File: | jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp |
Warning: | line 1577, column 13 Value stored to 'ucme_exit_pc' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "asm/macroAssembler.hpp" |
27 | #include "asm/macroAssembler.inline.hpp" |
28 | #include "ci/ciUtilities.hpp" |
29 | #include "compiler/oopMap.hpp" |
30 | #include "gc/shared/barrierSet.hpp" |
31 | #include "gc/shared/barrierSetAssembler.hpp" |
32 | #include "gc/shared/barrierSetNMethod.hpp" |
33 | #include "gc/shared/gc_globals.hpp" |
34 | #include "interpreter/interpreter.hpp" |
35 | #include "memory/universe.hpp" |
36 | #include "nativeInst_x86.hpp" |
37 | #include "oops/instanceOop.hpp" |
38 | #include "oops/method.hpp" |
39 | #include "oops/objArrayKlass.hpp" |
40 | #include "oops/oop.inline.hpp" |
41 | #include "prims/methodHandles.hpp" |
42 | #include "runtime/arguments.hpp" |
43 | #include "runtime/frame.inline.hpp" |
44 | #include "runtime/handles.inline.hpp" |
45 | #include "runtime/sharedRuntime.hpp" |
46 | #include "runtime/stubCodeGenerator.hpp" |
47 | #include "runtime/stubRoutines.hpp" |
48 | #include "runtime/thread.inline.hpp" |
49 | #ifdef COMPILER21 |
50 | #include "opto/runtime.hpp" |
51 | #endif |
52 | #if INCLUDE_JVMCI1 |
53 | #include "jvmci/jvmci_globals.hpp" |
54 | #endif |
55 | #if INCLUDE_ZGC1 |
56 | #include "gc/z/zThreadLocalData.hpp" |
57 | #endif |
58 | |
59 | // Declaration and definition of StubGenerator (no .hpp file). |
60 | // For a more detailed description of the stub routine structure |
61 | // see the comment in stubRoutines.hpp |
62 | |
63 | #define __masm-> _masm-> |
64 | #define TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8) (UseCompressedOops ? Address::times_4 : Address::times_8) |
65 | #define a__((Assembler*)_masm)-> ((Assembler*)_masm)-> |
66 | |
67 | #ifdef PRODUCT |
68 | #define BLOCK_COMMENT(str)masm-> block_comment(str) /* nothing */ |
69 | #else |
70 | #define BLOCK_COMMENT(str)masm-> block_comment(str) __masm-> block_comment(str) |
71 | #endif |
72 | |
73 | #define BIND(label)bind(label); masm-> block_comment("label" ":") bind(label); BLOCK_COMMENT(#label ":")masm-> block_comment(#label ":") |
74 | const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions |
75 | |
76 | // Stub Code definitions |
77 | |
78 | class StubGenerator: public StubCodeGenerator { |
79 | private: |
80 | |
81 | #ifdef PRODUCT |
82 | #define inc_counter_np(counter)masm-> block_comment("inc_counter " "counter"); inc_counter_np_ (counter); ((void)0) |
83 | #else |
84 | void inc_counter_np_(int& counter) { |
85 | // This can destroy rscratch1 if counter is far from the code cache |
86 | __masm-> incrementl(ExternalAddress((address)&counter)); |
87 | } |
88 | #define inc_counter_np(counter)masm-> block_comment("inc_counter " "counter"); inc_counter_np_ (counter); \ |
89 | BLOCK_COMMENT("inc_counter " #counter)masm-> block_comment("inc_counter " #counter); \ |
90 | inc_counter_np_(counter); |
91 | #endif |
92 | |
93 | // Call stubs are used to call Java from C |
94 | // |
95 | // Linux Arguments: |
96 | // c_rarg0: call wrapper address address |
97 | // c_rarg1: result address |
98 | // c_rarg2: result type BasicType |
99 | // c_rarg3: method Method* |
100 | // c_rarg4: (interpreter) entry point address |
101 | // c_rarg5: parameters intptr_t* |
102 | // 16(rbp): parameter size (in words) int |
103 | // 24(rbp): thread Thread* |
104 | // |
105 | // [ return_from_Java ] <--- rsp |
106 | // [ argument word n ] |
107 | // ... |
108 | // -12 [ argument word 1 ] |
109 | // -11 [ saved r15 ] <--- rsp_after_call |
110 | // -10 [ saved r14 ] |
111 | // -9 [ saved r13 ] |
112 | // -8 [ saved r12 ] |
113 | // -7 [ saved rbx ] |
114 | // -6 [ call wrapper ] |
115 | // -5 [ result ] |
116 | // -4 [ result type ] |
117 | // -3 [ method ] |
118 | // -2 [ entry point ] |
119 | // -1 [ parameters ] |
120 | // 0 [ saved rbp ] <--- rbp |
121 | // 1 [ return address ] |
122 | // 2 [ parameter size ] |
123 | // 3 [ thread ] |
124 | // |
125 | // Windows Arguments: |
126 | // c_rarg0: call wrapper address address |
127 | // c_rarg1: result address |
128 | // c_rarg2: result type BasicType |
129 | // c_rarg3: method Method* |
130 | // 48(rbp): (interpreter) entry point address |
131 | // 56(rbp): parameters intptr_t* |
132 | // 64(rbp): parameter size (in words) int |
133 | // 72(rbp): thread Thread* |
134 | // |
135 | // [ return_from_Java ] <--- rsp |
136 | // [ argument word n ] |
137 | // ... |
138 | // -60 [ argument word 1 ] |
139 | // -59 [ saved xmm31 ] <--- rsp after_call |
140 | // [ saved xmm16-xmm30 ] (EVEX enabled, else the space is blank) |
141 | // -27 [ saved xmm15 ] |
142 | // [ saved xmm7-xmm14 ] |
143 | // -9 [ saved xmm6 ] (each xmm register takes 2 slots) |
144 | // -7 [ saved r15 ] |
145 | // -6 [ saved r14 ] |
146 | // -5 [ saved r13 ] |
147 | // -4 [ saved r12 ] |
148 | // -3 [ saved rdi ] |
149 | // -2 [ saved rsi ] |
150 | // -1 [ saved rbx ] |
151 | // 0 [ saved rbp ] <--- rbp |
152 | // 1 [ return address ] |
153 | // 2 [ call wrapper ] |
154 | // 3 [ result ] |
155 | // 4 [ result type ] |
156 | // 5 [ method ] |
157 | // 6 [ entry point ] |
158 | // 7 [ parameters ] |
159 | // 8 [ parameter size ] |
160 | // 9 [ thread ] |
161 | // |
162 | // Windows reserves the callers stack space for arguments 1-4. |
163 | // We spill c_rarg0-c_rarg3 to this space. |
164 | |
165 | // Call stub stack layout word offsets from rbp |
166 | enum call_stub_layout { |
167 | #ifdef _WIN64 |
168 | xmm_save_first = 6, // save from xmm6 |
169 | xmm_save_last = 31, // to xmm31 |
170 | xmm_save_base = -9, |
171 | rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 |
172 | r15_off = -7, |
173 | r14_off = -6, |
174 | r13_off = -5, |
175 | r12_off = -4, |
176 | rdi_off = -3, |
177 | rsi_off = -2, |
178 | rbx_off = -1, |
179 | rbp_off = 0, |
180 | retaddr_off = 1, |
181 | call_wrapper_off = 2, |
182 | result_off = 3, |
183 | result_type_off = 4, |
184 | method_off = 5, |
185 | entry_point_off = 6, |
186 | parameters_off = 7, |
187 | parameter_size_off = 8, |
188 | thread_off = 9 |
189 | #else |
190 | rsp_after_call_off = -12, |
191 | mxcsr_off = rsp_after_call_off, |
192 | r15_off = -11, |
193 | r14_off = -10, |
194 | r13_off = -9, |
195 | r12_off = -8, |
196 | rbx_off = -7, |
197 | call_wrapper_off = -6, |
198 | result_off = -5, |
199 | result_type_off = -4, |
200 | method_off = -3, |
201 | entry_point_off = -2, |
202 | parameters_off = -1, |
203 | rbp_off = 0, |
204 | retaddr_off = 1, |
205 | parameter_size_off = 2, |
206 | thread_off = 3 |
207 | #endif |
208 | }; |
209 | |
210 | #ifdef _WIN64 |
211 | Address xmm_save(int reg) { |
212 | assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range")do { if (!(reg >= xmm_save_first && reg <= xmm_save_last )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 212, "assert(" "reg >= xmm_save_first && reg <= xmm_save_last" ") failed", "XMM register number out of range"); ::breakpoint (); } } while (0); |
213 | return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); |
214 | } |
215 | #endif |
216 | |
217 | address generate_call_stub(address& return_address) { |
218 | assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&do { if (!((int)frame::entry_frame_after_call_words == -(int) rsp_after_call_off + 1 && (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 220, "assert(" "(int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off" ") failed", "adjust this code"); ::breakpoint(); } } while ( 0) |
219 | (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,do { if (!((int)frame::entry_frame_after_call_words == -(int) rsp_after_call_off + 1 && (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 220, "assert(" "(int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off" ") failed", "adjust this code"); ::breakpoint(); } } while ( 0) |
220 | "adjust this code")do { if (!((int)frame::entry_frame_after_call_words == -(int) rsp_after_call_off + 1 && (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 220, "assert(" "(int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off" ") failed", "adjust this code"); ::breakpoint(); } } while ( 0); |
221 | StubCodeMark mark(this, "StubRoutines", "call_stub"); |
222 | address start = __masm-> pc(); |
223 | |
224 | // same as in generate_catch_exception()! |
225 | const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); |
226 | |
227 | const Address call_wrapper (rbp, call_wrapper_off * wordSize); |
228 | const Address result (rbp, result_off * wordSize); |
229 | const Address result_type (rbp, result_type_off * wordSize); |
230 | const Address method (rbp, method_off * wordSize); |
231 | const Address entry_point (rbp, entry_point_off * wordSize); |
232 | const Address parameters (rbp, parameters_off * wordSize); |
233 | const Address parameter_size(rbp, parameter_size_off * wordSize); |
234 | |
235 | // same as in generate_catch_exception()! |
236 | const Address thread (rbp, thread_off * wordSize); |
237 | |
238 | const Address r15_save(rbp, r15_off * wordSize); |
239 | const Address r14_save(rbp, r14_off * wordSize); |
240 | const Address r13_save(rbp, r13_off * wordSize); |
241 | const Address r12_save(rbp, r12_off * wordSize); |
242 | const Address rbx_save(rbp, rbx_off * wordSize); |
243 | |
244 | // stub code |
245 | __masm-> enter(); |
246 | __masm-> subptr(rsp, -rsp_after_call_off * wordSize); |
247 | |
248 | // save register parameters |
249 | #ifndef _WIN64 |
250 | __masm-> movptr(parameters, c_rarg5); // parameters |
251 | __masm-> movptr(entry_point, c_rarg4); // entry_point |
252 | #endif |
253 | |
254 | __masm-> movptr(method, c_rarg3); // method |
255 | __masm-> movl(result_type, c_rarg2); // result type |
256 | __masm-> movptr(result, c_rarg1); // result |
257 | __masm-> movptr(call_wrapper, c_rarg0); // call wrapper |
258 | |
259 | // save regs belonging to calling function |
260 | __masm-> movptr(rbx_save, rbx); |
261 | __masm-> movptr(r12_save, r12); |
262 | __masm-> movptr(r13_save, r13); |
263 | __masm-> movptr(r14_save, r14); |
264 | __masm-> movptr(r15_save, r15); |
265 | |
266 | #ifdef _WIN64 |
267 | int last_reg = 15; |
268 | if (UseAVX > 2) { |
269 | last_reg = 31; |
270 | } |
271 | if (VM_Version::supports_evex()) { |
272 | for (int i = xmm_save_first; i <= last_reg; i++) { |
273 | __masm-> vextractf32x4(xmm_save(i), as_XMMRegister(i), 0); |
274 | } |
275 | } else { |
276 | for (int i = xmm_save_first; i <= last_reg; i++) { |
277 | __masm-> movdqu(xmm_save(i), as_XMMRegister(i)); |
278 | } |
279 | } |
280 | |
281 | const Address rdi_save(rbp, rdi_off * wordSize); |
282 | const Address rsi_save(rbp, rsi_off * wordSize); |
283 | |
284 | __masm-> movptr(rsi_save, rsi); |
285 | __masm-> movptr(rdi_save, rdi); |
286 | #else |
287 | const Address mxcsr_save(rbp, mxcsr_off * wordSize); |
288 | { |
289 | Label skip_ldmx; |
290 | __masm-> stmxcsr(mxcsr_save); |
291 | __masm-> movl(rax, mxcsr_save); |
292 | __masm-> andl(rax, MXCSR_MASK); // Only check control and mask bits |
293 | ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); |
294 | __masm-> cmp32(rax, mxcsr_std); |
295 | __masm-> jcc(Assembler::equal, skip_ldmx); |
296 | __masm-> ldmxcsr(mxcsr_std); |
297 | __masm-> bind(skip_ldmx); |
298 | } |
299 | #endif |
300 | |
301 | // Load up thread register |
302 | __masm-> movptr(r15_thread, thread); |
303 | __masm-> reinit_heapbase(); |
304 | |
305 | #ifdef ASSERT1 |
306 | // make sure we have no pending exceptions |
307 | { |
308 | Label L; |
309 | __masm-> cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD0L); |
310 | __masm-> jcc(Assembler::equal, L); |
311 | __masm-> stop("StubRoutines::call_stub: entered with pending exception"); |
312 | __masm-> bind(L); |
313 | } |
314 | #endif |
315 | |
316 | // pass parameters if any |
317 | BLOCK_COMMENT("pass parameters if any")masm-> block_comment("pass parameters if any"); |
318 | Label parameters_done; |
319 | __masm-> movl(c_rarg3, parameter_size); |
320 | __masm-> testl(c_rarg3, c_rarg3); |
321 | __masm-> jcc(Assembler::zero, parameters_done); |
322 | |
323 | Label loop; |
324 | __masm-> movptr(c_rarg2, parameters); // parameter pointer |
325 | __masm-> movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 |
326 | __masm-> BIND(loop)bind(loop); masm-> block_comment("loop" ":"); |
327 | __masm-> movptr(rax, Address(c_rarg2, 0));// get parameter |
328 | __masm-> addptr(c_rarg2, wordSize); // advance to next parameter |
329 | __masm-> decrementl(c_rarg1); // decrement counter |
330 | __masm-> push(rax); // pass parameter |
331 | __masm-> jcc(Assembler::notZero, loop); |
332 | |
333 | // call Java function |
334 | __masm-> BIND(parameters_done)bind(parameters_done); masm-> block_comment("parameters_done" ":"); |
335 | __masm-> movptr(rbx, method); // get Method* |
336 | __masm-> movptr(c_rarg1, entry_point); // get entry_point |
337 | __masm-> mov(r13, rsp); // set sender sp |
338 | BLOCK_COMMENT("call Java function")masm-> block_comment("call Java function"); |
339 | __masm-> call(c_rarg1); |
340 | |
341 | BLOCK_COMMENT("call_stub_return_address:")masm-> block_comment("call_stub_return_address:"); |
342 | return_address = __masm-> pc(); |
343 | |
344 | // store result depending on type (everything that is not |
345 | // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) |
346 | __masm-> movptr(c_rarg0, result); |
347 | Label is_long, is_float, is_double, exit; |
348 | __masm-> movl(c_rarg1, result_type); |
349 | __masm-> cmpl(c_rarg1, T_OBJECT); |
350 | __masm-> jcc(Assembler::equal, is_long); |
351 | __masm-> cmpl(c_rarg1, T_LONG); |
352 | __masm-> jcc(Assembler::equal, is_long); |
353 | __masm-> cmpl(c_rarg1, T_FLOAT); |
354 | __masm-> jcc(Assembler::equal, is_float); |
355 | __masm-> cmpl(c_rarg1, T_DOUBLE); |
356 | __masm-> jcc(Assembler::equal, is_double); |
357 | |
358 | // handle T_INT case |
359 | __masm-> movl(Address(c_rarg0, 0), rax); |
360 | |
361 | __masm-> BIND(exit)bind(exit); masm-> block_comment("exit" ":"); |
362 | |
363 | // pop parameters |
364 | __masm-> lea(rsp, rsp_after_call); |
365 | |
366 | #ifdef ASSERT1 |
367 | // verify that threads correspond |
368 | { |
369 | Label L1, L2, L3; |
370 | __masm-> cmpptr(r15_thread, thread); |
371 | __masm-> jcc(Assembler::equal, L1); |
372 | __masm-> stop("StubRoutines::call_stub: r15_thread is corrupted"); |
373 | __masm-> bind(L1); |
374 | __masm-> get_thread(rbx); |
375 | __masm-> cmpptr(r15_thread, thread); |
376 | __masm-> jcc(Assembler::equal, L2); |
377 | __masm-> stop("StubRoutines::call_stub: r15_thread is modified by call"); |
378 | __masm-> bind(L2); |
379 | __masm-> cmpptr(r15_thread, rbx); |
380 | __masm-> jcc(Assembler::equal, L3); |
381 | __masm-> stop("StubRoutines::call_stub: threads must correspond"); |
382 | __masm-> bind(L3); |
383 | } |
384 | #endif |
385 | |
386 | // restore regs belonging to calling function |
387 | #ifdef _WIN64 |
388 | // emit the restores for xmm regs |
389 | if (VM_Version::supports_evex()) { |
390 | for (int i = xmm_save_first; i <= last_reg; i++) { |
391 | __masm-> vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0); |
392 | } |
393 | } else { |
394 | for (int i = xmm_save_first; i <= last_reg; i++) { |
395 | __masm-> movdqu(as_XMMRegister(i), xmm_save(i)); |
396 | } |
397 | } |
398 | #endif |
399 | __masm-> movptr(r15, r15_save); |
400 | __masm-> movptr(r14, r14_save); |
401 | __masm-> movptr(r13, r13_save); |
402 | __masm-> movptr(r12, r12_save); |
403 | __masm-> movptr(rbx, rbx_save); |
404 | |
405 | #ifdef _WIN64 |
406 | __masm-> movptr(rdi, rdi_save); |
407 | __masm-> movptr(rsi, rsi_save); |
408 | #else |
409 | __masm-> ldmxcsr(mxcsr_save); |
410 | #endif |
411 | |
412 | // restore rsp |
413 | __masm-> addptr(rsp, -rsp_after_call_off * wordSize); |
414 | |
415 | // return |
416 | __masm-> vzeroupper(); |
417 | __masm-> pop(rbp); |
418 | __masm-> ret(0); |
419 | |
420 | // handle return types different from T_INT |
421 | __masm-> BIND(is_long)bind(is_long); masm-> block_comment("is_long" ":"); |
422 | __masm-> movq(Address(c_rarg0, 0), rax); |
423 | __masm-> jmp(exit); |
424 | |
425 | __masm-> BIND(is_float)bind(is_float); masm-> block_comment("is_float" ":"); |
426 | __masm-> movflt(Address(c_rarg0, 0), xmm0); |
427 | __masm-> jmp(exit); |
428 | |
429 | __masm-> BIND(is_double)bind(is_double); masm-> block_comment("is_double" ":"); |
430 | __masm-> movdbl(Address(c_rarg0, 0), xmm0); |
431 | __masm-> jmp(exit); |
432 | |
433 | return start; |
434 | } |
435 | |
436 | // Return point for a Java call if there's an exception thrown in |
437 | // Java code. The exception is caught and transformed into a |
438 | // pending exception stored in JavaThread that can be tested from |
439 | // within the VM. |
440 | // |
441 | // Note: Usually the parameters are removed by the callee. In case |
442 | // of an exception crossing an activation frame boundary, that is |
443 | // not the case if the callee is compiled code => need to setup the |
444 | // rsp. |
445 | // |
446 | // rax: exception oop |
447 | |
448 | address generate_catch_exception() { |
449 | StubCodeMark mark(this, "StubRoutines", "catch_exception"); |
450 | address start = __masm-> pc(); |
451 | |
452 | // same as in generate_call_stub(): |
453 | const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); |
454 | const Address thread (rbp, thread_off * wordSize); |
455 | |
456 | #ifdef ASSERT1 |
457 | // verify that threads correspond |
458 | { |
459 | Label L1, L2, L3; |
460 | __masm-> cmpptr(r15_thread, thread); |
461 | __masm-> jcc(Assembler::equal, L1); |
462 | __masm-> stop("StubRoutines::catch_exception: r15_thread is corrupted"); |
463 | __masm-> bind(L1); |
464 | __masm-> get_thread(rbx); |
465 | __masm-> cmpptr(r15_thread, thread); |
466 | __masm-> jcc(Assembler::equal, L2); |
467 | __masm-> stop("StubRoutines::catch_exception: r15_thread is modified by call"); |
468 | __masm-> bind(L2); |
469 | __masm-> cmpptr(r15_thread, rbx); |
470 | __masm-> jcc(Assembler::equal, L3); |
471 | __masm-> stop("StubRoutines::catch_exception: threads must correspond"); |
472 | __masm-> bind(L3); |
473 | } |
474 | #endif |
475 | |
476 | // set pending exception |
477 | __masm-> verify_oop(rax)_verify_oop_checked(rax, "broken oop " "rax", "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 477); |
478 | |
479 | __masm-> movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); |
480 | __masm-> lea(rscratch1, ExternalAddress((address)__FILE__"/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp")); |
481 | __masm-> movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); |
482 | __masm-> movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__482); |
483 | |
484 | // complete return to VM |
485 | assert(StubRoutines::_call_stub_return_address != NULL,do { if (!(StubRoutines::_call_stub_return_address != __null) ) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 486, "assert(" "StubRoutines::_call_stub_return_address != __null" ") failed", "_call_stub_return_address must have been generated before" ); ::breakpoint(); } } while (0) |
486 | "_call_stub_return_address must have been generated before")do { if (!(StubRoutines::_call_stub_return_address != __null) ) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 486, "assert(" "StubRoutines::_call_stub_return_address != __null" ") failed", "_call_stub_return_address must have been generated before" ); ::breakpoint(); } } while (0); |
487 | __masm-> jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); |
488 | |
489 | return start; |
490 | } |
491 | |
492 | // Continuation point for runtime calls returning with a pending |
493 | // exception. The pending exception check happened in the runtime |
494 | // or native call stub. The pending exception in Thread is |
495 | // converted into a Java-level exception. |
496 | // |
497 | // Contract with Java-level exception handlers: |
498 | // rax: exception |
499 | // rdx: throwing pc |
500 | // |
501 | // NOTE: At entry of this stub, exception-pc must be on stack !! |
502 | |
503 | address generate_forward_exception() { |
504 | StubCodeMark mark(this, "StubRoutines", "forward exception"); |
505 | address start = __masm-> pc(); |
506 | |
507 | // Upon entry, the sp points to the return address returning into |
508 | // Java (interpreted or compiled) code; i.e., the return address |
509 | // becomes the throwing pc. |
510 | // |
511 | // Arguments pushed before the runtime call are still on the stack |
512 | // but the exception handler will reset the stack pointer -> |
513 | // ignore them. A potential result in registers can be ignored as |
514 | // well. |
515 | |
516 | #ifdef ASSERT1 |
517 | // make sure this code is only executed if there is a pending exception |
518 | { |
519 | Label L; |
520 | __masm-> cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL__null); |
521 | __masm-> jcc(Assembler::notEqual, L); |
522 | __masm-> stop("StubRoutines::forward exception: no pending exception (1)"); |
523 | __masm-> bind(L); |
524 | } |
525 | #endif |
526 | |
527 | // compute exception handler into rbx |
528 | __masm-> movptr(c_rarg0, Address(rsp, 0)); |
529 | BLOCK_COMMENT("call exception_handler_for_return_address")masm-> block_comment("call exception_handler_for_return_address" ); |
530 | __masm-> call_VM_leaf(CAST_FROM_FN_PTR(address,((address)((address_word)(SharedRuntime::exception_handler_for_return_address ))) |
531 | SharedRuntime::exception_handler_for_return_address)((address)((address_word)(SharedRuntime::exception_handler_for_return_address ))), |
532 | r15_thread, c_rarg0); |
533 | __masm-> mov(rbx, rax); |
534 | |
535 | // setup rax & rdx, remove return address & clear pending exception |
536 | __masm-> pop(rdx); |
537 | __masm-> movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); |
538 | __masm-> movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD0L); |
539 | |
540 | #ifdef ASSERT1 |
541 | // make sure exception is set |
542 | { |
543 | Label L; |
544 | __masm-> testptr(rax, rax); |
545 | __masm-> jcc(Assembler::notEqual, L); |
546 | __masm-> stop("StubRoutines::forward exception: no pending exception (2)"); |
547 | __masm-> bind(L); |
548 | } |
549 | #endif |
550 | |
551 | // continue at exception handler (return address removed) |
552 | // rax: exception |
553 | // rbx: exception handler |
554 | // rdx: throwing pc |
555 | __masm-> verify_oop(rax)_verify_oop_checked(rax, "broken oop " "rax", "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 555); |
556 | __masm-> jmp(rbx); |
557 | |
558 | return start; |
559 | } |
560 | |
561 | // Support for intptr_t OrderAccess::fence() |
562 | // |
563 | // Arguments : |
564 | // |
565 | // Result: |
566 | address generate_orderaccess_fence() { |
567 | StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); |
568 | address start = __masm-> pc(); |
569 | __masm-> membar(Assembler::StoreLoad); |
570 | __masm-> ret(0); |
571 | |
572 | return start; |
573 | } |
574 | |
575 | |
576 | // Support for intptr_t get_previous_sp() |
577 | // |
578 | // This routine is used to find the previous stack pointer for the |
579 | // caller. |
580 | address generate_get_previous_sp() { |
581 | StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); |
582 | address start = __masm-> pc(); |
583 | |
584 | __masm-> movptr(rax, rsp); |
585 | __masm-> addptr(rax, 8); // return address is at the top of the stack. |
586 | __masm-> ret(0); |
587 | |
588 | return start; |
589 | } |
590 | |
591 | //---------------------------------------------------------------------------------------------------- |
592 | // Support for void verify_mxcsr() |
593 | // |
594 | // This routine is used with -Xcheck:jni to verify that native |
595 | // JNI code does not return to Java code without restoring the |
596 | // MXCSR register to our expected state. |
597 | |
598 | address generate_verify_mxcsr() { |
599 | StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); |
600 | address start = __masm-> pc(); |
601 | |
602 | const Address mxcsr_save(rsp, 0); |
603 | |
604 | if (CheckJNICalls) { |
605 | Label ok_ret; |
606 | ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); |
607 | __masm-> push(rax); |
608 | __masm-> subptr(rsp, wordSize); // allocate a temp location |
609 | __masm-> stmxcsr(mxcsr_save); |
610 | __masm-> movl(rax, mxcsr_save); |
611 | __masm-> andl(rax, MXCSR_MASK); // Only check control and mask bits |
612 | __masm-> cmp32(rax, mxcsr_std); |
613 | __masm-> jcc(Assembler::equal, ok_ret); |
614 | |
615 | __masm-> warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); |
616 | |
617 | __masm-> ldmxcsr(mxcsr_std); |
618 | |
619 | __masm-> bind(ok_ret); |
620 | __masm-> addptr(rsp, wordSize); |
621 | __masm-> pop(rax); |
622 | } |
623 | |
624 | __masm-> ret(0); |
625 | |
626 | return start; |
627 | } |
628 | |
629 | address generate_f2i_fixup() { |
630 | StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); |
631 | Address inout(rsp, 5 * wordSize); // return address + 4 saves |
632 | |
633 | address start = __masm-> pc(); |
634 | |
635 | Label L; |
636 | |
637 | __masm-> push(rax); |
638 | __masm-> push(c_rarg3); |
639 | __masm-> push(c_rarg2); |
640 | __masm-> push(c_rarg1); |
641 | |
642 | __masm-> movl(rax, 0x7f800000); |
643 | __masm-> xorl(c_rarg3, c_rarg3); |
644 | __masm-> movl(c_rarg2, inout); |
645 | __masm-> movl(c_rarg1, c_rarg2); |
646 | __masm-> andl(c_rarg1, 0x7fffffff); |
647 | __masm-> cmpl(rax, c_rarg1); // NaN? -> 0 |
648 | __masm-> jcc(Assembler::negative, L); |
649 | __masm-> testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint |
650 | __masm-> movl(c_rarg3, 0x80000000); |
651 | __masm-> movl(rax, 0x7fffffff); |
652 | __masm-> cmovl(Assembler::positive, c_rarg3, rax); |
653 | |
654 | __masm-> bind(L); |
655 | __masm-> movptr(inout, c_rarg3); |
656 | |
657 | __masm-> pop(c_rarg1); |
658 | __masm-> pop(c_rarg2); |
659 | __masm-> pop(c_rarg3); |
660 | __masm-> pop(rax); |
661 | |
662 | __masm-> ret(0); |
663 | |
664 | return start; |
665 | } |
666 | |
667 | address generate_f2l_fixup() { |
668 | StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); |
669 | Address inout(rsp, 5 * wordSize); // return address + 4 saves |
670 | address start = __masm-> pc(); |
671 | |
672 | Label L; |
673 | |
674 | __masm-> push(rax); |
675 | __masm-> push(c_rarg3); |
676 | __masm-> push(c_rarg2); |
677 | __masm-> push(c_rarg1); |
678 | |
679 | __masm-> movl(rax, 0x7f800000); |
680 | __masm-> xorl(c_rarg3, c_rarg3); |
681 | __masm-> movl(c_rarg2, inout); |
682 | __masm-> movl(c_rarg1, c_rarg2); |
683 | __masm-> andl(c_rarg1, 0x7fffffff); |
684 | __masm-> cmpl(rax, c_rarg1); // NaN? -> 0 |
685 | __masm-> jcc(Assembler::negative, L); |
686 | __masm-> testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong |
687 | __masm-> mov64(c_rarg3, 0x8000000000000000); |
688 | __masm-> mov64(rax, 0x7fffffffffffffff); |
689 | __masm-> cmov(Assembler::positive, c_rarg3, rax); |
690 | |
691 | __masm-> bind(L); |
692 | __masm-> movptr(inout, c_rarg3); |
693 | |
694 | __masm-> pop(c_rarg1); |
695 | __masm-> pop(c_rarg2); |
696 | __masm-> pop(c_rarg3); |
697 | __masm-> pop(rax); |
698 | |
699 | __masm-> ret(0); |
700 | |
701 | return start; |
702 | } |
703 | |
704 | address generate_d2i_fixup() { |
705 | StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); |
706 | Address inout(rsp, 6 * wordSize); // return address + 5 saves |
707 | |
708 | address start = __masm-> pc(); |
709 | |
710 | Label L; |
711 | |
712 | __masm-> push(rax); |
713 | __masm-> push(c_rarg3); |
714 | __masm-> push(c_rarg2); |
715 | __masm-> push(c_rarg1); |
716 | __masm-> push(c_rarg0); |
717 | |
718 | __masm-> movl(rax, 0x7ff00000); |
719 | __masm-> movq(c_rarg2, inout); |
720 | __masm-> movl(c_rarg3, c_rarg2); |
721 | __masm-> mov(c_rarg1, c_rarg2); |
722 | __masm-> mov(c_rarg0, c_rarg2); |
723 | __masm-> negl(c_rarg3); |
724 | __masm-> shrptr(c_rarg1, 0x20); |
725 | __masm-> orl(c_rarg3, c_rarg2); |
726 | __masm-> andl(c_rarg1, 0x7fffffff); |
727 | __masm-> xorl(c_rarg2, c_rarg2); |
728 | __masm-> shrl(c_rarg3, 0x1f); |
729 | __masm-> orl(c_rarg1, c_rarg3); |
730 | __masm-> cmpl(rax, c_rarg1); |
731 | __masm-> jcc(Assembler::negative, L); // NaN -> 0 |
732 | __masm-> testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint |
733 | __masm-> movl(c_rarg2, 0x80000000); |
734 | __masm-> movl(rax, 0x7fffffff); |
735 | __masm-> cmov(Assembler::positive, c_rarg2, rax); |
736 | |
737 | __masm-> bind(L); |
738 | __masm-> movptr(inout, c_rarg2); |
739 | |
740 | __masm-> pop(c_rarg0); |
741 | __masm-> pop(c_rarg1); |
742 | __masm-> pop(c_rarg2); |
743 | __masm-> pop(c_rarg3); |
744 | __masm-> pop(rax); |
745 | |
746 | __masm-> ret(0); |
747 | |
748 | return start; |
749 | } |
750 | |
751 | address generate_d2l_fixup() { |
752 | StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); |
753 | Address inout(rsp, 6 * wordSize); // return address + 5 saves |
754 | |
755 | address start = __masm-> pc(); |
756 | |
757 | Label L; |
758 | |
759 | __masm-> push(rax); |
760 | __masm-> push(c_rarg3); |
761 | __masm-> push(c_rarg2); |
762 | __masm-> push(c_rarg1); |
763 | __masm-> push(c_rarg0); |
764 | |
765 | __masm-> movl(rax, 0x7ff00000); |
766 | __masm-> movq(c_rarg2, inout); |
767 | __masm-> movl(c_rarg3, c_rarg2); |
768 | __masm-> mov(c_rarg1, c_rarg2); |
769 | __masm-> mov(c_rarg0, c_rarg2); |
770 | __masm-> negl(c_rarg3); |
771 | __masm-> shrptr(c_rarg1, 0x20); |
772 | __masm-> orl(c_rarg3, c_rarg2); |
773 | __masm-> andl(c_rarg1, 0x7fffffff); |
774 | __masm-> xorl(c_rarg2, c_rarg2); |
775 | __masm-> shrl(c_rarg3, 0x1f); |
776 | __masm-> orl(c_rarg1, c_rarg3); |
777 | __masm-> cmpl(rax, c_rarg1); |
778 | __masm-> jcc(Assembler::negative, L); // NaN -> 0 |
779 | __masm-> testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong |
780 | __masm-> mov64(c_rarg2, 0x8000000000000000); |
781 | __masm-> mov64(rax, 0x7fffffffffffffff); |
782 | __masm-> cmovq(Assembler::positive, c_rarg2, rax); |
783 | |
784 | __masm-> bind(L); |
785 | __masm-> movq(inout, c_rarg2); |
786 | |
787 | __masm-> pop(c_rarg0); |
788 | __masm-> pop(c_rarg1); |
789 | __masm-> pop(c_rarg2); |
790 | __masm-> pop(c_rarg3); |
791 | __masm-> pop(rax); |
792 | |
793 | __masm-> ret(0); |
794 | |
795 | return start; |
796 | } |
797 | |
798 | address generate_iota_indices(const char *stub_name) { |
799 | __masm-> align(CodeEntryAlignment); |
800 | StubCodeMark mark(this, "StubRoutines", stub_name); |
801 | address start = __masm-> pc(); |
802 | __masm-> emit_data64(0x0706050403020100, relocInfo::none); |
803 | __masm-> emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); |
804 | __masm-> emit_data64(0x1716151413121110, relocInfo::none); |
805 | __masm-> emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); |
806 | __masm-> emit_data64(0x2726252423222120, relocInfo::none); |
807 | __masm-> emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); |
808 | __masm-> emit_data64(0x3736353433323130, relocInfo::none); |
809 | __masm-> emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); |
810 | return start; |
811 | } |
812 | |
813 | address generate_vector_byte_shuffle_mask(const char *stub_name) { |
814 | __masm-> align(CodeEntryAlignment); |
815 | StubCodeMark mark(this, "StubRoutines", stub_name); |
816 | address start = __masm-> pc(); |
817 | __masm-> emit_data64(0x7070707070707070, relocInfo::none); |
818 | __masm-> emit_data64(0x7070707070707070, relocInfo::none); |
819 | __masm-> emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); |
820 | __masm-> emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); |
821 | return start; |
822 | } |
823 | |
824 | address generate_fp_mask(const char *stub_name, int64_t mask) { |
825 | __masm-> align(CodeEntryAlignment); |
826 | StubCodeMark mark(this, "StubRoutines", stub_name); |
827 | address start = __masm-> pc(); |
828 | |
829 | __masm-> emit_data64( mask, relocInfo::none ); |
830 | __masm-> emit_data64( mask, relocInfo::none ); |
831 | |
832 | return start; |
833 | } |
834 | |
835 | address generate_vector_mask(const char *stub_name, int64_t mask) { |
836 | __masm-> align(CodeEntryAlignment); |
837 | StubCodeMark mark(this, "StubRoutines", stub_name); |
838 | address start = __masm-> pc(); |
839 | |
840 | __masm-> emit_data64(mask, relocInfo::none); |
841 | __masm-> emit_data64(mask, relocInfo::none); |
842 | __masm-> emit_data64(mask, relocInfo::none); |
843 | __masm-> emit_data64(mask, relocInfo::none); |
844 | __masm-> emit_data64(mask, relocInfo::none); |
845 | __masm-> emit_data64(mask, relocInfo::none); |
846 | __masm-> emit_data64(mask, relocInfo::none); |
847 | __masm-> emit_data64(mask, relocInfo::none); |
848 | |
849 | return start; |
850 | } |
851 | |
852 | address generate_vector_byte_perm_mask(const char *stub_name) { |
853 | __masm-> align(CodeEntryAlignment); |
854 | StubCodeMark mark(this, "StubRoutines", stub_name); |
855 | address start = __masm-> pc(); |
856 | |
857 | __masm-> emit_data64(0x0000000000000001, relocInfo::none); |
858 | __masm-> emit_data64(0x0000000000000003, relocInfo::none); |
859 | __masm-> emit_data64(0x0000000000000005, relocInfo::none); |
860 | __masm-> emit_data64(0x0000000000000007, relocInfo::none); |
861 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
862 | __masm-> emit_data64(0x0000000000000002, relocInfo::none); |
863 | __masm-> emit_data64(0x0000000000000004, relocInfo::none); |
864 | __masm-> emit_data64(0x0000000000000006, relocInfo::none); |
865 | |
866 | return start; |
867 | } |
868 | |
869 | address generate_vector_fp_mask(const char *stub_name, int64_t mask) { |
870 | __masm-> align(CodeEntryAlignment); |
871 | StubCodeMark mark(this, "StubRoutines", stub_name); |
872 | address start = __masm-> pc(); |
873 | |
874 | __masm-> emit_data64(mask, relocInfo::none); |
875 | __masm-> emit_data64(mask, relocInfo::none); |
876 | __masm-> emit_data64(mask, relocInfo::none); |
877 | __masm-> emit_data64(mask, relocInfo::none); |
878 | __masm-> emit_data64(mask, relocInfo::none); |
879 | __masm-> emit_data64(mask, relocInfo::none); |
880 | __masm-> emit_data64(mask, relocInfo::none); |
881 | __masm-> emit_data64(mask, relocInfo::none); |
882 | |
883 | return start; |
884 | } |
885 | |
886 | address generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, |
887 | int32_t val0, int32_t val1, int32_t val2, int32_t val3, |
888 | int32_t val4 = 0, int32_t val5 = 0, int32_t val6 = 0, int32_t val7 = 0, |
889 | int32_t val8 = 0, int32_t val9 = 0, int32_t val10 = 0, int32_t val11 = 0, |
890 | int32_t val12 = 0, int32_t val13 = 0, int32_t val14 = 0, int32_t val15 = 0) { |
891 | __masm-> align(CodeEntryAlignment); |
892 | StubCodeMark mark(this, "StubRoutines", stub_name); |
893 | address start = __masm-> pc(); |
894 | |
895 | assert(len != Assembler::AVX_NoVec, "vector len must be specified")do { if (!(len != Assembler::AVX_NoVec)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 895, "assert(" "len != Assembler::AVX_NoVec" ") failed", "vector len must be specified" ); ::breakpoint(); } } while (0); |
896 | __masm-> emit_data(val0, relocInfo::none, 0); |
897 | __masm-> emit_data(val1, relocInfo::none, 0); |
898 | __masm-> emit_data(val2, relocInfo::none, 0); |
899 | __masm-> emit_data(val3, relocInfo::none, 0); |
900 | if (len >= Assembler::AVX_256bit) { |
901 | __masm-> emit_data(val4, relocInfo::none, 0); |
902 | __masm-> emit_data(val5, relocInfo::none, 0); |
903 | __masm-> emit_data(val6, relocInfo::none, 0); |
904 | __masm-> emit_data(val7, relocInfo::none, 0); |
905 | if (len >= Assembler::AVX_512bit) { |
906 | __masm-> emit_data(val8, relocInfo::none, 0); |
907 | __masm-> emit_data(val9, relocInfo::none, 0); |
908 | __masm-> emit_data(val10, relocInfo::none, 0); |
909 | __masm-> emit_data(val11, relocInfo::none, 0); |
910 | __masm-> emit_data(val12, relocInfo::none, 0); |
911 | __masm-> emit_data(val13, relocInfo::none, 0); |
912 | __masm-> emit_data(val14, relocInfo::none, 0); |
913 | __masm-> emit_data(val15, relocInfo::none, 0); |
914 | } |
915 | } |
916 | |
917 | return start; |
918 | } |
919 | |
920 | // Non-destructive plausibility checks for oops |
921 | // |
922 | // Arguments: |
923 | // all args on stack! |
924 | // |
925 | // Stack after saving c_rarg3: |
926 | // [tos + 0]: saved c_rarg3 |
927 | // [tos + 1]: saved c_rarg2 |
928 | // [tos + 2]: saved r12 (several TemplateTable methods use it) |
929 | // [tos + 3]: saved flags |
930 | // [tos + 4]: return address |
931 | // * [tos + 5]: error message (char*) |
932 | // * [tos + 6]: object to verify (oop) |
933 | // * [tos + 7]: saved rax - saved by caller and bashed |
934 | // * [tos + 8]: saved r10 (rscratch1) - saved by caller |
935 | // * = popped on exit |
936 | address generate_verify_oop() { |
937 | StubCodeMark mark(this, "StubRoutines", "verify_oop"); |
938 | address start = __masm-> pc(); |
939 | |
940 | Label exit, error; |
941 | |
942 | __masm-> pushf(); |
943 | __masm-> incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); |
944 | |
945 | __masm-> push(r12); |
946 | |
947 | // save c_rarg2 and c_rarg3 |
948 | __masm-> push(c_rarg2); |
949 | __masm-> push(c_rarg3); |
950 | |
951 | enum { |
952 | // After previous pushes. |
953 | oop_to_verify = 6 * wordSize, |
954 | saved_rax = 7 * wordSize, |
955 | saved_r10 = 8 * wordSize, |
956 | |
957 | // Before the call to MacroAssembler::debug(), see below. |
958 | return_addr = 16 * wordSize, |
959 | error_msg = 17 * wordSize |
960 | }; |
961 | |
962 | // get object |
963 | __masm-> movptr(rax, Address(rsp, oop_to_verify)); |
964 | |
965 | // make sure object is 'reasonable' |
966 | __masm-> testptr(rax, rax); |
967 | __masm-> jcc(Assembler::zero, exit); // if obj is NULL it is OK |
968 | |
969 | #if INCLUDE_ZGC1 |
970 | if (UseZGC) { |
971 | // Check if metadata bits indicate a bad oop |
972 | __masm-> testptr(rax, Address(r15_thread, ZThreadLocalData::address_bad_mask_offset())); |
973 | __masm-> jcc(Assembler::notZero, error); |
974 | } |
975 | #endif |
976 | |
977 | // Check if the oop is in the right area of memory |
978 | __masm-> movptr(c_rarg2, rax); |
979 | __masm-> movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask()); |
980 | __masm-> andptr(c_rarg2, c_rarg3); |
981 | __masm-> movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits()); |
982 | __masm-> cmpptr(c_rarg2, c_rarg3); |
983 | __masm-> jcc(Assembler::notZero, error); |
984 | |
985 | // make sure klass is 'reasonable', which is not zero. |
986 | __masm-> load_klass(rax, rax, rscratch1); // get klass |
987 | __masm-> testptr(rax, rax); |
988 | __masm-> jcc(Assembler::zero, error); // if klass is NULL it is broken |
989 | |
990 | // return if everything seems ok |
991 | __masm-> bind(exit); |
992 | __masm-> movptr(rax, Address(rsp, saved_rax)); // get saved rax back |
993 | __masm-> movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back |
994 | __masm-> pop(c_rarg3); // restore c_rarg3 |
995 | __masm-> pop(c_rarg2); // restore c_rarg2 |
996 | __masm-> pop(r12); // restore r12 |
997 | __masm-> popf(); // restore flags |
998 | __masm-> ret(4 * wordSize); // pop caller saved stuff |
999 | |
1000 | // handle errors |
1001 | __masm-> bind(error); |
1002 | __masm-> movptr(rax, Address(rsp, saved_rax)); // get saved rax back |
1003 | __masm-> movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back |
1004 | __masm-> pop(c_rarg3); // get saved c_rarg3 back |
1005 | __masm-> pop(c_rarg2); // get saved c_rarg2 back |
1006 | __masm-> pop(r12); // get saved r12 back |
1007 | __masm-> popf(); // get saved flags off stack -- |
1008 | // will be ignored |
