const cmsInterpParams* p) | |||
| 263 | { | |||
| 264 | cmsFloat32Number y1, y0; | |||
| 265 | cmsFloat32Number val2, rest; | |||
| 266 | int cell0, cell1; | |||
| 267 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |||
| 268 | ||||
| 269 | val2 = fclamp(Value[0]); | |||
| 270 | ||||
| 271 | // if last value... | |||
| 272 | if (val2 == 1.0) { | |||
| 273 | Output[0] = LutTable[p -> Domain[0]]; | |||
| 274 | } | |||
| 275 | else | |||
| 276 | { | |||
| 277 | val2 *= p->Domain[0]; | |||
| 278 | ||||
| 279 | cell0 = (int)floor(val2); | |||
| 280 | cell1 = (int)ceil(val2); | |||
| 281 | ||||
| 282 | // Rest is 16 LSB bits | |||
| 283 | rest = val2 - cell0; | |||
| 284 | ||||
| 285 | y0 = LutTable[cell0]; | |||
| 286 | y1 = LutTable[cell1]; | |||
| 287 | ||||
| 288 | Output[0] = y0 + (y1 - y0) * rest; | |||
| 289 | } | |||
| 290 | } | |||
| 291 | ||||
| 292 | ||||
| 293 | ||||
| 294 | // Eval gray LUT having only one input channel | |||
| 295 | static CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) | |||
| 296 | void Eval1Input(CMSREGISTERregister const cmsUInt16Number Input[], | |||
| 297 | CMSREGISTERregister cmsUInt16Number Output[], | |||
| 298 | CMSREGISTERregister const cmsInterpParams* p16) | |||
| 299 | { | |||
| 300 | cmsS15Fixed16Number fk; | |||
| 301 | cmsS15Fixed16Number k0, k1, rk, K0, K1; | |||
| 302 | int v; | |||
| 303 | cmsUInt32Number OutChan; | |||
| 304 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; | |||
| 305 | ||||
| 306 | v = Input[0] * p16 -> Domain[0]; | |||
| 307 | fk = _cmsToFixedDomain(v); | |||
| 308 | ||||
| 309 | k0 = FIXED_TO_INT(fk)((fk)>>16); | |||
| 310 | rk = (cmsUInt16Number) FIXED_REST_TO_INT(fk)((fk)&0xFFFFU); | |||
| 311 | ||||
| 312 | k1 = k0 + (Input[0] != 0xFFFFU ? 1 : 0); | |||
| 313 | ||||
| 314 | K0 = p16 -> opta[0] * k0; | |||
| 315 | K1 = p16 -> opta[0] * k1; | |||
| 316 | ||||
| 317 | for (OutChan=0; OutChan < p16->nOutputs; OutChan++) { | |||
| 318 | ||||
| 319 | Output[OutChan] = LinearInterp(rk, LutTable[K0+OutChan], LutTable[K1+OutChan]); | |||
| 320 | } | |||
| 321 | } | |||
| 322 | ||||
| 323 | ||||
| 324 | ||||
| 325 | // Eval gray LUT having only one input channel | |||
| 326 | static | |||
| 327 | void Eval1InputFloat(const cmsFloat32Number Value[], | |||
| 328 | cmsFloat32Number Output[], | |||
| 329 | const cmsInterpParams* p) | |||
| 330 | { | |||
| 331 | cmsFloat32Number y1, y0; | |||
| 332 | cmsFloat32Number val2, rest; | |||
| 333 | int cell0, cell1; | |||
| 334 | cmsUInt32Number OutChan; | |||
| 335 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |||
| 336 | ||||
| 337 | val2 = fclamp(Value[0]); | |||
| 338 | ||||
| 339 | // if last value... | |||
| 340 | if (val2 == 1.0) { | |||
| 341 | ||||
| 342 | y0 = LutTable[p->Domain[0]]; | |||
| 343 | ||||
| 344 | for (OutChan = 0; OutChan < p->nOutputs; OutChan++) { | |||
| 345 | Output[OutChan] = y0; | |||
| 346 | } | |||
| 347 | } | |||
| 348 | else | |||
| 349 | { | |||
| 350 | val2 *= p->Domain[0]; | |||
| 351 | ||||
| 352 | cell0 = (int)floor(val2); | |||
| 353 | cell1 = (int)ceil(val2); | |||
| 354 | ||||
| 355 | // Rest is 16 LSB bits | |||
| 356 | rest = val2 - cell0; | |||
| 357 | ||||
| 358 | cell0 *= p->opta[0]; | |||
| 359 | cell1 *= p->opta[0]; | |||
| 360 | ||||
| 361 | for (OutChan = 0; OutChan < p->nOutputs; OutChan++) { | |||
| 362 | ||||
| 363 | y0 = LutTable[cell0 + OutChan]; | |||
| 364 | y1 = LutTable[cell1 + OutChan]; | |||
| 365 | ||||
| 366 | Output[OutChan] = y0 + (y1 - y0) * rest; | |||
| 367 | } | |||
| 368 | } | |||
| 369 | } | |||
| 370 | ||||
| 371 | // Bilinear interpolation (16 bits) - cmsFloat32Number version | |||
| 372 | static | |||
| 373 | void BilinearInterpFloat(const cmsFloat32Number Input[], | |||
| 374 | cmsFloat32Number Output[], | |||
| 375 | const cmsInterpParams* p) | |||
| 376 | ||||
| 377 | { | |||
| 378 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) | |||
| 379 | # define DENS(i,j) (LutTable[(i)+(j)+OutChan]) | |||
| 380 | ||||
| 381 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |||
| 382 | cmsFloat32Number px, py; | |||
| 383 | int x0, y0, | |||
| 384 | X0, Y0, X1, Y1; | |||
| 385 | int TotalOut, OutChan; | |||
| 386 | cmsFloat32Number fx, fy, | |||
| 387 | d00, d01, d10, d11, | |||
| 388 | dx0, dx1, | |||
| 389 | dxy; | |||
| 390 | ||||
| 391 | TotalOut = p -> nOutputs; | |||
| 392 | px = fclamp(Input[0]) * p->Domain[0]; | |||
| 393 | py = fclamp(Input[1]) * p->Domain[1]; | |||
| 394 | ||||
| 395 | x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0; | |||
| 396 | y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0; | |||
| 397 | ||||
| 398 | X0 = p -> opta[1] * x0; | |||
| 399 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[1]); | |||
| 400 | ||||
| 401 | Y0 = p -> opta[0] * y0; | |||
| 402 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[0]); | |||
| 403 | ||||
| 404 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |||
| 405 | ||||
| 406 | d00 = DENS(X0, Y0); | |||
| 407 | d01 = DENS(X0, Y1); | |||
| 408 | d10 = DENS(X1, Y0); | |||
| 409 | d11 = DENS(X1, Y1); | |||
| 410 | ||||
| 411 | dx0 = LERP(fx, d00, d10); | |||
| 412 | dx1 = LERP(fx, d01, d11); | |||
| 413 | ||||
| 414 | dxy = LERP(fy, dx0, dx1); | |||
| 415 | ||||
| 416 | Output[OutChan] = dxy; | |||
| 417 | } | |||
| 418 | ||||
| 419 | ||||
| 420 | # undef LERP | |||
| 421 | # undef DENS | |||
| 422 | } | |||
| 423 | ||||
| 424 | // Bilinear interpolation (16 bits) - optimized version | |||
| 425 | static CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) | |||
| 426 | void BilinearInterp16(CMSREGISTERregister const cmsUInt16Number Input[], | |||
| 427 | CMSREGISTERregister cmsUInt16Number Output[], | |||
| 428 | CMSREGISTERregister const cmsInterpParams* p) | |||
| 429 | ||||
| 430 | { | |||
| 431 | #define DENS(i,j) (LutTable[(i)+(j)+OutChan]) | |||
| 432 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))(((((h-l)*a))+0x8000)>>16)) | |||
| 433 | ||||
| 434 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; | |||
| 435 | int OutChan, TotalOut; | |||
| 436 | cmsS15Fixed16Number fx, fy; | |||
| 437 | CMSREGISTERregister int rx, ry; | |||
| 438 | int x0, y0; | |||
| 439 | CMSREGISTERregister int X0, X1, Y0, Y1; | |||