1009 | |
1010 | __masm-> pusha(); // push registers |
1011 | // (rip is already |
1012 | // already pushed) |
1013 | // debug(char* msg, int64_t pc, int64_t regs[]) |
1014 | // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and |
1015 | // pushed all the registers, so now the stack looks like: |
1016 | // [tos + 0] 16 saved registers |
1017 | // [tos + 16] return address |
1018 | // * [tos + 17] error message (char*) |
1019 | // * [tos + 18] object to verify (oop) |
1020 | // * [tos + 19] saved rax - saved by caller and bashed |
1021 | // * [tos + 20] saved r10 (rscratch1) - saved by caller |
1022 | // * = popped on exit |
1023 | |
1024 | __masm-> movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message |
1025 | __masm-> movptr(c_rarg1, Address(rsp, return_addr)); // pass return address |
1026 | __masm-> movq(c_rarg2, rsp); // pass address of regs on stack |
1027 | __masm-> mov(r12, rsp); // remember rsp |
1028 | __masm-> subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
1029 | __masm-> andptr(rsp, -16); // align stack as required by ABI |
1030 | BLOCK_COMMENT("call MacroAssembler::debug")masm-> block_comment("call MacroAssembler::debug"); |
1031 | __masm-> call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)((address)((address_word)(MacroAssembler::debug64))))); |
1032 | __masm-> hlt(); |
1033 | return start; |
1034 | } |
1035 | |
1036 | // |
1037 | // Verify that a register contains clean 32-bits positive value |
1038 | // (high 32-bits are 0) so it could be used in 64-bits shifts. |
1039 | // |
1040 | // Input: |
1041 | // Rint - 32-bits value |
1042 | // Rtmp - scratch |
1043 | // |
1044 | void assert_clean_int(Register Rint, Register Rtmp) { |
1045 | #ifdef ASSERT1 |
1046 | Label L; |
1047 | assert_different_registers(Rtmp, Rint); |
1048 | __masm-> movslq(Rtmp, Rint); |
1049 | __masm-> cmpq(Rtmp, Rint); |
1050 | __masm-> jcc(Assembler::equal, L); |
1051 | __masm-> stop("high 32-bits of int value are not 0"); |
1052 | __masm-> bind(L); |
1053 | #endif |
1054 | } |
1055 | |
1056 | // Generate overlap test for array copy stubs |
1057 | // |
1058 | // Input: |
1059 | // c_rarg0 - from |
1060 | // c_rarg1 - to |
1061 | // c_rarg2 - element count |
1062 | // |
1063 | // Output: |
1064 | // rax - &from[element count - 1] |
1065 | // |
1066 | void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) { |
1067 | assert(no_overlap_target != NULL, "must be generated")do { if (!(no_overlap_target != __null)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1067, "assert(" "no_overlap_target != __null" ") failed", "must be generated" ); ::breakpoint(); } } while (0); |
1068 | array_overlap_test(no_overlap_target, NULL__null, sf); |
1069 | } |
1070 | void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) { |
1071 | array_overlap_test(NULL__null, &L_no_overlap, sf); |
1072 | } |
1073 | void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) { |
1074 | const Register from = c_rarg0; |
1075 | const Register to = c_rarg1; |
1076 | const Register count = c_rarg2; |
1077 | const Register end_from = rax; |
1078 | |
1079 | __masm-> cmpptr(to, from); |
1080 | __masm-> lea(end_from, Address(from, count, sf, 0)); |
1081 | if (NOLp == NULL__null) { |
1082 | ExternalAddress no_overlap(no_overlap_target); |
1083 | __masm-> jump_cc(Assembler::belowEqual, no_overlap); |
1084 | __masm-> cmpptr(to, end_from); |
1085 | __masm-> jump_cc(Assembler::aboveEqual, no_overlap); |
1086 | } else { |
1087 | __masm-> jcc(Assembler::belowEqual, (*NOLp)); |
1088 | __masm-> cmpptr(to, end_from); |
1089 | __masm-> jcc(Assembler::aboveEqual, (*NOLp)); |
1090 | } |
1091 | } |
1092 | |
1093 | // Shuffle first three arg regs on Windows into Linux/Solaris locations. |
1094 | // |
1095 | // Outputs: |
1096 | // rdi - rcx |
1097 | // rsi - rdx |
1098 | // rdx - r8 |
1099 | // rcx - r9 |
1100 | // |
1101 | // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter |
1102 | // are non-volatile. r9 and r10 should not be used by the caller. |
1103 | // |
1104 | DEBUG_ONLY(bool regs_in_thread;)bool regs_in_thread; |
1105 | |
1106 | void setup_arg_regs(int nargs = 3) { |
1107 | const Register saved_rdi = r9; |
1108 | const Register saved_rsi = r10; |
1109 | assert(nargs == 3 || nargs == 4, "else fix")do { if (!(nargs == 3 || nargs == 4)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1109, "assert(" "nargs == 3 || nargs == 4" ") failed", "else fix" ); ::breakpoint(); } } while (0); |
1110 | #ifdef _WIN64 |
1111 | assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,do { if (!(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1112, "assert(" "c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0) |
1112 | "unexpected argument registers")do { if (!(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1112, "assert(" "c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0); |
1113 | if (nargs >= 4) |
1114 | __masm-> mov(rax, r9); // r9 is also saved_rdi |
1115 | __masm-> movptr(saved_rdi, rdi); |
1116 | __masm-> movptr(saved_rsi, rsi); |
1117 | __masm-> mov(rdi, rcx); // c_rarg0 |
1118 | __masm-> mov(rsi, rdx); // c_rarg1 |
1119 | __masm-> mov(rdx, r8); // c_rarg2 |
1120 | if (nargs >= 4) |
1121 | __masm-> mov(rcx, rax); // c_rarg3 (via rax) |
1122 | #else |
1123 | assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,do { if (!(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1124, "assert(" "c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0) |
1124 | "unexpected argument registers")do { if (!(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1124, "assert(" "c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0); |
1125 | #endif |
1126 | DEBUG_ONLY(regs_in_thread = false;)regs_in_thread = false; |
1127 | } |
1128 | |
1129 | void restore_arg_regs() { |
1130 | assert(!regs_in_thread, "wrong call to restore_arg_regs")do { if (!(!regs_in_thread)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1130, "assert(" "!regs_in_thread" ") failed", "wrong call to restore_arg_regs" ); ::breakpoint(); } } while (0); |
1131 | const Register saved_rdi = r9; |
1132 | const Register saved_rsi = r10; |
1133 | #ifdef _WIN64 |
1134 | __masm-> movptr(rdi, saved_rdi); |
1135 | __masm-> movptr(rsi, saved_rsi); |
1136 | #endif |
1137 | } |
1138 | |
1139 | // This is used in places where r10 is a scratch register, and can |
1140 | // be adapted if r9 is needed also. |
1141 | void setup_arg_regs_using_thread() { |
1142 | const Register saved_r15 = r9; |
1143 | #ifdef _WIN64 |
1144 | __masm-> mov(saved_r15, r15); // r15 is callee saved and needs to be restored |
1145 | __masm-> get_thread(r15_thread); |
1146 | assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,do { if (!(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1147, "assert(" "c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0) |
1147 | "unexpected argument registers")do { if (!(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1147, "assert(" "c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0); |
1148 | __masm-> movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); |
1149 | __masm-> movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); |
1150 | |
1151 | __masm-> mov(rdi, rcx); // c_rarg0 |
1152 | __masm-> mov(rsi, rdx); // c_rarg1 |
1153 | __masm-> mov(rdx, r8); // c_rarg2 |
1154 | #else |
1155 | assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,do { if (!(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1156, "assert(" "c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0) |
1156 | "unexpected argument registers")do { if (!(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1156, "assert(" "c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx" ") failed", "unexpected argument registers"); ::breakpoint() ; } } while (0); |
1157 | #endif |
1158 | DEBUG_ONLY(regs_in_thread = true;)regs_in_thread = true; |
1159 | } |
1160 | |
1161 | void restore_arg_regs_using_thread() { |
1162 | assert(regs_in_thread, "wrong call to restore_arg_regs")do { if (!(regs_in_thread)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1162, "assert(" "regs_in_thread" ") failed", "wrong call to restore_arg_regs" ); ::breakpoint(); } } while (0); |
1163 | const Register saved_r15 = r9; |
1164 | #ifdef _WIN64 |
1165 | __masm-> get_thread(r15_thread); |
1166 | __masm-> movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); |
1167 | __masm-> movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); |
1168 | __masm-> mov(r15, saved_r15); // r15 is callee saved and needs to be restored |
1169 | #endif |
1170 | } |
1171 | |
1172 | // Copy big chunks forward |
1173 | // |
1174 | // Inputs: |
1175 | // end_from - source arrays end address |
1176 | // end_to - destination array end address |
1177 | // qword_count - 64-bits element count, negative |
1178 | // to - scratch |
1179 | // L_copy_bytes - entry label |
1180 | // L_copy_8_bytes - exit label |
1181 | // |
1182 | void copy_bytes_forward(Register end_from, Register end_to, |
1183 | Register qword_count, Register to, |
1184 | Label& L_copy_bytes, Label& L_copy_8_bytes) { |
1185 | DEBUG_ONLY(__ stop("enter at entry label, not here"))masm-> stop("enter at entry label, not here"); |
1186 | Label L_loop; |
1187 | __masm-> align(OptoLoopAlignment); |
1188 | if (UseUnalignedLoadStores) { |
1189 | Label L_end; |
1190 | __masm-> BIND(L_loop)bind(L_loop); masm-> block_comment("L_loop" ":"); |
1191 | if (UseAVX >= 2) { |
1192 | __masm-> vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); |
1193 | __masm-> vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); |
1194 | __masm-> vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24)); |
1195 | __masm-> vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1); |
1196 | } else { |
1197 | __masm-> movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); |
1198 | __masm-> movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); |
1199 | __masm-> movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40)); |
1200 | __masm-> movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1); |
1201 | __masm-> movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24)); |
1202 | __masm-> movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2); |
1203 | __masm-> movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8)); |
1204 | __masm-> movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3); |
1205 | } |
1206 | |
1207 | __masm-> BIND(L_copy_bytes)bind(L_copy_bytes); masm-> block_comment("L_copy_bytes" ":" ); |
1208 | __masm-> addptr(qword_count, 8); |
1209 | __masm-> jcc(Assembler::lessEqual, L_loop); |
1210 | __masm-> subptr(qword_count, 4); // sub(8) and add(4) |
1211 | __masm-> jccb(Assembler::greater, L_end)jccb_0(Assembler::greater, L_end, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1211); |
1212 | // Copy trailing 32 bytes |
1213 | if (UseAVX >= 2) { |
1214 | __masm-> vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); |
1215 | __masm-> vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); |
1216 | } else { |
1217 | __masm-> movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); |
1218 | __masm-> movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); |
1219 | __masm-> movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8)); |
1220 | __masm-> movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1); |
1221 | } |
1222 | __masm-> addptr(qword_count, 4); |
1223 | __masm-> BIND(L_end)bind(L_end); masm-> block_comment("L_end" ":"); |
1224 | if (UseAVX >= 2) { |
1225 | // clean upper bits of YMM registers |
1226 | __masm-> vpxor(xmm0, xmm0); |
1227 | __masm-> vpxor(xmm1, xmm1); |
1228 | } |
1229 | } else { |
1230 | // Copy 32-bytes per iteration |
1231 | __masm-> BIND(L_loop)bind(L_loop); masm-> block_comment("L_loop" ":"); |
1232 | __masm-> movq(to, Address(end_from, qword_count, Address::times_8, -24)); |
1233 | __masm-> movq(Address(end_to, qword_count, Address::times_8, -24), to); |
1234 | __masm-> movq(to, Address(end_from, qword_count, Address::times_8, -16)); |
1235 | __masm-> movq(Address(end_to, qword_count, Address::times_8, -16), to); |
1236 | __masm-> movq(to, Address(end_from, qword_count, Address::times_8, - 8)); |
1237 | __masm-> movq(Address(end_to, qword_count, Address::times_8, - 8), to); |
1238 | __masm-> movq(to, Address(end_from, qword_count, Address::times_8, - 0)); |
1239 | __masm-> movq(Address(end_to, qword_count, Address::times_8, - 0), to); |
1240 | |
1241 | __masm-> BIND(L_copy_bytes)bind(L_copy_bytes); masm-> block_comment("L_copy_bytes" ":" ); |
1242 | __masm-> addptr(qword_count, 4); |
1243 | __masm-> jcc(Assembler::lessEqual, L_loop); |
1244 | } |
1245 | __masm-> subptr(qword_count, 4); |
1246 | __masm-> jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords |
1247 | } |
1248 | |
1249 | // Copy big chunks backward |
1250 | // |
1251 | // Inputs: |
1252 | // from - source arrays address |
1253 | // dest - destination array address |
1254 | // qword_count - 64-bits element count |
1255 | // to - scratch |
1256 | // L_copy_bytes - entry label |
1257 | // L_copy_8_bytes - exit label |
1258 | // |
1259 | void copy_bytes_backward(Register from, Register dest, |
1260 | Register qword_count, Register to, |
1261 | Label& L_copy_bytes, Label& L_copy_8_bytes) { |
1262 | DEBUG_ONLY(__ stop("enter at entry label, not here"))masm-> stop("enter at entry label, not here"); |
1263 | Label L_loop; |
1264 | __masm-> align(OptoLoopAlignment); |
1265 | if (UseUnalignedLoadStores) { |
1266 | Label L_end; |
1267 | __masm-> BIND(L_loop)bind(L_loop); masm-> block_comment("L_loop" ":"); |
1268 | if (UseAVX >= 2) { |
1269 | __masm-> vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32)); |
1270 | __masm-> vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0); |
1271 | __masm-> vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); |
1272 | __masm-> vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); |
1273 | } else { |
1274 | __masm-> movdqu(xmm0, Address(from, qword_count, Address::times_8, 48)); |
1275 | __masm-> movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0); |
1276 | __masm-> movdqu(xmm1, Address(from, qword_count, Address::times_8, 32)); |
1277 | __masm-> movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1); |
1278 | __masm-> movdqu(xmm2, Address(from, qword_count, Address::times_8, 16)); |
1279 | __masm-> movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2); |
1280 | __masm-> movdqu(xmm3, Address(from, qword_count, Address::times_8, 0)); |
1281 | __masm-> movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3); |
1282 | } |
1283 | |
1284 | __masm-> BIND(L_copy_bytes)bind(L_copy_bytes); masm-> block_comment("L_copy_bytes" ":" ); |
1285 | __masm-> subptr(qword_count, 8); |
1286 | __masm-> jcc(Assembler::greaterEqual, L_loop); |
1287 | |
1288 | __masm-> addptr(qword_count, 4); // add(8) and sub(4) |
1289 | __masm-> jccb(Assembler::less, L_end)jccb_0(Assembler::less, L_end, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1289); |
1290 | // Copy trailing 32 bytes |
1291 | if (UseAVX >= 2) { |
1292 | __masm-> vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0)); |
1293 | __masm-> vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0); |
1294 | } else { |
1295 | __masm-> movdqu(xmm0, Address(from, qword_count, Address::times_8, 16)); |
1296 | __masm-> movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0); |
1297 | __masm-> movdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); |
1298 | __masm-> movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); |
1299 | } |
1300 | __masm-> subptr(qword_count, 4); |
1301 | __masm-> BIND(L_end)bind(L_end); masm-> block_comment("L_end" ":"); |
1302 | if (UseAVX >= 2) { |
1303 | // clean upper bits of YMM registers |
1304 | __masm-> vpxor(xmm0, xmm0); |
1305 | __masm-> vpxor(xmm1, xmm1); |
1306 | } |
1307 | } else { |
1308 | // Copy 32-bytes per iteration |
1309 | __masm-> BIND(L_loop)bind(L_loop); masm-> block_comment("L_loop" ":"); |
1310 | __masm-> movq(to, Address(from, qword_count, Address::times_8, 24)); |
1311 | __masm-> movq(Address(dest, qword_count, Address::times_8, 24), to); |
1312 | __masm-> movq(to, Address(from, qword_count, Address::times_8, 16)); |
1313 | __masm-> movq(Address(dest, qword_count, Address::times_8, 16), to); |
1314 | __masm-> movq(to, Address(from, qword_count, Address::times_8, 8)); |
1315 | __masm-> movq(Address(dest, qword_count, Address::times_8, 8), to); |
1316 | __masm-> movq(to, Address(from, qword_count, Address::times_8, 0)); |
1317 | __masm-> movq(Address(dest, qword_count, Address::times_8, 0), to); |
1318 | |
1319 | __masm-> BIND(L_copy_bytes)bind(L_copy_bytes); masm-> block_comment("L_copy_bytes" ":" ); |
1320 | __masm-> subptr(qword_count, 4); |
1321 | __masm-> jcc(Assembler::greaterEqual, L_loop); |
1322 | } |
1323 | __masm-> addptr(qword_count, 4); |
1324 | __masm-> jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords |
1325 | } |
1326 | |
1327 | #ifndef PRODUCT |
1328 | int& get_profile_ctr(int shift) { |
1329 | if ( 0 == shift) |
1330 | return SharedRuntime::_jbyte_array_copy_ctr; |
1331 | else if(1 == shift) |
1332 | return SharedRuntime::_jshort_array_copy_ctr; |
1333 | else if(2 == shift) |
1334 | return SharedRuntime::_jint_array_copy_ctr; |
1335 | else |
1336 | return SharedRuntime::_jlong_array_copy_ctr; |
1337 | } |
1338 | #endif |
1339 | |
1340 | void setup_argument_regs(BasicType type) { |
1341 | if (type == T_BYTE || type == T_SHORT) { |
1342 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
1343 | // r9 and r10 may be used to save non-volatile registers |
1344 | } else { |
1345 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
1346 | // r9 is used to save r15_thread |
1347 | } |
1348 | } |
1349 | |
1350 | void restore_argument_regs(BasicType type) { |
1351 | if (type == T_BYTE || type == T_SHORT) { |
1352 | restore_arg_regs(); |
1353 | } else { |
1354 | restore_arg_regs_using_thread(); |
1355 | } |
1356 | } |
1357 | |
1358 | #if COMPILER2_OR_JVMCI1 |
1359 | // Note: Following rules apply to AVX3 optimized arraycopy stubs:- |
1360 | // - If target supports AVX3 features (BW+VL+F) then implementation uses 32 byte vectors (YMMs) |
1361 | // for both special cases (various small block sizes) and aligned copy loop. This is the |
1362 | // default configuration. |
1363 | // - If copy length is above AVX3Threshold, then implementation use 64 byte vectors (ZMMs) |
1364 | // for main copy loop (and subsequent tail) since bulk of the cycles will be consumed in it. |
1365 | // - If user forces MaxVectorSize=32 then above 4096 bytes its seen that REP MOVs shows a |
1366 | // better performance for disjoint copies. For conjoint/backward copy vector based |
1367 | // copy performs better. |
1368 | // - If user sets AVX3Threshold=0, then special cases for small blocks sizes operate over |
1369 | // 64 byte vector registers (ZMMs). |
1370 | |
1371 | // Inputs: |
1372 | // c_rarg0 - source array address |
1373 | // c_rarg1 - destination array address |
1374 | // c_rarg2 - element count, treated as ssize_t, can be zero |
1375 | // |
1376 | // |
1377 | // Side Effects: |
1378 | // disjoint_copy_avx3_masked is set to the no-overlap entry point |
1379 | // used by generate_conjoint_[byte/int/short/long]_copy(). |
1380 | // |
1381 | |
1382 | address generate_disjoint_copy_avx3_masked(address* entry, const char *name, int shift, |
1383 | bool aligned, bool is_oop, bool dest_uninitialized) { |
1384 | __masm-> align(CodeEntryAlignment); |
1385 | StubCodeMark mark(this, "StubRoutines", name); |
1386 | address start = __masm-> pc(); |
1387 | int avx3threshold = VM_Version::avx3_threshold(); |
1388 | bool use64byteVector = (MaxVectorSize > 32) && (avx3threshold == 0); |
1389 | Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry; |
1390 | Label L_repmovs, L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64; |
1391 | const Register from = rdi; // source array address |
1392 | const Register to = rsi; // destination array address |
1393 | const Register count = rdx; // elements count |
1394 | const Register temp1 = r8; |
1395 | const Register temp2 = r11; |
1396 | const Register temp3 = rax; |
1397 | const Register temp4 = rcx; |
1398 | // End pointers are inclusive, and if count is not zero they point |
1399 | // to the last unit copied: end_to[0] := end_from[0] |
1400 | |
1401 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
1402 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
1403 | |
1404 | if (entry != NULL__null) { |
1405 | *entry = __masm-> pc(); |
1406 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
1407 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
1408 | } |
1409 | |
1410 | BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; |
1411 | BasicType type = is_oop ? T_OBJECT : type_vec[shift]; |
1412 | |
1413 | setup_argument_regs(type); |
1414 | |
1415 | DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; |
1416 | if (dest_uninitialized) { |
1417 | decorators |= IS_DEST_UNINITIALIZED; |
1418 | } |
1419 | if (aligned) { |
1420 | decorators |= ARRAYCOPY_ALIGNED; |
1421 | } |
1422 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
1423 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
1424 | |
1425 | { |
1426 | // Type(shift) byte(0), short(1), int(2), long(3) |
1427 | int loop_size[] = { 192, 96, 48, 24}; |
1428 | int threshold[] = { 4096, 2048, 1024, 512}; |
1429 | |
1430 | // UnsafeCopyMemory page error: continue after ucm |
1431 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
1432 | // 'from', 'to' and 'count' are now valid |
1433 | |
1434 | // temp1 holds remaining count and temp4 holds running count used to compute |
1435 | // next address offset for start of to/from addresses (temp4 * scale). |
1436 | __masm-> mov64(temp4, 0); |
1437 | __masm-> movq(temp1, count); |
1438 | |
1439 | // Zero length check. |
1440 | __masm-> BIND(L_tail)bind(L_tail); masm-> block_comment("L_tail" ":"); |
1441 | __masm-> cmpq(temp1, 0); |
1442 | __masm-> jcc(Assembler::lessEqual, L_exit); |
1443 | |
1444 | // Special cases using 32 byte [masked] vector copy operations. |
1445 | __masm-> arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift, |
1446 | temp4, temp3, use64byteVector, L_entry, L_exit); |
1447 | |
1448 | // PRE-MAIN-POST loop for aligned copy. |
1449 | __masm-> BIND(L_entry)bind(L_entry); masm-> block_comment("L_entry" ":"); |
1450 | |
1451 | if (avx3threshold != 0) { |
1452 | __masm-> cmpq(count, threshold[shift]); |
1453 | if (MaxVectorSize == 64) { |
1454 | // Copy using 64 byte vectors. |
1455 | __masm-> jcc(Assembler::greaterEqual, L_pre_main_post_64); |
1456 | } else { |
1457 | assert(MaxVectorSize < 64, "vector size should be < 64 bytes")do { if (!(MaxVectorSize < 64)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1457, "assert(" "MaxVectorSize < 64" ") failed", "vector size should be < 64 bytes" ); ::breakpoint(); } } while (0); |
1458 | // REP MOVS offer a faster copy path. |
1459 | __masm-> jcc(Assembler::greaterEqual, L_repmovs); |
1460 | } |
1461 | } |
1462 | |
1463 | if ((MaxVectorSize < 64) || (avx3threshold != 0)) { |
1464 | // Partial copy to make dst address 32 byte aligned. |
1465 | __masm-> movq(temp2, to); |
1466 | __masm-> andq(temp2, 31); |
1467 | __masm-> jcc(Assembler::equal, L_main_pre_loop); |
1468 | |
1469 | __masm-> negptr(temp2); |
1470 | __masm-> addq(temp2, 32); |
1471 | if (shift) { |
1472 | __masm-> shrq(temp2, shift); |
1473 | } |
1474 | __masm-> movq(temp3, temp2); |
1475 | __masm-> copy32_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift); |
1476 | __masm-> movq(temp4, temp2); |
1477 | __masm-> movq(temp1, count); |
1478 | __masm-> subq(temp1, temp2); |
1479 | |
1480 | __masm-> cmpq(temp1, loop_size[shift]); |
1481 | __masm-> jcc(Assembler::less, L_tail); |
1482 | |
1483 | __masm-> BIND(L_main_pre_loop)bind(L_main_pre_loop); masm-> block_comment("L_main_pre_loop" ":"); |
1484 | __masm-> subq(temp1, loop_size[shift]); |
1485 | |
1486 | // Main loop with aligned copy block size of 192 bytes at 32 byte granularity. |
1487 | __masm-> align32(); |
1488 | __masm-> BIND(L_main_loop)bind(L_main_loop); masm-> block_comment("L_main_loop" ":"); |
1489 | __masm-> copy64_avx(to, from, temp4, xmm1, false, shift, 0); |
1490 | __masm-> copy64_avx(to, from, temp4, xmm1, false, shift, 64); |
1491 | __masm-> copy64_avx(to, from, temp4, xmm1, false, shift, 128); |
1492 | __masm-> addptr(temp4, loop_size[shift]); |
1493 | __masm-> subq(temp1, loop_size[shift]); |
1494 | __masm-> jcc(Assembler::greater, L_main_loop); |
1495 | |
1496 | __masm-> addq(temp1, loop_size[shift]); |
1497 | |
1498 | // Tail loop. |
1499 | __masm-> jmp(L_tail); |
1500 | |
1501 | __masm-> BIND(L_repmovs)bind(L_repmovs); masm-> block_comment("L_repmovs" ":"); |
1502 | __masm-> movq(temp2, temp1); |
1503 | // Swap to(RSI) and from(RDI) addresses to comply with REP MOVs semantics. |
1504 | __masm-> movq(temp3, to); |
1505 | __masm-> movq(to, from); |
1506 | __masm-> movq(from, temp3); |
1507 | // Save to/from for restoration post rep_mov. |
1508 | __masm-> movq(temp1, to); |
1509 | __masm-> movq(temp3, from); |
1510 | if(shift < 3) { |
1511 | __masm-> shrq(temp2, 3-shift); // quad word count |
1512 | } |
1513 | __masm-> movq(temp4 , temp2); // move quad ward count into temp4(RCX). |
1514 | __masm-> rep_mov(); |
1515 | __masm-> shlq(temp2, 3); // convert quad words into byte count. |
1516 | if(shift) { |
1517 | __masm-> shrq(temp2, shift); // type specific count. |
1518 | } |
1519 | // Restore original addresses in to/from. |
1520 | __masm-> movq(to, temp3); |
1521 | __masm-> movq(from, temp1); |
1522 | __masm-> movq(temp4, temp2); |
1523 | __masm-> movq(temp1, count); |
1524 | __masm-> subq(temp1, temp2); // tailing part (less than a quad ward size). |
1525 | __masm-> jmp(L_tail); |
1526 | } |
1527 | |
1528 | if (MaxVectorSize > 32) { |
1529 | __masm-> BIND(L_pre_main_post_64)bind(L_pre_main_post_64); masm-> block_comment("L_pre_main_post_64" ":"); |
1530 | // Partial copy to make dst address 64 byte aligned. |
1531 | __masm-> movq(temp2, to); |
1532 | __masm-> andq(temp2, 63); |
1533 | __masm-> jcc(Assembler::equal, L_main_pre_loop_64bytes); |
1534 | |
1535 | __masm-> negptr(temp2); |
1536 | __masm-> addq(temp2, 64); |
1537 | if (shift) { |
1538 | __masm-> shrq(temp2, shift); |
1539 | } |
1540 | __masm-> movq(temp3, temp2); |
1541 | __masm-> copy64_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift, 0 , true); |
1542 | __masm-> movq(temp4, temp2); |
1543 | __masm-> movq(temp1, count); |
1544 | __masm-> subq(temp1, temp2); |
1545 | |
1546 | __masm-> cmpq(temp1, loop_size[shift]); |
1547 | __masm-> jcc(Assembler::less, L_tail64); |
1548 | |
1549 | __masm-> BIND(L_main_pre_loop_64bytes)bind(L_main_pre_loop_64bytes); masm-> block_comment("L_main_pre_loop_64bytes" ":"); |
1550 | __masm-> subq(temp1, loop_size[shift]); |
1551 | |
1552 | // Main loop with aligned copy block size of 192 bytes at |
1553 | // 64 byte copy granularity. |
1554 | __masm-> align32(); |
1555 | __masm-> BIND(L_main_loop_64bytes)bind(L_main_loop_64bytes); masm-> block_comment("L_main_loop_64bytes" ":"); |
1556 | __masm-> copy64_avx(to, from, temp4, xmm1, false, shift, 0 , true); |
1557 | __masm-> copy64_avx(to, from, temp4, xmm1, false, shift, 64, true); |
1558 | __masm-> copy64_avx(to, from, temp4, xmm1, false, shift, 128, true); |
1559 | __masm-> addptr(temp4, loop_size[shift]); |
1560 | __masm-> subq(temp1, loop_size[shift]); |
1561 | __masm-> jcc(Assembler::greater, L_main_loop_64bytes); |
1562 | |
1563 | __masm-> addq(temp1, loop_size[shift]); |
1564 | // Zero length check. |
1565 | __masm-> jcc(Assembler::lessEqual, L_exit); |
1566 | |
1567 | __masm-> BIND(L_tail64)bind(L_tail64); masm-> block_comment("L_tail64" ":"); |
1568 | |
1569 | // Tail handling using 64 byte [masked] vector copy operations. |
1570 | use64byteVector = true; |
1571 | __masm-> arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift, |
1572 | temp4, temp3, use64byteVector, L_entry, L_exit); |
1573 | } |
1574 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
1575 | } |
1576 | |
1577 | address ucme_exit_pc = __masm-> pc(); |
Value stored to 'ucme_exit_pc' during its initialization is never read | |
1578 | // When called from generic_arraycopy r11 contains specific values |
1579 | // used during arraycopy epilogue, re-initializing r11. |
1580 | if (is_oop) { |
1581 | __masm-> movq(r11, shift == 3 ? count : to); |
1582 | } |
1583 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, count); |
1584 | restore_argument_regs(type); |
1585 | inc_counter_np(get_profile_ctr(shift))masm-> block_comment("inc_counter " "get_profile_ctr(shift)" ); inc_counter_np_(get_profile_ctr(shift));; // Update counter after rscratch1 is free |
1586 | __masm-> xorptr(rax, rax); // return 0 |
1587 | __masm-> vzeroupper(); |
1588 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
1589 | __masm-> ret(0); |
1590 | return start; |
1591 | } |
1592 | |
1593 | // Inputs: |
1594 | // c_rarg0 - source array address |
1595 | // c_rarg1 - destination array address |
1596 | // c_rarg2 - element count, treated as ssize_t, can be zero |
1597 | // |
1598 | // |
1599 | address generate_conjoint_copy_avx3_masked(address* entry, const char *name, int shift, |
1600 | address nooverlap_target, bool aligned, bool is_oop, |
1601 | bool dest_uninitialized) { |
1602 | __masm-> align(CodeEntryAlignment); |
1603 | StubCodeMark mark(this, "StubRoutines", name); |
1604 | address start = __masm-> pc(); |
1605 | |
1606 | int avx3threshold = VM_Version::avx3_threshold(); |
1607 | bool use64byteVector = (MaxVectorSize > 32) && (avx3threshold == 0); |
1608 | |
1609 | Label L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64; |
1610 | Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry; |
1611 | const Register from = rdi; // source array address |
1612 | const Register to = rsi; // destination array address |
1613 | const Register count = rdx; // elements count |
1614 | const Register temp1 = r8; |
1615 | const Register temp2 = rcx; |
1616 | const Register temp3 = r11; |
1617 | const Register temp4 = rax; |
1618 | // End pointers are inclusive, and if count is not zero they point |
1619 | // to the last unit copied: end_to[0] := end_from[0] |
1620 | |
1621 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
1622 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
1623 | |
1624 | if (entry != NULL__null) { |
1625 | *entry = __masm-> pc(); |
1626 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
1627 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
1628 | } |
1629 | |
1630 | array_overlap_test(nooverlap_target, (Address::ScaleFactor)(shift)); |
1631 | |
1632 | BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; |
1633 | BasicType type = is_oop ? T_OBJECT : type_vec[shift]; |
1634 | |
1635 | setup_argument_regs(type); |
1636 | |
1637 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
1638 | if (dest_uninitialized) { |
1639 | decorators |= IS_DEST_UNINITIALIZED; |
1640 | } |
1641 | if (aligned) { |
1642 | decorators |= ARRAYCOPY_ALIGNED; |
1643 | } |
1644 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
1645 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
1646 | { |
1647 | // Type(shift) byte(0), short(1), int(2), long(3) |
1648 | int loop_size[] = { 192, 96, 48, 24}; |
1649 | int threshold[] = { 4096, 2048, 1024, 512}; |
1650 | |
1651 | // UnsafeCopyMemory page error: continue after ucm |
1652 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
1653 | // 'from', 'to' and 'count' are now valid |
1654 | |
1655 | // temp1 holds remaining count. |
1656 | __masm-> movq(temp1, count); |
1657 | |
1658 | // Zero length check. |
1659 | __masm-> BIND(L_tail)bind(L_tail); masm-> block_comment("L_tail" ":"); |
1660 | __masm-> cmpq(temp1, 0); |
1661 | __masm-> jcc(Assembler::lessEqual, L_exit); |
1662 | |
1663 | __masm-> mov64(temp2, 0); |
1664 | __masm-> movq(temp3, temp1); |
1665 | // Special cases using 32 byte [masked] vector copy operations. |
1666 | __masm-> arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift, |
1667 | temp4, use64byteVector, L_entry, L_exit); |
1668 | |
1669 | // PRE-MAIN-POST loop for aligned copy. |
1670 | __masm-> BIND(L_entry)bind(L_entry); masm-> block_comment("L_entry" ":"); |
1671 | |
1672 | if ((MaxVectorSize > 32) && (avx3threshold != 0)) { |
1673 | __masm-> cmpq(temp1, threshold[shift]); |
1674 | __masm-> jcc(Assembler::greaterEqual, L_pre_main_post_64); |
1675 | } |
1676 | |
1677 | if ((MaxVectorSize < 64) || (avx3threshold != 0)) { |
1678 | // Partial copy to make dst address 32 byte aligned. |
1679 | __masm-> leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0)); |
1680 | __masm-> andq(temp2, 31); |
1681 | __masm-> jcc(Assembler::equal, L_main_pre_loop); |
1682 | |
1683 | if (shift) { |
1684 | __masm-> shrq(temp2, shift); |
1685 | } |
1686 | __masm-> subq(temp1, temp2); |
1687 | __masm-> copy32_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift); |
1688 | |
1689 | __masm-> cmpq(temp1, loop_size[shift]); |
1690 | __masm-> jcc(Assembler::less, L_tail); |
1691 | |
1692 | __masm-> BIND(L_main_pre_loop)bind(L_main_pre_loop); masm-> block_comment("L_main_pre_loop" ":"); |
1693 | |
1694 | // Main loop with aligned copy block size of 192 bytes at 32 byte granularity. |
1695 | __masm-> align32(); |
1696 | __masm-> BIND(L_main_loop)bind(L_main_loop); masm-> block_comment("L_main_loop" ":"); |
1697 | __masm-> copy64_avx(to, from, temp1, xmm1, true, shift, -64); |
1698 | __masm-> copy64_avx(to, from, temp1, xmm1, true, shift, -128); |
1699 | __masm-> copy64_avx(to, from, temp1, xmm1, true, shift, -192); |
1700 | __masm-> subptr(temp1, loop_size[shift]); |
1701 | __masm-> cmpq(temp1, loop_size[shift]); |
1702 | __masm-> jcc(Assembler::greater, L_main_loop); |
1703 | |
1704 | // Tail loop. |
1705 | __masm-> jmp(L_tail); |
1706 | } |
1707 | |
1708 | if (MaxVectorSize > 32) { |
1709 | __masm-> BIND(L_pre_main_post_64)bind(L_pre_main_post_64); masm-> block_comment("L_pre_main_post_64" ":"); |
1710 | // Partial copy to make dst address 64 byte aligned. |
1711 | __masm-> leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0)); |
1712 | __masm-> andq(temp2, 63); |
1713 | __masm-> jcc(Assembler::equal, L_main_pre_loop_64bytes); |
1714 | |
1715 | if (shift) { |
1716 | __masm-> shrq(temp2, shift); |
1717 | } |
1718 | __masm-> subq(temp1, temp2); |
1719 | __masm-> copy64_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift, 0 , true); |
1720 | |
1721 | __masm-> cmpq(temp1, loop_size[shift]); |
1722 | __masm-> jcc(Assembler::less, L_tail64); |
1723 | |
1724 | __masm-> BIND(L_main_pre_loop_64bytes)bind(L_main_pre_loop_64bytes); masm-> block_comment("L_main_pre_loop_64bytes" ":"); |
1725 | |
1726 | // Main loop with aligned copy block size of 192 bytes at |
1727 | // 64 byte copy granularity. |
1728 | __masm-> align32(); |
1729 | __masm-> BIND(L_main_loop_64bytes)bind(L_main_loop_64bytes); masm-> block_comment("L_main_loop_64bytes" ":"); |
1730 | __masm-> copy64_avx(to, from, temp1, xmm1, true, shift, -64 , true); |
1731 | __masm-> copy64_avx(to, from, temp1, xmm1, true, shift, -128, true); |
1732 | __masm-> copy64_avx(to, from, temp1, xmm1, true, shift, -192, true); |
1733 | __masm-> subq(temp1, loop_size[shift]); |
1734 | __masm-> cmpq(temp1, loop_size[shift]); |
1735 | __masm-> jcc(Assembler::greater, L_main_loop_64bytes); |
1736 | |
1737 | // Zero length check. |
1738 | __masm-> cmpq(temp1, 0); |
1739 | __masm-> jcc(Assembler::lessEqual, L_exit); |
1740 | |
1741 | __masm-> BIND(L_tail64)bind(L_tail64); masm-> block_comment("L_tail64" ":"); |
1742 | |
1743 | // Tail handling using 64 byte [masked] vector copy operations. |
1744 | use64byteVector = true; |
1745 | __masm-> mov64(temp2, 0); |
1746 | __masm-> movq(temp3, temp1); |
1747 | __masm-> arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift, |
1748 | temp4, use64byteVector, L_entry, L_exit); |
1749 | } |
1750 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
1751 | } |
1752 | address ucme_exit_pc = __masm-> pc(); |
1753 | // When called from generic_arraycopy r11 contains specific values |
1754 | // used during arraycopy epilogue, re-initializing r11. |
1755 | if(is_oop) { |
1756 | __masm-> movq(r11, count); |
1757 | } |
1758 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, count); |
1759 | restore_argument_regs(type); |
1760 | inc_counter_np(get_profile_ctr(shift))masm-> block_comment("inc_counter " "get_profile_ctr(shift)" ); inc_counter_np_(get_profile_ctr(shift));; // Update counter after rscratch1 is free |
1761 | __masm-> xorptr(rax, rax); // return 0 |
1762 | __masm-> vzeroupper(); |
1763 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
1764 | __masm-> ret(0); |
1765 | return start; |
1766 | } |
1767 | #endif // COMPILER2_OR_JVMCI |
1768 | |
1769 | |
1770 | // Arguments: |
1771 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
1772 | // ignored |
1773 | // name - stub name string |
1774 | // |
1775 | // Inputs: |
1776 | // c_rarg0 - source array address |
1777 | // c_rarg1 - destination array address |
1778 | // c_rarg2 - element count, treated as ssize_t, can be zero |
1779 | // |
1780 | // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, |
1781 | // we let the hardware handle it. The one to eight bytes within words, |
1782 | // dwords or qwords that span cache line boundaries will still be loaded |
1783 | // and stored atomically. |
1784 | // |
1785 | // Side Effects: |
1786 | // disjoint_byte_copy_entry is set to the no-overlap entry point |
1787 | // used by generate_conjoint_byte_copy(). |
1788 | // |
1789 | address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) { |
1790 | #if COMPILER2_OR_JVMCI1 |
1791 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
1792 | return generate_disjoint_copy_avx3_masked(entry, "jbyte_disjoint_arraycopy_avx3", 0, |
1793 | aligned, false, false); |
1794 | } |
1795 | #endif |
1796 | __masm-> align(CodeEntryAlignment); |
1797 | StubCodeMark mark(this, "StubRoutines", name); |
1798 | address start = __masm-> pc(); |
1799 | |
1800 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; |
1801 | Label L_copy_byte, L_exit; |
1802 | const Register from = rdi; // source array address |
1803 | const Register to = rsi; // destination array address |
1804 | const Register count = rdx; // elements count |
1805 | const Register byte_count = rcx; |
1806 | const Register qword_count = count; |
1807 | const Register end_from = from; // source array end address |
1808 | const Register end_to = to; // destination array end address |
1809 | // End pointers are inclusive, and if count is not zero they point |
1810 | // to the last unit copied: end_to[0] := end_from[0] |
1811 | |
1812 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
1813 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
1814 | |
1815 | if (entry != NULL__null) { |
1816 | *entry = __masm-> pc(); |
1817 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
1818 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
1819 | } |
1820 | |
1821 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
1822 | // r9 and r10 may be used to save non-volatile registers |
1823 | |
1824 | { |
1825 | // UnsafeCopyMemory page error: continue after ucm |
1826 | UnsafeCopyMemoryMark ucmm(this, !aligned, true); |
1827 | // 'from', 'to' and 'count' are now valid |
1828 | __masm-> movptr(byte_count, count); |
1829 | __masm-> shrptr(count, 3); // count => qword_count |
1830 | |
1831 | // Copy from low to high addresses. Use 'to' as scratch. |
1832 | __masm-> lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
1833 | __masm-> lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
1834 | __masm-> negptr(qword_count); // make the count negative |
1835 | __masm-> jmp(L_copy_bytes); |
1836 | |
1837 | // Copy trailing qwords |
1838 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
1839 | __masm-> movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
1840 | __masm-> movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
1841 | __masm-> increment(qword_count); |
1842 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
1843 | |
1844 | // Check for and copy trailing dword |
1845 | __masm-> BIND(L_copy_4_bytes)bind(L_copy_4_bytes); masm-> block_comment("L_copy_4_bytes" ":"); |
1846 | __masm-> testl(byte_count, 4); |
1847 | __masm-> jccb(Assembler::zero, L_copy_2_bytes)jccb_0(Assembler::zero, L_copy_2_bytes, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1847); |
1848 | __masm-> movl(rax, Address(end_from, 8)); |
1849 | __masm-> movl(Address(end_to, 8), rax); |
1850 | |
1851 | __masm-> addptr(end_from, 4); |
1852 | __masm-> addptr(end_to, 4); |
1853 | |
1854 | // Check for and copy trailing word |
1855 | __masm-> BIND(L_copy_2_bytes)bind(L_copy_2_bytes); masm-> block_comment("L_copy_2_bytes" ":"); |
1856 | __masm-> testl(byte_count, 2); |
1857 | __masm-> jccb(Assembler::zero, L_copy_byte)jccb_0(Assembler::zero, L_copy_byte, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1857); |
1858 | __masm-> movw(rax, Address(end_from, 8)); |
1859 | __masm-> movw(Address(end_to, 8), rax); |
1860 | |
1861 | __masm-> addptr(end_from, 2); |
1862 | __masm-> addptr(end_to, 2); |
1863 | |
1864 | // Check for and copy trailing byte |
1865 | __masm-> BIND(L_copy_byte)bind(L_copy_byte); masm-> block_comment("L_copy_byte" ":"); |
1866 | __masm-> testl(byte_count, 1); |
1867 | __masm-> jccb(Assembler::zero, L_exit)jccb_0(Assembler::zero, L_exit, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 1867); |
1868 | __masm-> movb(rax, Address(end_from, 8)); |
1869 | __masm-> movb(Address(end_to, 8), rax); |
1870 | } |
1871 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
1872 | address ucme_exit_pc = __masm-> pc(); |
1873 | restore_arg_regs(); |
1874 | inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jbyte_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jbyte_array_copy_ctr);; // Update counter after rscratch1 is free |
1875 | __masm-> xorptr(rax, rax); // return 0 |
1876 | __masm-> vzeroupper(); |
1877 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
1878 | __masm-> ret(0); |
1879 | |
1880 | { |
1881 | UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc); |
1882 | // Copy in multi-bytes chunks |
1883 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
1884 | __masm-> jmp(L_copy_4_bytes); |
1885 | } |
1886 | return start; |
1887 | } |
1888 | |
1889 | // Arguments: |
1890 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
1891 | // ignored |
1892 | // name - stub name string |
1893 | // |
1894 | // Inputs: |
1895 | // c_rarg0 - source array address |
1896 | // c_rarg1 - destination array address |
1897 | // c_rarg2 - element count, treated as ssize_t, can be zero |
1898 | // |
1899 | // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, |
1900 | // we let the hardware handle it. The one to eight bytes within words, |
1901 | // dwords or qwords that span cache line boundaries will still be loaded |
1902 | // and stored atomically. |
1903 | // |
1904 | address generate_conjoint_byte_copy(bool aligned, address nooverlap_target, |
1905 | address* entry, const char *name) { |
1906 | #if COMPILER2_OR_JVMCI1 |
1907 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
1908 | return generate_conjoint_copy_avx3_masked(entry, "jbyte_conjoint_arraycopy_avx3", 0, |
1909 | nooverlap_target, aligned, false, false); |
1910 | } |
1911 | #endif |
1912 | __masm-> align(CodeEntryAlignment); |
1913 | StubCodeMark mark(this, "StubRoutines", name); |
1914 | address start = __masm-> pc(); |
1915 | |
1916 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; |
1917 | const Register from = rdi; // source array address |
1918 | const Register to = rsi; // destination array address |
1919 | const Register count = rdx; // elements count |
1920 | const Register byte_count = rcx; |
1921 | const Register qword_count = count; |
1922 | |
1923 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
1924 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
1925 | |
1926 | if (entry != NULL__null) { |
1927 | *entry = __masm-> pc(); |
1928 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
1929 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
1930 | } |
1931 | |
1932 | array_overlap_test(nooverlap_target, Address::times_1); |
1933 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
1934 | // r9 and r10 may be used to save non-volatile registers |
1935 | |
1936 | { |
1937 | // UnsafeCopyMemory page error: continue after ucm |
1938 | UnsafeCopyMemoryMark ucmm(this, !aligned, true); |
1939 | // 'from', 'to' and 'count' are now valid |
1940 | __masm-> movptr(byte_count, count); |
1941 | __masm-> shrptr(count, 3); // count => qword_count |
1942 | |
1943 | // Copy from high to low addresses. |
1944 | |
1945 | // Check for and copy trailing byte |
1946 | __masm-> testl(byte_count, 1); |
1947 | __masm-> jcc(Assembler::zero, L_copy_2_bytes); |
1948 | __masm-> movb(rax, Address(from, byte_count, Address::times_1, -1)); |
1949 | __masm-> movb(Address(to, byte_count, Address::times_1, -1), rax); |
1950 | __masm-> decrement(byte_count); // Adjust for possible trailing word |
1951 | |
1952 | // Check for and copy trailing word |
1953 | __masm-> BIND(L_copy_2_bytes)bind(L_copy_2_bytes); masm-> block_comment("L_copy_2_bytes" ":"); |
1954 | __masm-> testl(byte_count, 2); |
1955 | __masm-> jcc(Assembler::zero, L_copy_4_bytes); |
1956 | __masm-> movw(rax, Address(from, byte_count, Address::times_1, -2)); |
1957 | __masm-> movw(Address(to, byte_count, Address::times_1, -2), rax); |
1958 | |
1959 | // Check for and copy trailing dword |
1960 | __masm-> BIND(L_copy_4_bytes)bind(L_copy_4_bytes); masm-> block_comment("L_copy_4_bytes" ":"); |
1961 | __masm-> testl(byte_count, 4); |
1962 | __masm-> jcc(Assembler::zero, L_copy_bytes); |
1963 | __masm-> movl(rax, Address(from, qword_count, Address::times_8)); |
1964 | __masm-> movl(Address(to, qword_count, Address::times_8), rax); |
1965 | __masm-> jmp(L_copy_bytes); |
1966 | |
1967 | // Copy trailing qwords |
1968 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
1969 | __masm-> movq(rax, Address(from, qword_count, Address::times_8, -8)); |
1970 | __masm-> movq(Address(to, qword_count, Address::times_8, -8), rax); |
1971 | __masm-> decrement(qword_count); |
1972 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
1973 | } |
1974 | restore_arg_regs(); |
1975 | inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jbyte_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jbyte_array_copy_ctr);; // Update counter after rscratch1 is free |
1976 | __masm-> xorptr(rax, rax); // return 0 |
1977 | __masm-> vzeroupper(); |
1978 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
1979 | __masm-> ret(0); |
1980 | |
1981 | { |
1982 | // UnsafeCopyMemory page error: continue after ucm |
1983 | UnsafeCopyMemoryMark ucmm(this, !aligned, true); |
1984 | // Copy in multi-bytes chunks |
1985 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
1986 | } |
1987 | restore_arg_regs(); |
1988 | inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jbyte_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jbyte_array_copy_ctr);; // Update counter after rscratch1 is free |
1989 | __masm-> xorptr(rax, rax); // return 0 |
1990 | __masm-> vzeroupper(); |
1991 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
1992 | __masm-> ret(0); |
1993 | |
1994 | return start; |
1995 | } |
1996 | |
1997 | // Arguments: |
1998 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
1999 | // ignored |
2000 | // name - stub name string |
2001 | // |
2002 | // Inputs: |
2003 | // c_rarg0 - source array address |
2004 | // c_rarg1 - destination array address |
2005 | // c_rarg2 - element count, treated as ssize_t, can be zero |
2006 | // |
2007 | // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we |
2008 | // let the hardware handle it. The two or four words within dwords |
2009 | // or qwords that span cache line boundaries will still be loaded |
2010 | // and stored atomically. |
2011 | // |
2012 | // Side Effects: |
2013 | // disjoint_short_copy_entry is set to the no-overlap entry point |
2014 | // used by generate_conjoint_short_copy(). |
2015 | // |
2016 | address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) { |
2017 | #if COMPILER2_OR_JVMCI1 |
2018 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
2019 | return generate_disjoint_copy_avx3_masked(entry, "jshort_disjoint_arraycopy_avx3", 1, |
2020 | aligned, false, false); |
2021 | } |
2022 | #endif |
2023 | |
2024 | __masm-> align(CodeEntryAlignment); |
2025 | StubCodeMark mark(this, "StubRoutines", name); |
2026 | address start = __masm-> pc(); |
2027 | |
2028 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit; |
2029 | const Register from = rdi; // source array address |
2030 | const Register to = rsi; // destination array address |
2031 | const Register count = rdx; // elements count |
2032 | const Register word_count = rcx; |
2033 | const Register qword_count = count; |
2034 | const Register end_from = from; // source array end address |
2035 | const Register end_to = to; // destination array end address |
2036 | // End pointers are inclusive, and if count is not zero they point |
2037 | // to the last unit copied: end_to[0] := end_from[0] |
2038 | |
2039 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2040 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
2041 | |
2042 | if (entry != NULL__null) { |
2043 | *entry = __masm-> pc(); |
2044 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
2045 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2046 | } |
2047 | |
2048 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
2049 | // r9 and r10 may be used to save non-volatile registers |
2050 | |
2051 | { |
2052 | // UnsafeCopyMemory page error: continue after ucm |
2053 | UnsafeCopyMemoryMark ucmm(this, !aligned, true); |
2054 | // 'from', 'to' and 'count' are now valid |
2055 | __masm-> movptr(word_count, count); |
2056 | __masm-> shrptr(count, 2); // count => qword_count |
2057 | |
2058 | // Copy from low to high addresses. Use 'to' as scratch. |
2059 | __masm-> lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
2060 | __masm-> lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
2061 | __masm-> negptr(qword_count); |
2062 | __masm-> jmp(L_copy_bytes); |
2063 | |
2064 | // Copy trailing qwords |
2065 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
2066 | __masm-> movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
2067 | __masm-> movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
2068 | __masm-> increment(qword_count); |
2069 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
2070 | |
2071 | // Original 'dest' is trashed, so we can't use it as a |
2072 | // base register for a possible trailing word copy |
2073 | |
2074 | // Check for and copy trailing dword |
2075 | __masm-> BIND(L_copy_4_bytes)bind(L_copy_4_bytes); masm-> block_comment("L_copy_4_bytes" ":"); |
2076 | __masm-> testl(word_count, 2); |
2077 | __masm-> jccb(Assembler::zero, L_copy_2_bytes)jccb_0(Assembler::zero, L_copy_2_bytes, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2077); |
2078 | __masm-> movl(rax, Address(end_from, 8)); |
2079 | __masm-> movl(Address(end_to, 8), rax); |
2080 | |
2081 | __masm-> addptr(end_from, 4); |
2082 | __masm-> addptr(end_to, 4); |
2083 | |
2084 | // Check for and copy trailing word |
2085 | __masm-> BIND(L_copy_2_bytes)bind(L_copy_2_bytes); masm-> block_comment("L_copy_2_bytes" ":"); |
2086 | __masm-> testl(word_count, 1); |
2087 | __masm-> jccb(Assembler::zero, L_exit)jccb_0(Assembler::zero, L_exit, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2087); |
2088 | __masm-> movw(rax, Address(end_from, 8)); |
2089 | __masm-> movw(Address(end_to, 8), rax); |
2090 | } |
2091 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
2092 | address ucme_exit_pc = __masm-> pc(); |
2093 | restore_arg_regs(); |
2094 | inc_counter_np(SharedRuntime::_jshort_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jshort_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jshort_array_copy_ctr);; // Update counter after rscratch1 is free |
2095 | __masm-> xorptr(rax, rax); // return 0 |
2096 | __masm-> vzeroupper(); |
2097 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2098 | __masm-> ret(0); |
2099 | |
2100 | { |
2101 | UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc); |
2102 | // Copy in multi-bytes chunks |
2103 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
2104 | __masm-> jmp(L_copy_4_bytes); |
2105 | } |
2106 | |
2107 | return start; |
2108 | } |
2109 | |
2110 | address generate_fill(BasicType t, bool aligned, const char *name) { |
2111 | __masm-> align(CodeEntryAlignment); |
2112 | StubCodeMark mark(this, "StubRoutines", name); |
2113 | address start = __masm-> pc(); |
2114 | |
2115 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2116 | |
2117 | const Register to = c_rarg0; // destination array address |
2118 | const Register value = c_rarg1; // value |
2119 | const Register count = c_rarg2; // elements count |
2120 | __masm-> mov(r11, count); |
2121 | |
2122 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2123 | |
2124 | __masm-> generate_fill(t, aligned, to, value, r11, rax, xmm0); |
2125 | |
2126 | __masm-> vzeroupper(); |
2127 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2128 | __masm-> ret(0); |
2129 | return start; |
2130 | } |
2131 | |
2132 | // Arguments: |
2133 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
2134 | // ignored |
2135 | // name - stub name string |
2136 | // |
2137 | // Inputs: |
2138 | // c_rarg0 - source array address |
2139 | // c_rarg1 - destination array address |
2140 | // c_rarg2 - element count, treated as ssize_t, can be zero |
2141 | // |
2142 | // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we |
2143 | // let the hardware handle it. The two or four words within dwords |
2144 | // or qwords that span cache line boundaries will still be loaded |
2145 | // and stored atomically. |
2146 | // |
2147 | address generate_conjoint_short_copy(bool aligned, address nooverlap_target, |
2148 | address *entry, const char *name) { |
2149 | #if COMPILER2_OR_JVMCI1 |
2150 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
2151 | return generate_conjoint_copy_avx3_masked(entry, "jshort_conjoint_arraycopy_avx3", 1, |
2152 | nooverlap_target, aligned, false, false); |
2153 | } |
2154 | #endif |
2155 | __masm-> align(CodeEntryAlignment); |
2156 | StubCodeMark mark(this, "StubRoutines", name); |
2157 | address start = __masm-> pc(); |
2158 | |
2159 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes; |
2160 | const Register from = rdi; // source array address |
2161 | const Register to = rsi; // destination array address |
2162 | const Register count = rdx; // elements count |
2163 | const Register word_count = rcx; |
2164 | const Register qword_count = count; |
2165 | |
2166 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2167 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
2168 | |
2169 | if (entry != NULL__null) { |
2170 | *entry = __masm-> pc(); |
2171 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
2172 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2173 | } |
2174 | |
2175 | array_overlap_test(nooverlap_target, Address::times_2); |
2176 | setup_arg_regs(); // from => rdi, to => rsi, count => rdx |
2177 | // r9 and r10 may be used to save non-volatile registers |
2178 | |
2179 | { |
2180 | // UnsafeCopyMemory page error: continue after ucm |
2181 | UnsafeCopyMemoryMark ucmm(this, !aligned, true); |
2182 | // 'from', 'to' and 'count' are now valid |
2183 | __masm-> movptr(word_count, count); |
2184 | __masm-> shrptr(count, 2); // count => qword_count |
2185 | |
2186 | // Copy from high to low addresses. Use 'to' as scratch. |
2187 | |
2188 | // Check for and copy trailing word |
2189 | __masm-> testl(word_count, 1); |
2190 | __masm-> jccb(Assembler::zero, L_copy_4_bytes)jccb_0(Assembler::zero, L_copy_4_bytes, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2190); |
2191 | __masm-> movw(rax, Address(from, word_count, Address::times_2, -2)); |
2192 | __masm-> movw(Address(to, word_count, Address::times_2, -2), rax); |
2193 | |
2194 | // Check for and copy trailing dword |
2195 | __masm-> BIND(L_copy_4_bytes)bind(L_copy_4_bytes); masm-> block_comment("L_copy_4_bytes" ":"); |
2196 | __masm-> testl(word_count, 2); |
2197 | __masm-> jcc(Assembler::zero, L_copy_bytes); |
2198 | __masm-> movl(rax, Address(from, qword_count, Address::times_8)); |
2199 | __masm-> movl(Address(to, qword_count, Address::times_8), rax); |
2200 | __masm-> jmp(L_copy_bytes); |
2201 | |
2202 | // Copy trailing qwords |
2203 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
2204 | __masm-> movq(rax, Address(from, qword_count, Address::times_8, -8)); |
2205 | __masm-> movq(Address(to, qword_count, Address::times_8, -8), rax); |
2206 | __masm-> decrement(qword_count); |
2207 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
2208 | } |
2209 | restore_arg_regs(); |
2210 | inc_counter_np(SharedRuntime::_jshort_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jshort_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jshort_array_copy_ctr);; // Update counter after rscratch1 is free |
2211 | __masm-> xorptr(rax, rax); // return 0 |
2212 | __masm-> vzeroupper(); |
2213 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2214 | __masm-> ret(0); |
2215 | |
2216 | { |
2217 | // UnsafeCopyMemory page error: continue after ucm |
2218 | UnsafeCopyMemoryMark ucmm(this, !aligned, true); |
2219 | // Copy in multi-bytes chunks |
2220 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
2221 | } |
2222 | restore_arg_regs(); |
2223 | inc_counter_np(SharedRuntime::_jshort_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jshort_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jshort_array_copy_ctr);; // Update counter after rscratch1 is free |
2224 | __masm-> xorptr(rax, rax); // return 0 |
2225 | __masm-> vzeroupper(); |
2226 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2227 | __masm-> ret(0); |
2228 | |
2229 | return start; |
2230 | } |
2231 | |
2232 | // Arguments: |
2233 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
2234 | // ignored |
2235 | // is_oop - true => oop array, so generate store check code |
2236 | // name - stub name string |
2237 | // |
2238 | // Inputs: |
2239 | // c_rarg0 - source array address |
2240 | // c_rarg1 - destination array address |
2241 | // c_rarg2 - element count, treated as ssize_t, can be zero |
2242 | // |
2243 | // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let |
2244 | // the hardware handle it. The two dwords within qwords that span |
2245 | // cache line boundaries will still be loaded and stored atomicly. |
2246 | // |
2247 | // Side Effects: |
2248 | // disjoint_int_copy_entry is set to the no-overlap entry point |
2249 | // used by generate_conjoint_int_oop_copy(). |
2250 | // |
2251 | address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry, |
2252 | const char *name, bool dest_uninitialized = false) { |
2253 | #if COMPILER2_OR_JVMCI1 |
2254 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
2255 | return generate_disjoint_copy_avx3_masked(entry, "jint_disjoint_arraycopy_avx3", 2, |
2256 | aligned, is_oop, dest_uninitialized); |
2257 | } |
2258 | #endif |
2259 | |
2260 | __masm-> align(CodeEntryAlignment); |
2261 | StubCodeMark mark(this, "StubRoutines", name); |
2262 | address start = __masm-> pc(); |
2263 | |
2264 | Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit; |
2265 | const Register from = rdi; // source array address |
2266 | const Register to = rsi; // destination array address |
2267 | const Register count = rdx; // elements count |
2268 | const Register dword_count = rcx; |
2269 | const Register qword_count = count; |
2270 | const Register end_from = from; // source array end address |
2271 | const Register end_to = to; // destination array end address |
2272 | // End pointers are inclusive, and if count is not zero they point |
2273 | // to the last unit copied: end_to[0] := end_from[0] |
2274 | |
2275 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2276 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
2277 | |
2278 | if (entry != NULL__null) { |
2279 | *entry = __masm-> pc(); |
2280 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
2281 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2282 | } |
2283 | |
2284 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
2285 | // r9 is used to save r15_thread |
2286 | |
2287 | DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; |
2288 | if (dest_uninitialized) { |
2289 | decorators |= IS_DEST_UNINITIALIZED; |
2290 | } |
2291 | if (aligned) { |
2292 | decorators |= ARRAYCOPY_ALIGNED; |
2293 | } |
2294 | |
2295 | BasicType type = is_oop ? T_OBJECT : T_INT; |
2296 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
2297 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
2298 | |
2299 | { |
2300 | // UnsafeCopyMemory page error: continue after ucm |
2301 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
2302 | // 'from', 'to' and 'count' are now valid |
2303 | __masm-> movptr(dword_count, count); |
2304 | __masm-> shrptr(count, 1); // count => qword_count |
2305 | |
2306 | // Copy from low to high addresses. Use 'to' as scratch. |
2307 | __masm-> lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
2308 | __masm-> lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
2309 | __masm-> negptr(qword_count); |
2310 | __masm-> jmp(L_copy_bytes); |
2311 | |
2312 | // Copy trailing qwords |
2313 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
2314 | __masm-> movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
2315 | __masm-> movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
2316 | __masm-> increment(qword_count); |
2317 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
2318 | |
2319 | // Check for and copy trailing dword |
2320 | __masm-> BIND(L_copy_4_bytes)bind(L_copy_4_bytes); masm-> block_comment("L_copy_4_bytes" ":"); |
2321 | __masm-> testl(dword_count, 1); // Only byte test since the value is 0 or 1 |
2322 | __masm-> jccb(Assembler::zero, L_exit)jccb_0(Assembler::zero, L_exit, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2322); |
2323 | __masm-> movl(rax, Address(end_from, 8)); |
2324 | __masm-> movl(Address(end_to, 8), rax); |
2325 | } |
2326 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
2327 | address ucme_exit_pc = __masm-> pc(); |
2328 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); |
2329 | restore_arg_regs_using_thread(); |
2330 | inc_counter_np(SharedRuntime::_jint_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jint_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jint_array_copy_ctr);; // Update counter after rscratch1 is free |
2331 | __masm-> vzeroupper(); |
2332 | __masm-> xorptr(rax, rax); // return 0 |
2333 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2334 | __masm-> ret(0); |
2335 | |
2336 | { |
2337 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, false, ucme_exit_pc); |
2338 | // Copy in multi-bytes chunks |
2339 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
2340 | __masm-> jmp(L_copy_4_bytes); |
2341 | } |
2342 | |
2343 | return start; |
2344 | } |
2345 | |
2346 | // Arguments: |
2347 | // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary |
2348 | // ignored |
2349 | // is_oop - true => oop array, so generate store check code |
2350 | // name - stub name string |
2351 | // |
2352 | // Inputs: |
2353 | // c_rarg0 - source array address |
2354 | // c_rarg1 - destination array address |
2355 | // c_rarg2 - element count, treated as ssize_t, can be zero |
2356 | // |
2357 | // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let |
2358 | // the hardware handle it. The two dwords within qwords that span |
2359 | // cache line boundaries will still be loaded and stored atomicly. |
2360 | // |
2361 | address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target, |
2362 | address *entry, const char *name, |
2363 | bool dest_uninitialized = false) { |
2364 | #if COMPILER2_OR_JVMCI1 |
2365 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
2366 | return generate_conjoint_copy_avx3_masked(entry, "jint_conjoint_arraycopy_avx3", 2, |
2367 | nooverlap_target, aligned, is_oop, dest_uninitialized); |
2368 | } |
2369 | #endif |
2370 | __masm-> align(CodeEntryAlignment); |
2371 | StubCodeMark mark(this, "StubRoutines", name); |
2372 | address start = __masm-> pc(); |
2373 | |
2374 | Label L_copy_bytes, L_copy_8_bytes, L_exit; |
2375 | const Register from = rdi; // source array address |
2376 | const Register to = rsi; // destination array address |
2377 | const Register count = rdx; // elements count |
2378 | const Register dword_count = rcx; |
2379 | const Register qword_count = count; |
2380 | |
2381 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2382 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
2383 | |
2384 | if (entry != NULL__null) { |
2385 | *entry = __masm-> pc(); |
2386 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
2387 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2388 | } |
2389 | |
2390 | array_overlap_test(nooverlap_target, Address::times_4); |
2391 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
2392 | // r9 is used to save r15_thread |
2393 | |
2394 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
2395 | if (dest_uninitialized) { |
2396 | decorators |= IS_DEST_UNINITIALIZED; |
2397 | } |
2398 | if (aligned) { |
2399 | decorators |= ARRAYCOPY_ALIGNED; |
2400 | } |
2401 | |
2402 | BasicType type = is_oop ? T_OBJECT : T_INT; |
2403 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
2404 | // no registers are destroyed by this call |
2405 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
2406 | |
2407 | assert_clean_int(count, rax); // Make sure 'count' is clean int. |
2408 | { |
2409 | // UnsafeCopyMemory page error: continue after ucm |
2410 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
2411 | // 'from', 'to' and 'count' are now valid |
2412 | __masm-> movptr(dword_count, count); |
2413 | __masm-> shrptr(count, 1); // count => qword_count |
2414 | |
2415 | // Copy from high to low addresses. Use 'to' as scratch. |
2416 | |
2417 | // Check for and copy trailing dword |
2418 | __masm-> testl(dword_count, 1); |
2419 | __masm-> jcc(Assembler::zero, L_copy_bytes); |
2420 | __masm-> movl(rax, Address(from, dword_count, Address::times_4, -4)); |
2421 | __masm-> movl(Address(to, dword_count, Address::times_4, -4), rax); |
2422 | __masm-> jmp(L_copy_bytes); |
2423 | |
2424 | // Copy trailing qwords |
2425 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
2426 | __masm-> movq(rax, Address(from, qword_count, Address::times_8, -8)); |
2427 | __masm-> movq(Address(to, qword_count, Address::times_8, -8), rax); |
2428 | __masm-> decrement(qword_count); |
2429 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
2430 | } |
2431 | if (is_oop) { |
2432 | __masm-> jmp(L_exit); |
2433 | } |
2434 | restore_arg_regs_using_thread(); |
2435 | inc_counter_np(SharedRuntime::_jint_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jint_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jint_array_copy_ctr);; // Update counter after rscratch1 is free |
2436 | __masm-> xorptr(rax, rax); // return 0 |
2437 | __masm-> vzeroupper(); |
2438 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2439 | __masm-> ret(0); |
2440 | |
2441 | { |
2442 | // UnsafeCopyMemory page error: continue after ucm |
2443 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
2444 | // Copy in multi-bytes chunks |
2445 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
2446 | } |
2447 | |
2448 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
2449 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); |
2450 | restore_arg_regs_using_thread(); |
2451 | inc_counter_np(SharedRuntime::_jint_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jint_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jint_array_copy_ctr);; // Update counter after rscratch1 is free |
2452 | __masm-> xorptr(rax, rax); // return 0 |
2453 | __masm-> vzeroupper(); |
2454 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2455 | __masm-> ret(0); |
2456 | |
2457 | return start; |
2458 | } |
2459 | |
2460 | // Arguments: |
2461 | // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes |
2462 | // ignored |
2463 | // is_oop - true => oop array, so generate store check code |
2464 | // name - stub name string |
2465 | // |
2466 | // Inputs: |
2467 | // c_rarg0 - source array address |
2468 | // c_rarg1 - destination array address |
2469 | // c_rarg2 - element count, treated as ssize_t, can be zero |
2470 | // |
2471 | // Side Effects: |
2472 | // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the |
2473 | // no-overlap entry point used by generate_conjoint_long_oop_copy(). |
2474 | // |
2475 | address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry, |
2476 | const char *name, bool dest_uninitialized = false) { |
2477 | #if COMPILER2_OR_JVMCI1 |
2478 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
2479 | return generate_disjoint_copy_avx3_masked(entry, "jlong_disjoint_arraycopy_avx3", 3, |
2480 | aligned, is_oop, dest_uninitialized); |
2481 | } |
2482 | #endif |
2483 | __masm-> align(CodeEntryAlignment); |
2484 | StubCodeMark mark(this, "StubRoutines", name); |
2485 | address start = __masm-> pc(); |
2486 | |
2487 | Label L_copy_bytes, L_copy_8_bytes, L_exit; |
2488 | const Register from = rdi; // source array address |
2489 | const Register to = rsi; // destination array address |
2490 | const Register qword_count = rdx; // elements count |
2491 | const Register end_from = from; // source array end address |
2492 | const Register end_to = rcx; // destination array end address |
2493 | const Register saved_count = r11; |
2494 | // End pointers are inclusive, and if count is not zero they point |
2495 | // to the last unit copied: end_to[0] := end_from[0] |
2496 | |
2497 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2498 | // Save no-overlap entry point for generate_conjoint_long_oop_copy() |
2499 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
2500 | |
2501 | if (entry != NULL__null) { |
2502 | *entry = __masm-> pc(); |
2503 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
2504 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2505 | } |
2506 | |
2507 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
2508 | // r9 is used to save r15_thread |
2509 | // 'from', 'to' and 'qword_count' are now valid |
2510 | |
2511 | DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; |
2512 | if (dest_uninitialized) { |
2513 | decorators |= IS_DEST_UNINITIALIZED; |
2514 | } |
2515 | if (aligned) { |
2516 | decorators |= ARRAYCOPY_ALIGNED; |
2517 | } |
2518 | |
2519 | BasicType type = is_oop ? T_OBJECT : T_LONG; |
2520 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
2521 | bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); |
2522 | { |
2523 | // UnsafeCopyMemory page error: continue after ucm |
2524 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
2525 | |
2526 | // Copy from low to high addresses. Use 'to' as scratch. |
2527 | __masm-> lea(end_from, Address(from, qword_count, Address::times_8, -8)); |
2528 | __masm-> lea(end_to, Address(to, qword_count, Address::times_8, -8)); |
2529 | __masm-> negptr(qword_count); |
2530 | __masm-> jmp(L_copy_bytes); |
2531 | |
2532 | // Copy trailing qwords |
2533 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
2534 | __masm-> movq(rax, Address(end_from, qword_count, Address::times_8, 8)); |
2535 | __masm-> movq(Address(end_to, qword_count, Address::times_8, 8), rax); |
2536 | __masm-> increment(qword_count); |
2537 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
2538 | } |
2539 | if (is_oop) { |
2540 | __masm-> jmp(L_exit); |
2541 | } else { |
2542 | restore_arg_regs_using_thread(); |
2543 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jlong_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jlong_array_copy_ctr);; // Update counter after rscratch1 is free |
2544 | __masm-> xorptr(rax, rax); // return 0 |
2545 | __masm-> vzeroupper(); |
2546 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2547 | __masm-> ret(0); |
2548 | } |
2549 | |
2550 | { |
2551 | // UnsafeCopyMemory page error: continue after ucm |
2552 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
2553 | // Copy in multi-bytes chunks |
2554 | copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
2555 | } |
2556 | |
2557 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
2558 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); |
2559 | restore_arg_regs_using_thread(); |
2560 | if (is_oop) { |
2561 | inc_counter_np(SharedRuntime::_oop_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_oop_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_oop_array_copy_ctr);; // Update counter after rscratch1 is free |
2562 | } else { |
2563 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jlong_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jlong_array_copy_ctr);; // Update counter after rscratch1 is free |
2564 | } |
2565 | __masm-> vzeroupper(); |
2566 | __masm-> xorptr(rax, rax); // return 0 |
2567 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2568 | __masm-> ret(0); |
2569 | |
2570 | return start; |
2571 | } |
2572 | |
2573 | // Arguments: |
2574 | // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes |
2575 | // ignored |
2576 | // is_oop - true => oop array, so generate store check code |
2577 | // name - stub name string |
2578 | // |
2579 | // Inputs: |
2580 | // c_rarg0 - source array address |
2581 | // c_rarg1 - destination array address |
2582 | // c_rarg2 - element count, treated as ssize_t, can be zero |
2583 | // |
2584 | address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, |
2585 | address nooverlap_target, address *entry, |
2586 | const char *name, bool dest_uninitialized = false) { |
2587 | #if COMPILER2_OR_JVMCI1 |
2588 | if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { |
2589 | return generate_conjoint_copy_avx3_masked(entry, "jlong_conjoint_arraycopy_avx3", 3, |
2590 | nooverlap_target, aligned, is_oop, dest_uninitialized); |
2591 | } |
2592 | #endif |
2593 | __masm-> align(CodeEntryAlignment); |
2594 | StubCodeMark mark(this, "StubRoutines", name); |
2595 | address start = __masm-> pc(); |
2596 | |
2597 | Label L_copy_bytes, L_copy_8_bytes, L_exit; |
2598 | const Register from = rdi; // source array address |
2599 | const Register to = rsi; // destination array address |
2600 | const Register qword_count = rdx; // elements count |
2601 | const Register saved_count = rcx; |
2602 | |
2603 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2604 | assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. |
2605 | |
2606 | if (entry != NULL__null) { |
2607 | *entry = __masm-> pc(); |
2608 | // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) |
2609 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2610 | } |
2611 | |
2612 | array_overlap_test(nooverlap_target, Address::times_8); |
2613 | setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx |
2614 | // r9 is used to save r15_thread |
2615 | // 'from', 'to' and 'qword_count' are now valid |
2616 | |
2617 | DecoratorSet decorators = IN_HEAP | IS_ARRAY; |
2618 | if (dest_uninitialized) { |
2619 | decorators |= IS_DEST_UNINITIALIZED; |
2620 | } |
2621 | if (aligned) { |
2622 | decorators |= ARRAYCOPY_ALIGNED; |
2623 | } |
2624 | |
2625 | BasicType type = is_oop ? T_OBJECT : T_LONG; |
2626 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
2627 | bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); |
2628 | { |
2629 | // UnsafeCopyMemory page error: continue after ucm |
2630 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
2631 | |
2632 | __masm-> jmp(L_copy_bytes); |
2633 | |
2634 | // Copy trailing qwords |
2635 | __masm-> BIND(L_copy_8_bytes)bind(L_copy_8_bytes); masm-> block_comment("L_copy_8_bytes" ":"); |
2636 | __masm-> movq(rax, Address(from, qword_count, Address::times_8, -8)); |
2637 | __masm-> movq(Address(to, qword_count, Address::times_8, -8), rax); |
2638 | __masm-> decrement(qword_count); |
2639 | __masm-> jcc(Assembler::notZero, L_copy_8_bytes); |
2640 | } |
2641 | if (is_oop) { |
2642 | __masm-> jmp(L_exit); |
2643 | } else { |
2644 | restore_arg_regs_using_thread(); |
2645 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jlong_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jlong_array_copy_ctr);; // Update counter after rscratch1 is free |
2646 | __masm-> xorptr(rax, rax); // return 0 |
2647 | __masm-> vzeroupper(); |
2648 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2649 | __masm-> ret(0); |
2650 | } |
2651 | { |
2652 | // UnsafeCopyMemory page error: continue after ucm |
2653 | UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); |
2654 | |
2655 | // Copy in multi-bytes chunks |
2656 | copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); |
2657 | } |
2658 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
2659 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); |
2660 | restore_arg_regs_using_thread(); |
2661 | if (is_oop) { |
2662 | inc_counter_np(SharedRuntime::_oop_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_oop_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_oop_array_copy_ctr);; // Update counter after rscratch1 is free |
2663 | } else { |
2664 | inc_counter_np(SharedRuntime::_jlong_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_jlong_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_jlong_array_copy_ctr);; // Update counter after rscratch1 is free |
2665 | } |
2666 | __masm-> vzeroupper(); |
2667 | __masm-> xorptr(rax, rax); // return 0 |
2668 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2669 | __masm-> ret(0); |
2670 | |
2671 | return start; |
2672 | } |
2673 | |
2674 | |
2675 | // Helper for generating a dynamic type check. |
2676 | // Smashes no registers. |
2677 | void generate_type_check(Register sub_klass, |
2678 | Register super_check_offset, |
2679 | Register super_klass, |
2680 | Label& L_success) { |
2681 | assert_different_registers(sub_klass, super_check_offset, super_klass); |
2682 | |
2683 | BLOCK_COMMENT("type_check:")masm-> block_comment("type_check:"); |
2684 | |
2685 | Label L_miss; |
2686 | |
2687 | __masm-> check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL__null, |
2688 | super_check_offset); |
2689 | __masm-> check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL__null); |
2690 | |
2691 | // Fall through on failure! |
2692 | __masm-> BIND(L_miss)bind(L_miss); masm-> block_comment("L_miss" ":"); |
2693 | } |
2694 | |
2695 | // |
2696 | // Generate checkcasting array copy stub |
2697 | // |
2698 | // Input: |
2699 | // c_rarg0 - source array address |
2700 | // c_rarg1 - destination array address |
2701 | // c_rarg2 - element count, treated as ssize_t, can be zero |