| 440 | ||||
| 441 | int d00, d01, d10, d11, | |||
| 442 | dx0, dx1, | |||
| 443 | dxy; | |||
| 444 | ||||
| 445 | TotalOut = p -> nOutputs; | |||
| 446 | ||||
| 447 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); | |||
| 448 | x0 = FIXED_TO_INT(fx)((fx)>>16); | |||
| 449 | rx = FIXED_REST_TO_INT(fx)((fx)&0xFFFFU); // Rest in 0..1.0 domain | |||
| 450 | ||||
| 451 | ||||
| 452 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); | |||
| 453 | y0 = FIXED_TO_INT(fy)((fy)>>16); | |||
| 454 | ry = FIXED_REST_TO_INT(fy)((fy)&0xFFFFU); | |||
| 455 | ||||
| 456 | ||||
| 457 | X0 = p -> opta[1] * x0; | |||
| 458 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[1]); | |||
| 459 | ||||
| 460 | Y0 = p -> opta[0] * y0; | |||
| 461 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[0]); | |||
| 462 | ||||
| 463 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |||
| 464 | ||||
| 465 | d00 = DENS(X0, Y0); | |||
| 466 | d01 = DENS(X0, Y1); | |||
| 467 | d10 = DENS(X1, Y0); | |||
| 468 | d11 = DENS(X1, Y1); | |||
| 469 | ||||
| 470 | dx0 = LERP(rx, d00, d10); | |||
| 471 | dx1 = LERP(rx, d01, d11); | |||
| 472 | ||||
| 473 | dxy = LERP(ry, dx0, dx1); | |||
| 474 | ||||
| 475 | Output[OutChan] = (cmsUInt16Number) dxy; | |||
| 476 | } | |||
| 477 | ||||
| 478 | ||||
| 479 | # undef LERP | |||
| 480 | # undef DENS | |||
| 481 | } | |||
| 482 | ||||
| 483 | ||||
| 484 | // Trilinear interpolation (16 bits) - cmsFloat32Number version | |||
| 485 | static | |||
| 486 | void TrilinearInterpFloat(const cmsFloat32Number Input[], | |||
| 487 | cmsFloat32Number Output[], | |||
| 488 | const cmsInterpParams* p) | |||
| 489 | ||||
| 490 | { | |||
| 491 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) | |||
| 492 | # define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |||
| 493 | ||||
| 494 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |||
| 495 | cmsFloat32Number px, py, pz; | |||
| 496 | int x0, y0, z0, | |||
| 497 | X0, Y0, Z0, X1, Y1, Z1; | |||
| 498 | int TotalOut, OutChan; | |||
| 499 | ||||
| 500 | cmsFloat32Number fx, fy, fz, | |||
| 501 | d000, d001, d010, d011, | |||
| 502 | d100, d101, d110, d111, | |||
| 503 | dx00, dx01, dx10, dx11, | |||
| 504 | dxy0, dxy1, dxyz; | |||
| 505 | ||||
| 506 | TotalOut = p -> nOutputs; | |||
| 507 | ||||
| 508 | // We need some clipping here | |||
| 509 | px = fclamp(Input[0]) * p->Domain[0]; | |||
| 510 | py = fclamp(Input[1]) * p->Domain[1]; | |||
| 511 | pz = fclamp(Input[2]) * p->Domain[2]; | |||
| 512 | ||||
| 513 | x0 = (int) floor(px); fx = px - (cmsFloat32Number) x0; // We need full floor funcionality here | |||
| 514 | y0 = (int) floor(py); fy = py - (cmsFloat32Number) y0; | |||
| 515 | z0 = (int) floor(pz); fz = pz - (cmsFloat32Number) z0; | |||
| 516 | ||||
| 517 | X0 = p -> opta[2] * x0; | |||
| 518 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); | |||
| 519 | ||||
| 520 | Y0 = p -> opta[1] * y0; | |||
| 521 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); | |||
| 522 | ||||
| 523 | Z0 = p -> opta[0] * z0; | |||
| 524 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); | |||
| 525 | ||||
| 526 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |||
| 527 | ||||
| 528 | d000 = DENS(X0, Y0, Z0); | |||
| 529 | d001 = DENS(X0, Y0, Z1); | |||
| 530 | d010 = DENS(X0, Y1, Z0); | |||
| 531 | d011 = DENS(X0, Y1, Z1); | |||
| 532 | ||||
| 533 | d100 = DENS(X1, Y0, Z0); | |||
| 534 | d101 = DENS(X1, Y0, Z1); | |||
| 535 | d110 = DENS(X1, Y1, Z0); | |||
| 536 | d111 = DENS(X1, Y1, Z1); | |||
| 537 | ||||
| 538 | ||||
| 539 | dx00 = LERP(fx, d000, d100); | |||
| 540 | dx01 = LERP(fx, d001, d101); | |||
| 541 | dx10 = LERP(fx, d010, d110); | |||
| 542 | dx11 = LERP(fx, d011, d111); | |||
| 543 | ||||
| 544 | dxy0 = LERP(fy, dx00, dx10); | |||
| 545 | dxy1 = LERP(fy, dx01, dx11); | |||
| 546 | ||||
| 547 | dxyz = LERP(fz, dxy0, dxy1); | |||
| 548 | ||||
| 549 | Output[OutChan] = dxyz; | |||
| 550 | } | |||
| 551 | ||||
| 552 | ||||
| 553 | # undef LERP | |||
| 554 | # undef DENS | |||
| 555 | } | |||
| 556 | ||||
| 557 | // Trilinear interpolation (16 bits) - optimized version | |||
| 558 | static CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) | |||
| 559 | void TrilinearInterp16(CMSREGISTERregister const cmsUInt16Number Input[], | |||
| 560 | CMSREGISTERregister cmsUInt16Number Output[], | |||
| 561 | CMSREGISTERregister const cmsInterpParams* p) | |||
| 562 | ||||
| 563 | { | |||
| 564 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |||
| 565 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))(((((h-l)*a))+0x8000)>>16)) | |||
| 566 | ||||
| 567 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; | |||
| 568 | int OutChan, TotalOut; | |||
| 569 | cmsS15Fixed16Number fx, fy, fz; | |||
| 570 | CMSREGISTERregister int rx, ry, rz; | |||
| 571 | int x0, y0, z0; | |||
| 572 | CMSREGISTERregister int X0, X1, Y0, Y1, Z0, Z1; | |||
| 573 | int d000, d001, d010, d011, | |||
| 574 | d100, d101, d110, d111, | |||
| 575 | dx00, dx01, dx10, dx11, | |||
| 576 | dxy0, dxy1, dxyz; | |||
| 577 | ||||
| 578 | TotalOut = p -> nOutputs; | |||
| 579 | ||||
| 580 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); | |||
| 581 | x0 = FIXED_TO_INT(fx)((fx)>>16); | |||
| 582 | rx = FIXED_REST_TO_INT(fx)((fx)&0xFFFFU); // Rest in 0..1.0 domain | |||
| 583 | ||||
| 584 | ||||
| 585 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); | |||
| 586 | y0 = FIXED_TO_INT(fy)((fy)>>16); | |||
| 587 | ry = FIXED_REST_TO_INT(fy)((fy)&0xFFFFU); | |||
| 588 | ||||
| 589 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); | |||
| 590 | z0 = FIXED_TO_INT(fz)((fz)>>16); | |||
| 591 | rz = FIXED_REST_TO_INT(fz)((fz)&0xFFFFU); | |||
| 592 | ||||
| 593 | ||||
| 594 | X0 = p -> opta[2] * x0; | |||
| 595 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[2]); | |||
| 596 | ||||
| 597 | Y0 = p -> opta[1] * y0; | |||
| 598 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[1]); | |||
| 599 | ||||
| 600 | Z0 = p -> opta[0] * z0; | |||
| 601 | Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta[0]); | |||
| 602 | ||||
| 603 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |||
| 604 | ||||
| 605 | d000 = DENS(X0, Y0, Z0); | |||
| 606 | d001 = DENS(X0, Y0, Z1); | |||
| 607 | d010 = DENS(X0, Y1, Z0); | |||
| 608 | d011 = DENS(X0, Y1, Z1); | |||
| 609 | ||||
| 610 | d100 = DENS(X1, Y0, Z0); | |||
| 611 | d101 = DENS(X1, Y0, Z1); | |||
| 612 | d110 = DENS(X1, Y1, Z0); | |||
| 613 | d111 = DENS(X1, Y1, Z1); | |||
| 614 | ||||
| 615 | ||||
| 616 | dx00 = LERP(rx, d000, d100); | |||
| 617 | dx01 = LERP(rx, d001, d101); | |||
| 618 | dx10 = LERP(rx, d010, d110); | |||
| 619 | dx11 = LERP(rx, d011, d111); | |||
| 620 | ||||
| 621 | dxy0 = LERP(ry, dx00, dx10); | |||
| 622 | dxy1 = LERP(ry, dx01, dx11); | |||
| 623 | ||||
| 624 | dxyz = LERP(rz, dxy0, dxy1); | |||
| 625 | ||||
| 626 | Output[OutChan] = (cmsUInt16Number) dxyz; | |||
| 627 | } | |||
| 628 | ||||
| 629 | ||||
| 630 | # undef LERP | |||
| 631 | # undef DENS | |||
| 632 | } | |||
| 633 | ||||
| 634 | ||||
| 635 | // Tetrahedral interpolation, using Sakamoto algorithm. | |||
| 636 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |||
| 637 | static | |||
| 638 | void TetrahedralInterpFloat(const cmsFloat32Number Input[], | |||
| 639 | cmsFloat32Number Output[], | |||
| 640 | const cmsInterpParams* p) | |||
| 641 | { | |||
| 642 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; | |||
| 643 | cmsFloat32Number px, py, pz; | |||
| 644 | int x0, y0, z0, | |||
| 645 | X0, Y0, Z0, X1, Y1, Z1; | |||
| 646 | cmsFloat32Number rx, ry, rz; | |||
| 647 | cmsFloat32Number c0, c1=0, c2=0, c3=0; | |||
| 648 | int OutChan, TotalOut; | |||
| 649 | ||||
| 650 | TotalOut = p -> nOutputs; | |||
| 651 | ||||
| 652 | // We need some clipping here | |||
| 653 | px = fclamp(Input[0]) * p->Domain[0]; | |||
| 654 | py = fclamp(Input[1]) * p->Domain[1]; | |||
| 655 | pz = fclamp(Input[2]) * p->Domain[2]; | |||
| 656 | ||||
| 657 | x0 = (int) floor(px); rx = (px - (cmsFloat32Number) x0); // We need full floor functionality here | |||
| 658 | y0 = (int) floor(py); ry = (py - (cmsFloat32Number) y0); | |||
| 659 | z0 = (int) floor(pz); rz = (pz - (cmsFloat32Number) z0); | |||
| 660 | ||||
| 661 | ||||
| 662 | X0 = p -> opta[2] * x0; | |||
| 663 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); | |||
| 664 | ||||
| 665 | Y0 = p -> opta[1] * y0; | |||
| 666 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); | |||
| 667 | ||||
| 668 | Z0 = p -> opta[0] * z0; | |||
| 669 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); | |||
| 670 | ||||
| 671 | for (OutChan=0; OutChan < TotalOut; OutChan++) { | |||
| 672 | ||||
| 673 | // These are the 6 Tetrahedral | |||
| 674 | ||||
| 675 | c0 = DENS(X0, Y0, Z0); | |||
| 676 | ||||
| 677 | if (rx >= ry && ry >= rz) { | |||
| 678 | ||||
| 679 | c1 = DENS(X1, Y0, Z0) - c0; | |||
| 680 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |||
| 681 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
| 682 | ||||
| 683 | } | |||
| 684 | else | |||
| 685 | if (rx >= rz && rz >= ry) { | |||
| 686 | ||||
| 687 | c1 = DENS(X1, Y0, Z0) - c0; | |||
| 688 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
| 689 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |||
| 690 | ||||
| 691 | } | |||
| 692 | else | |||
| 693 | if (rz >= rx && rx >= ry) { | |||
| 694 | ||||
| 695 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |||
| 696 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
| 697 | c3 = DENS(X0, Y0, Z1) - c0; | |||
| 698 | ||||
| 699 | } | |||
| 700 | else | |||
| 701 | if (ry >= rx && rx >= rz) { | |||
| 702 | ||||
| 703 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |||
| 704 | c2 = DENS(X0, Y1, Z0) - c0; | |||
| 705 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
| 706 | ||||
| 707 | } | |||
| 708 | else | |||
| 709 | if (ry >= rz && rz >= rx) { | |||
| 710 | ||||
| 711 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
| 712 | c2 = DENS(X0, Y1, Z0) - c0; | |||
| 713 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |||
| 714 | ||||
| 715 | } | |||
| 716 | else | |||
| 717 | if (rz >= ry && ry >= rx) { | |||
| 718 | ||||
| 719 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
| 720 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |||
| 721 | c3 = DENS(X0, Y0, Z1) - c0; | |||
| 722 | ||||
| 723 | } | |||
| 724 | else { | |||
| 725 | c1 = c2 = c3 = 0; | |||
| 726 | } | |||
| 727 | ||||
| 728 | Output[OutChan] = c0 + c1 * rx + c2 * ry + c3 * rz; | |||
| 729 | } | |||
| 730 | ||||
| 731 | } | |||
| 732 | ||||
| 733 | #undef DENS | |||
| 734 | ||||
| 735 | static CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) | |||
| 736 | void TetrahedralInterp16(CMSREGISTERregister const cmsUInt16Number Input[], | |||
| 737 | CMSREGISTERregister cmsUInt16Number Output[], | |||
| 738 | CMSREGISTERregister const cmsInterpParams* p) | |||
| 739 | { | |||
| 740 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p -> Table; | |||
| 741 | cmsS15Fixed16Number fx, fy, fz; | |||
| 742 | cmsS15Fixed16Number rx, ry, rz; | |||
| 743 | int x0, y0, z0; | |||
| 744 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; | |||
| 745 | cmsUInt32Number X0, X1, Y0, Y1, Z0, Z1; | |||
| 746 | cmsUInt32Number TotalOut = p -> nOutputs; | |||
| 747 | ||||
| 748 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); | |||
| 749 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); | |||
| 750 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); | |||
| 751 | ||||
| 752 | x0 = FIXED_TO_INT(fx)((fx)>>16); | |||
| 753 | y0 = FIXED_TO_INT(fy)((fy)>>16); | |||
| 754 | z0 = FIXED_TO_INT(fz)((fz)>>16); | |||
| 755 | ||||
| 756 | rx = FIXED_REST_TO_INT(fx)((fx)&0xFFFFU); | |||
| 757 | ry = FIXED_REST_TO_INT(fy)((fy)&0xFFFFU); | |||
| 758 | rz = FIXED_REST_TO_INT(fz)((fz)&0xFFFFU); | |||
| 759 | ||||
| 760 | X0 = p -> opta[2] * x0; | |||
| 761 | X1 = (Input[0] == 0xFFFFU ? 0 : p->opta[2]); | |||
| 762 | ||||
| 763 | Y0 = p -> opta[1] * y0; | |||
| 764 | Y1 = (Input[1] == 0xFFFFU ? 0 : p->opta[1]); | |||
| 765 | ||||
| 766 | Z0 = p -> opta[0] * z0; | |||
| 767 | Z1 = (Input[2] == 0xFFFFU ? 0 : p->opta[0]); | |||
| 768 | ||||
| 769 | LutTable += X0+Y0+Z0; | |||
| 770 | ||||
| 771 | // Output should be computed as x = ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)) | |||
| 772 | // which expands as: x = (Rest + ((Rest+0x7fff)/0xFFFF) + 0x8000)>>16 | |||