2702 | // c_rarg3 - size_t ckoff (super_check_offset) |
2703 | // not Win64 |
2704 | // c_rarg4 - oop ckval (super_klass) |
2705 | // Win64 |
2706 | // rsp+40 - oop ckval (super_klass) |
2707 | // |
2708 | // Output: |
2709 | // rax == 0 - success |
2710 | // rax == -1^K - failure, where K is partial transfer count |
2711 | // |
2712 | address generate_checkcast_copy(const char *name, address *entry, |
2713 | bool dest_uninitialized = false) { |
2714 | |
2715 | Label L_load_element, L_store_element, L_do_card_marks, L_done; |
2716 | |
2717 | // Input registers (after setup_arg_regs) |
2718 | const Register from = rdi; // source array address |
2719 | const Register to = rsi; // destination array address |
2720 | const Register length = rdx; // elements count |
2721 | const Register ckoff = rcx; // super_check_offset |
2722 | const Register ckval = r8; // super_klass |
2723 | |
2724 | // Registers used as temps (r13, r14 are save-on-entry) |
2725 | const Register end_from = from; // source array end address |
2726 | const Register end_to = r13; // destination array end address |
2727 | const Register count = rdx; // -(count_remaining) |
2728 | const Register r14_length = r14; // saved copy of length |
2729 | // End pointers are inclusive, and if length is not zero they point |
2730 | // to the last unit copied: end_to[0] := end_from[0] |
2731 | |
2732 | const Register rax_oop = rax; // actual oop copied |
2733 | const Register r11_klass = r11; // oop._klass |
2734 | |
2735 | //--------------------------------------------------------------- |
2736 | // Assembler stub will be used for this call to arraycopy |
2737 | // if the two arrays are subtypes of Object[] but the |
2738 | // destination array type is not equal to or a supertype |
2739 | // of the source type. Each element must be separately |
2740 | // checked. |
2741 | |
2742 | __masm-> align(CodeEntryAlignment); |
2743 | StubCodeMark mark(this, "StubRoutines", name); |
2744 | address start = __masm-> pc(); |
2745 | |
2746 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2747 | |
2748 | #ifdef ASSERT1 |
2749 | // caller guarantees that the arrays really are different |
2750 | // otherwise, we would have to make conjoint checks |
2751 | { Label L; |
2752 | array_overlap_test(L, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8)); |
2753 | __masm-> stop("checkcast_copy within a single array"); |
2754 | __masm-> bind(L); |
2755 | } |
2756 | #endif //ASSERT |
2757 | |
2758 | setup_arg_regs(4); // from => rdi, to => rsi, length => rdx |
2759 | // ckoff => rcx, ckval => r8 |
2760 | // r9 and r10 may be used to save non-volatile registers |
2761 | #ifdef _WIN64 |
2762 | // last argument (#4) is on stack on Win64 |
2763 | __masm-> movptr(ckval, Address(rsp, 6 * wordSize)); |
2764 | #endif |
2765 | |
2766 | // Caller of this entry point must set up the argument registers. |
2767 | if (entry != NULL__null) { |
2768 | *entry = __masm-> pc(); |
2769 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
2770 | } |
2771 | |
2772 | // allocate spill slots for r13, r14 |
2773 | enum { |
2774 | saved_r13_offset, |
2775 | saved_r14_offset, |
2776 | saved_r10_offset, |
2777 | saved_rbp_offset |
2778 | }; |
2779 | __masm-> subptr(rsp, saved_rbp_offset * wordSize); |
2780 | __masm-> movptr(Address(rsp, saved_r13_offset * wordSize), r13); |
2781 | __masm-> movptr(Address(rsp, saved_r14_offset * wordSize), r14); |
2782 | __masm-> movptr(Address(rsp, saved_r10_offset * wordSize), r10); |
2783 | |
2784 | #ifdef ASSERT1 |
2785 | Label L2; |
2786 | __masm-> get_thread(r14); |
2787 | __masm-> cmpptr(r15_thread, r14); |
2788 | __masm-> jcc(Assembler::equal, L2); |
2789 | __masm-> stop("StubRoutines::call_stub: r15_thread is modified by call"); |
2790 | __masm-> bind(L2); |
2791 | #endif // ASSERT |
2792 | |
2793 | // check that int operands are properly extended to size_t |
2794 | assert_clean_int(length, rax); |
2795 | assert_clean_int(ckoff, rax); |
2796 | |
2797 | #ifdef ASSERT1 |
2798 | BLOCK_COMMENT("assert consistent ckoff/ckval")masm-> block_comment("assert consistent ckoff/ckval"); |
2799 | // The ckoff and ckval must be mutually consistent, |
2800 | // even though caller generates both. |
2801 | { Label L; |
2802 | int sco_offset = in_bytes(Klass::super_check_offset_offset()); |
2803 | __masm-> cmpl(ckoff, Address(ckval, sco_offset)); |
2804 | __masm-> jcc(Assembler::equal, L); |
2805 | __masm-> stop("super_check_offset inconsistent"); |
2806 | __masm-> bind(L); |
2807 | } |
2808 | #endif //ASSERT |
2809 | |
2810 | // Loop-invariant addresses. They are exclusive end pointers. |
2811 | Address end_from_addr(from, length, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), 0); |
2812 | Address end_to_addr(to, length, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), 0); |
2813 | // Loop-variant addresses. They assume post-incremented count < 0. |
2814 | Address from_element_addr(end_from, count, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), 0); |
2815 | Address to_element_addr(end_to, count, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), 0); |
2816 | |
2817 | DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT; |
2818 | if (dest_uninitialized) { |
2819 | decorators |= IS_DEST_UNINITIALIZED; |
2820 | } |
2821 | |
2822 | BasicType type = T_OBJECT; |
2823 | BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
2824 | bs->arraycopy_prologue(_masm, decorators, type, from, to, count); |
2825 | |
2826 | // Copy from low to high addresses, indexed from the end of each array. |
2827 | __masm-> lea(end_from, end_from_addr); |
2828 | __masm-> lea(end_to, end_to_addr); |
2829 | __masm-> movptr(r14_length, length); // save a copy of the length |
2830 | assert(length == count, "")do { if (!(length == count)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2830, "assert(" "length == count" ") failed", ""); ::breakpoint (); } } while (0); // else fix next line: |
2831 | __masm-> negptr(count); // negate and test the length |
2832 | __masm-> jcc(Assembler::notZero, L_load_element); |
2833 | |
2834 | // Empty array: Nothing to do. |
2835 | __masm-> xorptr(rax, rax); // return 0 on (trivial) success |
2836 | __masm-> jmp(L_done); |
2837 | |
2838 | // ======== begin loop ======== |
2839 | // (Loop is rotated; its entry is L_load_element.) |
2840 | // Loop control: |
2841 | // for (count = -count; count != 0; count++) |
2842 | // Base pointers src, dst are biased by 8*(count-1),to last element. |
2843 | __masm-> align(OptoLoopAlignment); |
2844 | |
2845 | __masm-> BIND(L_store_element)bind(L_store_element); masm-> block_comment("L_store_element" ":"); |
2846 | __masm-> store_heap_oop(to_element_addr, rax_oop, noreg, noreg, AS_RAW); // store the oop |
2847 | __masm-> increment(count); // increment the count toward zero |
2848 | __masm-> jcc(Assembler::zero, L_do_card_marks); |
2849 | |
2850 | // ======== loop entry is here ======== |
2851 | __masm-> BIND(L_load_element)bind(L_load_element); masm-> block_comment("L_load_element" ":"); |
2852 | __masm-> load_heap_oop(rax_oop, from_element_addr, noreg, noreg, AS_RAW); // load the oop |
2853 | __masm-> testptr(rax_oop, rax_oop); |
2854 | __masm-> jcc(Assembler::zero, L_store_element); |
2855 | |
2856 | __masm-> load_klass(r11_klass, rax_oop, rscratch1);// query the object klass |
2857 | generate_type_check(r11_klass, ckoff, ckval, L_store_element); |
2858 | // ======== end loop ======== |
2859 | |
2860 | // It was a real error; we must depend on the caller to finish the job. |
2861 | // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops. |
2862 | // Emit GC store barriers for the oops we have copied (r14 + rdx), |
2863 | // and report their number to the caller. |
2864 | assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1); |
2865 | Label L_post_barrier; |
2866 | __masm-> addptr(r14_length, count); // K = (original - remaining) oops |
2867 | __masm-> movptr(rax, r14_length); // save the value |
2868 | __masm-> notptr(rax); // report (-1^K) to caller (does not affect flags) |
2869 | __masm-> jccb(Assembler::notZero, L_post_barrier)jccb_0(Assembler::notZero, L_post_barrier, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2869); |
2870 | __masm-> jmp(L_done); // K == 0, nothing was copied, skip post barrier |
2871 | |
2872 | // Come here on success only. |
2873 | __masm-> BIND(L_do_card_marks)bind(L_do_card_marks); masm-> block_comment("L_do_card_marks" ":"); |
2874 | __masm-> xorptr(rax, rax); // return 0 on success |
2875 | |
2876 | __masm-> BIND(L_post_barrier)bind(L_post_barrier); masm-> block_comment("L_post_barrier" ":"); |
2877 | bs->arraycopy_epilogue(_masm, decorators, type, from, to, r14_length); |
2878 | |
2879 | // Common exit point (success or failure). |
2880 | __masm-> BIND(L_done)bind(L_done); masm-> block_comment("L_done" ":"); |
2881 | __masm-> movptr(r13, Address(rsp, saved_r13_offset * wordSize)); |
2882 | __masm-> movptr(r14, Address(rsp, saved_r14_offset * wordSize)); |
2883 | __masm-> movptr(r10, Address(rsp, saved_r10_offset * wordSize)); |
2884 | restore_arg_regs(); |
2885 | inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_checkcast_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_checkcast_array_copy_ctr);; // Update counter after rscratch1 is free |
2886 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
2887 | __masm-> ret(0); |
2888 | |
2889 | return start; |
2890 | } |
2891 | |
2892 | // |
2893 | // Generate 'unsafe' array copy stub |
2894 | // Though just as safe as the other stubs, it takes an unscaled |
2895 | // size_t argument instead of an element count. |
2896 | // |
2897 | // Input: |
2898 | // c_rarg0 - source array address |
2899 | // c_rarg1 - destination array address |
2900 | // c_rarg2 - byte count, treated as ssize_t, can be zero |
2901 | // |
2902 | // Examines the alignment of the operands and dispatches |
2903 | // to a long, int, short, or byte copy loop. |
2904 | // |
2905 | address generate_unsafe_copy(const char *name, |
2906 | address byte_copy_entry, address short_copy_entry, |
2907 | address int_copy_entry, address long_copy_entry) { |
2908 | |
2909 | Label L_long_aligned, L_int_aligned, L_short_aligned; |
2910 | |
2911 | // Input registers (before setup_arg_regs) |
2912 | const Register from = c_rarg0; // source array address |
2913 | const Register to = c_rarg1; // destination array address |
2914 | const Register size = c_rarg2; // byte count (size_t) |
2915 | |
2916 | // Register used as a temp |
2917 | const Register bits = rax; // test copy of low bits |
2918 | |
2919 | __masm-> align(CodeEntryAlignment); |
2920 | StubCodeMark mark(this, "StubRoutines", name); |
2921 | address start = __masm-> pc(); |
2922 | |
2923 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
2924 | |
2925 | // bump this on entry, not on exit: |
2926 | inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_unsafe_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_unsafe_array_copy_ctr);; |
2927 | |
2928 | __masm-> mov(bits, from); |
2929 | __masm-> orptr(bits, to); |
2930 | __masm-> orptr(bits, size); |
2931 | |
2932 | __masm-> testb(bits, BytesPerLong-1); |
2933 | __masm-> jccb(Assembler::zero, L_long_aligned)jccb_0(Assembler::zero, L_long_aligned, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2933); |
2934 | |
2935 | __masm-> testb(bits, BytesPerInt-1); |
2936 | __masm-> jccb(Assembler::zero, L_int_aligned)jccb_0(Assembler::zero, L_int_aligned, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 2936); |
2937 | |
2938 | __masm-> testb(bits, BytesPerShort-1); |
2939 | __masm-> jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry)); |
2940 | |
2941 | __masm-> BIND(L_short_aligned)bind(L_short_aligned); masm-> block_comment("L_short_aligned" ":"); |
2942 | __masm-> shrptr(size, LogBytesPerShort); // size => short_count |
2943 | __masm-> jump(RuntimeAddress(short_copy_entry)); |
2944 | |
2945 | __masm-> BIND(L_int_aligned)bind(L_int_aligned); masm-> block_comment("L_int_aligned" ":" ); |
2946 | __masm-> shrptr(size, LogBytesPerInt); // size => int_count |
2947 | __masm-> jump(RuntimeAddress(int_copy_entry)); |
2948 | |
2949 | __masm-> BIND(L_long_aligned)bind(L_long_aligned); masm-> block_comment("L_long_aligned" ":"); |
2950 | __masm-> shrptr(size, LogBytesPerLong); // size => qword_count |
2951 | __masm-> jump(RuntimeAddress(long_copy_entry)); |
2952 | |
2953 | return start; |
2954 | } |
2955 | |
2956 | // Perform range checks on the proposed arraycopy. |
2957 | // Kills temp, but nothing else. |
2958 | // Also, clean the sign bits of src_pos and dst_pos. |
2959 | void arraycopy_range_checks(Register src, // source array oop (c_rarg0) |
2960 | Register src_pos, // source position (c_rarg1) |
2961 | Register dst, // destination array oo (c_rarg2) |
2962 | Register dst_pos, // destination position (c_rarg3) |
2963 | Register length, |
2964 | Register temp, |
2965 | Label& L_failed) { |
2966 | BLOCK_COMMENT("arraycopy_range_checks:")masm-> block_comment("arraycopy_range_checks:"); |
2967 | |
2968 | // if (src_pos + length > arrayOop(src)->length()) FAIL; |
2969 | __masm-> movl(temp, length); |
2970 | __masm-> addl(temp, src_pos); // src_pos + length |
2971 | __masm-> cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes())); |
2972 | __masm-> jcc(Assembler::above, L_failed); |
2973 | |
2974 | // if (dst_pos + length > arrayOop(dst)->length()) FAIL; |
2975 | __masm-> movl(temp, length); |
2976 | __masm-> addl(temp, dst_pos); // dst_pos + length |
2977 | __masm-> cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes())); |
2978 | __masm-> jcc(Assembler::above, L_failed); |
2979 | |
2980 | // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. |
2981 | // Move with sign extension can be used since they are positive. |
2982 | __masm-> movslq(src_pos, src_pos); |
2983 | __masm-> movslq(dst_pos, dst_pos); |
2984 | |
2985 | BLOCK_COMMENT("arraycopy_range_checks done")masm-> block_comment("arraycopy_range_checks done"); |
2986 | } |
2987 | |
2988 | // |
2989 | // Generate generic array copy stubs |
2990 | // |
2991 | // Input: |
2992 | // c_rarg0 - src oop |
2993 | // c_rarg1 - src_pos (32-bits) |
2994 | // c_rarg2 - dst oop |
2995 | // c_rarg3 - dst_pos (32-bits) |
2996 | // not Win64 |
2997 | // c_rarg4 - element count (32-bits) |
2998 | // Win64 |
2999 | // rsp+40 - element count (32-bits) |
3000 | // |
3001 | // Output: |
3002 | // rax == 0 - success |
3003 | // rax == -1^K - failure, where K is partial transfer count |
3004 | // |
3005 | address generate_generic_copy(const char *name, |
3006 | address byte_copy_entry, address short_copy_entry, |
3007 | address int_copy_entry, address oop_copy_entry, |
3008 | address long_copy_entry, address checkcast_copy_entry) { |
3009 | |
3010 | Label L_failed, L_failed_0, L_objArray; |
3011 | Label L_copy_shorts, L_copy_ints, L_copy_longs; |
3012 | |
3013 | // Input registers |
3014 | const Register src = c_rarg0; // source array oop |
3015 | const Register src_pos = c_rarg1; // source position |
3016 | const Register dst = c_rarg2; // destination array oop |
3017 | const Register dst_pos = c_rarg3; // destination position |
3018 | #ifndef _WIN64 |
3019 | const Register length = c_rarg4; |
3020 | const Register rklass_tmp = r9; // load_klass |
3021 | #else |
3022 | const Address length(rsp, 7 * wordSize); // elements count is on stack on Win64 |
3023 | const Register rklass_tmp = rdi; // load_klass |
3024 | #endif |
3025 | |
3026 | { int modulus = CodeEntryAlignment; |
3027 | int target = modulus - 5; // 5 = sizeof jmp(L_failed) |
3028 | int advance = target - (__masm-> offset() % modulus); |
3029 | if (advance < 0) advance += modulus; |
3030 | if (advance > 0) __masm-> nop(advance); |
3031 | } |
3032 | StubCodeMark mark(this, "StubRoutines", name); |
3033 | |
3034 | // Short-hop target to L_failed. Makes for denser prologue code. |
3035 | __masm-> BIND(L_failed_0)bind(L_failed_0); masm-> block_comment("L_failed_0" ":"); |
3036 | __masm-> jmp(L_failed); |
3037 | assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed")do { if (!(masm-> offset() % CodeEntryAlignment == 0)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3037, "assert(" "masm-> offset() % CodeEntryAlignment == 0" ") failed", "no further alignment needed"); ::breakpoint(); } } while (0); |
3038 | |
3039 | __masm-> align(CodeEntryAlignment); |
3040 | address start = __masm-> pc(); |
3041 | |
3042 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
3043 | |
3044 | #ifdef _WIN64 |
3045 | __masm-> push(rklass_tmp); // rdi is callee-save on Windows |
3046 | #endif |
3047 | |
3048 | // bump this on entry, not on exit: |
3049 | inc_counter_np(SharedRuntime::_generic_array_copy_ctr)masm-> block_comment("inc_counter " "SharedRuntime::_generic_array_copy_ctr" ); inc_counter_np_(SharedRuntime::_generic_array_copy_ctr);; |
3050 | |
3051 | //----------------------------------------------------------------------- |
3052 | // Assembler stub will be used for this call to arraycopy |
3053 | // if the following conditions are met: |
3054 | // |
3055 | // (1) src and dst must not be null. |
3056 | // (2) src_pos must not be negative. |
3057 | // (3) dst_pos must not be negative. |
3058 | // (4) length must not be negative. |
3059 | // (5) src klass and dst klass should be the same and not NULL. |
3060 | // (6) src and dst should be arrays. |
3061 | // (7) src_pos + length must not exceed length of src. |
3062 | // (8) dst_pos + length must not exceed length of dst. |
3063 | // |
3064 | |
3065 | // if (src == NULL) return -1; |
3066 | __masm-> testptr(src, src); // src oop |
3067 | size_t j1off = __masm-> offset(); |
3068 | __masm-> jccb(Assembler::zero, L_failed_0)jccb_0(Assembler::zero, L_failed_0, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3068); |
3069 | |
3070 | // if (src_pos < 0) return -1; |
3071 | __masm-> testl(src_pos, src_pos); // src_pos (32-bits) |
3072 | __masm-> jccb(Assembler::negative, L_failed_0)jccb_0(Assembler::negative, L_failed_0, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3072); |
3073 | |
3074 | // if (dst == NULL) return -1; |
3075 | __masm-> testptr(dst, dst); // dst oop |
3076 | __masm-> jccb(Assembler::zero, L_failed_0)jccb_0(Assembler::zero, L_failed_0, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3076); |
3077 | |
3078 | // if (dst_pos < 0) return -1; |
3079 | __masm-> testl(dst_pos, dst_pos); // dst_pos (32-bits) |
3080 | size_t j4off = __masm-> offset(); |
3081 | __masm-> jccb(Assembler::negative, L_failed_0)jccb_0(Assembler::negative, L_failed_0, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3081); |
3082 | |
3083 | // The first four tests are very dense code, |
3084 | // but not quite dense enough to put four |
3085 | // jumps in a 16-byte instruction fetch buffer. |
3086 | // That's good, because some branch predicters |
3087 | // do not like jumps so close together. |
3088 | // Make sure of this. |
3089 | guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps")do { if (!(((j1off ^ j4off) & ~15) != 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3089, "guarantee(" "((j1off ^ j4off) & ~15) != 0" ") failed" , "I$ line of 1st & 4th jumps"); ::breakpoint(); } } while (0); |
3090 | |
3091 | // registers used as temp |
3092 | const Register r11_length = r11; // elements count to copy |
3093 | const Register r10_src_klass = r10; // array klass |
3094 | |
3095 | // if (length < 0) return -1; |
3096 | __masm-> movl(r11_length, length); // length (elements count, 32-bits value) |
3097 | __masm-> testl(r11_length, r11_length); |
3098 | __masm-> jccb(Assembler::negative, L_failed_0)jccb_0(Assembler::negative, L_failed_0, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3098); |
3099 | |
3100 | __masm-> load_klass(r10_src_klass, src, rklass_tmp); |
3101 | #ifdef ASSERT1 |
3102 | // assert(src->klass() != NULL); |
3103 | { |
3104 | BLOCK_COMMENT("assert klasses not null {")masm-> block_comment("assert klasses not null {"); |
3105 | Label L1, L2; |
3106 | __masm-> testptr(r10_src_klass, r10_src_klass); |
3107 | __masm-> jcc(Assembler::notZero, L2); // it is broken if klass is NULL |
3108 | __masm-> bind(L1); |
3109 | __masm-> stop("broken null klass"); |
3110 | __masm-> bind(L2); |
3111 | __masm-> load_klass(rax, dst, rklass_tmp); |
3112 | __masm-> cmpq(rax, 0); |
3113 | __masm-> jcc(Assembler::equal, L1); // this would be broken also |
3114 | BLOCK_COMMENT("} assert klasses not null done")masm-> block_comment("} assert klasses not null done"); |
3115 | } |
3116 | #endif |
3117 | |
3118 | // Load layout helper (32-bits) |
3119 | // |
3120 | // |array_tag| | header_size | element_type | |log2_element_size| |
3121 | // 32 30 24 16 8 2 0 |
3122 | // |
3123 | // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 |
3124 | // |
3125 | |
3126 | const int lh_offset = in_bytes(Klass::layout_helper_offset()); |
3127 | |
3128 | // Handle objArrays completely differently... |
3129 | const jint objArray_lh = Klass::array_layout_helper(T_OBJECT); |
3130 | __masm-> cmpl(Address(r10_src_klass, lh_offset), objArray_lh); |
3131 | __masm-> jcc(Assembler::equal, L_objArray); |
3132 | |
3133 | // if (src->klass() != dst->klass()) return -1; |
3134 | __masm-> load_klass(rax, dst, rklass_tmp); |
3135 | __masm-> cmpq(r10_src_klass, rax); |
3136 | __masm-> jcc(Assembler::notEqual, L_failed); |
3137 | |
3138 | const Register rax_lh = rax; // layout helper |
3139 | __masm-> movl(rax_lh, Address(r10_src_klass, lh_offset)); |
3140 | |
3141 | // if (!src->is_Array()) return -1; |
3142 | __masm-> cmpl(rax_lh, Klass::_lh_neutral_value); |
3143 | __masm-> jcc(Assembler::greaterEqual, L_failed); |
3144 | |
3145 | // At this point, it is known to be a typeArray (array_tag 0x3). |
3146 | #ifdef ASSERT1 |
3147 | { |
3148 | BLOCK_COMMENT("assert primitive array {")masm-> block_comment("assert primitive array {"); |
3149 | Label L; |
3150 | __masm-> cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift)); |
3151 | __masm-> jcc(Assembler::greaterEqual, L); |
3152 | __masm-> stop("must be a primitive array"); |
3153 | __masm-> bind(L); |
3154 | BLOCK_COMMENT("} assert primitive array done")masm-> block_comment("} assert primitive array done"); |
3155 | } |
3156 | #endif |
3157 | |
3158 | arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, |
3159 | r10, L_failed); |
3160 | |
3161 | // TypeArrayKlass |
3162 | // |
3163 | // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); |
3164 | // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); |
3165 | // |
3166 | |
3167 | const Register r10_offset = r10; // array offset |
3168 | const Register rax_elsize = rax_lh; // element size |
3169 | |
3170 | __masm-> movl(r10_offset, rax_lh); |
3171 | __masm-> shrl(r10_offset, Klass::_lh_header_size_shift); |
3172 | __masm-> andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset |
3173 | __masm-> addptr(src, r10_offset); // src array offset |
3174 | __masm-> addptr(dst, r10_offset); // dst array offset |
3175 | BLOCK_COMMENT("choose copy loop based on element size")masm-> block_comment("choose copy loop based on element size" ); |
3176 | __masm-> andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize |
3177 | |
3178 | #ifdef _WIN64 |
3179 | __masm-> pop(rklass_tmp); // Restore callee-save rdi |
3180 | #endif |
3181 | |
3182 | // next registers should be set before the jump to corresponding stub |
3183 | const Register from = c_rarg0; // source array address |
3184 | const Register to = c_rarg1; // destination array address |
3185 | const Register count = c_rarg2; // elements count |
3186 | |
3187 | // 'from', 'to', 'count' registers should be set in such order |
3188 | // since they are the same as 'src', 'src_pos', 'dst'. |
3189 | |
3190 | __masm-> cmpl(rax_elsize, 0); |
3191 | __masm-> jccb(Assembler::notEqual, L_copy_shorts)jccb_0(Assembler::notEqual, L_copy_shorts, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3191); |
3192 | __masm-> lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr |
3193 | __masm-> lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr |
3194 | __masm-> movl2ptr(count, r11_length); // length |
3195 | __masm-> jump(RuntimeAddress(byte_copy_entry)); |
3196 | |
3197 | __masm-> BIND(L_copy_shorts)bind(L_copy_shorts); masm-> block_comment("L_copy_shorts" ":" ); |
3198 | __masm-> cmpl(rax_elsize, LogBytesPerShort); |
3199 | __masm-> jccb(Assembler::notEqual, L_copy_ints)jccb_0(Assembler::notEqual, L_copy_ints, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3199); |
3200 | __masm-> lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr |
3201 | __masm-> lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr |
3202 | __masm-> movl2ptr(count, r11_length); // length |
3203 | __masm-> jump(RuntimeAddress(short_copy_entry)); |
3204 | |
3205 | __masm-> BIND(L_copy_ints)bind(L_copy_ints); masm-> block_comment("L_copy_ints" ":"); |
3206 | __masm-> cmpl(rax_elsize, LogBytesPerInt); |
3207 | __masm-> jccb(Assembler::notEqual, L_copy_longs)jccb_0(Assembler::notEqual, L_copy_longs, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3207); |
3208 | __masm-> lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr |
3209 | __masm-> lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr |
3210 | __masm-> movl2ptr(count, r11_length); // length |
3211 | __masm-> jump(RuntimeAddress(int_copy_entry)); |
3212 | |
3213 | __masm-> BIND(L_copy_longs)bind(L_copy_longs); masm-> block_comment("L_copy_longs" ":" ); |
3214 | #ifdef ASSERT1 |
3215 | { |
3216 | BLOCK_COMMENT("assert long copy {")masm-> block_comment("assert long copy {"); |
3217 | Label L; |
3218 | __masm-> cmpl(rax_elsize, LogBytesPerLong); |
3219 | __masm-> jcc(Assembler::equal, L); |
3220 | __masm-> stop("must be long copy, but elsize is wrong"); |
3221 | __masm-> bind(L); |
3222 | BLOCK_COMMENT("} assert long copy done")masm-> block_comment("} assert long copy done"); |
3223 | } |
3224 | #endif |
3225 | __masm-> lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr |
3226 | __masm-> lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr |
3227 | __masm-> movl2ptr(count, r11_length); // length |
3228 | __masm-> jump(RuntimeAddress(long_copy_entry)); |
3229 | |
3230 | // ObjArrayKlass |
3231 | __masm-> BIND(L_objArray)bind(L_objArray); masm-> block_comment("L_objArray" ":"); |
3232 | // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos] |
3233 | |
3234 | Label L_plain_copy, L_checkcast_copy; |
3235 | // test array classes for subtyping |
3236 | __masm-> load_klass(rax, dst, rklass_tmp); |
3237 | __masm-> cmpq(r10_src_klass, rax); // usual case is exact equality |
3238 | __masm-> jcc(Assembler::notEqual, L_checkcast_copy); |
3239 | |
3240 | // Identically typed arrays can be copied without element-wise checks. |
3241 | arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, |
3242 | r10, L_failed); |
3243 | |
3244 | __masm-> lea(from, Address(src, src_pos, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), |
3245 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr |
3246 | __masm-> lea(to, Address(dst, dst_pos, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), |
3247 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr |
3248 | __masm-> movl2ptr(count, r11_length); // length |
3249 | __masm-> BIND(L_plain_copy)bind(L_plain_copy); masm-> block_comment("L_plain_copy" ":" ); |
3250 | #ifdef _WIN64 |
3251 | __masm-> pop(rklass_tmp); // Restore callee-save rdi |
3252 | #endif |
3253 | __masm-> jump(RuntimeAddress(oop_copy_entry)); |
3254 | |
3255 | __masm-> BIND(L_checkcast_copy)bind(L_checkcast_copy); masm-> block_comment("L_checkcast_copy" ":"); |
3256 | // live at this point: r10_src_klass, r11_length, rax (dst_klass) |
3257 | { |
3258 | // Before looking at dst.length, make sure dst is also an objArray. |
3259 | __masm-> cmpl(Address(rax, lh_offset), objArray_lh); |
3260 | __masm-> jcc(Assembler::notEqual, L_failed); |
3261 | |
3262 | // It is safe to examine both src.length and dst.length. |
3263 | arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, |
3264 | rax, L_failed); |
3265 | |
3266 | const Register r11_dst_klass = r11; |
3267 | __masm-> load_klass(r11_dst_klass, dst, rklass_tmp); // reload |
3268 | |
3269 | // Marshal the base address arguments now, freeing registers. |
3270 | __masm-> lea(from, Address(src, src_pos, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), |
3271 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); |
3272 | __masm-> lea(to, Address(dst, dst_pos, TIMES_OOP(UseCompressedOops ? Address::times_4 : Address::times_8), |
3273 | arrayOopDesc::base_offset_in_bytes(T_OBJECT))); |
3274 | __masm-> movl(count, length); // length (reloaded) |
3275 | Register sco_temp = c_rarg3; // this register is free now |
3276 | assert_different_registers(from, to, count, sco_temp, |
3277 | r11_dst_klass, r10_src_klass); |
3278 | assert_clean_int(count, sco_temp); |
3279 | |
3280 | // Generate the type check. |
3281 | const int sco_offset = in_bytes(Klass::super_check_offset_offset()); |
3282 | __masm-> movl(sco_temp, Address(r11_dst_klass, sco_offset)); |
3283 | assert_clean_int(sco_temp, rax); |
3284 | generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy); |
3285 | |
3286 | // Fetch destination element klass from the ObjArrayKlass header. |
3287 | int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); |
3288 | __masm-> movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset)); |
3289 | __masm-> movl( sco_temp, Address(r11_dst_klass, sco_offset)); |
3290 | assert_clean_int(sco_temp, rax); |
3291 | |
3292 | #ifdef _WIN64 |
3293 | __masm-> pop(rklass_tmp); // Restore callee-save rdi |
3294 | #endif |
3295 | |
3296 | // the checkcast_copy loop needs two extra arguments: |
3297 | assert(c_rarg3 == sco_temp, "#3 already in place")do { if (!(c_rarg3 == sco_temp)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3297, "assert(" "c_rarg3 == sco_temp" ") failed", "#3 already in place" ); ::breakpoint(); } } while (0); |
3298 | // Set up arguments for checkcast_copy_entry. |
3299 | setup_arg_regs(4); |
3300 | __masm-> movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris |
3301 | __masm-> jump(RuntimeAddress(checkcast_copy_entry)); |
3302 | } |
3303 | |
3304 | __masm-> BIND(L_failed)bind(L_failed); masm-> block_comment("L_failed" ":"); |
3305 | #ifdef _WIN64 |
3306 | __masm-> pop(rklass_tmp); // Restore callee-save rdi |
3307 | #endif |
3308 | __masm-> xorptr(rax, rax); |
3309 | __masm-> notptr(rax); // return -1 |
3310 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
3311 | __masm-> ret(0); |
3312 | |
3313 | return start; |
3314 | } |
3315 | |
3316 | address generate_data_cache_writeback() { |
3317 | const Register src = c_rarg0; // source address |
3318 | |
3319 | __masm-> align(CodeEntryAlignment); |
3320 | |
3321 | StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); |
3322 | |
3323 | address start = __masm-> pc(); |
3324 | __masm-> enter(); |
3325 | __masm-> cache_wb(Address(src, 0)); |
3326 | __masm-> leave(); |
3327 | __masm-> ret(0); |
3328 | |
3329 | return start; |
3330 | } |
3331 | |
3332 | address generate_data_cache_writeback_sync() { |
3333 | const Register is_pre = c_rarg0; // pre or post sync |
3334 | |
3335 | __masm-> align(CodeEntryAlignment); |
3336 | |
3337 | StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); |
3338 | |
3339 | // pre wbsync is a no-op |
3340 | // post wbsync translates to an sfence |
3341 | |
3342 | Label skip; |
3343 | address start = __masm-> pc(); |
3344 | __masm-> enter(); |
3345 | __masm-> cmpl(is_pre, 0); |
3346 | __masm-> jcc(Assembler::notEqual, skip); |
3347 | __masm-> cache_wbsync(false); |
3348 | __masm-> bind(skip); |
3349 | __masm-> leave(); |
3350 | __masm-> ret(0); |
3351 | |
3352 | return start; |
3353 | } |
3354 | |
3355 | void generate_arraycopy_stubs() { |
3356 | address entry; |
3357 | address entry_jbyte_arraycopy; |
3358 | address entry_jshort_arraycopy; |
3359 | address entry_jint_arraycopy; |
3360 | address entry_oop_arraycopy; |
3361 | address entry_jlong_arraycopy; |
3362 | address entry_checkcast_arraycopy; |
3363 | |
3364 | StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry, |
3365 | "jbyte_disjoint_arraycopy"); |
3366 | StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy, |
3367 | "jbyte_arraycopy"); |
3368 | |
3369 | StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry, |
3370 | "jshort_disjoint_arraycopy"); |
3371 | StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy, |
3372 | "jshort_arraycopy"); |
3373 | |
3374 | StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry, |
3375 | "jint_disjoint_arraycopy"); |
3376 | StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry, |
3377 | &entry_jint_arraycopy, "jint_arraycopy"); |
3378 | |
3379 | StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry, |
3380 | "jlong_disjoint_arraycopy"); |
3381 | StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry, |
3382 | &entry_jlong_arraycopy, "jlong_arraycopy"); |
3383 | |
3384 | |
3385 | if (UseCompressedOops) { |
3386 | StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry, |
3387 | "oop_disjoint_arraycopy"); |
3388 | StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry, |
3389 | &entry_oop_arraycopy, "oop_arraycopy"); |
3390 | StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry, |
3391 | "oop_disjoint_arraycopy_uninit", |
3392 | /*dest_uninitialized*/true); |
3393 | StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry, |
3394 | NULL__null, "oop_arraycopy_uninit", |
3395 | /*dest_uninitialized*/true); |
3396 | } else { |
3397 | StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry, |
3398 | "oop_disjoint_arraycopy"); |
3399 | StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry, |
3400 | &entry_oop_arraycopy, "oop_arraycopy"); |
3401 | StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry, |
3402 | "oop_disjoint_arraycopy_uninit", |
3403 | /*dest_uninitialized*/true); |
3404 | StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry, |
3405 | NULL__null, "oop_arraycopy_uninit", |
3406 | /*dest_uninitialized*/true); |
3407 | } |
3408 | |
3409 | StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy); |
3410 | StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL__null, |
3411 | /*dest_uninitialized*/true); |
3412 | |
3413 | StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy", |
3414 | entry_jbyte_arraycopy, |
3415 | entry_jshort_arraycopy, |
3416 | entry_jint_arraycopy, |
3417 | entry_jlong_arraycopy); |
3418 | StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy", |
3419 | entry_jbyte_arraycopy, |
3420 | entry_jshort_arraycopy, |
3421 | entry_jint_arraycopy, |
3422 | entry_oop_arraycopy, |
3423 | entry_jlong_arraycopy, |
3424 | entry_checkcast_arraycopy); |
3425 | |
3426 | StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); |
3427 | StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); |
3428 | StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); |
3429 | StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); |
3430 | StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); |
3431 | StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); |
3432 | |
3433 | // We don't generate specialized code for HeapWord-aligned source |
3434 | // arrays, so just use the code we've already generated |
3435 | StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy; |
3436 | StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy; |
3437 | |
3438 | StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy; |
3439 | StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy; |
3440 | |
3441 | StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy; |
3442 | StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; |
3443 | |
3444 | StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy; |
3445 | StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; |
3446 | |
3447 | StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy; |
3448 | StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; |
3449 | |
3450 | StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit; |
3451 | StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit; |
3452 | } |
3453 | |
3454 | // AES intrinsic stubs |
3455 | enum {AESBlockSize = 16}; |
3456 | |
3457 | address generate_key_shuffle_mask() { |
3458 | __masm-> align(16); |
3459 | StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask"); |
3460 | address start = __masm-> pc(); |
3461 | __masm-> emit_data64( 0x0405060700010203, relocInfo::none ); |
3462 | __masm-> emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none ); |
3463 | return start; |
3464 | } |
3465 | |
3466 | address generate_counter_shuffle_mask() { |
3467 | __masm-> align(16); |
3468 | StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask"); |
3469 | address start = __masm-> pc(); |
3470 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
3471 | __masm-> emit_data64(0x0001020304050607, relocInfo::none); |
3472 | return start; |
3473 | } |
3474 | |
3475 | // Utility routine for loading a 128-bit key word in little endian format |
3476 | // can optionally specify that the shuffle mask is already in an xmmregister |
3477 | void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL__null) { |
3478 | __masm-> movdqu(xmmdst, Address(key, offset)); |
3479 | if (xmm_shuf_mask != NULL__null) { |
3480 | __masm-> pshufb(xmmdst, xmm_shuf_mask); |
3481 | } else { |
3482 | __masm-> pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
3483 | } |
3484 | } |
3485 | |
3486 | // Utility routine for increase 128bit counter (iv in CTR mode) |
3487 | void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) { |
3488 | __masm-> pextrq(reg, xmmdst, 0x0); |
3489 | __masm-> addq(reg, inc_delta); |
3490 | __masm-> pinsrq(xmmdst, reg, 0x0); |
3491 | __masm-> jcc(Assembler::carryClear, next_block); // jump if no carry |
3492 | __masm-> pextrq(reg, xmmdst, 0x01); // Carry |
3493 | __masm-> addq(reg, 0x01); |
3494 | __masm-> pinsrq(xmmdst, reg, 0x01); //Carry end |
3495 | __masm-> BIND(next_block)bind(next_block); masm-> block_comment("next_block" ":"); // next instruction |
3496 | } |
3497 | |
3498 | // Arguments: |
3499 | // |
3500 | // Inputs: |
3501 | // c_rarg0 - source byte array address |
3502 | // c_rarg1 - destination byte array address |
3503 | // c_rarg2 - K (key) in little endian int array |
3504 | // |
3505 | address generate_aescrypt_encryptBlock() { |
3506 | assert(UseAES, "need AES instructions and misaligned SSE support")do { if (!(UseAES)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3506, "assert(" "UseAES" ") failed", "need AES instructions and misaligned SSE support" ); ::breakpoint(); } } while (0); |
3507 | __masm-> align(CodeEntryAlignment); |
3508 | StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); |
3509 | Label L_doLast; |
3510 | address start = __masm-> pc(); |
3511 | |
3512 | const Register from = c_rarg0; // source array address |
3513 | const Register to = c_rarg1; // destination array address |
3514 | const Register key = c_rarg2; // key array address |
3515 | const Register keylen = rax; |
3516 | |
3517 | const XMMRegister xmm_result = xmm0; |
3518 | const XMMRegister xmm_key_shuf_mask = xmm1; |
3519 | // On win64 xmm6-xmm15 must be preserved so don't use them. |
3520 | const XMMRegister xmm_temp1 = xmm2; |
3521 | const XMMRegister xmm_temp2 = xmm3; |
3522 | const XMMRegister xmm_temp3 = xmm4; |
3523 | const XMMRegister xmm_temp4 = xmm5; |
3524 | |
3525 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
3526 | |
3527 | // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} |