| 773 | // This can be replaced by: t = Rest+0x8001, x = (t + (t>>16))>>16 | |||
| 774 | // at the cost of being off by one at 7fff and 17ffe. | |||
| 775 | ||||
| 776 | if (rx >= ry) { | |||
| 777 | if (ry >= rz) { | |||
| 778 | Y1 += X1; | |||
| 779 | Z1 += Y1; | |||
| 780 | for (; TotalOut; TotalOut--) { | |||
| 781 | c1 = LutTable[X1]; | |||
| 782 | c2 = LutTable[Y1]; | |||
| 783 | c3 = LutTable[Z1]; | |||
| 784 | c0 = *LutTable++; | |||
| 785 | c3 -= c2; | |||
| 786 | c2 -= c1; | |||
| 787 | c1 -= c0; | |||
| 788 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |||
| 789 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |||
| 790 | } | |||
| 791 | } else if (rz >= rx) { | |||
| 792 | X1 += Z1; | |||
| 793 | Y1 += X1; | |||
| 794 | for (; TotalOut; TotalOut--) { | |||
| 795 | c1 = LutTable[X1]; | |||
| 796 | c2 = LutTable[Y1]; | |||
| 797 | c3 = LutTable[Z1]; | |||
| 798 | c0 = *LutTable++; | |||
| 799 | c2 -= c1; | |||
| 800 | c1 -= c3; | |||
| 801 | c3 -= c0; | |||
| 802 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |||
| 803 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |||
| 804 | } | |||
| 805 | } else { | |||
| 806 | Z1 += X1; | |||
| 807 | Y1 += Z1; | |||
| 808 | for (; TotalOut; TotalOut--) { | |||
| 809 | c1 = LutTable[X1]; | |||
| 810 | c2 = LutTable[Y1]; | |||
| 811 | c3 = LutTable[Z1]; | |||
| 812 | c0 = *LutTable++; | |||
| 813 | c2 -= c3; | |||
| 814 | c3 -= c1; | |||
| 815 | c1 -= c0; | |||
| 816 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |||
| 817 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |||
| 818 | } | |||
| 819 | } | |||
| 820 | } else { | |||
| 821 | if (rx >= rz) { | |||
| 822 | X1 += Y1; | |||
| 823 | Z1 += X1; | |||
| 824 | for (; TotalOut; TotalOut--) { | |||
| 825 | c1 = LutTable[X1]; | |||
| 826 | c2 = LutTable[Y1]; | |||
| 827 | c3 = LutTable[Z1]; | |||
| 828 | c0 = *LutTable++; | |||
| 829 | c3 -= c1; | |||
| 830 | c1 -= c2; | |||
| 831 | c2 -= c0; | |||
| 832 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |||
| 833 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |||
| 834 | } | |||
| 835 | } else if (ry >= rz) { | |||
| 836 | Z1 += Y1; | |||
| 837 | X1 += Z1; | |||
| 838 | for (; TotalOut; TotalOut--) { | |||
| 839 | c1 = LutTable[X1]; | |||
| 840 | c2 = LutTable[Y1]; | |||
| 841 | c3 = LutTable[Z1]; | |||
| 842 | c0 = *LutTable++; | |||
| 843 | c1 -= c3; | |||
| 844 | c3 -= c2; | |||
| 845 | c2 -= c0; | |||
| 846 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |||
| 847 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |||
| 848 | } | |||
| 849 | } else { | |||
| 850 | Y1 += Z1; | |||
| 851 | X1 += Y1; | |||
| 852 | for (; TotalOut; TotalOut--) { | |||
| 853 | c1 = LutTable[X1]; | |||
| 854 | c2 = LutTable[Y1]; | |||
| 855 | c3 = LutTable[Z1]; | |||
| 856 | c0 = *LutTable++; | |||
| 857 | c1 -= c2; | |||
| 858 | c2 -= c3; | |||
| 859 | c3 -= c0; | |||
| 860 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |||
| 861 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |||
| 862 | } | |||
| 863 | } | |||
| 864 | } | |||
| 865 | } | |||
| 866 | ||||
| 867 | ||||
| 868 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |||
| 869 | static CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) | |||
| 870 | void Eval4Inputs(CMSREGISTERregister const cmsUInt16Number Input[], | |||
| 871 | CMSREGISTERregister cmsUInt16Number Output[], | |||
| 872 | CMSREGISTERregister const cmsInterpParams* p16) | |||
| 873 | { | |||
| 874 | const cmsUInt16Number* LutTable; | |||
| 875 | cmsS15Fixed16Number fk; | |||
| 876 | cmsS15Fixed16Number k0, rk; | |||
| 877 | int K0, K1; | |||
| 878 | cmsS15Fixed16Number fx, fy, fz; | |||
| 879 | cmsS15Fixed16Number rx, ry, rz; | |||
| 880 | int x0, y0, z0; | |||
| 881 | cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; | |||
| 882 | cmsUInt32Number i; | |||
| 883 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; | |||
| 884 | cmsUInt32Number OutChan; | |||
| 885 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS128], Tmp2[MAX_STAGE_CHANNELS128]; | |||
| 886 | ||||
| 887 | ||||
| 888 | fk = _cmsToFixedDomain((int) Input[0] * p16 -> Domain[0]); | |||
| 889 | fx = _cmsToFixedDomain((int) Input[1] * p16 -> Domain[1]); | |||
| 890 | fy = _cmsToFixedDomain((int) Input[2] * p16 -> Domain[2]); | |||
| 891 | fz = _cmsToFixedDomain((int) Input[3] * p16 -> Domain[3]); | |||
| 892 | ||||
| 893 | k0 = FIXED_TO_INT(fk)((fk)>>16); | |||
| 894 | x0 = FIXED_TO_INT(fx)((fx)>>16); | |||
| 895 | y0 = FIXED_TO_INT(fy)((fy)>>16); | |||
| 896 | z0 = FIXED_TO_INT(fz)((fz)>>16); | |||
| 897 | ||||
| 898 | rk = FIXED_REST_TO_INT(fk)((fk)&0xFFFFU); | |||
| 899 | rx = FIXED_REST_TO_INT(fx)((fx)&0xFFFFU); | |||
| 900 | ry = FIXED_REST_TO_INT(fy)((fy)&0xFFFFU); | |||
| 901 | rz = FIXED_REST_TO_INT(fz)((fz)&0xFFFFU); | |||
| 902 | ||||
| 903 | K0 = p16 -> opta[3] * k0; | |||
| 904 | K1 = K0 + (Input[0] == 0xFFFFU ? 0 : p16->opta[3]); | |||
| 905 | ||||
| 906 | X0 = p16 -> opta[2] * x0; | |||
| 907 | X1 = X0 + (Input[1] == 0xFFFFU ? 0 : p16->opta[2]); | |||
| 908 | ||||
| 909 | Y0 = p16 -> opta[1] * y0; | |||
| 910 | Y1 = Y0 + (Input[2] == 0xFFFFU ? 0 : p16->opta[1]); | |||
| 911 | ||||
| 912 | Z0 = p16 -> opta[0] * z0; | |||
| 913 | Z1 = Z0 + (Input[3] == 0xFFFFU ? 0 : p16->opta[0]); | |||
| 914 | ||||
| 915 | LutTable = (cmsUInt16Number*) p16 -> Table; | |||
| 916 | LutTable += K0; | |||
| 917 | ||||
| 918 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { | |||
| 919 | ||||
| 920 | c0 = DENS(X0, Y0, Z0); | |||
| 921 | ||||
| 922 | if (rx >= ry && ry >= rz) { | |||
| 923 | ||||
| 924 | c1 = DENS(X1, Y0, Z0) - c0; | |||
| 925 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |||
| 926 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
| 927 | ||||
| 928 | } | |||
| 929 | else | |||
| 930 | if (rx >= rz && rz >= ry) { | |||
| 931 | ||||
| 932 | c1 = DENS(X1, Y0, Z0) - c0; | |||
| 933 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
| 934 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |||
| 935 | ||||
| 936 | } | |||
| 937 | else | |||
| 938 | if (rz >= rx && rx >= ry) { | |||
| 939 | ||||
| 940 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |||
| 941 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
| 942 | c3 = DENS(X0, Y0, Z1) - c0; | |||
| 943 | ||||
| 944 | } | |||
| 945 | else | |||
| 946 | if (ry >= rx && rx >= rz) { | |||
| 947 | ||||
| 948 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |||
| 949 | c2 = DENS(X0, Y1, Z0) - c0; | |||
| 950 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
| 951 | ||||
| 952 | } | |||
| 953 | else | |||
| 954 | if (ry >= rz && rz >= rx) { | |||
| 955 | ||||
| 956 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
| 957 | c2 = DENS(X0, Y1, Z0) - c0; | |||
| 958 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |||
| 959 | ||||
| 960 | } | |||
| 961 | else | |||
| 962 | if (rz >= ry && ry >= rx) { | |||
| 963 | ||||
| 964 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
| 965 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |||
| 966 | c3 = DENS(X0, Y0, Z1) - c0; | |||
| 967 | ||||
| 968 | } | |||
| 969 | else { | |||
| 970 | c1 = c2 = c3 = 0; | |||
| 971 | } | |||
| 972 | ||||
| 973 | Rest = c1 * rx + c2 * ry + c3 * rz; | |||
| 974 | ||||
| 975 | Tmp1[OutChan] = (cmsUInt16Number)(c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))(((_cmsToFixedDomain(Rest))+0x8000)>>16)); | |||
| 976 | } | |||
| 977 | ||||
| 978 | ||||
| 979 | LutTable = (cmsUInt16Number*) p16 -> Table; | |||
| 980 | LutTable += K1; | |||
| 981 | ||||
| 982 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { | |||
| 983 | ||||
| 984 | c0 = DENS(X0, Y0, Z0); | |||
| 985 | ||||
| 986 | if (rx >= ry && ry >= rz) { | |||
| 987 | ||||
| 988 | c1 = DENS(X1, Y0, Z0) - c0; | |||
| 989 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |||
| 990 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
| 991 | ||||
| 992 | } | |||
| 993 | else | |||
| 994 | if (rx >= rz && rz >= ry) { | |||
| 995 | ||||
| 996 | c1 = DENS(X1, Y0, Z0) - c0; | |||
| 997 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
| 998 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |||
| 999 | ||||
| 1000 | } | |||
| 1001 | else | |||
| 1002 | if (rz >= rx && rx >= ry) { | |||
| 1003 | ||||
| 1004 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |||
| 1005 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
| 1006 | c3 = DENS(X0, Y0, Z1) - c0; | |||
| 1007 | ||||
| 1008 | } | |||
| 1009 | else | |||
| 1010 | if (ry >= rx && rx >= rz) { | |||
| 1011 | ||||
| 1012 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |||
| 1013 | c2 = DENS(X0, Y1, Z0) - c0; | |||
| 1014 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
| 1015 | ||||
| 1016 | } | |||
| 1017 | else | |||
| 1018 | if (ry >= rz && rz >= rx) { | |||
| 1019 | ||||
| 1020 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
| 1021 | c2 = DENS(X0, Y1, Z0) - c0; | |||
| 1022 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |||
| 1023 | ||||
| 1024 | } | |||
| 1025 | else | |||
| 1026 | if (rz >= ry && ry >= rx) { | |||
| 1027 | ||||
| 1028 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
| 1029 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |||
| 1030 | c3 = DENS(X0, Y0, Z1) - c0; | |||
| 1031 | ||||
| 1032 | } | |||
| 1033 | else { | |||
| 1034 | c1 = c2 = c3 = 0; | |||
| 1035 | } | |||
| 1036 | ||||
| 1037 | Rest = c1 * rx + c2 * ry + c3 * rz; | |||
| 1038 | ||||
| 1039 | Tmp2[OutChan] = (cmsUInt16Number) (c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))(((_cmsToFixedDomain(Rest))+0x8000)>>16)); | |||
| 1040 | } | |||
| 1041 | ||||
| 1042 | ||||
| 1043 | ||||
| 1044 | for (i=0; i < p16 -> nOutputs; i++) { | |||
| 1045 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); | |||
| 1046 | } | |||
| 1047 | } | |||
| 1048 | #undef DENS | |||
| 1049 | ||||
| 1050 | ||||
| 1051 | // For more that 3 inputs (i.e., CMYK) | |||
| 1052 | // evaluate two 3-dimensional interpolations and then linearly interpolate between them. | |||
| 1053 | static | |||
| 1054 | void Eval4InputsFloat(const cmsFloat32Number Input[], | |||
| 1055 | cmsFloat32Number Output[], | |||
| 1056 | const cmsInterpParams* p) | |||
| 1057 | { | |||
| 1058 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; | |||
| 1059 | cmsFloat32Number rest; | |||
| 1060 | cmsFloat32Number pk; | |||
| 1061 | int k0, K0, K1; | |||
| 1062 | const cmsFloat32Number* T; | |||
| 1063 | cmsUInt32Number i; | |||
| 1064 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS128], Tmp2[MAX_STAGE_CHANNELS128]; | |||
| 1065 | cmsInterpParams p1; | |||
| 1066 | ||||
| 1067 | pk = fclamp(Input[0]) * p->Domain[0]; | |||
| 1068 | k0 = _cmsQuickFloor(pk); | |||
| 1069 | rest = pk - (cmsFloat32Number) k0; | |||
| 1070 | ||||
| 1071 | K0 = p -> opta[3] * k0; | |||
| 1072 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[3]); | |||
| 1073 | ||||
| 1074 | p1 = *p; | |||
| 1075 | memmove(&p1.Domain[0], &p ->Domain[1], 3*sizeof(cmsUInt32Number)); | |||
| 1076 | ||||
| 1077 | T = LutTable + K0; | |||
| 1078 | p1.Table = T; | |||
| 1079 | ||||
| 1080 | TetrahedralInterpFloat(Input + 1, Tmp1, &p1); | |||
| 1081 | ||||
| 1082 | T = LutTable + K1; | |||
| 1083 | p1.Table = T; | |||
| 1084 | TetrahedralInterpFloat(Input + 1, Tmp2, &p1); | |||
| 1085 | ||||
| 1086 | for (i=0; i < p -> nOutputs; i++) | |||
| 1087 | { | |||
| 1088 | cmsFloat32Number y0 = Tmp1[i]; | |||
| 1089 | cmsFloat32Number y1 = Tmp2[i]; | |||
| 1090 | ||||
| 1091 | Output[i] = y0 + (y1 - y0) * rest; | |||
| 1092 | } | |||
| 1093 | } | |||
| 1094 | ||||
| 1095 | #define EVAL_FNS(N,NM)static __attribute__((no_sanitize("signed-integer-overflow")) ) void EvalNInputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [NM] * k0; K1 = p16 -> opta[NM] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], NM*sizeof(cmsUInt32Number)); T = LutTable + K0; p1 .Table = T; EvalNMInputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; EvalNMInputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void EvalNInputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p ){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0 , K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[NM] * k0; K1 = K0 + ( fclamp(Input[0]) >= 1.0 ? 0 : p->opta[NM]); p1 = *p; memmove (&p1.Domain[0], &p ->Domain[1], NM*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; EvalNMInputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; EvalNMInputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} static CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) \ | |||