3528 | __masm-> movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
3529 | |
3530 | __masm-> movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
3531 | __masm-> movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input |
3532 | |
3533 | // For encryption, the java expanded key ordering is just what we need |
3534 | // we don't know if the key is aligned, hence not using load-execute form |
3535 | |
3536 | load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask); |
3537 | __masm-> pxor(xmm_result, xmm_temp1); |
3538 | |
3539 | load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); |
3540 | load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); |
3541 | load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); |
3542 | load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); |
3543 | |
3544 | __masm-> aesenc(xmm_result, xmm_temp1); |
3545 | __masm-> aesenc(xmm_result, xmm_temp2); |
3546 | __masm-> aesenc(xmm_result, xmm_temp3); |
3547 | __masm-> aesenc(xmm_result, xmm_temp4); |
3548 | |
3549 | load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); |
3550 | load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); |
3551 | load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); |
3552 | load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); |
3553 | |
3554 | __masm-> aesenc(xmm_result, xmm_temp1); |
3555 | __masm-> aesenc(xmm_result, xmm_temp2); |
3556 | __masm-> aesenc(xmm_result, xmm_temp3); |
3557 | __masm-> aesenc(xmm_result, xmm_temp4); |
3558 | |
3559 | load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); |
3560 | load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); |
3561 | |
3562 | __masm-> cmpl(keylen, 44); |
3563 | __masm-> jccb(Assembler::equal, L_doLast)jccb_0(Assembler::equal, L_doLast, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3563); |
3564 | |
3565 | __masm-> aesenc(xmm_result, xmm_temp1); |
3566 | __masm-> aesenc(xmm_result, xmm_temp2); |
3567 | |
3568 | load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); |
3569 | load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); |
3570 | |
3571 | __masm-> cmpl(keylen, 52); |
3572 | __masm-> jccb(Assembler::equal, L_doLast)jccb_0(Assembler::equal, L_doLast, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3572); |
3573 | |
3574 | __masm-> aesenc(xmm_result, xmm_temp1); |
3575 | __masm-> aesenc(xmm_result, xmm_temp2); |
3576 | |
3577 | load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); |
3578 | load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); |
3579 | |
3580 | __masm-> BIND(L_doLast)bind(L_doLast); masm-> block_comment("L_doLast" ":"); |
3581 | __masm-> aesenc(xmm_result, xmm_temp1); |
3582 | __masm-> aesenclast(xmm_result, xmm_temp2); |
3583 | __masm-> movdqu(Address(to, 0), xmm_result); // store the result |
3584 | __masm-> xorptr(rax, rax); // return 0 |
3585 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
3586 | __masm-> ret(0); |
3587 | |
3588 | return start; |
3589 | } |
3590 | |
3591 | |
3592 | // Arguments: |
3593 | // |
3594 | // Inputs: |
3595 | // c_rarg0 - source byte array address |
3596 | // c_rarg1 - destination byte array address |
3597 | // c_rarg2 - K (key) in little endian int array |
3598 | // |
3599 | address generate_aescrypt_decryptBlock() { |
3600 | assert(UseAES, "need AES instructions and misaligned SSE support")do { if (!(UseAES)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3600, "assert(" "UseAES" ") failed", "need AES instructions and misaligned SSE support" ); ::breakpoint(); } } while (0); |
3601 | __masm-> align(CodeEntryAlignment); |
3602 | StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); |
3603 | Label L_doLast; |
3604 | address start = __masm-> pc(); |
3605 | |
3606 | const Register from = c_rarg0; // source array address |
3607 | const Register to = c_rarg1; // destination array address |
3608 | const Register key = c_rarg2; // key array address |
3609 | const Register keylen = rax; |
3610 | |
3611 | const XMMRegister xmm_result = xmm0; |
3612 | const XMMRegister xmm_key_shuf_mask = xmm1; |
3613 | // On win64 xmm6-xmm15 must be preserved so don't use them. |
3614 | const XMMRegister xmm_temp1 = xmm2; |
3615 | const XMMRegister xmm_temp2 = xmm3; |
3616 | const XMMRegister xmm_temp3 = xmm4; |
3617 | const XMMRegister xmm_temp4 = xmm5; |
3618 | |
3619 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
3620 | |
3621 | // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} |
3622 | __masm-> movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
3623 | |
3624 | __masm-> movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
3625 | __masm-> movdqu(xmm_result, Address(from, 0)); |
3626 | |
3627 | // for decryption java expanded key ordering is rotated one position from what we want |
3628 | // so we start from 0x10 here and hit 0x00 last |
3629 | // we don't know if the key is aligned, hence not using load-execute form |
3630 | load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); |
3631 | load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); |
3632 | load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); |
3633 | load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); |
3634 | |
3635 | __masm-> pxor (xmm_result, xmm_temp1); |
3636 | __masm-> aesdec(xmm_result, xmm_temp2); |
3637 | __masm-> aesdec(xmm_result, xmm_temp3); |
3638 | __masm-> aesdec(xmm_result, xmm_temp4); |
3639 | |
3640 | load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); |
3641 | load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); |
3642 | load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); |
3643 | load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); |
3644 | |
3645 | __masm-> aesdec(xmm_result, xmm_temp1); |
3646 | __masm-> aesdec(xmm_result, xmm_temp2); |
3647 | __masm-> aesdec(xmm_result, xmm_temp3); |
3648 | __masm-> aesdec(xmm_result, xmm_temp4); |
3649 | |
3650 | load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); |
3651 | load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); |
3652 | load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask); |
3653 | |
3654 | __masm-> cmpl(keylen, 44); |
3655 | __masm-> jccb(Assembler::equal, L_doLast)jccb_0(Assembler::equal, L_doLast, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3655); |
3656 | |
3657 | __masm-> aesdec(xmm_result, xmm_temp1); |
3658 | __masm-> aesdec(xmm_result, xmm_temp2); |
3659 | |
3660 | load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); |
3661 | load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); |
3662 | |
3663 | __masm-> cmpl(keylen, 52); |
3664 | __masm-> jccb(Assembler::equal, L_doLast)jccb_0(Assembler::equal, L_doLast, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3664); |
3665 | |
3666 | __masm-> aesdec(xmm_result, xmm_temp1); |
3667 | __masm-> aesdec(xmm_result, xmm_temp2); |
3668 | |
3669 | load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); |
3670 | load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); |
3671 | |
3672 | __masm-> BIND(L_doLast)bind(L_doLast); masm-> block_comment("L_doLast" ":"); |
3673 | __masm-> aesdec(xmm_result, xmm_temp1); |
3674 | __masm-> aesdec(xmm_result, xmm_temp2); |
3675 | |
3676 | // for decryption the aesdeclast operation is always on key+0x00 |
3677 | __masm-> aesdeclast(xmm_result, xmm_temp3); |
3678 | __masm-> movdqu(Address(to, 0), xmm_result); // store the result |
3679 | __masm-> xorptr(rax, rax); // return 0 |
3680 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
3681 | __masm-> ret(0); |
3682 | |
3683 | return start; |
3684 | } |
3685 | |
3686 | |
3687 | // Arguments: |
3688 | // |
3689 | // Inputs: |
3690 | // c_rarg0 - source byte array address |
3691 | // c_rarg1 - destination byte array address |
3692 | // c_rarg2 - K (key) in little endian int array |
3693 | // c_rarg3 - r vector byte array address |
3694 | // c_rarg4 - input length |
3695 | // |
3696 | // Output: |
3697 | // rax - input length |
3698 | // |
3699 | address generate_cipherBlockChaining_encryptAESCrypt() { |
3700 | assert(UseAES, "need AES instructions and misaligned SSE support")do { if (!(UseAES)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3700, "assert(" "UseAES" ") failed", "need AES instructions and misaligned SSE support" ); ::breakpoint(); } } while (0); |
3701 | __masm-> align(CodeEntryAlignment); |
3702 | StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt"); |
3703 | address start = __masm-> pc(); |
3704 | |
3705 | Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256; |
3706 | const Register from = c_rarg0; // source array address |
3707 | const Register to = c_rarg1; // destination array address |
3708 | const Register key = c_rarg2; // key array address |
3709 | const Register rvec = c_rarg3; // r byte array initialized from initvector array address |
3710 | // and left with the results of the last encryption block |
3711 | #ifndef _WIN64 |
3712 | const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) |
3713 | #else |
3714 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
3715 | const Register len_reg = r11; // pick the volatile windows register |
3716 | #endif |
3717 | const Register pos = rax; |
3718 | |
3719 | // xmm register assignments for the loops below |
3720 | const XMMRegister xmm_result = xmm0; |
3721 | const XMMRegister xmm_temp = xmm1; |
3722 | // keys 0-10 preloaded into xmm2-xmm12 |
3723 | const int XMM_REG_NUM_KEY_FIRST = 2; |
3724 | const int XMM_REG_NUM_KEY_LAST = 15; |
3725 | const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); |
3726 | const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10); |
3727 | const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11); |
3728 | const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12); |
3729 | const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13); |
3730 | |
3731 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
3732 | |
3733 | #ifdef _WIN64 |
3734 | // on win64, fill len_reg from stack position |
3735 | __masm-> movl(len_reg, len_mem); |
3736 | #else |
3737 | __masm-> push(len_reg); // Save |
3738 | #endif |
3739 | |
3740 | const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front |
3741 | __masm-> movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
3742 | // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0 |
3743 | for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) { |
3744 | load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); |
3745 | offset += 0x10; |
3746 | } |
3747 | __masm-> movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec |
3748 | |
3749 | // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) |
3750 | __masm-> movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
3751 | __masm-> cmpl(rax, 44); |
3752 | __masm-> jcc(Assembler::notEqual, L_key_192_256); |
3753 | |
3754 | // 128 bit code follows here |
3755 | __masm-> movptr(pos, 0); |
3756 | __masm-> align(OptoLoopAlignment); |
3757 | |
3758 | __masm-> BIND(L_loopTop_128)bind(L_loopTop_128); masm-> block_comment("L_loopTop_128" ":" ); |
3759 | __masm-> movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input |
3760 | __masm-> pxor (xmm_result, xmm_temp); // xor with the current r vector |
3761 | __masm-> pxor (xmm_result, xmm_key0); // do the aes rounds |
3762 | for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) { |
3763 | __masm-> aesenc(xmm_result, as_XMMRegister(rnum)); |
3764 | } |
3765 | __masm-> aesenclast(xmm_result, xmm_key10); |
3766 | __masm-> movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
3767 | // no need to store r to memory until we exit |
3768 | __masm-> addptr(pos, AESBlockSize); |
3769 | __masm-> subptr(len_reg, AESBlockSize); |
3770 | __masm-> jcc(Assembler::notEqual, L_loopTop_128); |
3771 | |
3772 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
3773 | __masm-> movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object |
3774 | |
3775 | #ifdef _WIN64 |
3776 | __masm-> movl(rax, len_mem); |
3777 | #else |
3778 | __masm-> pop(rax); // return length |
3779 | #endif |
3780 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
3781 | __masm-> ret(0); |
3782 | |
3783 | __masm-> BIND(L_key_192_256)bind(L_key_192_256); masm-> block_comment("L_key_192_256" ":" ); |
3784 | // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) |
3785 | load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask); |
3786 | load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask); |
3787 | __masm-> cmpl(rax, 52); |
3788 | __masm-> jcc(Assembler::notEqual, L_key_256); |
3789 | |
3790 | // 192-bit code follows here (could be changed to use more xmm registers) |
3791 | __masm-> movptr(pos, 0); |
3792 | __masm-> align(OptoLoopAlignment); |
3793 | |
3794 | __masm-> BIND(L_loopTop_192)bind(L_loopTop_192); masm-> block_comment("L_loopTop_192" ":" ); |
3795 | __masm-> movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input |
3796 | __masm-> pxor (xmm_result, xmm_temp); // xor with the current r vector |
3797 | __masm-> pxor (xmm_result, xmm_key0); // do the aes rounds |
3798 | for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) { |
3799 | __masm-> aesenc(xmm_result, as_XMMRegister(rnum)); |
3800 | } |
3801 | __masm-> aesenclast(xmm_result, xmm_key12); |
3802 | __masm-> movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
3803 | // no need to store r to memory until we exit |
3804 | __masm-> addptr(pos, AESBlockSize); |
3805 | __masm-> subptr(len_reg, AESBlockSize); |
3806 | __masm-> jcc(Assembler::notEqual, L_loopTop_192); |
3807 | __masm-> jmp(L_exit); |
3808 | |
3809 | __masm-> BIND(L_key_256)bind(L_key_256); masm-> block_comment("L_key_256" ":"); |
3810 | // 256-bit code follows here (could be changed to use more xmm registers) |
3811 | load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask); |
3812 | __masm-> movptr(pos, 0); |
3813 | __masm-> align(OptoLoopAlignment); |
3814 | |
3815 | __masm-> BIND(L_loopTop_256)bind(L_loopTop_256); masm-> block_comment("L_loopTop_256" ":" ); |
3816 | __masm-> movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input |
3817 | __masm-> pxor (xmm_result, xmm_temp); // xor with the current r vector |
3818 | __masm-> pxor (xmm_result, xmm_key0); // do the aes rounds |
3819 | for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) { |
3820 | __masm-> aesenc(xmm_result, as_XMMRegister(rnum)); |
3821 | } |
3822 | load_key(xmm_temp, key, 0xe0); |
3823 | __masm-> aesenclast(xmm_result, xmm_temp); |
3824 | __masm-> movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
3825 | // no need to store r to memory until we exit |
3826 | __masm-> addptr(pos, AESBlockSize); |
3827 | __masm-> subptr(len_reg, AESBlockSize); |
3828 | __masm-> jcc(Assembler::notEqual, L_loopTop_256); |
3829 | __masm-> jmp(L_exit); |
3830 | |
3831 | return start; |
3832 | } |
3833 | |
3834 | // Safefetch stubs. |
3835 | void generate_safefetch(const char* name, int size, address* entry, |
3836 | address* fault_pc, address* continuation_pc) { |
3837 | // safefetch signatures: |
3838 | // int SafeFetch32(int* adr, int errValue); |
3839 | // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); |
3840 | // |
3841 | // arguments: |
3842 | // c_rarg0 = adr |
3843 | // c_rarg1 = errValue |
3844 | // |
3845 | // result: |
3846 | // PPC_RET = *adr or errValue |
3847 | |
3848 | StubCodeMark mark(this, "StubRoutines", name); |
3849 | |
3850 | // Entry point, pc or function descriptor. |
3851 | *entry = __masm-> pc(); |
3852 | |
3853 | // Load *adr into c_rarg1, may fault. |
3854 | *fault_pc = __masm-> pc(); |
3855 | switch (size) { |
3856 | case 4: |
3857 | // int32_t |
3858 | __masm-> movl(c_rarg1, Address(c_rarg0, 0)); |
3859 | break; |
3860 | case 8: |
3861 | // int64_t |
3862 | __masm-> movq(c_rarg1, Address(c_rarg0, 0)); |
3863 | break; |
3864 | default: |
3865 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3865); ::breakpoint(); } while (0); |
3866 | } |
3867 | |
3868 | // return errValue or *adr |
3869 | *continuation_pc = __masm-> pc(); |
3870 | __masm-> movq(rax, c_rarg1); |
3871 | __masm-> ret(0); |
3872 | } |
3873 | |
3874 | // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time |
3875 | // to hide instruction latency |
3876 | // |
3877 | // Arguments: |
3878 | // |
3879 | // Inputs: |
3880 | // c_rarg0 - source byte array address |
3881 | // c_rarg1 - destination byte array address |
3882 | // c_rarg2 - K (key) in little endian int array |
3883 | // c_rarg3 - r vector byte array address |
3884 | // c_rarg4 - input length |
3885 | // |
3886 | // Output: |
3887 | // rax - input length |
3888 | // |
3889 | address generate_cipherBlockChaining_decryptAESCrypt_Parallel() { |
3890 | assert(UseAES, "need AES instructions and misaligned SSE support")do { if (!(UseAES)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 3890, "assert(" "UseAES" ") failed", "need AES instructions and misaligned SSE support" ); ::breakpoint(); } } while (0); |
3891 | __masm-> align(CodeEntryAlignment); |
3892 | StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); |
3893 | address start = __masm-> pc(); |
3894 | |
3895 | const Register from = c_rarg0; // source array address |
3896 | const Register to = c_rarg1; // destination array address |
3897 | const Register key = c_rarg2; // key array address |
3898 | const Register rvec = c_rarg3; // r byte array initialized from initvector array address |
3899 | // and left with the results of the last encryption block |
3900 | #ifndef _WIN64 |
3901 | const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) |
3902 | #else |
3903 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
3904 | const Register len_reg = r11; // pick the volatile windows register |
3905 | #endif |
3906 | const Register pos = rax; |
3907 | |
3908 | const int PARALLEL_FACTOR = 4; |
3909 | const int ROUNDS[3] = { 10, 12, 14 }; // aes rounds for key128, key192, key256 |
3910 | |
3911 | Label L_exit; |
3912 | Label L_singleBlock_loopTopHead[3]; // 128, 192, 256 |
3913 | Label L_singleBlock_loopTopHead2[3]; // 128, 192, 256 |
3914 | Label L_singleBlock_loopTop[3]; // 128, 192, 256 |
3915 | Label L_multiBlock_loopTopHead[3]; // 128, 192, 256 |
3916 | Label L_multiBlock_loopTop[3]; // 128, 192, 256 |
3917 | |
3918 | // keys 0-10 preloaded into xmm5-xmm15 |
3919 | const int XMM_REG_NUM_KEY_FIRST = 5; |
3920 | const int XMM_REG_NUM_KEY_LAST = 15; |
3921 | const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); |
3922 | const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST); |
3923 | |
3924 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
3925 | |
3926 | #ifdef _WIN64 |
3927 | // on win64, fill len_reg from stack position |
3928 | __masm-> movl(len_reg, len_mem); |
3929 | #else |
3930 | __masm-> push(len_reg); // Save |
3931 | #endif |
3932 | __masm-> push(rbx); |
3933 | // the java expanded key ordering is rotated one position from what we want |
3934 | // so we start from 0x10 here and hit 0x00 last |
3935 | const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front |
3936 | __masm-> movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
3937 | // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00 |
3938 | for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) { |
3939 | load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); |
3940 | offset += 0x10; |
3941 | } |
3942 | load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask); |
3943 | |
3944 | const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block |
3945 | |
3946 | // registers holding the four results in the parallelized loop |
3947 | const XMMRegister xmm_result0 = xmm0; |
3948 | const XMMRegister xmm_result1 = xmm2; |
3949 | const XMMRegister xmm_result2 = xmm3; |
3950 | const XMMRegister xmm_result3 = xmm4; |
3951 | |
3952 | __masm-> movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec |
3953 | |
3954 | __masm-> xorptr(pos, pos); |
3955 | |
3956 | // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) |
3957 | __masm-> movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
3958 | __masm-> cmpl(rbx, 52); |
3959 | __masm-> jcc(Assembler::equal, L_multiBlock_loopTopHead[1]); |
3960 | __masm-> cmpl(rbx, 60); |
3961 | __masm-> jcc(Assembler::equal, L_multiBlock_loopTopHead[2]); |
3962 | |
3963 | #define DoFour(opc, src_reg)masm-> opc(xmm_result0, src_reg); masm-> opc(xmm_result1 , src_reg); masm-> opc(xmm_result2, src_reg); masm-> opc (xmm_result3, src_reg); \ |
3964 | __masm-> opc(xmm_result0, src_reg); \ |
3965 | __masm-> opc(xmm_result1, src_reg); \ |
3966 | __masm-> opc(xmm_result2, src_reg); \ |
3967 | __masm-> opc(xmm_result3, src_reg); \ |
3968 | |
3969 | for (int k = 0; k < 3; ++k) { |
3970 | __masm-> BIND(L_multiBlock_loopTopHead[k])bind(L_multiBlock_loopTopHead[k]); masm-> block_comment("L_multiBlock_loopTopHead[k]" ":"); |
3971 | if (k != 0) { |
3972 | __masm-> cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left |
3973 | __masm-> jcc(Assembler::less, L_singleBlock_loopTopHead2[k]); |
3974 | } |
3975 | if (k == 1) { |
3976 | __masm-> subptr(rsp, 6 * wordSize); |
3977 | __masm-> movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 |
3978 | load_key(xmm15, key, 0xb0); // 0xb0; 192-bit key goes up to 0xc0 |
3979 | __masm-> movdqu(Address(rsp, 2 * wordSize), xmm15); |
3980 | load_key(xmm1, key, 0xc0); // 0xc0; |
3981 | __masm-> movdqu(Address(rsp, 4 * wordSize), xmm1); |
3982 | } else if (k == 2) { |
3983 | __masm-> subptr(rsp, 10 * wordSize); |
3984 | __masm-> movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 |
3985 | load_key(xmm15, key, 0xd0); // 0xd0; 256-bit key goes upto 0xe0 |
3986 | __masm-> movdqu(Address(rsp, 6 * wordSize), xmm15); |
3987 | load_key(xmm1, key, 0xe0); // 0xe0; |
3988 | __masm-> movdqu(Address(rsp, 8 * wordSize), xmm1); |
3989 | load_key(xmm15, key, 0xb0); // 0xb0; |
3990 | __masm-> movdqu(Address(rsp, 2 * wordSize), xmm15); |
3991 | load_key(xmm1, key, 0xc0); // 0xc0; |
3992 | __masm-> movdqu(Address(rsp, 4 * wordSize), xmm1); |
3993 | } |
3994 | __masm-> align(OptoLoopAlignment); |
3995 | __masm-> BIND(L_multiBlock_loopTop[k])bind(L_multiBlock_loopTop[k]); masm-> block_comment("L_multiBlock_loopTop[k]" ":"); |
3996 | __masm-> cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left |
3997 | __masm-> jcc(Assembler::less, L_singleBlock_loopTopHead[k]); |
3998 | |
3999 | if (k != 0) { |
4000 | __masm-> movdqu(xmm15, Address(rsp, 2 * wordSize)); |
4001 | __masm-> movdqu(xmm1, Address(rsp, 4 * wordSize)); |
4002 | } |
4003 | |
4004 | __masm-> movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers |
4005 | __masm-> movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); |
4006 | __masm-> movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); |
4007 | __masm-> movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); |
4008 | |
4009 | DoFour(pxor, xmm_key_first)masm-> pxor(xmm_result0, xmm_key_first); masm-> pxor(xmm_result1 , xmm_key_first); masm-> pxor(xmm_result2, xmm_key_first); masm-> pxor(xmm_result3, xmm_key_first);; |
4010 | if (k == 0) { |
4011 | for (int rnum = 1; rnum < ROUNDS[k]; rnum++) { |
4012 | DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST))masm-> aesdec(xmm_result0, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result1, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result2, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result3, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST ));; |
4013 | } |
4014 | DoFour(aesdeclast, xmm_key_last)masm-> aesdeclast(xmm_result0, xmm_key_last); masm-> aesdeclast (xmm_result1, xmm_key_last); masm-> aesdeclast(xmm_result2 , xmm_key_last); masm-> aesdeclast(xmm_result3, xmm_key_last );; |
4015 | } else if (k == 1) { |
4016 | for (int rnum = 1; rnum <= ROUNDS[k]-2; rnum++) { |
4017 | DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST))masm-> aesdec(xmm_result0, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result1, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result2, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result3, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST ));; |
4018 | } |
4019 | __masm-> movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. |
4020 | DoFour(aesdec, xmm1)masm-> aesdec(xmm_result0, xmm1); masm-> aesdec(xmm_result1 , xmm1); masm-> aesdec(xmm_result2, xmm1); masm-> aesdec (xmm_result3, xmm1);; // key : 0xc0 |
4021 | __masm-> movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again |
4022 | DoFour(aesdeclast, xmm_key_last)masm-> aesdeclast(xmm_result0, xmm_key_last); masm-> aesdeclast (xmm_result1, xmm_key_last); masm-> aesdeclast(xmm_result2 , xmm_key_last); masm-> aesdeclast(xmm_result3, xmm_key_last );; |
4023 | } else if (k == 2) { |
4024 | for (int rnum = 1; rnum <= ROUNDS[k] - 4; rnum++) { |
4025 | DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST))masm-> aesdec(xmm_result0, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result1, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result2, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST )); masm-> aesdec(xmm_result3, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST ));; |
4026 | } |
4027 | DoFour(aesdec, xmm1)masm-> aesdec(xmm_result0, xmm1); masm-> aesdec(xmm_result1 , xmm1); masm-> aesdec(xmm_result2, xmm1); masm-> aesdec (xmm_result3, xmm1);; // key : 0xc0 |
4028 | __masm-> movdqu(xmm15, Address(rsp, 6 * wordSize)); |
4029 | __masm-> movdqu(xmm1, Address(rsp, 8 * wordSize)); |
4030 | DoFour(aesdec, xmm15)masm-> aesdec(xmm_result0, xmm15); masm-> aesdec(xmm_result1 , xmm15); masm-> aesdec(xmm_result2, xmm15); masm-> aesdec (xmm_result3, xmm15);; // key : 0xd0 |
4031 | __masm-> movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. |
4032 | DoFour(aesdec, xmm1)masm-> aesdec(xmm_result0, xmm1); masm-> aesdec(xmm_result1 , xmm1); masm-> aesdec(xmm_result2, xmm1); masm-> aesdec (xmm_result3, xmm1);; // key : 0xe0 |
4033 | __masm-> movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again |
4034 | DoFour(aesdeclast, xmm_key_last)masm-> aesdeclast(xmm_result0, xmm_key_last); masm-> aesdeclast (xmm_result1, xmm_key_last); masm-> aesdeclast(xmm_result2 , xmm_key_last); masm-> aesdeclast(xmm_result3, xmm_key_last );; |
4035 | } |
4036 | |
4037 | // for each result, xor with the r vector of previous cipher block |
4038 | __masm-> pxor(xmm_result0, xmm_prev_block_cipher); |
4039 | __masm-> movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize)); |
4040 | __masm-> pxor(xmm_result1, xmm_prev_block_cipher); |
4041 | __masm-> movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize)); |
4042 | __masm-> pxor(xmm_result2, xmm_prev_block_cipher); |
4043 | __masm-> movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize)); |
4044 | __masm-> pxor(xmm_result3, xmm_prev_block_cipher); |
4045 | __masm-> movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize)); // this will carry over to next set of blocks |
4046 | if (k != 0) { |
4047 | __masm-> movdqu(Address(rvec, 0x00), xmm_prev_block_cipher); |
4048 | } |
4049 | |
4050 | __masm-> movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output |
4051 | __masm-> movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); |
4052 | __masm-> movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); |
4053 | __masm-> movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); |
4054 | |
4055 | __masm-> addptr(pos, PARALLEL_FACTOR * AESBlockSize); |
4056 | __masm-> subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); |
4057 | __masm-> jmp(L_multiBlock_loopTop[k]); |
4058 | |
4059 | // registers used in the non-parallelized loops |
4060 | // xmm register assignments for the loops below |
4061 | const XMMRegister xmm_result = xmm0; |
4062 | const XMMRegister xmm_prev_block_cipher_save = xmm2; |
4063 | const XMMRegister xmm_key11 = xmm3; |
4064 | const XMMRegister xmm_key12 = xmm4; |
4065 | const XMMRegister key_tmp = xmm4; |
4066 | |
4067 | __masm-> BIND(L_singleBlock_loopTopHead[k])bind(L_singleBlock_loopTopHead[k]); masm-> block_comment("L_singleBlock_loopTopHead[k]" ":"); |
4068 | if (k == 1) { |
4069 | __masm-> addptr(rsp, 6 * wordSize); |
4070 | } else if (k == 2) { |
4071 | __masm-> addptr(rsp, 10 * wordSize); |
4072 | } |
4073 | __masm-> cmpptr(len_reg, 0); // any blocks left?? |
4074 | __masm-> jcc(Assembler::equal, L_exit); |
4075 | __masm-> BIND(L_singleBlock_loopTopHead2[k])bind(L_singleBlock_loopTopHead2[k]); masm-> block_comment( "L_singleBlock_loopTopHead2[k]" ":"); |
4076 | if (k == 1) { |
4077 | load_key(xmm_key11, key, 0xb0); // 0xb0; 192-bit key goes upto 0xc0 |
4078 | load_key(xmm_key12, key, 0xc0); // 0xc0; 192-bit key goes upto 0xc0 |
4079 | } |
4080 | if (k == 2) { |
4081 | load_key(xmm_key11, key, 0xb0); // 0xb0; 256-bit key goes upto 0xe0 |
4082 | } |
4083 | __masm-> align(OptoLoopAlignment); |
4084 | __masm-> BIND(L_singleBlock_loopTop[k])bind(L_singleBlock_loopTop[k]); masm-> block_comment("L_singleBlock_loopTop[k]" ":"); |
4085 | __masm-> movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input |
4086 | __masm-> movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector |
4087 | __masm-> pxor(xmm_result, xmm_key_first); // do the aes dec rounds |
4088 | for (int rnum = 1; rnum <= 9 ; rnum++) { |
4089 | __masm-> aesdec(xmm_result, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); |
4090 | } |
4091 | if (k == 1) { |
4092 | __masm-> aesdec(xmm_result, xmm_key11); |
4093 | __masm-> aesdec(xmm_result, xmm_key12); |
4094 | } |
4095 | if (k == 2) { |
4096 | __masm-> aesdec(xmm_result, xmm_key11); |
4097 | load_key(key_tmp, key, 0xc0); |
4098 | __masm-> aesdec(xmm_result, key_tmp); |
4099 | load_key(key_tmp, key, 0xd0); |
4100 | __masm-> aesdec(xmm_result, key_tmp); |
4101 | load_key(key_tmp, key, 0xe0); |
4102 | __masm-> aesdec(xmm_result, key_tmp); |
4103 | } |
4104 | |
4105 | __masm-> aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0 |
4106 | __masm-> pxor(xmm_result, xmm_prev_block_cipher); // xor with the current r vector |
4107 | __masm-> movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output |
4108 | // no need to store r to memory until we exit |
4109 | __masm-> movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block |
4110 | __masm-> addptr(pos, AESBlockSize); |
4111 | __masm-> subptr(len_reg, AESBlockSize); |
4112 | __masm-> jcc(Assembler::notEqual, L_singleBlock_loopTop[k]); |
4113 | if (k != 2) { |
4114 | __masm-> jmp(L_exit); |
4115 | } |
4116 | } //for 128/192/256 |
4117 | |
4118 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
4119 | __masm-> movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object |
4120 | __masm-> pop(rbx); |
4121 | #ifdef _WIN64 |
4122 | __masm-> movl(rax, len_mem); |
4123 | #else |
4124 | __masm-> pop(rax); // return length |
4125 | #endif |
4126 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
4127 | __masm-> ret(0); |
4128 | return start; |
4129 | } |
4130 | |
4131 | address generate_electronicCodeBook_encryptAESCrypt() { |
4132 | __masm-> align(CodeEntryAlignment); |
4133 | StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_encryptAESCrypt"); |
4134 | address start = __masm-> pc(); |
4135 | const Register from = c_rarg0; // source array address |
4136 | const Register to = c_rarg1; // destination array address |
4137 | const Register key = c_rarg2; // key array address |
4138 | const Register len = c_rarg3; // src len (must be multiple of blocksize 16) |
4139 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
4140 | __masm-> aesecb_encrypt(from, to, key, len); |
4141 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
4142 | __masm-> ret(0); |
4143 | return start; |
4144 | } |
4145 | |
4146 | address generate_electronicCodeBook_decryptAESCrypt() { |
4147 | __masm-> align(CodeEntryAlignment); |
4148 | StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_decryptAESCrypt"); |
4149 | address start = __masm-> pc(); |
4150 | const Register from = c_rarg0; // source array address |
4151 | const Register to = c_rarg1; // destination array address |
4152 | const Register key = c_rarg2; // key array address |
4153 | const Register len = c_rarg3; // src len (must be multiple of blocksize 16) |
4154 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
4155 | __masm-> aesecb_decrypt(from, to, key, len); |
4156 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
4157 | __masm-> ret(0); |
4158 | return start; |
4159 | } |
4160 | |
4161 | // ofs and limit are use for multi-block byte array. |
4162 | // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) |
4163 | address generate_md5_implCompress(bool multi_block, const char *name) { |
4164 | __masm-> align(CodeEntryAlignment); |
4165 | StubCodeMark mark(this, "StubRoutines", name); |
4166 | address start = __masm-> pc(); |
4167 | |
4168 | const Register buf_param = r15; |
4169 | const Address state_param(rsp, 0 * wordSize); |
4170 | const Address ofs_param (rsp, 1 * wordSize ); |
4171 | const Address limit_param(rsp, 1 * wordSize + 4); |
4172 | |
4173 | __masm-> enter(); |
4174 | __masm-> push(rbx); |
4175 | __masm-> push(rdi); |
4176 | __masm-> push(rsi); |
4177 | __masm-> push(r15); |
4178 | __masm-> subptr(rsp, 2 * wordSize); |
4179 | |
4180 | __masm-> movptr(buf_param, c_rarg0); |
4181 | __masm-> movptr(state_param, c_rarg1); |
4182 | if (multi_block) { |
4183 | __masm-> movl(ofs_param, c_rarg2); |
4184 | __masm-> movl(limit_param, c_rarg3); |
4185 | } |
4186 | __masm-> fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); |
4187 | |
4188 | __masm-> addptr(rsp, 2 * wordSize); |
4189 | __masm-> pop(r15); |
4190 | __masm-> pop(rsi); |
4191 | __masm-> pop(rdi); |
4192 | __masm-> pop(rbx); |
4193 | __masm-> leave(); |
4194 | __masm-> ret(0); |
4195 | return start; |
4196 | } |
4197 | |
4198 | address generate_upper_word_mask() { |
4199 | __masm-> align64(); |
4200 | StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); |
4201 | address start = __masm-> pc(); |
4202 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4203 | __masm-> emit_data64(0xFFFFFFFF00000000, relocInfo::none); |
4204 | return start; |
4205 | } |
4206 | |
4207 | address generate_shuffle_byte_flip_mask() { |
4208 | __masm-> align64(); |
4209 | StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); |
4210 | address start = __masm-> pc(); |
4211 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
4212 | __masm-> emit_data64(0x0001020304050607, relocInfo::none); |
4213 | return start; |
4214 | } |
4215 | |
4216 | // ofs and limit are use for multi-block byte array. |
4217 | // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) |
4218 | address generate_sha1_implCompress(bool multi_block, const char *name) { |
4219 | __masm-> align(CodeEntryAlignment); |
4220 | StubCodeMark mark(this, "StubRoutines", name); |
4221 | address start = __masm-> pc(); |
4222 | |
4223 | Register buf = c_rarg0; |
4224 | Register state = c_rarg1; |
4225 | Register ofs = c_rarg2; |
4226 | Register limit = c_rarg3; |
4227 | |
4228 | const XMMRegister abcd = xmm0; |
4229 | const XMMRegister e0 = xmm1; |
4230 | const XMMRegister e1 = xmm2; |
4231 | const XMMRegister msg0 = xmm3; |
4232 | |
4233 | const XMMRegister msg1 = xmm4; |
4234 | const XMMRegister msg2 = xmm5; |
4235 | const XMMRegister msg3 = xmm6; |
4236 | const XMMRegister shuf_mask = xmm7; |
4237 | |
4238 | __masm-> enter(); |
4239 | |
4240 | __masm-> subptr(rsp, 4 * wordSize); |
4241 | |
4242 | __masm-> fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, |
4243 | buf, state, ofs, limit, rsp, multi_block); |
4244 | |
4245 | __masm-> addptr(rsp, 4 * wordSize); |
4246 | |
4247 | __masm-> leave(); |
4248 | __masm-> ret(0); |
4249 | return start; |
4250 | } |
4251 | |
4252 | address generate_pshuffle_byte_flip_mask() { |
4253 | __masm-> align64(); |
4254 | StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); |
4255 | address start = __masm-> pc(); |
4256 | __masm-> emit_data64(0x0405060700010203, relocInfo::none); |
4257 | __masm-> emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); |
4258 | |
4259 | if (VM_Version::supports_avx2()) { |
4260 | __masm-> emit_data64(0x0405060700010203, relocInfo::none); // second copy |
4261 | __masm-> emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); |
4262 | // _SHUF_00BA |
4263 | __masm-> emit_data64(0x0b0a090803020100, relocInfo::none); |
4264 | __masm-> emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
4265 | __masm-> emit_data64(0x0b0a090803020100, relocInfo::none); |
4266 | __masm-> emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
4267 | // _SHUF_DC00 |
4268 | __masm-> emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
4269 | __masm-> emit_data64(0x0b0a090803020100, relocInfo::none); |
4270 | __masm-> emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
4271 | __masm-> emit_data64(0x0b0a090803020100, relocInfo::none); |
4272 | } |
4273 | |
4274 | return start; |
4275 | } |
4276 | |
4277 | //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. |
4278 | address generate_pshuffle_byte_flip_mask_sha512() { |
4279 | __masm-> align32(); |
4280 | StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); |
4281 | address start = __masm-> pc(); |
4282 | if (VM_Version::supports_avx2()) { |
4283 | __masm-> emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK |
4284 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
4285 | __masm-> emit_data64(0x1011121314151617, relocInfo::none); |
4286 | __masm-> emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); |
4287 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO |
4288 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4289 | __masm-> emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
4290 | __masm-> emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); |
4291 | } |
4292 | |
4293 | return start; |
4294 | } |
4295 | |
4296 | // ofs and limit are use for multi-block byte array. |
4297 | // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) |
4298 | address generate_sha256_implCompress(bool multi_block, const char *name) { |
4299 | assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), "")do { if (!(VM_Version::supports_sha() || VM_Version::supports_avx2 ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 4299, "assert(" "VM_Version::supports_sha() || VM_Version::supports_avx2()" ") failed", ""); ::breakpoint(); } } while (0); |
4300 | __masm-> align(CodeEntryAlignment); |
4301 | StubCodeMark mark(this, "StubRoutines", name); |
4302 | address start = __masm-> pc(); |
4303 | |
4304 | Register buf = c_rarg0; |
4305 | Register state = c_rarg1; |
4306 | Register ofs = c_rarg2; |
4307 | Register limit = c_rarg3; |
4308 | |
4309 | const XMMRegister msg = xmm0; |
4310 | const XMMRegister state0 = xmm1; |
4311 | const XMMRegister state1 = xmm2; |
4312 | const XMMRegister msgtmp0 = xmm3; |
4313 | |
4314 | const XMMRegister msgtmp1 = xmm4; |
4315 | const XMMRegister msgtmp2 = xmm5; |
4316 | const XMMRegister msgtmp3 = xmm6; |
4317 | const XMMRegister msgtmp4 = xmm7; |
4318 | |
4319 | const XMMRegister shuf_mask = xmm8; |
4320 | |
4321 | __masm-> enter(); |
4322 | |
4323 | __masm-> subptr(rsp, 4 * wordSize); |
4324 | |
4325 | if (VM_Version::supports_sha()) { |
4326 | __masm-> fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, |
4327 | buf, state, ofs, limit, rsp, multi_block, shuf_mask); |
4328 | } else if (VM_Version::supports_avx2()) { |
4329 | __masm-> sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, |
4330 | buf, state, ofs, limit, rsp, multi_block, shuf_mask); |
4331 | } |
4332 | __masm-> addptr(rsp, 4 * wordSize); |