| 1096 | void Eval##N##Inputs(CMSREGISTERregister const cmsUInt16Number Input[], CMSREGISTERregister cmsUInt16Number Output[], CMSREGISTERregister const cmsInterpParams* p16)\ | |||
| 1097 | {\ | |||
| 1098 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;\ | |||
| 1099 | cmsS15Fixed16Number fk;\ | |||
| 1100 | cmsS15Fixed16Number k0, rk;\ | |||
| 1101 | int K0, K1;\ | |||
| 1102 | const cmsUInt16Number* T;\ | |||
| 1103 | cmsUInt32Number i;\ | |||
| 1104 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS128], Tmp2[MAX_STAGE_CHANNELS128];\ | |||
| 1105 | cmsInterpParams p1;\ | |||
| 1106 | \ | |||
| 1107 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]);\ | |||
| 1108 | k0 = FIXED_TO_INT(fk)((fk)>>16);\ | |||
| 1109 | rk = FIXED_REST_TO_INT(fk)((fk)&0xFFFFU);\ | |||
| 1110 | \ | |||
| 1111 | K0 = p16 -> opta[NM] * k0;\ | |||
| 1112 | K1 = p16 -> opta[NM] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0));\ | |||
| 1113 | \ | |||
| 1114 | p1 = *p16;\ | |||
| 1115 | memmove(&p1.Domain[0], &p16 ->Domain[1], NM*sizeof(cmsUInt32Number));\ | |||
| 1116 | \ | |||
| 1117 | T = LutTable + K0;\ | |||
| 1118 | p1.Table = T;\ | |||
| 1119 | \ | |||
| 1120 | Eval##NM##Inputs(Input + 1, Tmp1, &p1);\ | |||
| 1121 | \ | |||
| 1122 | T = LutTable + K1;\ | |||
| 1123 | p1.Table = T;\ | |||
| 1124 | \ | |||
| 1125 | Eval##NM##Inputs(Input + 1, Tmp2, &p1);\ | |||
| 1126 | \ | |||
| 1127 | for (i=0; i < p16 -> nOutputs; i++) {\ | |||
| 1128 | \ | |||
| 1129 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);\ | |||
| 1130 | }\ | |||
| 1131 | }\ | |||
| 1132 | \ | |||
| 1133 | static void Eval##N##InputsFloat(const cmsFloat32Number Input[], \ | |||
| 1134 | cmsFloat32Number Output[],\ | |||
| 1135 | const cmsInterpParams * p)\ | |||
| 1136 | {\ | |||
| 1137 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;\ | |||
| 1138 | cmsFloat32Number rest;\ | |||
| 1139 | cmsFloat32Number pk;\ | |||
| 1140 | int k0, K0, K1;\ | |||
| 1141 | const cmsFloat32Number* T;\ | |||
| 1142 | cmsUInt32Number i;\ | |||
| 1143 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS128], Tmp2[MAX_STAGE_CHANNELS128];\ | |||
| 1144 | cmsInterpParams p1;\ | |||
| 1145 | \ | |||
| 1146 | pk = fclamp(Input[0]) * p->Domain[0];\ | |||
| 1147 | k0 = _cmsQuickFloor(pk);\ | |||
| 1148 | rest = pk - (cmsFloat32Number) k0;\ | |||
| 1149 | \ | |||
| 1150 | K0 = p -> opta[NM] * k0;\ | |||
| 1151 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[NM]);\ | |||
| 1152 | \ | |||
| 1153 | p1 = *p;\ | |||
| 1154 | memmove(&p1.Domain[0], &p ->Domain[1], NM*sizeof(cmsUInt32Number));\ | |||
| 1155 | \ | |||
| 1156 | T = LutTable + K0;\ | |||
| 1157 | p1.Table = T;\ | |||
| 1158 | \ | |||
| 1159 | Eval##NM##InputsFloat(Input + 1, Tmp1, &p1);\ | |||
| 1160 | \ | |||
| 1161 | T = LutTable + K1;\ | |||
| 1162 | p1.Table = T;\ | |||
| 1163 | \ | |||
| 1164 | Eval##NM##InputsFloat(Input + 1, Tmp2, &p1);\ | |||
| 1165 | \ | |||
| 1166 | for (i=0; i < p -> nOutputs; i++) {\ | |||
| 1167 | \ | |||
| 1168 | cmsFloat32Number y0 = Tmp1[i];\ | |||
| 1169 | cmsFloat32Number y1 = Tmp2[i];\ | |||
| 1170 | \ | |||
| 1171 | Output[i] = y0 + (y1 - y0) * rest;\ | |||
| 1172 | }\ | |||
| 1173 | } | |||
| 1174 | ||||
| 1175 | ||||
| 1176 | /** | |||
| 1177 | * Thanks to Carles Llopis for the templating idea | |||
| 1178 | */ | |||
| 1179 | EVAL_FNS(5, 4)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval5Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [4] * k0; K1 = p16 -> opta[4] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 4*sizeof(cmsUInt32Number)); T = LutTable + K0; p1. Table = T; Eval4Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval4Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval5InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p ){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0 , K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[4] * k0; K1 = K0 + (fclamp (Input[0]) >= 1.0 ? 0 : p->opta[4]); p1 = *p; memmove(& p1.Domain[0], &p ->Domain[1], 4*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval4InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval4InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1180 | EVAL_FNS(6, 5)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval6Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [5] * k0; K1 = p16 -> opta[5] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 5*sizeof(cmsUInt32Number)); T = LutTable + K0; p1. Table = T; Eval5Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval5Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval6InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p ){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0 , K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[5] * k0; K1 = K0 + (fclamp (Input[0]) >= 1.0 ? 0 : p->opta[5]); p1 = *p; memmove(& p1.Domain[0], &p ->Domain[1], 5*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval5InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval5InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1181 | EVAL_FNS(7, 6)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval7Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [6] * k0; K1 = p16 -> opta[6] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 6*sizeof(cmsUInt32Number)); T = LutTable + K0; p1. Table = T; Eval6Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval6Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval7InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p ){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0 , K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[6] * k0; K1 = K0 + (fclamp (Input[0]) >= 1.0 ? 