4333 | __masm-> vzeroupper(); |
4334 | __masm-> leave(); |
4335 | __masm-> ret(0); |
4336 | return start; |
4337 | } |
4338 | |
4339 | address generate_sha512_implCompress(bool multi_block, const char *name) { |
4340 | assert(VM_Version::supports_avx2(), "")do { if (!(VM_Version::supports_avx2())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 4340, "assert(" "VM_Version::supports_avx2()" ") failed", "" ); ::breakpoint(); } } while (0); |
4341 | assert(VM_Version::supports_bmi2(), "")do { if (!(VM_Version::supports_bmi2())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 4341, "assert(" "VM_Version::supports_bmi2()" ") failed", "" ); ::breakpoint(); } } while (0); |
4342 | __masm-> align(CodeEntryAlignment); |
4343 | StubCodeMark mark(this, "StubRoutines", name); |
4344 | address start = __masm-> pc(); |
4345 | |
4346 | Register buf = c_rarg0; |
4347 | Register state = c_rarg1; |
4348 | Register ofs = c_rarg2; |
4349 | Register limit = c_rarg3; |
4350 | |
4351 | const XMMRegister msg = xmm0; |
4352 | const XMMRegister state0 = xmm1; |
4353 | const XMMRegister state1 = xmm2; |
4354 | const XMMRegister msgtmp0 = xmm3; |
4355 | const XMMRegister msgtmp1 = xmm4; |
4356 | const XMMRegister msgtmp2 = xmm5; |
4357 | const XMMRegister msgtmp3 = xmm6; |
4358 | const XMMRegister msgtmp4 = xmm7; |
4359 | |
4360 | const XMMRegister shuf_mask = xmm8; |
4361 | |
4362 | __masm-> enter(); |
4363 | |
4364 | __masm-> sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, |
4365 | buf, state, ofs, limit, rsp, multi_block, shuf_mask); |
4366 | |
4367 | __masm-> vzeroupper(); |
4368 | __masm-> leave(); |
4369 | __masm-> ret(0); |
4370 | return start; |
4371 | } |
4372 | |
4373 | address ghash_polynomial512_addr() { |
4374 | __masm-> align(CodeEntryAlignment); |
4375 | StubCodeMark mark(this, "StubRoutines", "_ghash_poly512_addr"); |
4376 | address start = __masm-> pc(); |
4377 | __masm-> emit_data64(0x00000001C2000000, relocInfo::none); // POLY for reduction |
4378 | __masm-> emit_data64(0xC200000000000000, relocInfo::none); |
4379 | __masm-> emit_data64(0x00000001C2000000, relocInfo::none); |
4380 | __masm-> emit_data64(0xC200000000000000, relocInfo::none); |
4381 | __masm-> emit_data64(0x00000001C2000000, relocInfo::none); |
4382 | __masm-> emit_data64(0xC200000000000000, relocInfo::none); |
4383 | __masm-> emit_data64(0x00000001C2000000, relocInfo::none); |
4384 | __masm-> emit_data64(0xC200000000000000, relocInfo::none); |
4385 | __masm-> emit_data64(0x0000000000000001, relocInfo::none); // POLY |
4386 | __masm-> emit_data64(0xC200000000000000, relocInfo::none); |
4387 | __masm-> emit_data64(0x0000000000000001, relocInfo::none); // TWOONE |
4388 | __masm-> emit_data64(0x0000000100000000, relocInfo::none); |
4389 | return start; |
4390 | } |
4391 | |
4392 | // Vector AES Galois Counter Mode implementation. Parameters: |
4393 | // Windows regs | Linux regs |
4394 | // in = c_rarg0 (rcx) | c_rarg0 (rsi) |
4395 | // len = c_rarg1 (rdx) | c_rarg1 (rdi) |
4396 | // ct = c_rarg2 (r8) | c_rarg2 (rdx) |
4397 | // out = c_rarg3 (r9) | c_rarg3 (rcx) |
4398 | // key = r10 | c_rarg4 (r8) |
4399 | // state = r13 | c_rarg5 (r9) |
4400 | // subkeyHtbl = r14 | r11 |
4401 | // counter = rsi | r12 |
4402 | // return - number of processed bytes |
4403 | address generate_galoisCounterMode_AESCrypt() { |
4404 | __masm-> align(CodeEntryAlignment); |
4405 | StubCodeMark mark(this, "StubRoutines", "galoisCounterMode_AESCrypt"); |
4406 | address start = __masm-> pc(); |
4407 | const Register in = c_rarg0; |
4408 | const Register len = c_rarg1; |
4409 | const Register ct = c_rarg2; |
4410 | const Register out = c_rarg3; |
4411 | // and updated with the incremented counter in the end |
4412 | #ifndef _WIN64 |
4413 | const Register key = c_rarg4; |
4414 | const Register state = c_rarg5; |
4415 | const Address subkeyH_mem(rbp, 2 * wordSize); |
4416 | const Register subkeyHtbl = r11; |
4417 | const Address avx512_subkeyH_mem(rbp, 3 * wordSize); |
4418 | const Register avx512_subkeyHtbl = r13; |
4419 | const Address counter_mem(rbp, 4 * wordSize); |
4420 | const Register counter = r12; |
4421 | #else |
4422 | const Address key_mem(rbp, 6 * wordSize); |
4423 | const Register key = r10; |
4424 | const Address state_mem(rbp, 7 * wordSize); |
4425 | const Register state = r13; |
4426 | const Address subkeyH_mem(rbp, 8 * wordSize); |
4427 | const Register subkeyHtbl = r14; |
4428 | const Address avx512_subkeyH_mem(rbp, 9 * wordSize); |
4429 | const Register avx512_subkeyHtbl = r12; |
4430 | const Address counter_mem(rbp, 10 * wordSize); |
4431 | const Register counter = rsi; |
4432 | #endif |
4433 | __masm-> enter(); |
4434 | // Save state before entering routine |
4435 | __masm-> push(r12); |
4436 | __masm-> push(r13); |
4437 | __masm-> push(r14); |
4438 | __masm-> push(r15); |
4439 | __masm-> push(rbx); |
4440 | #ifdef _WIN64 |
4441 | // on win64, fill len_reg from stack position |
4442 | __masm-> push(rsi); |
4443 | __masm-> movptr(key, key_mem); |
4444 | __masm-> movptr(state, state_mem); |
4445 | #endif |
4446 | __masm-> movptr(subkeyHtbl, subkeyH_mem); |
4447 | __masm-> movptr(avx512_subkeyHtbl, avx512_subkeyH_mem); |
4448 | __masm-> movptr(counter, counter_mem); |
4449 | |
4450 | __masm-> aesgcm_encrypt(in, len, ct, out, key, state, subkeyHtbl, avx512_subkeyHtbl, counter); |
4451 | |
4452 | // Restore state before leaving routine |
4453 | #ifdef _WIN64 |
4454 | __masm-> pop(rsi); |
4455 | #endif |
4456 | __masm-> pop(rbx); |
4457 | __masm-> pop(r15); |
4458 | __masm-> pop(r14); |
4459 | __masm-> pop(r13); |
4460 | __masm-> pop(r12); |
4461 | |
4462 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
4463 | __masm-> ret(0); |
4464 | return start; |
4465 | } |
4466 | |
4467 | // This mask is used for incrementing counter value(linc0, linc4, etc.) |
4468 | address counter_mask_addr() { |
4469 | __masm-> align64(); |
4470 | StubCodeMark mark(this, "StubRoutines", "counter_mask_addr"); |
4471 | address start = __masm-> pc(); |
4472 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);//lbswapmask |
4473 | __masm-> emit_data64(0x0001020304050607, relocInfo::none); |
4474 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
4475 | __masm-> emit_data64(0x0001020304050607, relocInfo::none); |
4476 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
4477 | __masm-> emit_data64(0x0001020304050607, relocInfo::none); |
4478 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); |
4479 | __masm-> emit_data64(0x0001020304050607, relocInfo::none); |
4480 | __masm-> emit_data64(0x0000000000000000, relocInfo::none);//linc0 = counter_mask_addr+64 |
4481 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4482 | __masm-> emit_data64(0x0000000000000001, relocInfo::none);//counter_mask_addr() + 80 |
4483 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4484 | __masm-> emit_data64(0x0000000000000002, relocInfo::none); |
4485 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4486 | __masm-> emit_data64(0x0000000000000003, relocInfo::none); |
4487 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4488 | __masm-> emit_data64(0x0000000000000004, relocInfo::none);//linc4 = counter_mask_addr() + 128 |
4489 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4490 | __masm-> emit_data64(0x0000000000000004, relocInfo::none); |
4491 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4492 | __masm-> emit_data64(0x0000000000000004, relocInfo::none); |
4493 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4494 | __masm-> emit_data64(0x0000000000000004, relocInfo::none); |
4495 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4496 | __masm-> emit_data64(0x0000000000000008, relocInfo::none);//linc8 = counter_mask_addr() + 192 |
4497 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4498 | __masm-> emit_data64(0x0000000000000008, relocInfo::none); |
4499 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4500 | __masm-> emit_data64(0x0000000000000008, relocInfo::none); |
4501 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4502 | __masm-> emit_data64(0x0000000000000008, relocInfo::none); |
4503 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4504 | __masm-> emit_data64(0x0000000000000020, relocInfo::none);//linc32 = counter_mask_addr() + 256 |
4505 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4506 | __masm-> emit_data64(0x0000000000000020, relocInfo::none); |
4507 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4508 | __masm-> emit_data64(0x0000000000000020, relocInfo::none); |
4509 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4510 | __masm-> emit_data64(0x0000000000000020, relocInfo::none); |
4511 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4512 | __masm-> emit_data64(0x0000000000000010, relocInfo::none);//linc16 = counter_mask_addr() + 320 |
4513 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4514 | __masm-> emit_data64(0x0000000000000010, relocInfo::none); |
4515 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4516 | __masm-> emit_data64(0x0000000000000010, relocInfo::none); |
4517 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4518 | __masm-> emit_data64(0x0000000000000010, relocInfo::none); |
4519 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
4520 | return start; |
4521 | } |
4522 | |
4523 | // Vector AES Counter implementation |
4524 | address generate_counterMode_VectorAESCrypt() { |
4525 | __masm-> align(CodeEntryAlignment); |
4526 | StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt"); |
4527 | address start = __masm-> pc(); |
4528 | const Register from = c_rarg0; // source array address |
4529 | const Register to = c_rarg1; // destination array address |
4530 | const Register key = c_rarg2; // key array address r8 |
4531 | const Register counter = c_rarg3; // counter byte array initialized from counter array address |
4532 | // and updated with the incremented counter in the end |
4533 | #ifndef _WIN64 |
4534 | const Register len_reg = c_rarg4; |
4535 | const Register saved_encCounter_start = c_rarg5; |
4536 | const Register used_addr = r10; |
4537 | const Address used_mem(rbp, 2 * wordSize); |
4538 | const Register used = r11; |
4539 | #else |
4540 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
4541 | const Address saved_encCounter_mem(rbp, 7 * wordSize); // saved encrypted counter is on stack on Win64 |
4542 | const Address used_mem(rbp, 8 * wordSize); // used length is on stack on Win64 |
4543 | const Register len_reg = r10; // pick the first volatile windows register |
4544 | const Register saved_encCounter_start = r11; |
4545 | const Register used_addr = r13; |
4546 | const Register used = r14; |
4547 | #endif |
4548 | __masm-> enter(); |
4549 | // Save state before entering routine |
4550 | __masm-> push(r12); |
4551 | __masm-> push(r13); |
4552 | __masm-> push(r14); |
4553 | __masm-> push(r15); |
4554 | #ifdef _WIN64 |
4555 | // on win64, fill len_reg from stack position |
4556 | __masm-> movl(len_reg, len_mem); |
4557 | __masm-> movptr(saved_encCounter_start, saved_encCounter_mem); |
4558 | __masm-> movptr(used_addr, used_mem); |
4559 | __masm-> movl(used, Address(used_addr, 0)); |
4560 | #else |
4561 | __masm-> push(len_reg); // Save |
4562 | __masm-> movptr(used_addr, used_mem); |
4563 | __masm-> movl(used, Address(used_addr, 0)); |
4564 | #endif |
4565 | __masm-> push(rbx); |
4566 | __masm-> aesctr_encrypt(from, to, key, counter, len_reg, used, used_addr, saved_encCounter_start); |
4567 | // Restore state before leaving routine |
4568 | __masm-> pop(rbx); |
4569 | #ifdef _WIN64 |
4570 | __masm-> movl(rax, len_mem); // return length |
4571 | #else |
4572 | __masm-> pop(rax); // return length |
4573 | #endif |
4574 | __masm-> pop(r15); |
4575 | __masm-> pop(r14); |
4576 | __masm-> pop(r13); |
4577 | __masm-> pop(r12); |
4578 | |
4579 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
4580 | __masm-> ret(0); |
4581 | return start; |
4582 | } |
4583 | |
4584 | // This is a version of CTR/AES crypt which does 6 blocks in a loop at a time |
4585 | // to hide instruction latency |
4586 | // |
4587 | // Arguments: |
4588 | // |
4589 | // Inputs: |
4590 | // c_rarg0 - source byte array address |
4591 | // c_rarg1 - destination byte array address |
4592 | // c_rarg2 - K (key) in little endian int array |
4593 | // c_rarg3 - counter vector byte array address |
4594 | // Linux |
4595 | // c_rarg4 - input length |
4596 | // c_rarg5 - saved encryptedCounter start |
4597 | // rbp + 6 * wordSize - saved used length |
4598 | // Windows |
4599 | // rbp + 6 * wordSize - input length |
4600 | // rbp + 7 * wordSize - saved encryptedCounter start |
4601 | // rbp + 8 * wordSize - saved used length |
4602 | // |
4603 | // Output: |
4604 | // rax - input length |
4605 | // |
4606 | address generate_counterMode_AESCrypt_Parallel() { |
4607 | assert(UseAES, "need AES instructions and misaligned SSE support")do { if (!(UseAES)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 4607, "assert(" "UseAES" ") failed", "need AES instructions and misaligned SSE support" ); ::breakpoint(); } } while (0); |
4608 | __masm-> align(CodeEntryAlignment); |
4609 | StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt"); |
4610 | address start = __masm-> pc(); |
4611 | const Register from = c_rarg0; // source array address |
4612 | const Register to = c_rarg1; // destination array address |
4613 | const Register key = c_rarg2; // key array address |
4614 | const Register counter = c_rarg3; // counter byte array initialized from counter array address |
4615 | // and updated with the incremented counter in the end |
4616 | #ifndef _WIN64 |
4617 | const Register len_reg = c_rarg4; |
4618 | const Register saved_encCounter_start = c_rarg5; |
4619 | const Register used_addr = r10; |
4620 | const Address used_mem(rbp, 2 * wordSize); |
4621 | const Register used = r11; |
4622 | #else |
4623 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
4624 | const Address saved_encCounter_mem(rbp, 7 * wordSize); // length is on stack on Win64 |
4625 | const Address used_mem(rbp, 8 * wordSize); // length is on stack on Win64 |
4626 | const Register len_reg = r10; // pick the first volatile windows register |
4627 | const Register saved_encCounter_start = r11; |
4628 | const Register used_addr = r13; |
4629 | const Register used = r14; |
4630 | #endif |
4631 | const Register pos = rax; |
4632 | |
4633 | const int PARALLEL_FACTOR = 6; |
4634 | const XMMRegister xmm_counter_shuf_mask = xmm0; |
4635 | const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front |
4636 | const XMMRegister xmm_curr_counter = xmm2; |
4637 | |
4638 | const XMMRegister xmm_key_tmp0 = xmm3; |
4639 | const XMMRegister xmm_key_tmp1 = xmm4; |
4640 | |
4641 | // registers holding the four results in the parallelized loop |
4642 | const XMMRegister xmm_result0 = xmm5; |
4643 | const XMMRegister xmm_result1 = xmm6; |
4644 | const XMMRegister xmm_result2 = xmm7; |
4645 | const XMMRegister xmm_result3 = xmm8; |
4646 | const XMMRegister xmm_result4 = xmm9; |
4647 | const XMMRegister xmm_result5 = xmm10; |
4648 | |
4649 | const XMMRegister xmm_from0 = xmm11; |
4650 | const XMMRegister xmm_from1 = xmm12; |
4651 | const XMMRegister xmm_from2 = xmm13; |
4652 | const XMMRegister xmm_from3 = xmm14; //the last one is xmm14. we have to preserve it on WIN64. |
4653 | const XMMRegister xmm_from4 = xmm3; //reuse xmm3~4. Because xmm_key_tmp0~1 are useless when loading input text |
4654 | const XMMRegister xmm_from5 = xmm4; |
4655 | |
4656 | //for key_128, key_192, key_256 |
4657 | const int rounds[3] = {10, 12, 14}; |
4658 | Label L_exit_preLoop, L_preLoop_start; |
4659 | Label L_multiBlock_loopTop[3]; |
4660 | Label L_singleBlockLoopTop[3]; |
4661 | Label L__incCounter[3][6]; //for 6 blocks |
4662 | Label L__incCounter_single[3]; //for single block, key128, key192, key256 |
4663 | Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3]; |
4664 | Label L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3]; |
4665 | |
4666 | Label L_exit; |
4667 | |
4668 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
4669 | |
4670 | #ifdef _WIN64 |
4671 | // allocate spill slots for r13, r14 |
4672 | enum { |
4673 | saved_r13_offset, |
4674 | saved_r14_offset |
4675 | }; |
4676 | __masm-> subptr(rsp, 2 * wordSize); |
4677 | __masm-> movptr(Address(rsp, saved_r13_offset * wordSize), r13); |
4678 | __masm-> movptr(Address(rsp, saved_r14_offset * wordSize), r14); |
4679 | |
4680 | // on win64, fill len_reg from stack position |
4681 | __masm-> movl(len_reg, len_mem); |
4682 | __masm-> movptr(saved_encCounter_start, saved_encCounter_mem); |
4683 | __masm-> movptr(used_addr, used_mem); |
4684 | __masm-> movl(used, Address(used_addr, 0)); |
4685 | #else |
4686 | __masm-> push(len_reg); // Save |
4687 | __masm-> movptr(used_addr, used_mem); |
4688 | __masm-> movl(used, Address(used_addr, 0)); |
4689 | #endif |
4690 | |
4691 | __masm-> push(rbx); // Save RBX |
4692 | __masm-> movdqu(xmm_curr_counter, Address(counter, 0x00)); // initialize counter with initial counter |
4693 | __masm-> movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()), pos); // pos as scratch |
4694 | __masm-> pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled |
4695 | __masm-> movptr(pos, 0); |
4696 | |
4697 | // Use the partially used encrpyted counter from last invocation |
4698 | __masm-> BIND(L_preLoop_start)bind(L_preLoop_start); masm-> block_comment("L_preLoop_start" ":"); |
4699 | __masm-> cmpptr(used, 16); |
4700 | __masm-> jcc(Assembler::aboveEqual, L_exit_preLoop); |
4701 | __masm-> cmpptr(len_reg, 0); |
4702 | __masm-> jcc(Assembler::lessEqual, L_exit_preLoop); |
4703 | __masm-> movb(rbx, Address(saved_encCounter_start, used)); |
4704 | __masm-> xorb(rbx, Address(from, pos)); |
4705 | __masm-> movb(Address(to, pos), rbx); |
4706 | __masm-> addptr(pos, 1); |
4707 | __masm-> addptr(used, 1); |
4708 | __masm-> subptr(len_reg, 1); |
4709 | |
4710 | __masm-> jmp(L_preLoop_start); |
4711 | |
4712 | __masm-> BIND(L_exit_preLoop)bind(L_exit_preLoop); masm-> block_comment("L_exit_preLoop" ":"); |
4713 | __masm-> movl(Address(used_addr, 0), used); |
4714 | |
4715 | // key length could be only {11, 13, 15} * 4 = {44, 52, 60} |
4716 | __masm-> movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()), rbx); // rbx as scratch |
4717 | __masm-> movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
4718 | __masm-> cmpl(rbx, 52); |
4719 | __masm-> jcc(Assembler::equal, L_multiBlock_loopTop[1]); |
4720 | __masm-> cmpl(rbx, 60); |
4721 | __masm-> jcc(Assembler::equal, L_multiBlock_loopTop[2]); |
4722 | |
4723 | #define CTR_DoSix(opc, src_reg)masm-> opc(xmm_result0, src_reg); masm-> opc(xmm_result1 , src_reg); masm-> opc(xmm_result2, src_reg); masm-> opc (xmm_result3, src_reg); masm-> opc(xmm_result4, src_reg); masm -> opc(xmm_result5, src_reg); \ |
4724 | __masm-> opc(xmm_result0, src_reg); \ |
4725 | __masm-> opc(xmm_result1, src_reg); \ |
4726 | __masm-> opc(xmm_result2, src_reg); \ |
4727 | __masm-> opc(xmm_result3, src_reg); \ |
4728 | __masm-> opc(xmm_result4, src_reg); \ |
4729 | __masm-> opc(xmm_result5, src_reg); |
4730 | |
4731 | // k == 0 : generate code for key_128 |
4732 | // k == 1 : generate code for key_192 |
4733 | // k == 2 : generate code for key_256 |
4734 | for (int k = 0; k < 3; ++k) { |
4735 | //multi blocks starts here |
4736 | __masm-> align(OptoLoopAlignment); |
4737 | __masm-> BIND(L_multiBlock_loopTop[k])bind(L_multiBlock_loopTop[k]); masm-> block_comment("L_multiBlock_loopTop[k]" ":"); |
4738 | __masm-> cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left |
4739 | __masm-> jcc(Assembler::less, L_singleBlockLoopTop[k]); |
4740 | load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); |
4741 | |
4742 | //load, then increase counters |
4743 | CTR_DoSix(movdqa, xmm_curr_counter)masm-> movdqa(xmm_result0, xmm_curr_counter); masm-> movdqa (xmm_result1, xmm_curr_counter); masm-> movdqa(xmm_result2 , xmm_curr_counter); masm-> movdqa(xmm_result3, xmm_curr_counter ); masm-> movdqa(xmm_result4, xmm_curr_counter); masm-> movdqa(xmm_result5, xmm_curr_counter);; |
4744 | inc_counter(rbx, xmm_result1, 0x01, L__incCounter[k][0]); |
4745 | inc_counter(rbx, xmm_result2, 0x02, L__incCounter[k][1]); |
4746 | inc_counter(rbx, xmm_result3, 0x03, L__incCounter[k][2]); |
4747 | inc_counter(rbx, xmm_result4, 0x04, L__incCounter[k][3]); |
4748 | inc_counter(rbx, xmm_result5, 0x05, L__incCounter[k][4]); |
4749 | inc_counter(rbx, xmm_curr_counter, 0x06, L__incCounter[k][5]); |
4750 | CTR_DoSix(pshufb, xmm_counter_shuf_mask)masm-> pshufb(xmm_result0, xmm_counter_shuf_mask); masm-> pshufb(xmm_result1, xmm_counter_shuf_mask); masm-> pshufb (xmm_result2, xmm_counter_shuf_mask); masm-> pshufb(xmm_result3 , xmm_counter_shuf_mask); masm-> pshufb(xmm_result4, xmm_counter_shuf_mask ); masm-> pshufb(xmm_result5, xmm_counter_shuf_mask);; // after increased, shuffled counters back for PXOR |
4751 | CTR_DoSix(pxor, xmm_key_tmp0)masm-> pxor(xmm_result0, xmm_key_tmp0); masm-> pxor(xmm_result1 , xmm_key_tmp0); masm-> pxor(xmm_result2, xmm_key_tmp0); masm -> pxor(xmm_result3, xmm_key_tmp0); masm-> pxor(xmm_result4 , xmm_key_tmp0); masm-> pxor(xmm_result5, xmm_key_tmp0);; //PXOR with Round 0 key |
4752 | |
4753 | //load two ROUND_KEYs at a time |
4754 | for (int i = 1; i < rounds[k]; ) { |
4755 | load_key(xmm_key_tmp1, key, (0x10 * i), xmm_key_shuf_mask); |
4756 | load_key(xmm_key_tmp0, key, (0x10 * (i+1)), xmm_key_shuf_mask); |
4757 | CTR_DoSix(aesenc, xmm_key_tmp1)masm-> aesenc(xmm_result0, xmm_key_tmp1); masm-> aesenc (xmm_result1, xmm_key_tmp1); masm-> aesenc(xmm_result2, xmm_key_tmp1 ); masm-> aesenc(xmm_result3, xmm_key_tmp1); masm-> aesenc (xmm_result4, xmm_key_tmp1); masm-> aesenc(xmm_result5, xmm_key_tmp1 );; |
4758 | i++; |
4759 | if (i != rounds[k]) { |
4760 | CTR_DoSix(aesenc, xmm_key_tmp0)masm-> aesenc(xmm_result0, xmm_key_tmp0); masm-> aesenc (xmm_result1, xmm_key_tmp0); masm-> aesenc(xmm_result2, xmm_key_tmp0 ); masm-> aesenc(xmm_result3, xmm_key_tmp0); masm-> aesenc (xmm_result4, xmm_key_tmp0); masm-> aesenc(xmm_result5, xmm_key_tmp0 );; |
4761 | } else { |
4762 | CTR_DoSix(aesenclast, xmm_key_tmp0)masm-> aesenclast(xmm_result0, xmm_key_tmp0); masm-> aesenclast (xmm_result1, xmm_key_tmp0); masm-> aesenclast(xmm_result2 , xmm_key_tmp0); masm-> aesenclast(xmm_result3, xmm_key_tmp0 ); masm-> aesenclast(xmm_result4, xmm_key_tmp0); masm-> aesenclast(xmm_result5, xmm_key_tmp0);; |
4763 | } |
4764 | i++; |
4765 | } |
4766 | |
4767 | // get next PARALLEL_FACTOR blocks into xmm_result registers |
4768 | __masm-> movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); |
4769 | __masm-> movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); |
4770 | __masm-> movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); |
4771 | __masm-> movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); |
4772 | __masm-> movdqu(xmm_from4, Address(from, pos, Address::times_1, 4 * AESBlockSize)); |
4773 | __masm-> movdqu(xmm_from5, Address(from, pos, Address::times_1, 5 * AESBlockSize)); |
4774 | |
4775 | __masm-> pxor(xmm_result0, xmm_from0); |
4776 | __masm-> pxor(xmm_result1, xmm_from1); |
4777 | __masm-> pxor(xmm_result2, xmm_from2); |
4778 | __masm-> pxor(xmm_result3, xmm_from3); |
4779 | __masm-> pxor(xmm_result4, xmm_from4); |
4780 | __masm-> pxor(xmm_result5, xmm_from5); |
4781 | |
4782 | // store 6 results into the next 64 bytes of output |
4783 | __masm-> movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); |
4784 | __masm-> movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); |
4785 | __masm-> movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); |
4786 | __masm-> movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); |
4787 | __masm-> movdqu(Address(to, pos, Address::times_1, 4 * AESBlockSize), xmm_result4); |
4788 | __masm-> movdqu(Address(to, pos, Address::times_1, 5 * AESBlockSize), xmm_result5); |
4789 | |
4790 | __masm-> addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text |
4791 | __masm-> subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length |
4792 | __masm-> jmp(L_multiBlock_loopTop[k]); |
4793 | |
4794 | // singleBlock starts here |
4795 | __masm-> align(OptoLoopAlignment); |
4796 | __masm-> BIND(L_singleBlockLoopTop[k])bind(L_singleBlockLoopTop[k]); masm-> block_comment("L_singleBlockLoopTop[k]" ":"); |
4797 | __masm-> cmpptr(len_reg, 0); |
4798 | __masm-> jcc(Assembler::lessEqual, L_exit); |
4799 | load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); |
4800 | __masm-> movdqa(xmm_result0, xmm_curr_counter); |
4801 | inc_counter(rbx, xmm_curr_counter, 0x01, L__incCounter_single[k]); |
4802 | __masm-> pshufb(xmm_result0, xmm_counter_shuf_mask); |
4803 | __masm-> pxor(xmm_result0, xmm_key_tmp0); |
4804 | for (int i = 1; i < rounds[k]; i++) { |
4805 | load_key(xmm_key_tmp0, key, (0x10 * i), xmm_key_shuf_mask); |
4806 | __masm-> aesenc(xmm_result0, xmm_key_tmp0); |
4807 | } |
4808 | load_key(xmm_key_tmp0, key, (rounds[k] * 0x10), xmm_key_shuf_mask); |
4809 | __masm-> aesenclast(xmm_result0, xmm_key_tmp0); |
4810 | __masm-> cmpptr(len_reg, AESBlockSize); |
4811 | __masm-> jcc(Assembler::less, L_processTail_insr[k]); |
4812 | __masm-> movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); |
4813 | __masm-> pxor(xmm_result0, xmm_from0); |
4814 | __masm-> movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); |
4815 | __masm-> addptr(pos, AESBlockSize); |
4816 | __masm-> subptr(len_reg, AESBlockSize); |
4817 | __masm-> jmp(L_singleBlockLoopTop[k]); |
4818 | __masm-> BIND(L_processTail_insr[k])bind(L_processTail_insr[k]); masm-> block_comment("L_processTail_insr[k]" ":"); // Process the tail part of the input array |
4819 | __masm-> addptr(pos, len_reg); // 1. Insert bytes from src array into xmm_from0 register |
4820 | __masm-> testptr(len_reg, 8); |
4821 | __masm-> jcc(Assembler::zero, L_processTail_4_insr[k]); |
4822 | __masm-> subptr(pos,8); |
4823 | __masm-> pinsrq(xmm_from0, Address(from, pos), 0); |
4824 | __masm-> BIND(L_processTail_4_insr[k])bind(L_processTail_4_insr[k]); masm-> block_comment("L_processTail_4_insr[k]" ":"); |
4825 | __masm-> testptr(len_reg, 4); |
4826 | __masm-> jcc(Assembler::zero, L_processTail_2_insr[k]); |
4827 | __masm-> subptr(pos,4); |
4828 | __masm-> pslldq(xmm_from0, 4); |
4829 | __masm-> pinsrd(xmm_from0, Address(from, pos), 0); |
4830 | __masm-> BIND(L_processTail_2_insr[k])bind(L_processTail_2_insr[k]); masm-> block_comment("L_processTail_2_insr[k]" ":"); |
4831 | __masm-> testptr(len_reg, 2); |
4832 | __masm-> jcc(Assembler::zero, L_processTail_1_insr[k]); |
4833 | __masm-> subptr(pos, 2); |
4834 | __masm-> pslldq(xmm_from0, 2); |
4835 | __masm-> pinsrw(xmm_from0, Address(from, pos), 0); |
4836 | __masm-> BIND(L_processTail_1_insr[k])bind(L_processTail_1_insr[k]); masm-> block_comment("L_processTail_1_insr[k]" ":"); |
4837 | __masm-> testptr(len_reg, 1); |
4838 | __masm-> jcc(Assembler::zero, L_processTail_exit_insr[k]); |
4839 | __masm-> subptr(pos, 1); |
4840 | __masm-> pslldq(xmm_from0, 1); |
4841 | __masm-> pinsrb(xmm_from0, Address(from, pos), 0); |
4842 | __masm-> BIND(L_processTail_exit_insr[k])bind(L_processTail_exit_insr[k]); masm-> block_comment("L_processTail_exit_insr[k]" ":"); |
4843 | |
4844 | __masm-> movdqu(Address(saved_encCounter_start, 0), xmm_result0); // 2. Perform pxor of the encrypted counter and plaintext Bytes. |
4845 | __masm-> pxor(xmm_result0, xmm_from0); // Also the encrypted counter is saved for next invocation. |
4846 | |
4847 | __masm-> testptr(len_reg, 8); |
4848 | __masm-> jcc(Assembler::zero, L_processTail_4_extr[k]); // 3. Extract bytes from xmm_result0 into the dest. array |
4849 | __masm-> pextrq(Address(to, pos), xmm_result0, 0); |
4850 | __masm-> psrldq(xmm_result0, 8); |
4851 | __masm-> addptr(pos, 8); |
4852 | __masm-> BIND(L_processTail_4_extr[k])bind(L_processTail_4_extr[k]); masm-> block_comment("L_processTail_4_extr[k]" ":"); |
4853 | __masm-> testptr(len_reg, 4); |
4854 | __masm-> jcc(Assembler::zero, L_processTail_2_extr[k]); |
4855 | __masm-> pextrd(Address(to, pos), xmm_result0, 0); |
4856 | __masm-> psrldq(xmm_result0, 4); |
4857 | __masm-> addptr(pos, 4); |
4858 | __masm-> BIND(L_processTail_2_extr[k])bind(L_processTail_2_extr[k]); masm-> block_comment("L_processTail_2_extr[k]" ":"); |
4859 | __masm-> testptr(len_reg, 2); |
4860 | __masm-> jcc(Assembler::zero, L_processTail_1_extr[k]); |
4861 | __masm-> pextrw(Address(to, pos), xmm_result0, 0); |
4862 | __masm-> psrldq(xmm_result0, 2); |
4863 | __masm-> addptr(pos, 2); |
4864 | __masm-> BIND(L_processTail_1_extr[k])bind(L_processTail_1_extr[k]); masm-> block_comment("L_processTail_1_extr[k]" ":"); |
4865 | __masm-> testptr(len_reg, 1); |
4866 | __masm-> jcc(Assembler::zero, L_processTail_exit_extr[k]); |
4867 | __masm-> pextrb(Address(to, pos), xmm_result0, 0); |
4868 | |
4869 | __masm-> BIND(L_processTail_exit_extr[k])bind(L_processTail_exit_extr[k]); masm-> block_comment("L_processTail_exit_extr[k]" ":"); |
4870 | __masm-> movl(Address(used_addr, 0), len_reg); |
4871 | __masm-> jmp(L_exit); |
4872 | |
4873 | } |
4874 | |
4875 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
4876 | __masm-> pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back. |
4877 | __masm-> movdqu(Address(counter, 0), xmm_curr_counter); //save counter back |
4878 | __masm-> pop(rbx); // pop the saved RBX. |
4879 | #ifdef _WIN64 |
4880 | __masm-> movl(rax, len_mem); |
4881 | __masm-> movptr(r13, Address(rsp, saved_r13_offset * wordSize)); |
4882 | __masm-> movptr(r14, Address(rsp, saved_r14_offset * wordSize)); |
4883 | __masm-> addptr(rsp, 2 * wordSize); |
4884 | #else |
4885 | __masm-> pop(rax); // return 'len' |
4886 | #endif |
4887 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
4888 | __masm-> ret(0); |
4889 | return start; |
4890 | } |
4891 | |
4892 | void roundDec(XMMRegister xmm_reg) { |
4893 | __masm-> vaesdec(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); |
4894 | __masm-> vaesdec(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); |
4895 | __masm-> vaesdec(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); |
4896 | __masm-> vaesdec(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); |
4897 | __masm-> vaesdec(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); |
4898 | __masm-> vaesdec(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); |
4899 | __masm-> vaesdec(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); |
4900 | __masm-> vaesdec(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); |
4901 | } |
4902 | |
4903 | void roundDeclast(XMMRegister xmm_reg) { |
4904 | __masm-> vaesdeclast(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); |
4905 | __masm-> vaesdeclast(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); |
4906 | __masm-> vaesdeclast(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); |
4907 | __masm-> vaesdeclast(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); |
4908 | __masm-> vaesdeclast(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); |
4909 | __masm-> vaesdeclast(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); |
4910 | __masm-> vaesdeclast(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); |
4911 | __masm-> vaesdeclast(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); |
4912 | } |
4913 | |
4914 | void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask = NULL__null) { |
4915 | __masm-> movdqu(xmmdst, Address(key, offset)); |
4916 | if (xmm_shuf_mask != NULL__null) { |
4917 | __masm-> pshufb(xmmdst, xmm_shuf_mask); |
4918 | } else { |
4919 | __masm-> pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
4920 | } |
4921 | __masm-> evshufi64x2(xmmdst, xmmdst, xmmdst, 0x0, Assembler::AVX_512bit); |
4922 | |
4923 | } |
4924 | |
4925 | address generate_cipherBlockChaining_decryptVectorAESCrypt() { |
4926 | assert(VM_Version::supports_avx512_vaes(), "need AES instructions and misaligned SSE support")do { if (!(VM_Version::supports_avx512_vaes())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 4926, "assert(" "VM_Version::supports_avx512_vaes()" ") failed" , "need AES instructions and misaligned SSE support"); ::breakpoint (); } } while (0); |
4927 | __masm-> align(CodeEntryAlignment); |
4928 | StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); |
4929 | address start = __masm-> pc(); |
4930 | |
4931 | const Register from = c_rarg0; // source array address |
4932 | const Register to = c_rarg1; // destination array address |
4933 | const Register key = c_rarg2; // key array address |
4934 | const Register rvec = c_rarg3; // r byte array initialized from initvector array address |
4935 | // and left with the results of the last encryption block |
4936 | #ifndef _WIN64 |
4937 | const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) |
4938 | #else |
4939 | const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
4940 | const Register len_reg = r11; // pick the volatile windows register |
4941 | #endif |
4942 | |
4943 | Label Loop, Loop1, L_128, L_256, L_192, KEY_192, KEY_256, Loop2, Lcbc_dec_rem_loop, |
4944 | Lcbc_dec_rem_last, Lcbc_dec_ret, Lcbc_dec_rem, Lcbc_exit; |
4945 | |
4946 | __masm-> enter(); |
4947 | |
4948 | #ifdef _WIN64 |
4949 | // on win64, fill len_reg from stack position |
4950 | __masm-> movl(len_reg, len_mem); |
4951 | #else |
4952 | __masm-> push(len_reg); // Save |
4953 | #endif |
4954 | __masm-> push(rbx); |
4955 | __masm-> vzeroupper(); |
4956 | |
4957 | // Temporary variable declaration for swapping key bytes |
4958 | const XMMRegister xmm_key_shuf_mask = xmm1; |
4959 | __masm-> movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); |
4960 | |
4961 | // Calculate number of rounds from key size: 44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds |
4962 | const Register rounds = rbx; |
4963 | __masm-> movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); |
4964 | |
4965 | const XMMRegister IV = xmm0; |
4966 | // Load IV and broadcast value to 512-bits |
4967 | __masm-> evbroadcasti64x2(IV, Address(rvec, 0), Assembler::AVX_512bit); |
4968 | |
4969 | // Temporary variables for storing round keys |
4970 | const XMMRegister RK0 = xmm30; |
4971 | const XMMRegister RK1 = xmm9; |
4972 | const XMMRegister RK2 = xmm18; |
4973 | const XMMRegister RK3 = xmm19; |
4974 | const XMMRegister RK4 = xmm20; |
4975 | const XMMRegister RK5 = xmm21; |
4976 | const XMMRegister RK6 = xmm22; |
4977 | const XMMRegister RK7 = xmm23; |
4978 | const XMMRegister RK8 = xmm24; |
4979 | const XMMRegister RK9 = xmm25; |
4980 | const XMMRegister RK10 = xmm26; |
4981 | |
4982 | // Load and shuffle key |
4983 | // the java expanded key ordering is rotated one position from what we want |
4984 | // so we start from 1*16 here and hit 0*16 last |
4985 | ev_load_key(RK1, key, 1 * 16, xmm_key_shuf_mask); |
4986 | ev_load_key(RK2, key, 2 * 16, xmm_key_shuf_mask); |
4987 | ev_load_key(RK3, key, 3 * 16, xmm_key_shuf_mask); |
4988 | ev_load_key(RK4, key, 4 * 16, xmm_key_shuf_mask); |
4989 | ev_load_key(RK5, key, 5 * 16, xmm_key_shuf_mask); |
4990 | ev_load_key(RK6, key, 6 * 16, xmm_key_shuf_mask); |
4991 | ev_load_key(RK7, key, 7 * 16, xmm_key_shuf_mask); |
4992 | ev_load_key(RK8, key, 8 * 16, xmm_key_shuf_mask); |
4993 | ev_load_key(RK9, key, 9 * 16, xmm_key_shuf_mask); |
4994 | ev_load_key(RK10, key, 10 * 16, xmm_key_shuf_mask); |
4995 | ev_load_key(RK0, key, 0*16, xmm_key_shuf_mask); |
4996 | |
4997 | // Variables for storing source cipher text |
4998 | const XMMRegister S0 = xmm10; |
4999 | const XMMRegister S1 = xmm11; |
5000 | const XMMRegister S2 = xmm12; |
5001 | const XMMRegister S3 = xmm13; |
5002 | const XMMRegister S4 = xmm14; |
5003 | const XMMRegister S5 = xmm15; |
5004 | const XMMRegister S6 = xmm16; |
5005 | const XMMRegister S7 = xmm17; |
5006 | |
5007 | // Variables for storing decrypted text |
5008 | const XMMRegister B0 = xmm1; |
5009 | const XMMRegister B1 = xmm2; |
5010 | const XMMRegister B2 = xmm3; |
5011 | const XMMRegister B3 = xmm4; |
5012 | const XMMRegister B4 = xmm5; |
5013 | const XMMRegister B5 = xmm6; |
5014 | const XMMRegister B6 = xmm7; |
5015 | const XMMRegister B7 = xmm8; |
5016 | |
5017 | __masm-> cmpl(rounds, 44); |
5018 | __masm-> jcc(Assembler::greater, KEY_192); |
5019 | __masm-> jmp(Loop); |
5020 | |
5021 | __masm-> BIND(KEY_192)bind(KEY_192); masm-> block_comment("KEY_192" ":"); |
5022 | const XMMRegister RK11 = xmm27; |
5023 | const XMMRegister RK12 = xmm28; |
5024 | ev_load_key(RK11, key, 11*16, xmm_key_shuf_mask); |
5025 | ev_load_key(RK12, key, 12*16, xmm_key_shuf_mask); |
5026 | |
5027 | __masm-> cmpl(rounds, 52); |
5028 | __masm-> jcc(Assembler::greater, KEY_256); |
5029 | __masm-> jmp(Loop); |
5030 | |
5031 | __masm-> BIND(KEY_256)bind(KEY_256); masm-> block_comment("KEY_256" ":"); |
5032 | const XMMRegister RK13 = xmm29; |
5033 | const XMMRegister RK14 = xmm31; |
5034 | ev_load_key(RK13, key, 13*16, xmm_key_shuf_mask); |
5035 | ev_load_key(RK14, key, 14*16, xmm_key_shuf_mask); |
5036 | |
5037 | __masm-> BIND(Loop)bind(Loop); masm-> block_comment("Loop" ":"); |
5038 | __masm-> cmpl(len_reg, 512); |
5039 | __masm-> jcc(Assembler::below, Lcbc_dec_rem); |
5040 | __masm-> BIND(Loop1)bind(Loop1); masm-> block_comment("Loop1" ":"); |
5041 | __masm-> subl(len_reg, 512); |
5042 | __masm-> evmovdquq(S0, Address(from, 0 * 64), Assembler::AVX_512bit); |
5043 | __masm-> evmovdquq(S1, Address(from, 1 * 64), Assembler::AVX_512bit); |
5044 | __masm-> evmovdquq(S2, Address(from, 2 * 64), Assembler::AVX_512bit); |
5045 | __masm-> evmovdquq(S3, Address(from, 3 * 64), Assembler::AVX_512bit); |
5046 | __masm-> evmovdquq(S4, Address(from, 4 * 64), Assembler::AVX_512bit); |
5047 | __masm-> evmovdquq(S5, Address(from, 5 * 64), Assembler::AVX_512bit); |
5048 | __masm-> evmovdquq(S6, Address(from, 6 * 64), Assembler::AVX_512bit); |
5049 | __masm-> evmovdquq(S7, Address(from, 7 * 64), Assembler::AVX_512bit); |
5050 | __masm-> leaq(from, Address(from, 8 * 64)); |
5051 | |
5052 | __masm-> evpxorq(B0, S0, RK1, Assembler::AVX_512bit); |
5053 | __masm-> evpxorq(B1, S1, RK1, Assembler::AVX_512bit); |
5054 | __masm-> evpxorq(B2, S2, RK1, Assembler::AVX_512bit); |
5055 | __masm-> evpxorq(B3, S3, RK1, Assembler::AVX_512bit); |
5056 | __masm-> evpxorq(B4, S4, RK1, Assembler::AVX_512bit); |
5057 | __masm-> evpxorq(B5, S5, RK1, Assembler::AVX_512bit); |
5058 | __masm-> evpxorq(B6, S6, RK1, Assembler::AVX_512bit); |
5059 | __masm-> evpxorq(B7, S7, RK1, Assembler::AVX_512bit); |
5060 | |
5061 | __masm-> evalignq(IV, S0, IV, 0x06); |
5062 | __masm-> evalignq(S0, S1, S0, 0x06); |
5063 | __masm-> evalignq(S1, S2, S1, 0x06); |
5064 | __masm-> evalignq(S2, S3, S2, 0x06); |
5065 | __masm-> evalignq(S3, S4, S3, 0x06); |
5066 | __masm-> evalignq(S4, S5, S4, 0x06); |
5067 | __masm-> evalignq(S5, S6, S5, 0x06); |
5068 | __masm-> evalignq(S6, S7, S6, 0x06); |
5069 | |
5070 | roundDec(RK2); |
5071 | roundDec(RK3); |
5072 | roundDec(RK4); |
5073 | roundDec(RK5); |
5074 | roundDec(RK6); |
5075 | roundDec(RK7); |
5076 | roundDec(RK8); |
5077 | roundDec(RK9); |
5078 | roundDec(RK10); |
5079 | |
5080 | __masm-> cmpl(rounds, 44); |
5081 | __masm-> jcc(Assembler::belowEqual, L_128); |
5082 | roundDec(RK11); |
5083 | roundDec(RK12); |
5084 | |
5085 | __masm-> cmpl(rounds, 52); |
5086 | __masm-> jcc(Assembler::belowEqual, L_192); |
5087 | roundDec(RK13); |
5088 | roundDec(RK14); |
5089 | |
5090 | __masm-> BIND(L_256)bind(L_256); masm-> block_comment("L_256" ":"); |
5091 | roundDeclast(RK0); |
5092 | __masm-> jmp(Loop2); |
5093 | |
5094 | __masm-> BIND(L_128)bind(L_128); masm-> block_comment("L_128" ":"); |
5095 | roundDeclast(RK0); |
5096 | __masm-> jmp(Loop2); |
5097 | |
5098 | __masm-> BIND(L_192)bind(L_192); masm-> block_comment("L_192" ":"); |
5099 | roundDeclast(RK0); |
5100 | |
5101 | __masm-> BIND(Loop2)bind(Loop2); masm-> block_comment("Loop2" ":"); |
5102 | __masm-> evpxorq(B0, B0, IV, Assembler::AVX_512bit); |
5103 | __masm-> evpxorq(B1, B1, S0, Assembler::AVX_512bit); |
5104 | __masm-> evpxorq(B2, B2, S1, Assembler::AVX_512bit); |
5105 | __masm-> evpxorq(B3, B3, S2, Assembler::AVX_512bit); |
5106 | __masm-> evpxorq(B4, B4, S3, Assembler::AVX_512bit); |
5107 | __masm-> evpxorq(B5, B5, S4, Assembler::AVX_512bit); |
5108 | __masm-> evpxorq(B6, B6, S5, Assembler::AVX_512bit); |
5109 | __masm-> evpxorq(B7, B7, S6, Assembler::AVX_512bit); |
5110 | __masm-> evmovdquq(IV, S7, Assembler::AVX_512bit); |
5111 | |
5112 | __masm-> evmovdquq(Address(to, 0 * 64), B0, Assembler::AVX_512bit); |
5113 | __masm-> evmovdquq(Address(to, 1 * 64), B1, Assembler::AVX_512bit); |
5114 | __masm-> evmovdquq(Address(to, 2 * 64), B2, Assembler::AVX_512bit); |
5115 | __masm-> evmovdquq(Address(to, 3 * 64), B3, Assembler::AVX_512bit); |
5116 | __masm-> evmovdquq(Address(to, 4 * 64), B4, Assembler::AVX_512bit); |
5117 | __masm-> evmovdquq(Address(to, 5 * 64), B5, Assembler::AVX_512bit); |
5118 | __masm-> evmovdquq(Address(to, 6 * 64), B6, Assembler::AVX_512bit); |
5119 | __masm-> evmovdquq(Address(to, 7 * 64), B7, Assembler::AVX_512bit); |
5120 | __masm-> leaq(to, Address(to, 8 * 64)); |
5121 | __masm-> jmp(Loop); |
5122 | |
5123 | __masm-> BIND(Lcbc_dec_rem)bind(Lcbc_dec_rem); masm-> block_comment("Lcbc_dec_rem" ":" ); |
5124 | __masm-> evshufi64x2(IV, IV, IV, 0x03, Assembler::AVX_512bit); |
5125 | |
5126 | __masm-> BIND(Lcbc_dec_rem_loop)bind(Lcbc_dec_rem_loop); masm-> block_comment("Lcbc_dec_rem_loop" ":"); |
5127 | __masm-> subl(len_reg, 16); |
5128 | __masm-> jcc(Assembler::carrySet, Lcbc_dec_ret); |
5129 | |
5130 | __masm-> movdqu(S0, Address(from, 0)); |
5131 | __masm-> evpxorq(B0, S0, RK1, Assembler::AVX_512bit); |
5132 | __masm-> vaesdec(B0, B0, RK2, Assembler::AVX_512bit); |
5133 | __masm-> vaesdec(B0, B0, RK3, Assembler::AVX_512bit); |
5134 | __masm-> vaesdec(B0, B0, RK4, Assembler::AVX_512bit); |
5135 | __masm-> vaesdec(B0, B0, RK5, Assembler::AVX_512bit); |
5136 | __masm-> vaesdec(B0, B0, RK6, Assembler::AVX_512bit); |
5137 | __masm-> vaesdec(B0, B0, RK7, Assembler::AVX_512bit); |
5138 | __masm-> vaesdec(B0, B0, RK8, Assembler::AVX_512bit); |
5139 | __masm-> vaesdec(B0, B0, RK9, Assembler::AVX_512bit); |
5140 | __masm-> vaesdec(B0, B0, RK10, Assembler::AVX_512bit); |
5141 | __masm-> cmpl(rounds, 44); |
5142 | __masm-> jcc(Assembler::belowEqual, Lcbc_dec_rem_last); |
5143 | |
5144 | __masm-> vaesdec(B0, B0, RK11, Assembler::AVX_512bit); |
5145 | __masm-> vaesdec(B0, B0, RK12, Assembler::AVX_512bit); |
5146 | __masm-> cmpl(rounds, 52); |
5147 | __masm-> jcc(Assembler::belowEqual, Lcbc_dec_rem_last); |
5148 | |
5149 | __masm-> vaesdec(B0, B0, RK13, Assembler::AVX_512bit); |
5150 | __masm-> vaesdec(B0, B0, RK14, Assembler::AVX_512bit); |
5151 | |
5152 | __masm-> BIND(Lcbc_dec_rem_last)bind(Lcbc_dec_rem_last); masm-> block_comment("Lcbc_dec_rem_last" ":"); |
5153 | __masm-> vaesdeclast(B0, B0, RK0, Assembler::AVX_512bit); |
5154 | |
5155 | __masm-> evpxorq(B0, B0, IV, Assembler::AVX_512bit); |
5156 | __masm-> evmovdquq(IV, S0, Assembler::AVX_512bit); |
5157 | __masm-> movdqu(Address(to, 0), B0); |
5158 | __masm-> leaq(from, Address(from, 16)); |
5159 | __masm-> leaq(to, Address(to, 16)); |
5160 | __masm-> jmp(Lcbc_dec_rem_loop); |
5161 | |
5162 | __masm-> BIND(Lcbc_dec_ret)bind(Lcbc_dec_ret); masm-> block_comment("Lcbc_dec_ret" ":" ); |
5163 | __masm-> movdqu(Address(rvec, 0), IV); |
5164 | |
5165 | // Zero out the round keys |
5166 | __masm-> evpxorq(RK0, RK0, RK0, Assembler::AVX_512bit); |
5167 | __masm-> evpxorq(RK1, RK1, RK1, Assembler::AVX_512bit); |
5168 | __masm-> evpxorq(RK2, RK2, RK2, Assembler::AVX_512bit); |
5169 | __masm-> evpxorq(RK3, RK3, RK3, Assembler::AVX_512bit); |
5170 | __masm-> evpxorq(RK4, RK4, RK4, Assembler::AVX_512bit); |
5171 | __masm-> evpxorq(RK5, RK5, RK5, Assembler::AVX_512bit); |
5172 | __masm-> evpxorq(RK6, RK6, RK6, Assembler::AVX_512bit); |
5173 | __masm-> evpxorq(RK7, RK7, RK7, Assembler::AVX_512bit); |
5174 | __masm-> evpxorq(RK8, RK8, RK8, Assembler::AVX_512bit); |
5175 | __masm-> evpxorq(RK9, RK9, RK9, Assembler::AVX_512bit); |
5176 | __masm-> evpxorq(RK10, RK10, RK10, Assembler::AVX_512bit); |
5177 | __masm-> cmpl(rounds, 44); |
5178 | __masm-> jcc(Assembler::belowEqual, Lcbc_exit); |
5179 | __masm-> evpxorq(RK11, RK11, RK11, Assembler::AVX_512bit); |
5180 | __masm-> evpxorq(RK12, RK12, RK12, Assembler::AVX_512bit); |
5181 | __masm-> cmpl(rounds, 52); |
5182 | __masm-> jcc(Assembler::belowEqual, Lcbc_exit); |
5183 | __masm-> evpxorq(RK13, RK13, RK13, Assembler::AVX_512bit); |
5184 | __masm-> evpxorq(RK14, RK14, RK14, Assembler::AVX_512bit); |
5185 | |
5186 | __masm-> BIND(Lcbc_exit)bind(Lcbc_exit); masm-> block_comment("Lcbc_exit" ":"); |
5187 | __masm-> pop(rbx); |
5188 | #ifdef _WIN64 |
5189 | __masm-> movl(rax, len_mem); |
5190 | #else |
5191 | __masm-> pop(rax); // return length |
5192 | #endif |
5193 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
5194 | __masm-> ret(0); |
5195 | return start; |
5196 | } |
5197 | |
5198 | // Polynomial x^128+x^127+x^126+x^121+1 |
5199 | address ghash_polynomial_addr() { |
5200 | __masm-> align(CodeEntryAlignment); |
5201 | StubCodeMark mark(this, "StubRoutines", "_ghash_poly_addr"); |
5202 | address start = __masm-> pc(); |
5203 | __masm-> emit_data64(0x0000000000000001, relocInfo::none); |
5204 | __masm-> emit_data64(0xc200000000000000, relocInfo::none); |
5205 | return start; |
5206 | } |
5207 | |
5208 | address ghash_shufflemask_addr() { |
5209 | __masm-> align(CodeEntryAlignment); |
5210 | StubCodeMark mark(this, "StubRoutines", "_ghash_shuffmask_addr"); |
5211 | address start = __masm-> pc(); |
5212 | __masm-> emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); |
5213 | __masm-> emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); |
5214 | return start; |
5215 | } |
5216 | |
5217 | // Ghash single and multi block operations using AVX instructions |
5218 | address generate_avx_ghash_processBlocks() { |
5219 | __masm-> align(CodeEntryAlignment); |
5220 | |
5221 | StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks"); |
5222 | address start = __masm-> pc(); |
5223 | |
5224 | // arguments |
5225 | const Register state = c_rarg0; |
5226 | const Register htbl = c_rarg1; |
5227 | const Register data = c_rarg2; |
5228 | const Register blocks = c_rarg3; |
5229 | __masm-> enter(); |
5230 | // Save state before entering routine |
5231 | __masm-> avx_ghash(state, htbl, data, blocks); |
5232 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
5233 | __masm-> ret(0); |
5234 | return start; |
5235 | } |
5236 | |
5237 | // byte swap x86 long |
5238 | address generate_ghash_long_swap_mask() { |
5239 | __masm-> align(CodeEntryAlignment); |
5240 | StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask"); |
5241 | address start = __masm-> pc(); |
5242 | __masm-> emit_data64(0x0f0e0d0c0b0a0908, relocInfo::none ); |
5243 | __masm-> emit_data64(0x0706050403020100, relocInfo::none ); |
5244 | return start; |
5245 | } |
5246 | |
5247 | // byte swap x86 byte array |
5248 | address generate_ghash_byte_swap_mask() { |
5249 | __masm-> align(CodeEntryAlignment); |
5250 | StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask"); |
5251 | address start = __masm-> pc(); |
5252 | __masm-> emit_data64(0x08090a0b0c0d0e0f, relocInfo::none ); |
5253 | __masm-> emit_data64(0x0001020304050607, relocInfo::none ); |
5254 | return start; |
5255 | } |
5256 | |
5257 | /* Single and multi-block ghash operations */ |
5258 | address generate_ghash_processBlocks() { |
5259 | __masm-> align(CodeEntryAlignment); |
5260 | Label L_ghash_loop, L_exit; |
5261 | StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks"); |
5262 | address start = __masm-> pc(); |
5263 | |
5264 | const Register state = c_rarg0; |
5265 | const Register subkeyH = c_rarg1; |
5266 | const Register data = c_rarg2; |
5267 | const Register blocks = c_rarg3; |
5268 | |
5269 | const XMMRegister xmm_temp0 = xmm0; |
5270 | const XMMRegister xmm_temp1 = xmm1; |
5271 | const XMMRegister xmm_temp2 = xmm2; |
5272 | const XMMRegister xmm_temp3 = xmm3; |
5273 | const XMMRegister xmm_temp4 = xmm4; |
5274 | const XMMRegister xmm_temp5 = xmm5; |
5275 | const XMMRegister xmm_temp6 = xmm6; |
5276 | const XMMRegister xmm_temp7 = xmm7; |
5277 | const XMMRegister xmm_temp8 = xmm8; |
5278 | const XMMRegister xmm_temp9 = xmm9; |
5279 | const XMMRegister xmm_temp10 = xmm10; |
5280 | |
5281 | __masm-> enter(); |
5282 | |
5283 | __masm-> movdqu(xmm_temp10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); |
5284 | |
5285 | __masm-> movdqu(xmm_temp0, Address(state, 0)); |
5286 | __masm-> pshufb(xmm_temp0, xmm_temp10); |
5287 | |
5288 | |
5289 | __masm-> BIND(L_ghash_loop)bind(L_ghash_loop); masm-> block_comment("L_ghash_loop" ":" ); |
5290 | __masm-> movdqu(xmm_temp2, Address(data, 0)); |
5291 | __masm-> pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); |
5292 | |
5293 | __masm-> movdqu(xmm_temp1, Address(subkeyH, 0)); |
5294 | __masm-> pshufb(xmm_temp1, xmm_temp10); |
5295 | |
5296 | __masm-> pxor(xmm_temp0, xmm_temp2); |
5297 | |
5298 | // |
5299 | // Multiply with the hash key |
5300 | // |
5301 | __masm-> movdqu(xmm_temp3, xmm_temp0); |
5302 | __masm-> pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0 |
5303 | __masm-> movdqu(xmm_temp4, xmm_temp0); |
5304 | __masm-> pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1 |
5305 | |
5306 | __masm-> movdqu(xmm_temp5, xmm_temp0); |
5307 | __masm-> pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0 |
5308 | __masm-> movdqu(xmm_temp6, xmm_temp0); |
5309 | __masm-> pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1 |
5310 | |
5311 | __masm-> pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0 |
5312 | |
5313 | __masm-> movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5 |
5314 | __masm-> psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right |
5315 | __masm-> pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left |
5316 | __masm-> pxor(xmm_temp3, xmm_temp5); |
5317 | __masm-> pxor(xmm_temp6, xmm_temp4); // Register pair <xmm6:xmm3> holds the result |
5318 | // of the carry-less multiplication of |
5319 | // xmm0 by xmm1. |
5320 | |
5321 | // We shift the result of the multiplication by one bit position |
5322 | // to the left to cope for the fact that the bits are reversed. |
5323 | __masm-> movdqu(xmm_temp7, xmm_temp3); |
5324 | __masm-> movdqu(xmm_temp8, xmm_temp6); |
5325 | __masm-> pslld(xmm_temp3, 1); |
5326 | __masm-> pslld(xmm_temp6, 1); |
5327 | __masm-> psrld(xmm_temp7, 31); |
5328 | __masm-> psrld(xmm_temp8, 31); |
5329 | __masm-> movdqu(xmm_temp9, xmm_temp7); |
5330 | __masm-> pslldq(xmm_temp8, 4); |
5331 | __masm-> pslldq(xmm_temp7, 4); |
5332 | __masm-> psrldq(xmm_temp9, 12); |
5333 | __masm-> por(xmm_temp3, xmm_temp7); |
5334 | __masm-> por(xmm_temp6, xmm_temp8); |
5335 | __masm-> por(xmm_temp6, xmm_temp9); |
5336 | |
5337 | // |
5338 | // First phase of the reduction |
5339 | // |
5340 | // Move xmm3 into xmm7, xmm8, xmm9 in order to perform the shifts |
5341 | // independently. |
5342 | __masm-> movdqu(xmm_temp7, xmm_temp3); |
5343 | __masm-> movdqu(xmm_temp8, xmm_temp3); |
5344 | __masm-> movdqu(xmm_temp9, xmm_temp3); |
5345 | __masm-> pslld(xmm_temp7, 31); // packed right shift shifting << 31 |
5346 | __masm-> pslld(xmm_temp8, 30); // packed right shift shifting << 30 |
5347 | __masm-> pslld(xmm_temp9, 25); // packed right shift shifting << 25 |
5348 | __masm-> pxor(xmm_temp7, xmm_temp8); // xor the shifted versions |
5349 | __masm-> pxor(xmm_temp7, xmm_temp9); |
5350 | __masm-> movdqu(xmm_temp8, xmm_temp7); |
5351 | __masm-> pslldq(xmm_temp7, 12); |
5352 | __masm-> psrldq(xmm_temp8, 4); |
5353 | __masm-> pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete |
5354 | |
5355 | // |
5356 | // Second phase of the reduction |
5357 | // |
5358 | // Make 3 copies of xmm3 in xmm2, xmm4, xmm5 for doing these |
5359 | // shift operations. |
5360 | __masm-> movdqu(xmm_temp2, xmm_temp3); |
5361 | __masm-> movdqu(xmm_temp4, xmm_temp3); |
5362 | __masm-> movdqu(xmm_temp5, xmm_temp3); |
5363 | __masm-> psrld(xmm_temp2, 1); // packed left shifting >> 1 |
5364 | __masm-> psrld(xmm_temp4, 2); // packed left shifting >> 2 |
5365 | __masm-> psrld(xmm_temp5, 7); // packed left shifting >> 7 |
5366 | __masm-> pxor(xmm_temp2, xmm_temp4); // xor the shifted versions |
5367 | __masm-> pxor(xmm_temp2, xmm_temp5); |
5368 | __masm-> pxor(xmm_temp2, xmm_temp8); |
5369 | __masm-> pxor(xmm_temp3, xmm_temp2); |
5370 | __masm-> pxor(xmm_temp6, xmm_temp3); // the result is in xmm6 |
5371 | |
5372 | __masm-> decrement(blocks); |
5373 | __masm-> jcc(Assembler::zero, L_exit); |
5374 | __masm-> movdqu(xmm_temp0, xmm_temp6); |
5375 | __masm-> addptr(data, 16); |
5376 | __masm-> jmp(L_ghash_loop); |
5377 | |
5378 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
5379 | __masm-> pshufb(xmm_temp6, xmm_temp10); // Byte swap 16-byte result |
5380 | __masm-> movdqu(Address(state, 0), xmm_temp6); // store the result |
5381 | __masm-> leave(); |
5382 | __masm-> ret(0); |
5383 | return start; |
5384 | } |
5385 | |
5386 | address base64_shuffle_addr() |
5387 | { |
5388 | __masm-> align64(); |
5389 | StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); |
5390 | address start = __masm-> pc(); |
5391 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5392, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5392 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5392, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5393 | __masm-> emit_data64(0x0405030401020001, relocInfo::none); |
5394 | __masm-> emit_data64(0x0a0b090a07080607, relocInfo::none); |
5395 | __masm-> emit_data64(0x10110f100d0e0c0d, relocInfo::none); |
5396 | __masm-> emit_data64(0x1617151613141213, relocInfo::none); |
5397 | __masm-> emit_data64(0x1c1d1b1c191a1819, relocInfo::none); |
5398 | __masm-> emit_data64(0x222321221f201e1f, relocInfo::none); |
5399 | __masm-> emit_data64(0x2829272825262425, relocInfo::none); |
5400 | __masm-> emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); |
5401 | return start; |
5402 | } |
5403 | |
5404 | address base64_avx2_shuffle_addr() |
5405 | { |
5406 | __masm-> align32(); |
5407 | StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); |
5408 | address start = __masm-> pc(); |
5409 | __masm-> emit_data64(0x0809070805060405, relocInfo::none); |
5410 | __masm-> emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); |
5411 | __masm-> emit_data64(0x0405030401020001, relocInfo::none); |
5412 | __masm-> emit_data64(0x0a0b090a07080607, relocInfo::none); |
5413 | return start; |
5414 | } |
5415 | |
5416 | address base64_avx2_input_mask_addr() |
5417 | { |
5418 | __masm-> align32(); |
5419 | StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); |
5420 | address start = __masm-> pc(); |
5421 | __masm-> emit_data64(0x8000000000000000, relocInfo::none); |
5422 | __masm-> emit_data64(0x8000000080000000, relocInfo::none); |
5423 | __masm-> emit_data64(0x8000000080000000, relocInfo::none); |
5424 | __masm-> emit_data64(0x8000000080000000, relocInfo::none); |
5425 | return start; |
5426 | } |
5427 | |
5428 | address base64_avx2_lut_addr() |
5429 | { |
5430 | __masm-> align32(); |
5431 | StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); |
5432 | address start = __masm-> pc(); |
5433 | __masm-> emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); |
5434 | __masm-> emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); |
5435 | __masm-> emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); |
5436 | __masm-> emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); |
5437 | |
5438 | // URL LUT |
5439 | __masm-> emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); |
5440 | __masm-> emit_data64(0x000020effcfcfcfc, relocInfo::none); |
5441 | __masm-> emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); |
5442 | __masm-> emit_data64(0x000020effcfcfcfc, relocInfo::none); |
5443 | return start; |
5444 | } |
5445 | |
5446 | address base64_encoding_table_addr() |
5447 | { |
5448 | __masm-> align64(); |
5449 | StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); |
5450 | address start = __masm-> pc(); |
5451 | assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5451, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5452 | __masm-> emit_data64(0x4847464544434241, relocInfo::none); |
5453 | __masm-> emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); |
5454 | __masm-> emit_data64(0x5857565554535251, relocInfo::none); |
5455 | __masm-> emit_data64(0x6665646362615a59, relocInfo::none); |
5456 | __masm-> emit_data64(0x6e6d6c6b6a696867, relocInfo::none); |
5457 | __masm-> emit_data64(0x767574737271706f, relocInfo::none); |
5458 | __masm-> emit_data64(0x333231307a797877, relocInfo::none); |
5459 | __masm-> emit_data64(0x2f2b393837363534, relocInfo::none); |
5460 | |
5461 | // URL table |
5462 | __masm-> emit_data64(0x4847464544434241, relocInfo::none); |
5463 | __masm-> emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); |
5464 | __masm-> emit_data64(0x5857565554535251, relocInfo::none); |
5465 | __masm-> emit_data64(0x6665646362615a59, relocInfo::none); |
5466 | __masm-> emit_data64(0x6e6d6c6b6a696867, relocInfo::none); |
5467 | __masm-> emit_data64(0x767574737271706f, relocInfo::none); |
5468 | __masm-> emit_data64(0x333231307a797877, relocInfo::none); |
5469 | __masm-> emit_data64(0x5f2d393837363534, relocInfo::none); |
5470 | return start; |
5471 | } |
5472 | |
5473 | // Code for generating Base64 encoding. |
5474 | // Intrinsic function prototype in Base64.java: |
5475 | // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, |
5476 | // boolean isURL) { |
5477 | address generate_base64_encodeBlock() |
5478 | { |
5479 | __masm-> align(CodeEntryAlignment); |
5480 | StubCodeMark mark(this, "StubRoutines", "implEncode"); |
5481 | address start = __masm-> pc(); |
5482 | __masm-> enter(); |
5483 | |
5484 | // Save callee-saved registers before using them |
5485 | __masm-> push(r12); |
5486 | __masm-> push(r13); |
5487 | __masm-> push(r14); |
5488 | __masm-> push(r15); |
5489 | |
5490 | // arguments |
5491 | const Register source = c_rarg0; // Source Array |
5492 | const Register start_offset = c_rarg1; // start offset |
5493 | const Register end_offset = c_rarg2; // end offset |
5494 | const Register dest = c_rarg3; // destination array |
5495 | |
5496 | #ifndef _WIN64 |
5497 | const Register dp = c_rarg4; // Position for writing to dest array |
5498 | const Register isURL = c_rarg5; // Base64 or URL character set |
5499 | #else |
5500 | const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
5501 | const Address isURL_mem(rbp, 7 * wordSize); |
5502 | const Register isURL = r10; // pick the volatile windows register |
5503 | const Register dp = r12; |
5504 | __masm-> movl(dp, dp_mem); |
5505 | __masm-> movl(isURL, isURL_mem); |
5506 | #endif |
5507 | |
5508 | const Register length = r14; |
5509 | const Register encode_table = r13; |
5510 | Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; |
5511 | |
5512 | // calculate length from offsets |
5513 | __masm-> movl(length, end_offset); |
5514 | __masm-> subl(length, start_offset); |
5515 | __masm-> cmpl(length, 0); |
5516 | __masm-> jcc(Assembler::lessEqual, L_exit); |
5517 | |
5518 | // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 |
5519 | // output bytes. We read 64 input bytes and ignore the last 16, so be |
5520 | // sure not to read past the end of the input buffer. |
5521 | if (VM_Version::supports_avx512_vbmi()) { |
5522 | __masm-> cmpl(length, 64); // Do not overrun input buffer. |
5523 | __masm-> jcc(Assembler::below, L_not512); |
5524 | |
5525 | __masm-> shll(isURL, 6); // index into decode table based on isURL |
5526 | __masm-> lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); |
5527 | __masm-> addptr(encode_table, isURL); |
5528 | __masm-> shrl(isURL, 6); // restore isURL |
5529 | |
5530 | __masm-> mov64(rax, 0x3036242a1016040aull); // Shifts |
5531 | __masm-> evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); |
5532 | __masm-> evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); |
5533 | __masm-> evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); |
5534 | |
5535 | __masm-> align32(); |
5536 | __masm-> BIND(L_vbmiLoop)bind(L_vbmiLoop); masm-> block_comment("L_vbmiLoop" ":"); |
5537 | |
5538 | __masm-> vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); |
5539 | __masm-> subl(length, 48); |
5540 | |
5541 | // Put the input bytes into the proper lanes for writing, then |
5542 | // encode them. |
5543 | __masm-> evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); |
5544 | __masm-> vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); |
5545 | |
5546 | // Write to destination |
5547 | __masm-> evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); |
5548 | |
5549 | __masm-> addptr(dest, 64); |
5550 | __masm-> addptr(source, 48); |
5551 | __masm-> cmpl(length, 64); |
5552 | __masm-> jcc(Assembler::aboveEqual, L_vbmiLoop); |
5553 | |
5554 | __masm-> vzeroupper(); |
5555 | } |
5556 | |
5557 | __masm-> BIND(L_not512)bind(L_not512); masm-> block_comment("L_not512" ":"); |
5558 | if (VM_Version::supports_avx2() |
5559 | && VM_Version::supports_avx512vlbw()) { |
5560 | /* |
5561 | ** This AVX2 encoder is based off the paper at: |
5562 | ** https://dl.acm.org/doi/10.1145/3132709 |
5563 | ** |
5564 | ** We use AVX2 SIMD instructions to encode 24 bytes into 32 |
5565 | ** output bytes. |
5566 | ** |
5567 | */ |
5568 | // Lengths under 32 bytes are done with scalar routine |
5569 | __masm-> cmpl(length, 31); |
5570 | __masm-> jcc(Assembler::belowEqual, L_process3); |
5571 | |
5572 | // Set up supporting constant table data |
5573 | __masm-> vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); |
5574 | // 6-bit mask for 2nd and 4th (and multiples) 6-bit values |
5575 | __masm-> movl(rax, 0x0fc0fc00); |
5576 | __masm-> vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); |
5577 | __masm-> evpbroadcastd(xmm8, rax, Assembler::AVX_256bit); |
5578 | |
5579 | // Multiplication constant for "shifting" right by 6 and 10 |
5580 | // bits |
5581 | __masm-> movl(rax, 0x04000040); |
5582 | |
5583 | __masm-> subl(length, 24); |
5584 | __masm-> evpbroadcastd(xmm7, rax, Assembler::AVX_256bit); |
5585 | |
5586 | // For the first load, we mask off reading of the first 4 |
5587 | // bytes into the register. This is so we can get 4 3-byte |
5588 | // chunks into each lane of the register, avoiding having to |
5589 | // handle end conditions. We then shuffle these bytes into a |
5590 | // specific order so that manipulation is easier. |
5591 | // |
5592 | // The initial read loads the XMM register like this: |
5593 | // |
5594 | // Lower 128-bit lane: |
5595 | // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ |
5596 | // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 |
5597 | // | C2 | D0 | D1 | D2 | |
5598 | // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ |
5599 | // |
5600 | // Upper 128-bit lane: |
5601 | // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ |
5602 | // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 |
5603 | // | XX | XX | XX | XX | |
5604 | // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ |
5605 | // |
5606 | // Where A0 is the first input byte, B0 is the fourth, etc. |
5607 | // The alphabetical significance denotes the 3 bytes to be |
5608 | // consumed and encoded into 4 bytes. |
5609 | // |
5610 | // We then shuffle the register so each 32-bit word contains |
5611 | // the sequence: |
5612 | // A1 A0 A2 A1, B1, B0, B2, B1, etc. |
5613 | // Each of these byte sequences are then manipulated into 4 |
5614 | // 6-bit values ready for encoding. |
5615 | // |
5616 | // If we focus on one set of 3-byte chunks, changing the |
5617 | // nomenclature such that A0 => a, A1 => b, and A2 => c, we |
5618 | // shuffle such that each 24-bit chunk contains: |
5619 | // |
5620 | // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 |
5621 | // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 |
5622 | // Explain this step. |
5623 | // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 |
5624 | // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 |
5625 | // |
5626 | // W first and off all but bits 4-9 and 16-21 (c5..c0 and |
5627 | // a5..a0) and shift them using a vector multiplication |
5628 | // operation (vpmulhuw) which effectively shifts c right by 6 |
5629 | // bits and a right by 10 bits. We similarly mask bits 10-15 |
5630 | // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 |
5631 | // bits respecively. This is done using vpmullw. We end up |
5632 | // with 4 6-bit values, thus splitting the 3 input bytes, |
5633 | // ready for encoding: |
5634 | // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 |
5635 | // |
5636 | // For translation, we recognize that there are 5 distinct |
5637 | // ranges of legal Base64 characters as below: |
5638 | // |
5639 | // +-------------+-------------+------------+ |
5640 | // | 6-bit value | ASCII range | offset | |
5641 | // +-------------+-------------+------------+ |
5642 | // | 0..25 | A..Z | 65 | |
5643 | // | 26..51 | a..z | 71 | |
5644 | // | 52..61 | 0..9 | -4 | |
5645 | // | 62 | + or - | -19 or -17 | |
5646 | // | 63 | / or _ | -16 or 32 | |
5647 | // +-------------+-------------+------------+ |
5648 | // |
5649 | // We note that vpshufb does a parallel lookup in a |
5650 | // destination register using the lower 4 bits of bytes from a |
5651 | // source register. If we use a saturated subtraction and |
5652 | // subtract 51 from each 6-bit value, bytes from [0,51] |
5653 | // saturate to 0, and [52,63] map to a range of [1,12]. We |
5654 | // distinguish the [0,25] and [26,51] ranges by assigning a |
5655 | // value of 13 for all 6-bit values less than 26. We end up |
5656 | // with: |
5657 | // |
5658 | // +-------------+-------------+------------+ |
5659 | // | 6-bit value | Reduced | offset | |
5660 | // +-------------+-------------+------------+ |
5661 | // | 0..25 | 13 | 65 | |
5662 | // | 26..51 | 0 | 71 | |
5663 | // | 52..61 | 0..9 | -4 | |
5664 | // | 62 | 11 | -19 or -17 | |
5665 | // | 63 | 12 | -16 or 32 | |
5666 | // +-------------+-------------+------------+ |
5667 | // |
5668 | // We then use a final vpshufb to add the appropriate offset, |
5669 | // translating the bytes. |
5670 | // |
5671 | // Load input bytes - only 28 bytes. Mask the first load to |
5672 | // not load into the full register. |
5673 | __masm-> vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); |
5674 | |
5675 | // Move 3-byte chunks of input (12 bytes) into 16 bytes, |
5676 | // ordering by: |
5677 | // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks |
5678 | // for easy masking |
5679 | __masm-> vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); |
5680 | |
5681 | __masm-> addl(start_offset, 24); |
5682 | |
5683 | // Load masking register for first and third (and multiples) |
5684 | // 6-bit values. |
5685 | __masm-> movl(rax, 0x003f03f0); |
5686 | __masm-> evpbroadcastd(xmm6, rax, Assembler::AVX_256bit); |
5687 | // Multiplication constant for "shifting" left by 4 and 8 bits |
5688 | __masm-> movl(rax, 0x01000010); |
5689 | __masm-> evpbroadcastd(xmm5, rax, Assembler::AVX_256bit); |
5690 | |
5691 | // Isolate 6-bit chunks of interest |
5692 | __masm-> vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); |
5693 | |
5694 | // Load constants for encoding |
5695 | __masm-> movl(rax, 0x19191919); |
5696 | __masm-> evpbroadcastd(xmm3, rax, Assembler::AVX_256bit); |
5697 | __masm-> movl(rax, 0x33333333); |
5698 | __masm-> evpbroadcastd(xmm4, rax, Assembler::AVX_256bit); |
5699 | |
5700 | // Shift output bytes 0 and 2 into proper lanes |
5701 | __masm-> vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); |
5702 | |
5703 | // Mask and shift output bytes 1 and 3 into proper lanes and |
5704 | // combine |
5705 | __masm-> vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); |
5706 | __masm-> vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); |
5707 | __masm-> vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); |
5708 | |
5709 | // Find out which are 0..25. This indicates which input |
5710 | // values fall in the range of 'A'-'Z', which require an |
5711 | // additional offset (see comments above) |
5712 | __masm-> vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); |
5713 | __masm-> vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); |
5714 | __masm-> vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); |
5715 | |
5716 | // Load the proper lookup table |
5717 | __masm-> lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); |
5718 | __masm-> movl(r15, isURL); |
5719 | __masm-> shll(r15, 5); |
5720 | __masm-> vmovdqu(xmm2, Address(r11, r15)); |
5721 | |
5722 | // Shuffle the offsets based on the range calculation done |
5723 | // above. This allows us to add the correct offset to the |
5724 | // 6-bit value corresponding to the range documented above. |
5725 | __masm-> vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); |
5726 | __masm-> vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); |
5727 | |
5728 | // Store the encoded bytes |
5729 | __masm-> vmovdqu(Address(dest, dp), xmm0); |
5730 | __masm-> addl(dp, 32); |
5731 | |
5732 | __masm-> cmpl(length, 31); |
5733 | __masm-> jcc(Assembler::belowEqual, L_process3); |
5734 | |
5735 | __masm-> align32(); |
5736 | __masm-> BIND(L_32byteLoop)bind(L_32byteLoop); masm-> block_comment("L_32byteLoop" ":" ); |
5737 | |
5738 | // Get next 32 bytes |
5739 | __masm-> vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); |
5740 | |
5741 | __masm-> subl(length, 24); |
5742 | __masm-> addl(start_offset, 24); |
5743 | |
5744 | // This logic is identical to the above, with only constant |
5745 | // register loads removed. Shuffle the input, mask off 6-bit |
5746 | // chunks, shift them into place, then add the offset to |
5747 | // encode. |
5748 | __masm-> vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); |
5749 | |
5750 | __masm-> vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); |
5751 | __masm-> vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); |
5752 | __masm-> vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); |
5753 | __masm-> vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); |
5754 | __masm-> vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); |
5755 | __masm-> vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); |
5756 | __masm-> vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); |
5757 | __masm-> vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); |
5758 | __masm-> vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); |
5759 | __masm-> vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); |
5760 | |
5761 | // Store the encoded bytes |
5762 | __masm-> vmovdqu(Address(dest, dp), xmm0); |
5763 | __masm-> addl(dp, 32); |
5764 | |
5765 | __masm-> cmpl(length, 31); |
5766 | __masm-> jcc(Assembler::above, L_32byteLoop); |
5767 | |
5768 | __masm-> BIND(L_process3)bind(L_process3); masm-> block_comment("L_process3" ":"); |
5769 | __masm-> vzeroupper(); |
5770 | } else { |
5771 | __masm-> BIND(L_process3)bind(L_process3); masm-> block_comment("L_process3" ":"); |
5772 | } |
5773 | |
5774 | __masm-> cmpl(length, 3); |
5775 | __masm-> jcc(Assembler::below, L_exit); |
5776 | |
5777 | // Load the encoding table based on isURL |
5778 | __masm-> lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); |
5779 | __masm-> movl(r15, isURL); |
5780 | __masm-> shll(r15, 6); |
5781 | __masm-> addptr(r11, r15); |
5782 | |
5783 | __masm-> BIND(L_processdata)bind(L_processdata); masm-> block_comment("L_processdata" ":" ); |
5784 | |
5785 | // Load 3 bytes |
5786 | __masm-> load_unsigned_byte(r15, Address(source, start_offset)); |
5787 | __masm-> load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); |
5788 | __masm-> load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); |
5789 | |
5790 | // Build a 32-bit word with bytes 1, 2, 0, 1 |
5791 | __masm-> movl(rax, r10); |
5792 | __masm-> shll(r10, 24); |
5793 | __masm-> orl(rax, r10); |
5794 | |
5795 | __masm-> subl(length, 3); |
5796 | |
5797 | __masm-> shll(r15, 8); |
5798 | __masm-> shll(r13, 16); |
5799 | __masm-> orl(rax, r15); |
5800 | |
5801 | __masm-> addl(start_offset, 3); |
5802 | |
5803 | __masm-> orl(rax, r13); |
5804 | // At this point, rax contains | byte1 | byte2 | byte0 | byte1 |
5805 | // r13 has byte2 << 16 - need low-order 6 bits to translate. |
5806 | // This translated byte is the fourth output byte. |
5807 | __masm-> shrl(r13, 16); |
5808 | __masm-> andl(r13, 0x3f); |
5809 | |
5810 | // The high-order 6 bits of r15 (byte0) is translated. |
5811 | // The translated byte is the first output byte. |
5812 | __masm-> shrl(r15, 10); |
5813 | |
5814 | __masm-> load_unsigned_byte(r13, Address(r11, r13)); |
5815 | __masm-> load_unsigned_byte(r15, Address(r11, r15)); |
5816 | |
5817 | __masm-> movb(Address(dest, dp, Address::times_1, 3), r13); |
5818 | |
5819 | // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. |
5820 | // This translated byte is the second output byte. |
5821 | __masm-> shrl(rax, 4); |
5822 | __masm-> movl(r10, rax); |
5823 | __masm-> andl(rax, 0x3f); |
5824 | |
5825 | __masm-> movb(Address(dest, dp, Address::times_1, 0), r15); |
5826 | |
5827 | __masm-> load_unsigned_byte(rax, Address(r11, rax)); |
5828 | |
5829 | // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. |
5830 | // This translated byte is the third output byte. |
5831 | __masm-> shrl(r10, 18); |
5832 | __masm-> andl(r10, 0x3f); |
5833 | |
5834 | __masm-> load_unsigned_byte(r10, Address(r11, r10)); |
5835 | |
5836 | __masm-> movb(Address(dest, dp, Address::times_1, 1), rax); |
5837 | __masm-> movb(Address(dest, dp, Address::times_1, 2), r10); |
5838 | |
5839 | __masm-> addl(dp, 4); |
5840 | __masm-> cmpl(length, 3); |
5841 | __masm-> jcc(Assembler::aboveEqual, L_processdata); |
5842 | |
5843 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
5844 | __masm-> pop(r15); |
5845 | __masm-> pop(r14); |
5846 | __masm-> pop(r13); |
5847 | __masm-> pop(r12); |
5848 | __masm-> leave(); |
5849 | __masm-> ret(0); |
5850 | return start; |
5851 | } |
5852 | |
5853 | // base64 AVX512vbmi tables |
5854 | address base64_vbmi_lookup_lo_addr() { |
5855 | __masm-> align64(); |
5856 | StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); |
5857 | address start = __masm-> pc(); |
5858 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5859, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5859 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5859, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5860 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5861 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5862 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5863 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5864 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5865 | __masm-> emit_data64(0x3f8080803e808080, relocInfo::none); |
5866 | __masm-> emit_data64(0x3b3a393837363534, relocInfo::none); |
5867 | __masm-> emit_data64(0x8080808080803d3c, relocInfo::none); |
5868 | return start; |
5869 | } |
5870 | |
5871 | address base64_vbmi_lookup_hi_addr() { |
5872 | __masm-> align64(); |
5873 | StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); |
5874 | address start = __masm-> pc(); |
5875 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5876, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5876 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5876, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5877 | __masm-> emit_data64(0x0605040302010080, relocInfo::none); |
5878 | __masm-> emit_data64(0x0e0d0c0b0a090807, relocInfo::none); |
5879 | __masm-> emit_data64(0x161514131211100f, relocInfo::none); |
5880 | __masm-> emit_data64(0x8080808080191817, relocInfo::none); |
5881 | __masm-> emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); |
5882 | __masm-> emit_data64(0x2827262524232221, relocInfo::none); |
5883 | __masm-> emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); |
5884 | __masm-> emit_data64(0x8080808080333231, relocInfo::none); |
5885 | return start; |
5886 | } |
5887 | address base64_vbmi_lookup_lo_url_addr() { |
5888 | __masm-> align64(); |
5889 | StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); |
5890 | address start = __masm-> pc(); |
5891 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5892, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5892 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5892, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5893 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5894 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5895 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5896 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5897 | __masm-> emit_data64(0x8080808080808080, relocInfo::none); |
5898 | __masm-> emit_data64(0x80803e8080808080, relocInfo::none); |
5899 | __masm-> emit_data64(0x3b3a393837363534, relocInfo::none); |
5900 | __masm-> emit_data64(0x8080808080803d3c, relocInfo::none); |
5901 | return start; |
5902 | } |
5903 | |
5904 | address base64_vbmi_lookup_hi_url_addr() { |
5905 | __masm-> align64(); |
5906 | StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); |
5907 | address start = __masm-> pc(); |
5908 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5909, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5909 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5909, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5910 | __masm-> emit_data64(0x0605040302010080, relocInfo::none); |
5911 | __masm-> emit_data64(0x0e0d0c0b0a090807, relocInfo::none); |
5912 | __masm-> emit_data64(0x161514131211100f, relocInfo::none); |
5913 | __masm-> emit_data64(0x3f80808080191817, relocInfo::none); |
5914 | __masm-> emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); |
5915 | __masm-> emit_data64(0x2827262524232221, relocInfo::none); |
5916 | __masm-> emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); |
5917 | __masm-> emit_data64(0x8080808080333231, relocInfo::none); |
5918 | return start; |
5919 | } |
5920 | |
5921 | address base64_vbmi_pack_vec_addr() { |
5922 | __masm-> align64(); |
5923 | StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); |
5924 | address start = __masm-> pc(); |
5925 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5926, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5926 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5926, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5927 | __masm-> emit_data64(0x090a040506000102, relocInfo::none); |
5928 | __masm-> emit_data64(0x161011120c0d0e08, relocInfo::none); |
5929 | __masm-> emit_data64(0x1c1d1e18191a1415, relocInfo::none); |
5930 | __masm-> emit_data64(0x292a242526202122, relocInfo::none); |
5931 | __masm-> emit_data64(0x363031322c2d2e28, relocInfo::none); |
5932 | __masm-> emit_data64(0x3c3d3e38393a3435, relocInfo::none); |
5933 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