0 : p->opta[6]); p1 = *p; memmove(& p1.Domain[0], &p ->Domain[1], 6*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval6InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval6InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1182 | EVAL_FNS(8, 7)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval8Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [7] * k0; K1 = p16 -> opta[7] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 7*sizeof(cmsUInt32Number)); T = LutTable + K0; p1. Table = T; Eval7Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval7Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval8InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p ){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0 , K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[7] * k0; K1 = K0 + (fclamp (Input[0]) >= 1.0 ? 0 : p->opta[7]); p1 = *p; memmove(& p1.Domain[0], &p ->Domain[1], 7*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval7InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval7InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1183 | EVAL_FNS(9, 8)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval9Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [8] * k0; K1 = p16 -> opta[8] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 8*sizeof(cmsUInt32Number)); T = LutTable + K0; p1. Table = T; Eval8Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval8Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval9InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p ){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0 , K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[8] * k0; K1 = K0 + (fclamp (Input[0]) >= 1.0 ? 0 : p->opta[8]); p1 = *p; memmove(& p1.Domain[0], &p ->Domain[1], 8*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval8InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval8InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1184 | EVAL_FNS(10, 9)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval10Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [9] * k0; K1 = p16 -> opta[9] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 9*sizeof(cmsUInt32Number)); T = LutTable + K0; p1. Table = T; Eval9Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval9Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval10InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0, K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[9] * k0; K1 = K0 + (fclamp (Input[0]) >= 1.0 ? 0 : p->opta[9]); p1 = *p; memmove(& p1.Domain[0], &p ->Domain[1], 9*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval9InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval9InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| ||||
| ||||
| 1185 | EVAL_FNS(11, 10)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval11Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [10] * k0; K1 = p16 -> opta[10] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 10*sizeof(cmsUInt32Number)); T = LutTable + K0; p1 .Table = T; Eval10Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval10Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval11InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0, K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[10] * k0; K1 = K0 + ( fclamp(Input[0]) >= 1.0 ? 0 : p->opta[10]); p1 = *p; memmove (&p1.Domain[0], &p ->Domain[1], 10*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval10InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval10InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1186 | EVAL_FNS(12, 11)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval12Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [11] * k0; K1 = p16 -> opta[11] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 11*sizeof(cmsUInt32Number)); T = LutTable + K0; p1 .Table = T; Eval11Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval11Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval12InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0, K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[11] * k0; K1 = K0 + ( fclamp(Input[0]) >= 1.0 ? 0 : p->opta[11]); p1 = *p; memmove (&p1.Domain[0], &p ->Domain[1], 11*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval11InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval11InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1187 | EVAL_FNS(13, 12)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval13Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [12] * k0; K1 = p16 -> opta[12] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 12*sizeof(cmsUInt32Number)); T = LutTable + K0; p1 .Table = T; Eval12Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval12Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval13InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0, K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[12] * k0; K1 = K0 + ( fclamp(Input[0]) >= 1.0 ? 0 : p->opta[12]); p1 = *p; memmove (&p1.Domain[0], &p ->Domain[1], 12*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval12InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval12InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1188 | EVAL_FNS(14, 13)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval14Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [13] * k0; K1 = p16 -> opta[13] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 13*sizeof(cmsUInt32Number)); T = LutTable + K0; p1 .Table = T; Eval13Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval13Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval14InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0, K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[13] * k0; K1 = K0 + ( fclamp(Input[0]) >= 1.0 ? 0 : p->opta[13]); p1 = *p; memmove (&p1.Domain[0], &p ->Domain[1], 13*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval13InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval13InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1189 | EVAL_FNS(15, 14)static __attribute__((no_sanitize("signed-integer-overflow")) ) void Eval15Inputs(register const cmsUInt16Number Input[], register cmsUInt16Number Output[], register const cmsInterpParams* p16 ){ const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; cmsS15Fixed16Number fk; cmsS15Fixed16Number k0, rk; int K0, K1; const cmsUInt16Number* T; cmsUInt32Number i; cmsUInt16Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; fk = _cmsToFixedDomain ((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); k0 = ( (fk)>>16); rk = ((fk)&0xFFFFU); K0 = p16 -> opta [14] * k0; K1 = p16 -> opta[14] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); p1 = *p16; memmove(&p1.Domain[0], &p16 -> Domain[1], 14*sizeof(cmsUInt32Number)); T = LutTable + K0; p1 .Table = T; Eval14Inputs(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval14Inputs(Input + 1, Tmp2, &p1); for (i=0; i < p16 -> nOutputs; i++) { Output[i] = LinearInterp (rk, Tmp1[i], Tmp2[i]); }}static void Eval15InputsFloat(const cmsFloat32Number Input[], cmsFloat32Number Output[], const cmsInterpParams * p){ const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; cmsFloat32Number rest; cmsFloat32Number pk; int k0, K0, K1; const cmsFloat32Number* T; cmsUInt32Number i; cmsFloat32Number Tmp1[128], Tmp2[128]; cmsInterpParams p1; pk = fclamp(Input[ 0]) * p->Domain[0]; k0 = _cmsQuickFloor(pk); rest = pk - ( cmsFloat32Number) k0; K0 = p -> opta[14] * k0; K1 = K0 + ( fclamp(Input[0]) >= 1.0 ? 0 : p->opta[14]); p1 = *p; memmove (&p1.Domain[0], &p ->Domain[1], 14*sizeof(cmsUInt32Number )); T = LutTable + K0; p1.Table = T; Eval14InputsFloat(Input + 1, Tmp1, &p1); T = LutTable + K1; p1.Table = T; Eval14InputsFloat (Input + 1, Tmp2, &p1); for (i=0; i < p -> nOutputs ; i++) { cmsFloat32Number y0 = Tmp1[i]; cmsFloat32Number y1 = Tmp2[i]; Output[i] = y0 + (y1 - y0) * rest; }} | |||
| 1190 | ||||
| 1191 | ||||
| 1192 | // The default factory | |||
| 1193 | static | |||
| 1194 | cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags) | |||
| 1195 | { | |||
| 1196 | ||||
| 1197 | cmsInterpFunction Interpolation; | |||
| 1198 | cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT0x0001); | |||
| 1199 | cmsBool IsTrilinear = (dwFlags & CMS_LERP_FLAGS_TRILINEAR0x0100); | |||
| 1200 | ||||
| 1201 | memset(&Interpolation, 0, sizeof(Interpolation)); | |||
| 1202 | ||||
| 1203 | // Safety check | |||
| 1204 | if (nInputChannels >= 4 && nOutputChannels >= MAX_STAGE_CHANNELS128) | |||
| 1205 | return Interpolation; | |||
| 1206 | ||||
| 1207 | switch (nInputChannels) { | |||
| 1208 | ||||
| 1209 | case 1: // Gray LUT / linear | |||
| 1210 | ||||
| 1211 | if (nOutputChannels == 1) { | |||
| 1212 | ||||
| 1213 | if (IsFloat) | |||
| 1214 | Interpolation.LerpFloat = LinLerp1Dfloat; | |||
| 1215 | else | |||
| 1216 | Interpolation.Lerp16 = LinLerp1D; | |||
| 1217 | ||||
| 1218 | } | |||
| 1219 | else { | |||
| 1220 | ||||
| 1221 | if (IsFloat) | |||
| 1222 | Interpolation.LerpFloat = Eval1InputFloat; | |||
| 1223 | else | |||
| 1224 | Interpolation.Lerp16 = Eval1Input; | |||
| 1225 | } | |||
| 1226 | break; | |||
| 1227 | ||||
| 1228 | case 2: // Duotone | |||
| 1229 | if (IsFloat) | |||
| 1230 | Interpolation.LerpFloat = BilinearInterpFloat; | |||
| 1231 | else | |||
| 1232 | Interpolation.Lerp16 = BilinearInterp16; | |||
| 1233 | break; | |||
| 1234 | ||||
| 1235 | case 3: // RGB et al | |||
| 1236 | ||||
| 1237 | if (IsTrilinear) { | |||
| 1238 | ||||
| 1239 | if (IsFloat) | |||
| 1240 | Interpolation.LerpFloat = TrilinearInterpFloat; | |||
| 1241 | else | |||
| 1242 | Interpolation.Lerp16 = TrilinearInterp16; | |||
| 1243 | } | |||
| 1244 | else { | |||
| 1245 | ||||
| 1246 | if (IsFloat) | |||
| 1247 | Interpolation.LerpFloat = TetrahedralInterpFloat; | |||
| 1248 | else { | |||
| 1249 | ||||
| 1250 | Interpolation.Lerp16 = TetrahedralInterp16; | |||
| 1251 | } | |||
| 1252 | } | |||
| 1253 | break; | |||
| 1254 | ||||
| 1255 | case 4: // CMYK lut | |||
| 1256 | ||||
| 1257 | if (IsFloat) | |||
| 1258 | Interpolation.LerpFloat = Eval4InputsFloat; | |||
| 1259 | else | |||
| 1260 | Interpolation.Lerp16 = Eval4Inputs; | |||
| 1261 | break; | |||
| 1262 | ||||
| 1263 | case 5: // 5 Inks | |||
| 1264 | if (IsFloat) | |||
| 1265 | Interpolation.LerpFloat = Eval5InputsFloat; | |||
| 1266 | else | |||
| 1267 | Interpolation.Lerp16 = Eval5Inputs; | |||
| 1268 | break; | |||
| 1269 | ||||
| 1270 | case 6: // 6 Inks | |||
| 1271 | if (IsFloat) | |||
| 1272 | Interpolation.LerpFloat = Eval6InputsFloat; | |||
| 1273 | else | |||
| 1274 | Interpolation.Lerp16 = Eval6Inputs; | |||
| 1275 | break; | |||
| 1276 | ||||
| 1277 | case 7: // 7 inks | |||
| 1278 | if (IsFloat) | |||
| 1279 | Interpolation.LerpFloat = Eval7InputsFloat; | |||
| 1280 | else | |||
| 1281 | Interpolation.Lerp16 = Eval7Inputs; | |||
| 1282 | break; | |||
| 1283 | ||||
| 1284 | case 8: // 8 inks | |||
| 1285 | if (IsFloat) | |||
| 1286 | Interpolation.LerpFloat = Eval8InputsFloat; | |||
| 1287 | else | |||
| 1288 | Interpolation.Lerp16 = Eval8Inputs; | |||
| 1289 | break; | |||
| 1290 | ||||
| 1291 | case 9: | |||
| 1292 | if (IsFloat) | |||
| 1293 | Interpolation.LerpFloat = Eval9InputsFloat; | |||
| 1294 | else | |||
| 1295 | Interpolation.Lerp16 = Eval9Inputs; | |||
| 1296 | break; | |||
| 1297 | ||||
| 1298 | case 10: | |||
| 1299 | if (IsFloat) | |||
| 1300 | Interpolation.LerpFloat = Eval10InputsFloat; | |||
| 1301 | else | |||
| 1302 | Interpolation.Lerp16 = Eval10Inputs; | |||
| 1303 | break; | |||
| 1304 | ||||
| 1305 | case 11: | |||
| 1306 | if (IsFloat) | |||
| 1307 | Interpolation.LerpFloat = Eval11InputsFloat; | |||
| 1308 | else | |||
| 1309 | Interpolation.Lerp16 = Eval11Inputs; | |||
| 1310 | break; | |||
| 1311 | ||||
| 1312 | case 12: | |||
| 1313 | if (IsFloat) | |||
| 1314 | Interpolation.LerpFloat = Eval12InputsFloat; | |||
| 1315 | else | |||
| 1316 | Interpolation.Lerp16 = Eval12Inputs; | |||
| 1317 | break; | |||
| 1318 | ||||
| 1319 | case 13: | |||
| 1320 | if (IsFloat) | |||
| 1321 | Interpolation.LerpFloat = Eval13InputsFloat; | |||
| 1322 | else | |||
| 1323 | Interpolation.Lerp16 = Eval13Inputs; | |||
| 1324 | break; | |||
| 1325 | ||||
| 1326 | case 14: | |||
| 1327 | if (IsFloat) | |||
| 1328 | Interpolation.LerpFloat = Eval14InputsFloat; | |||
| 1329 | else | |||
| 1330 | Interpolation.Lerp16 = Eval14Inputs; | |||
| 1331 | break; | |||
| 1332 | ||||
| 1333 | case 15: | |||
| 1334 | if (IsFloat) | |||
| 1335 | Interpolation.LerpFloat = Eval15InputsFloat; | |||
| 1336 | else | |||
| 1337 | Interpolation.Lerp16 = Eval15Inputs; | |||
| 1338 | break; | |||
| 1339 | ||||
| 1340 | default: | |||
| 1341 | Interpolation.Lerp16 = NULL((void*)0); | |||
| 1342 | } | |||
| 1343 | ||||
| 1344 | return Interpolation; | |||
| 1345 | } |