5934 | __masm-> emit_data64(0x0000000000000000, relocInfo::none); |
5935 | return start; |
5936 | } |
5937 | |
5938 | address base64_vbmi_join_0_1_addr() { |
5939 | __masm-> align64(); |
5940 | StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); |
5941 | address start = __masm-> pc(); |
5942 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5943, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5943 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5943, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5944 | __masm-> emit_data64(0x090a040506000102, relocInfo::none); |
5945 | __masm-> emit_data64(0x161011120c0d0e08, relocInfo::none); |
5946 | __masm-> emit_data64(0x1c1d1e18191a1415, relocInfo::none); |
5947 | __masm-> emit_data64(0x292a242526202122, relocInfo::none); |
5948 | __masm-> emit_data64(0x363031322c2d2e28, relocInfo::none); |
5949 | __masm-> emit_data64(0x3c3d3e38393a3435, relocInfo::none); |
5950 | __masm-> emit_data64(0x494a444546404142, relocInfo::none); |
5951 | __masm-> emit_data64(0x565051524c4d4e48, relocInfo::none); |
5952 | return start; |
5953 | } |
5954 | |
5955 | address base64_vbmi_join_1_2_addr() { |
5956 | __masm-> align64(); |
5957 | StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); |
5958 | address start = __masm-> pc(); |
5959 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5960, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5960 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5960, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5961 | __masm-> emit_data64(0x1c1d1e18191a1415, relocInfo::none); |
5962 | __masm-> emit_data64(0x292a242526202122, relocInfo::none); |
5963 | __masm-> emit_data64(0x363031322c2d2e28, relocInfo::none); |
5964 | __masm-> emit_data64(0x3c3d3e38393a3435, relocInfo::none); |
5965 | __masm-> emit_data64(0x494a444546404142, relocInfo::none); |
5966 | __masm-> emit_data64(0x565051524c4d4e48, relocInfo::none); |
5967 | __masm-> emit_data64(0x5c5d5e58595a5455, relocInfo::none); |
5968 | __masm-> emit_data64(0x696a646566606162, relocInfo::none); |
5969 | return start; |
5970 | } |
5971 | |
5972 | address base64_vbmi_join_2_3_addr() { |
5973 | __masm-> align64(); |
5974 | StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); |
5975 | address start = __masm-> pc(); |
5976 | assert(((unsigned long long)start & 0x3f) == 0,do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5977, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0) |
5977 | "Alignment problem (0x%08llx)", (unsigned long long)start)do { if (!(((unsigned long long)start & 0x3f) == 0)) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 5977, "assert(" "((unsigned long long)start & 0x3f) == 0" ") failed", "Alignment problem (0x%08llx)", (unsigned long long )start); ::breakpoint(); } } while (0); |
5978 | __masm-> emit_data64(0x363031322c2d2e28, relocInfo::none); |
5979 | __masm-> emit_data64(0x3c3d3e38393a3435, relocInfo::none); |
5980 | __masm-> emit_data64(0x494a444546404142, relocInfo::none); |
5981 | __masm-> emit_data64(0x565051524c4d4e48, relocInfo::none); |
5982 | __masm-> emit_data64(0x5c5d5e58595a5455, relocInfo::none); |
5983 | __masm-> emit_data64(0x696a646566606162, relocInfo::none); |
5984 | __masm-> emit_data64(0x767071726c6d6e68, relocInfo::none); |
5985 | __masm-> emit_data64(0x7c7d7e78797a7475, relocInfo::none); |
5986 | return start; |
5987 | } |
5988 | |
5989 | address base64_decoding_table_addr() { |
5990 | StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); |
5991 | address start = __masm-> pc(); |
5992 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
5993 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
5994 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
5995 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
5996 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
5997 | __masm-> emit_data64(0x3fffffff3effffff, relocInfo::none); |
5998 | __masm-> emit_data64(0x3b3a393837363534, relocInfo::none); |
5999 | __masm-> emit_data64(0xffffffffffff3d3c, relocInfo::none); |
6000 | __masm-> emit_data64(0x06050403020100ff, relocInfo::none); |
6001 | __masm-> emit_data64(0x0e0d0c0b0a090807, relocInfo::none); |
6002 | __masm-> emit_data64(0x161514131211100f, relocInfo::none); |
6003 | __masm-> emit_data64(0xffffffffff191817, relocInfo::none); |
6004 | __masm-> emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); |
6005 | __masm-> emit_data64(0x2827262524232221, relocInfo::none); |
6006 | __masm-> emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); |
6007 | __masm-> emit_data64(0xffffffffff333231, relocInfo::none); |
6008 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6009 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6010 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6011 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6012 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6013 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6014 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6015 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6016 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6017 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6018 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6019 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6020 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6021 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6022 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6023 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6024 | |
6025 | // URL table |
6026 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6027 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6028 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6029 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6030 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6031 | __masm-> emit_data64(0xffff3effffffffff, relocInfo::none); |
6032 | __masm-> emit_data64(0x3b3a393837363534, relocInfo::none); |
6033 | __masm-> emit_data64(0xffffffffffff3d3c, relocInfo::none); |
6034 | __masm-> emit_data64(0x06050403020100ff, relocInfo::none); |
6035 | __masm-> emit_data64(0x0e0d0c0b0a090807, relocInfo::none); |
6036 | __masm-> emit_data64(0x161514131211100f, relocInfo::none); |
6037 | __masm-> emit_data64(0x3fffffffff191817, relocInfo::none); |
6038 | __masm-> emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); |
6039 | __masm-> emit_data64(0x2827262524232221, relocInfo::none); |
6040 | __masm-> emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); |
6041 | __masm-> emit_data64(0xffffffffff333231, relocInfo::none); |
6042 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6043 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6044 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6045 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6046 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6047 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6048 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6049 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6050 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6051 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6052 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6053 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6054 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6055 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6056 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6057 | __masm-> emit_data64(0xffffffffffffffff, relocInfo::none); |
6058 | return start; |
6059 | } |
6060 | |
6061 | |
6062 | // Code for generating Base64 decoding. |
6063 | // |
6064 | // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. |
6065 | // |
6066 | // Intrinsic function prototype in Base64.java: |
6067 | // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { |
6068 | address generate_base64_decodeBlock() { |
6069 | __masm-> align(CodeEntryAlignment); |
6070 | StubCodeMark mark(this, "StubRoutines", "implDecode"); |
6071 | address start = __masm-> pc(); |
6072 | __masm-> enter(); |
6073 | |
6074 | // Save callee-saved registers before using them |
6075 | __masm-> push(r12); |
6076 | __masm-> push(r13); |
6077 | __masm-> push(r14); |
6078 | __masm-> push(r15); |
6079 | __masm-> push(rbx); |
6080 | |
6081 | // arguments |
6082 | const Register source = c_rarg0; // Source Array |
6083 | const Register start_offset = c_rarg1; // start offset |
6084 | const Register end_offset = c_rarg2; // end offset |
6085 | const Register dest = c_rarg3; // destination array |
6086 | const Register isMIME = rbx; |
6087 | |
6088 | #ifndef _WIN64 |
6089 | const Register dp = c_rarg4; // Position for writing to dest array |
6090 | const Register isURL = c_rarg5;// Base64 or URL character set |
6091 | __masm-> movl(isMIME, Address(rbp, 2 * wordSize)); |
6092 | #else |
6093 | const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 |
6094 | const Address isURL_mem(rbp, 7 * wordSize); |
6095 | const Register isURL = r10; // pick the volatile windows register |
6096 | const Register dp = r12; |
6097 | __masm-> movl(dp, dp_mem); |
6098 | __masm-> movl(isURL, isURL_mem); |
6099 | __masm-> movl(isMIME, Address(rbp, 8 * wordSize)); |
6100 | #endif |
6101 | |
6102 | const XMMRegister lookup_lo = xmm5; |
6103 | const XMMRegister lookup_hi = xmm6; |
6104 | const XMMRegister errorvec = xmm7; |
6105 | const XMMRegister pack16_op = xmm9; |
6106 | const XMMRegister pack32_op = xmm8; |
6107 | const XMMRegister input0 = xmm3; |
6108 | const XMMRegister input1 = xmm20; |
6109 | const XMMRegister input2 = xmm21; |
6110 | const XMMRegister input3 = xmm19; |
6111 | const XMMRegister join01 = xmm12; |
6112 | const XMMRegister join12 = xmm11; |
6113 | const XMMRegister join23 = xmm10; |
6114 | const XMMRegister translated0 = xmm2; |
6115 | const XMMRegister translated1 = xmm1; |
6116 | const XMMRegister translated2 = xmm0; |
6117 | const XMMRegister translated3 = xmm4; |
6118 | |
6119 | const XMMRegister merged0 = xmm2; |
6120 | const XMMRegister merged1 = xmm1; |
6121 | const XMMRegister merged2 = xmm0; |
6122 | const XMMRegister merged3 = xmm4; |
6123 | const XMMRegister merge_ab_bc0 = xmm2; |
6124 | const XMMRegister merge_ab_bc1 = xmm1; |
6125 | const XMMRegister merge_ab_bc2 = xmm0; |
6126 | const XMMRegister merge_ab_bc3 = xmm4; |
6127 | |
6128 | const XMMRegister pack24bits = xmm4; |
6129 | |
6130 | const Register length = r14; |
6131 | const Register output_size = r13; |
6132 | const Register output_mask = r15; |
6133 | const KRegister input_mask = k1; |
6134 | |
6135 | const XMMRegister input_initial_valid_b64 = xmm0; |
6136 | const XMMRegister tmp = xmm10; |
6137 | const XMMRegister mask = xmm0; |
6138 | const XMMRegister invalid_b64 = xmm1; |
6139 | |
6140 | Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; |
6141 | Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; |
6142 | Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero; |
6143 | |
6144 | // calculate length from offsets |
6145 | __masm-> movl(length, end_offset); |
6146 | __masm-> subl(length, start_offset); |
6147 | __masm-> push(dest); // Save for return value calc |
6148 | |
6149 | // If AVX512 VBMI not supported, just compile non-AVX code |
6150 | if(VM_Version::supports_avx512_vbmi() && |
6151 | VM_Version::supports_avx512bw()) { |
6152 | __masm-> cmpl(length, 128); // 128-bytes is break-even for AVX-512 |
6153 | __masm-> jcc(Assembler::lessEqual, L_bruteForce); |
6154 | |
6155 | __masm-> cmpl(isMIME, 0); |
6156 | __masm-> jcc(Assembler::notEqual, L_bruteForce); |
6157 | |
6158 | // Load lookup tables based on isURL |
6159 | __masm-> cmpl(isURL, 0); |
6160 | __masm-> jcc(Assembler::notZero, L_loadURL); |
6161 | |
6162 | __masm-> evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); |
6163 | __masm-> evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); |
6164 | |
6165 | __masm-> BIND(L_continue)bind(L_continue); masm-> block_comment("L_continue" ":"); |
6166 | |
6167 | __masm-> movl(r15, 0x01400140); |
6168 | __masm-> evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); |
6169 | |
6170 | __masm-> movl(r15, 0x00011000); |
6171 | __masm-> evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); |
6172 | |
6173 | __masm-> cmpl(length, 0xff); |
6174 | __masm-> jcc(Assembler::lessEqual, L_process64); |
6175 | |
6176 | // load masks required for decoding data |
6177 | __masm-> BIND(L_processdata)bind(L_processdata); masm-> block_comment("L_processdata" ":" ); |
6178 | __masm-> evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); |
6179 | __masm-> evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); |
6180 | __masm-> evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); |
6181 | |
6182 | __masm-> align32(); |
6183 | __masm-> BIND(L_process256)bind(L_process256); masm-> block_comment("L_process256" ":" ); |
6184 | // Grab input data |
6185 | __masm-> evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); |
6186 | __masm-> evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); |
6187 | __masm-> evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); |
6188 | __masm-> evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); |
6189 | |
6190 | // Copy the low part of the lookup table into the destination of the permutation |
6191 | __masm-> evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); |
6192 | __masm-> evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); |
6193 | __masm-> evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); |
6194 | __masm-> evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); |
6195 | |
6196 | // Translate the base64 input into "decoded" bytes |
6197 | __masm-> evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); |
6198 | __masm-> evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); |
6199 | __masm-> evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); |
6200 | __masm-> evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); |
6201 | |
6202 | // OR all of the translations together to check for errors (high-order bit of byte set) |
6203 | __masm-> vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); |
6204 | |
6205 | __masm-> vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); |
6206 | __masm-> vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); |
6207 | __masm-> vpor(errorvec, input3, input0, Assembler::AVX_512bit); |
6208 | |
6209 | // Check if there was an error - if so, try 64-byte chunks |
6210 | __masm-> evpmovb2m(k3, errorvec, Assembler::AVX_512bit); |
6211 | __masm-> kortestql(k3, k3); |
6212 | __masm-> jcc(Assembler::notZero, L_process64); |
6213 | |
6214 | // The merging and shuffling happens here |
6215 | // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] |
6216 | // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] |
6217 | // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 |
6218 | __masm-> vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); |
6219 | __masm-> vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); |
6220 | __masm-> vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); |
6221 | __masm-> vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); |
6222 | |
6223 | // Now do the same with packed 16-bit values. |
6224 | // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] |
6225 | // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 |
6226 | // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] |
6227 | __masm-> vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); |
6228 | __masm-> vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); |
6229 | __masm-> vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); |
6230 | __masm-> vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); |
6231 | |
6232 | // The join vectors specify which byte from which vector goes into the outputs |
6233 | // One of every 4 bytes in the extended vector is zero, so we pack them into their |
6234 | // final positions in the register for storing (256 bytes in, 192 bytes out) |
6235 | __masm-> evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); |
6236 | __masm-> evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); |
6237 | __masm-> evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); |
6238 | |
6239 | // Store result |
6240 | __masm-> evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); |
6241 | __masm-> evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); |
6242 | __masm-> evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); |
6243 | |
6244 | __masm-> addptr(source, 0x100); |
6245 | __masm-> addptr(dest, 0xc0); |
6246 | __masm-> subl(length, 0x100); |
6247 | __masm-> cmpl(length, 64 * 4); |
6248 | __masm-> jcc(Assembler::greaterEqual, L_process256); |
6249 | |
6250 | // At this point, we've decoded 64 * 4 * n bytes. |
6251 | // The remaining length will be <= 64 * 4 - 1. |
6252 | // UNLESS there was an error decoding the first 256-byte chunk. In this |
6253 | // case, the length will be arbitrarily long. |
6254 | // |
6255 | // Note that this will be the path for MIME-encoded strings. |
6256 | |
6257 | __masm-> BIND(L_process64)bind(L_process64); masm-> block_comment("L_process64" ":"); |
6258 | |
6259 | __masm-> evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); |
6260 | |
6261 | __masm-> cmpl(length, 63); |
6262 | __masm-> jcc(Assembler::lessEqual, L_finalBit); |
6263 | |
6264 | __masm-> mov64(rax, 0x0000ffffffffffff); |
6265 | __masm-> kmovql(k2, rax); |
6266 | |
6267 | __masm-> align32(); |
6268 | __masm-> BIND(L_process64Loop)bind(L_process64Loop); masm-> block_comment("L_process64Loop" ":"); |
6269 | |
6270 | // Handle first 64-byte block |
6271 | |
6272 | __masm-> evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); |
6273 | __masm-> evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); |
6274 | __masm-> evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); |
6275 | |
6276 | __masm-> vpor(errorvec, translated0, input0, Assembler::AVX_512bit); |
6277 | |
6278 | // Check for error and bomb out before updating dest |
6279 | __masm-> evpmovb2m(k3, errorvec, Assembler::AVX_512bit); |
6280 | __masm-> kortestql(k3, k3); |
6281 | __masm-> jcc(Assembler::notZero, L_exit); |
6282 | |
6283 | // Pack output register, selecting correct byte ordering |
6284 | __masm-> vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); |
6285 | __masm-> vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); |
6286 | __masm-> vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); |
6287 | |
6288 | __masm-> evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); |
6289 | |
6290 | __masm-> subl(length, 64); |
6291 | __masm-> addptr(source, 64); |
6292 | __masm-> addptr(dest, 48); |
6293 | |
6294 | __masm-> cmpl(length, 64); |
6295 | __masm-> jcc(Assembler::greaterEqual, L_process64Loop); |
6296 | |
6297 | __masm-> cmpl(length, 0); |
6298 | __masm-> jcc(Assembler::lessEqual, L_exit); |
6299 | |
6300 | __masm-> BIND(L_finalBit)bind(L_finalBit); masm-> block_comment("L_finalBit" ":"); |
6301 | // Now have 1 to 63 bytes left to decode |
6302 | |
6303 | // I was going to let Java take care of the final fragment |
6304 | // however it will repeatedly call this routine for every 4 bytes |
6305 | // of input data, so handle the rest here. |
6306 | __masm-> movq(rax, -1); |
6307 | __masm-> bzhiq(rax, rax, length); // Input mask in rax |
6308 | |
6309 | __masm-> movl(output_size, length); |
6310 | __masm-> shrl(output_size, 2); // Find (len / 4) * 3 (output length) |
6311 | __masm-> lea(output_size, Address(output_size, output_size, Address::times_2, 0)); |
6312 | // output_size in r13 |
6313 | |
6314 | // Strip pad characters, if any, and adjust length and mask |
6315 | __masm-> cmpb(Address(source, length, Address::times_1, -1), '='); |
6316 | __masm-> jcc(Assembler::equal, L_padding); |
6317 | |
6318 | __masm-> BIND(L_donePadding)bind(L_donePadding); masm-> block_comment("L_donePadding" ":" ); |
6319 | |
6320 | // Output size is (64 - output_size), output mask is (all 1s >> output_size). |
6321 | __masm-> kmovql(input_mask, rax); |
6322 | __masm-> movq(output_mask, -1); |
6323 | __masm-> bzhiq(output_mask, output_mask, output_size); |
6324 | |
6325 | // Load initial input with all valid base64 characters. Will be used |
6326 | // in merging source bytes to avoid masking when determining if an error occurred. |
6327 | __masm-> movl(rax, 0x61616161); |
6328 | __masm-> evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); |
6329 | |
6330 | // A register containing all invalid base64 decoded values |
6331 | __masm-> movl(rax, 0x80808080); |
6332 | __masm-> evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); |
6333 | |
6334 | // input_mask is in k1 |
6335 | // output_size is in r13 |
6336 | // output_mask is in r15 |
6337 | // zmm0 - free |
6338 | // zmm1 - 0x00011000 |
6339 | // zmm2 - 0x01400140 |
6340 | // zmm3 - errorvec |
6341 | // zmm4 - pack vector |
6342 | // zmm5 - lookup_lo |
6343 | // zmm6 - lookup_hi |
6344 | // zmm7 - errorvec |
6345 | // zmm8 - 0x61616161 |
6346 | // zmm9 - 0x80808080 |
6347 | |
6348 | // Load only the bytes from source, merging into our "fully-valid" register |
6349 | __masm-> evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); |
6350 | |
6351 | // Decode all bytes within our merged input |
6352 | __masm-> evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); |
6353 | __masm-> evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); |
6354 | __masm-> vporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); |
6355 | |
6356 | // Check for error. Compare (decoded | initial) to all invalid. |
6357 | // If any bytes have their high-order bit set, then we have an error. |
6358 | __masm-> evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); |
6359 | __masm-> kortestql(k2, k2); |
6360 | |
6361 | // If we have an error, use the brute force loop to decode what we can (4-byte chunks). |
6362 | __masm-> jcc(Assembler::notZero, L_bruteForce); |
6363 | |
6364 | // Shuffle output bytes |
6365 | __masm-> vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); |
6366 | __masm-> vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); |
6367 | |
6368 | __masm-> vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); |
6369 | __masm-> kmovql(k1, output_mask); |
6370 | __masm-> evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); |
6371 | |
6372 | __masm-> addptr(dest, output_size); |
6373 | |
6374 | __masm-> BIND(L_exit)bind(L_exit); masm-> block_comment("L_exit" ":"); |
6375 | __masm-> vzeroupper(); |
6376 | __masm-> pop(rax); // Get original dest value |
6377 | __masm-> subptr(dest, rax); // Number of bytes converted |
6378 | __masm-> movptr(rax, dest); |
6379 | __masm-> pop(rbx); |
6380 | __masm-> pop(r15); |
6381 | __masm-> pop(r14); |
6382 | __masm-> pop(r13); |
6383 | __masm-> pop(r12); |
6384 | __masm-> leave(); |
6385 | __masm-> ret(0); |
6386 | |
6387 | __masm-> BIND(L_loadURL)bind(L_loadURL); masm-> block_comment("L_loadURL" ":"); |
6388 | __masm-> evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); |
6389 | __masm-> evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); |
6390 | __masm-> jmp(L_continue); |
6391 | |
6392 | __masm-> BIND(L_padding)bind(L_padding); masm-> block_comment("L_padding" ":"); |
6393 | __masm-> decrementq(output_size, 1); |
6394 | __masm-> shrq(rax, 1); |
6395 | |
6396 | __masm-> cmpb(Address(source, length, Address::times_1, -2), '='); |
6397 | __masm-> jcc(Assembler::notEqual, L_donePadding); |
6398 | |
6399 | __masm-> decrementq(output_size, 1); |
6400 | __masm-> shrq(rax, 1); |
6401 | __masm-> jmp(L_donePadding); |
6402 | |
6403 | __masm-> align32(); |
6404 | __masm-> BIND(L_bruteForce)bind(L_bruteForce); masm-> block_comment("L_bruteForce" ":" ); |
6405 | } // End of if(avx512_vbmi) |
6406 | |
6407 | // Use non-AVX code to decode 4-byte chunks into 3 bytes of output |
6408 | |
6409 | // Register state (Linux): |
6410 | // r12-15 - saved on stack |
6411 | // rdi - src |
6412 | // rsi - sp |
6413 | // rdx - sl |
6414 | // rcx - dst |
6415 | // r8 - dp |
6416 | // r9 - isURL |
6417 | |
6418 | // Register state (Windows): |
6419 | // r12-15 - saved on stack |
6420 | // rcx - src |
6421 | // rdx - sp |
6422 | // r8 - sl |
6423 | // r9 - dst |
6424 | // r12 - dp |
6425 | // r10 - isURL |
6426 | |
6427 | // Registers (common): |
6428 | // length (r14) - bytes in src |
6429 | |
6430 | const Register decode_table = r11; |
6431 | const Register out_byte_count = rbx; |
6432 | const Register byte1 = r13; |
6433 | const Register byte2 = r15; |
6434 | const Register byte3 = WINDOWS_ONLY(r8) NOT_WINDOWS(rdx)rdx; |
6435 | const Register byte4 = WINDOWS_ONLY(r10) NOT_WINDOWS(r9)r9; |
6436 | |
6437 | __masm-> shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks |
6438 | __masm-> cmpl(length, 0); |
6439 | __masm-> jcc(Assembler::lessEqual, L_exit_no_vzero); |
6440 | |
6441 | __masm-> shll(isURL, 8); // index into decode table based on isURL |
6442 | __masm-> lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); |
6443 | __masm-> addptr(decode_table, isURL); |
6444 | |
6445 | __masm-> jmp(L_bottomLoop); |
6446 | |
6447 | __masm-> align32(); |
6448 | __masm-> BIND(L_forceLoop)bind(L_forceLoop); masm-> block_comment("L_forceLoop" ":"); |
6449 | __masm-> shll(byte1, 18); |
6450 | __masm-> shll(byte2, 12); |
6451 | __masm-> shll(byte3, 6); |
6452 | __masm-> orl(byte1, byte2); |
6453 | __masm-> orl(byte1, byte3); |
6454 | __masm-> orl(byte1, byte4); |
6455 | |
6456 | __masm-> addptr(source, 4); |
6457 | |
6458 | __masm-> movb(Address(dest, dp, Address::times_1, 2), byte1); |
6459 | __masm-> shrl(byte1, 8); |
6460 | __masm-> movb(Address(dest, dp, Address::times_1, 1), byte1); |
6461 | __masm-> shrl(byte1, 8); |
6462 | __masm-> movb(Address(dest, dp, Address::times_1, 0), byte1); |
6463 | |
6464 | __masm-> addptr(dest, 3); |
6465 | __masm-> decrementl(length, 1); |
6466 | __masm-> jcc(Assembler::zero, L_exit_no_vzero); |
6467 | |
6468 | __masm-> BIND(L_bottomLoop)bind(L_bottomLoop); masm-> block_comment("L_bottomLoop" ":" ); |
6469 | __masm-> load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); |
6470 | __masm-> load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); |
6471 | __masm-> load_signed_byte(byte1, Address(decode_table, byte1)); |
6472 | __masm-> load_signed_byte(byte2, Address(decode_table, byte2)); |
6473 | __masm-> load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); |
6474 | __masm-> load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); |
6475 | __masm-> load_signed_byte(byte3, Address(decode_table, byte3)); |
6476 | __masm-> load_signed_byte(byte4, Address(decode_table, byte4)); |
6477 | |
6478 | __masm-> mov(rax, byte1); |
6479 | __masm-> orl(rax, byte2); |
6480 | __masm-> orl(rax, byte3); |
6481 | __masm-> orl(rax, byte4); |
6482 | __masm-> jcc(Assembler::positive, L_forceLoop); |
6483 | |
6484 | __masm-> BIND(L_exit_no_vzero)bind(L_exit_no_vzero); masm-> block_comment("L_exit_no_vzero" ":"); |
6485 | __masm-> pop(rax); // Get original dest value |
6486 | __masm-> subptr(dest, rax); // Number of bytes converted |
6487 | __masm-> movptr(rax, dest); |
6488 | __masm-> pop(rbx); |
6489 | __masm-> pop(r15); |
6490 | __masm-> pop(r14); |
6491 | __masm-> pop(r13); |
6492 | __masm-> pop(r12); |
6493 | __masm-> leave(); |
6494 | __masm-> ret(0); |
6495 | |
6496 | return start; |
6497 | } |
6498 | |
6499 | |
6500 | /** |
6501 | * Arguments: |
6502 | * |
6503 | * Inputs: |
6504 | * c_rarg0 - int crc |
6505 | * c_rarg1 - byte* buf |
6506 | * c_rarg2 - int length |
6507 | * |
6508 | * Ouput: |
6509 | * rax - int crc result |
6510 | */ |
6511 | address generate_updateBytesCRC32() { |
6512 | assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions")do { if (!(UseCRC32Intrinsics)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 6512, "assert(" "UseCRC32Intrinsics" ") failed", "need AVX and CLMUL instructions" ); ::breakpoint(); } } while (0); |
6513 | |
6514 | __masm-> align(CodeEntryAlignment); |
6515 | StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); |
6516 | |
6517 | address start = __masm-> pc(); |
6518 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
6519 | // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
6520 | // rscratch1: r10 |
6521 | const Register crc = c_rarg0; // crc |
6522 | const Register buf = c_rarg1; // source java byte array address |
6523 | const Register len = c_rarg2; // length |
6524 | const Register table = c_rarg3; // crc_table address (reuse register) |
6525 | const Register tmp1 = r11; |
6526 | const Register tmp2 = r10; |
6527 | assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); |
6528 | |
6529 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6530 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
6531 | |
6532 | if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && |
6533 | VM_Version::supports_avx512bw() && |
6534 | VM_Version::supports_avx512vl()) { |
6535 | // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. |
6536 | // However, the constant table for CRC32-C assumes the original crc value. Account for this |
6537 | // difference before calling and after returning. |
6538 | __masm-> lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); |
6539 | __masm-> notl(crc); |
6540 | __masm-> kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); |
6541 | __masm-> notl(crc); |
6542 | } else { |
6543 | __masm-> kernel_crc32(crc, buf, len, table, tmp1); |
6544 | } |
6545 | |
6546 | __masm-> movl(rax, crc); |
6547 | __masm-> vzeroupper(); |
6548 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
6549 | __masm-> ret(0); |
6550 | |
6551 | return start; |
6552 | } |
6553 | |
6554 | /** |
6555 | * Arguments: |
6556 | * |
6557 | * Inputs: |
6558 | * c_rarg0 - int crc |
6559 | * c_rarg1 - byte* buf |
6560 | * c_rarg2 - long length |
6561 | * c_rarg3 - table_start - optional (present only when doing a library_call, |
6562 | * not used by x86 algorithm) |
6563 | * |
6564 | * Ouput: |
6565 | * rax - int crc result |
6566 | */ |
6567 | address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { |
6568 | assert(UseCRC32CIntrinsics, "need SSE4_2")do { if (!(UseCRC32CIntrinsics)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 6568, "assert(" "UseCRC32CIntrinsics" ") failed", "need SSE4_2" ); ::breakpoint(); } } while (0); |
6569 | __masm-> align(CodeEntryAlignment); |
6570 | StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); |
6571 | address start = __masm-> pc(); |
6572 | //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs |
6573 | //Windows RCX RDX R8 R9 none none XMM0..XMM3 |
6574 | //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 |
6575 | const Register crc = c_rarg0; // crc |
6576 | const Register buf = c_rarg1; // source java byte array address |
6577 | const Register len = c_rarg2; // length |
6578 | const Register a = rax; |
6579 | const Register j = r9; |
6580 | const Register k = r10; |
6581 | const Register l = r11; |
6582 | #ifdef _WIN64 |
6583 | const Register y = rdi; |
6584 | const Register z = rsi; |
6585 | #else |
6586 | const Register y = rcx; |
6587 | const Register z = r8; |
6588 | #endif |
6589 | assert_different_registers(crc, buf, len, a, j, k, l, y, z); |
6590 | |
6591 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6592 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
6593 | if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && |
6594 | VM_Version::supports_avx512bw() && |
6595 | VM_Version::supports_avx512vl()) { |
6596 | __masm-> lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); |
6597 | __masm-> kernel_crc32_avx512(crc, buf, len, j, l, k); |
6598 | } else { |
6599 | #ifdef _WIN64 |
6600 | __masm-> push(y); |
6601 | __masm-> push(z); |
6602 | #endif |
6603 | __masm-> crc32c_ipl_alg2_alt2(crc, buf, len, |
6604 | a, j, k, |
6605 | l, y, z, |
6606 | c_farg0, c_farg1, c_farg2, |
6607 | is_pclmulqdq_supported); |
6608 | #ifdef _WIN64 |
6609 | __masm-> pop(z); |
6610 | __masm-> pop(y); |
6611 | #endif |
6612 | } |
6613 | __masm-> movl(rax, crc); |
6614 | __masm-> vzeroupper(); |
6615 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
6616 | __masm-> ret(0); |
6617 | |
6618 | return start; |
6619 | } |
6620 | |
6621 | |
6622 | /*** |
6623 | * Arguments: |
6624 | * |
6625 | * Inputs: |
6626 | * c_rarg0 - int adler |
6627 | * c_rarg1 - byte* buff |
6628 | * c_rarg2 - int len |
6629 | * |
6630 | * Output: |
6631 | * rax - int adler result |
6632 | */ |
6633 | |
6634 | address generate_updateBytesAdler32() { |
6635 | assert(UseAdler32Intrinsics, "need AVX2")do { if (!(UseAdler32Intrinsics)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 6635, "assert(" "UseAdler32Intrinsics" ") failed", "need AVX2" ); ::breakpoint(); } } while (0); |
6636 | |
6637 | __masm-> align(CodeEntryAlignment); |
6638 | StubCodeMark mark(this, "StubRoutines", "updateBytesAdler32"); |
6639 | |
6640 | address start = __masm-> pc(); |
6641 | |
6642 | const Register data = r9; |
6643 | const Register size = r10; |
6644 | |
6645 | const XMMRegister yshuf0 = xmm6; |
6646 | const XMMRegister yshuf1 = xmm7; |
6647 | assert_different_registers(c_rarg0, c_rarg1, c_rarg2, data, size); |
6648 | |
6649 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6650 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
6651 | |
6652 | __masm-> vmovdqu(yshuf0, ExternalAddress((address) StubRoutines::x86::_adler32_shuf0_table), r9); |
6653 | __masm-> vmovdqu(yshuf1, ExternalAddress((address) StubRoutines::x86::_adler32_shuf1_table), r9); |
6654 | __masm-> movptr(data, c_rarg1); //data |
6655 | __masm-> movl(size, c_rarg2); //length |
6656 | __masm-> updateBytesAdler32(c_rarg0, data, size, yshuf0, yshuf1, ExternalAddress((address) StubRoutines::x86::_adler32_ascale_table)); |
6657 | __masm-> leave(); |
6658 | __masm-> ret(0); |
6659 | return start; |
6660 | } |
6661 | |
6662 | /** |
6663 | * Arguments: |
6664 | * |
6665 | * Input: |
6666 | * c_rarg0 - x address |
6667 | * c_rarg1 - x length |
6668 | * c_rarg2 - y address |
6669 | * c_rarg3 - y length |
6670 | * not Win64 |
6671 | * c_rarg4 - z address |
6672 | * c_rarg5 - z length |
6673 | * Win64 |
6674 | * rsp+40 - z address |
6675 | * rsp+48 - z length |
6676 | */ |
6677 | address generate_multiplyToLen() { |
6678 | __masm-> align(CodeEntryAlignment); |
6679 | StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); |
6680 | |
6681 | address start = __masm-> pc(); |
6682 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
6683 | // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
6684 | const Register x = rdi; |
6685 | const Register xlen = rax; |
6686 | const Register y = rsi; |
6687 | const Register ylen = rcx; |
6688 | const Register z = r8; |
6689 | const Register zlen = r11; |
6690 | |
6691 | // Next registers will be saved on stack in multiply_to_len(). |
6692 | const Register tmp1 = r12; |
6693 | const Register tmp2 = r13; |
6694 | const Register tmp3 = r14; |
6695 | const Register tmp4 = r15; |
6696 | const Register tmp5 = rbx; |
6697 | |
6698 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6699 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
6700 | |
6701 | #ifndef _WIN64 |
6702 | __masm-> movptr(zlen, r9); // Save r9 in r11 - zlen |
6703 | #endif |
6704 | setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx |
6705 | // ylen => rcx, z => r8, zlen => r11 |
6706 | // r9 and r10 may be used to save non-volatile registers |
6707 | #ifdef _WIN64 |
6708 | // last 2 arguments (#4, #5) are on stack on Win64 |
6709 | __masm-> movptr(z, Address(rsp, 6 * wordSize)); |
6710 | __masm-> movptr(zlen, Address(rsp, 7 * wordSize)); |
6711 | #endif |
6712 | |
6713 | __masm-> movptr(xlen, rsi); |
6714 | __masm-> movptr(y, rdx); |
6715 | __masm-> multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5); |
6716 | |
6717 | restore_arg_regs(); |
6718 | |
6719 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
6720 | __masm-> ret(0); |
6721 | |
6722 | return start; |
6723 | } |
6724 | |
6725 | /** |
6726 | * Arguments: |
6727 | * |
6728 | * Input: |
6729 | * c_rarg0 - obja address |
6730 | * c_rarg1 - objb address |
6731 | * c_rarg3 - length length |
6732 | * c_rarg4 - scale log2_array_indxscale |
6733 | * |
6734 | * Output: |
6735 | * rax - int >= mismatched index, < 0 bitwise complement of tail |
6736 | */ |
6737 | address generate_vectorizedMismatch() { |
6738 | __masm-> align(CodeEntryAlignment); |
6739 | StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); |
6740 | address start = __masm-> pc(); |
6741 | |
6742 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6743 | __masm-> enter(); |
6744 | |
6745 | #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
6746 | const Register scale = c_rarg0; //rcx, will exchange with r9 |
6747 | const Register objb = c_rarg1; //rdx |
6748 | const Register length = c_rarg2; //r8 |
6749 | const Register obja = c_rarg3; //r9 |
6750 | __masm-> xchgq(obja, scale); //now obja and scale contains the correct contents |
6751 | |
6752 | const Register tmp1 = r10; |
6753 | const Register tmp2 = r11; |
6754 | #endif |
6755 | #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
6756 | const Register obja = c_rarg0; //U:rdi |
6757 | const Register objb = c_rarg1; //U:rsi |
6758 | const Register length = c_rarg2; //U:rdx |
6759 | const Register scale = c_rarg3; //U:rcx |
6760 | const Register tmp1 = r8; |
6761 | const Register tmp2 = r9; |
6762 | #endif |
6763 | const Register result = rax; //return value |
6764 | const XMMRegister vec0 = xmm0; |
6765 | const XMMRegister vec1 = xmm1; |
6766 | const XMMRegister vec2 = xmm2; |
6767 | |
6768 | __masm-> vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); |
6769 | |
6770 | __masm-> vzeroupper(); |
6771 | __masm-> leave(); |
6772 | __masm-> ret(0); |
6773 | |
6774 | return start; |
6775 | } |
6776 | |
6777 | /** |
6778 | * Arguments: |
6779 | * |
6780 | // Input: |
6781 | // c_rarg0 - x address |
6782 | // c_rarg1 - x length |
6783 | // c_rarg2 - z address |
6784 | // c_rarg3 - z lenth |
6785 | * |
6786 | */ |
6787 | address generate_squareToLen() { |
6788 | |
6789 | __masm-> align(CodeEntryAlignment); |
6790 | StubCodeMark mark(this, "StubRoutines", "squareToLen"); |
6791 | |
6792 | address start = __masm-> pc(); |
6793 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
6794 | // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) |
6795 | const Register x = rdi; |
6796 | const Register len = rsi; |
6797 | const Register z = r8; |
6798 | const Register zlen = rcx; |
6799 | |
6800 | const Register tmp1 = r12; |
6801 | const Register tmp2 = r13; |
6802 | const Register tmp3 = r14; |
6803 | const Register tmp4 = r15; |
6804 | const Register tmp5 = rbx; |
6805 | |
6806 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6807 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
6808 | |
6809 | setup_arg_regs(4); // x => rdi, len => rsi, z => rdx |
6810 | // zlen => rcx |
6811 | // r9 and r10 may be used to save non-volatile registers |
6812 | __masm-> movptr(r8, rdx); |
6813 | __masm-> square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); |
6814 | |
6815 | restore_arg_regs(); |
6816 | |
6817 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
6818 | __masm-> ret(0); |
6819 | |
6820 | return start; |
6821 | } |
6822 | |
6823 | address generate_method_entry_barrier() { |
6824 | __masm-> align(CodeEntryAlignment); |
6825 | StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); |
6826 | |
6827 | Label deoptimize_label; |
6828 | |
6829 | address start = __masm-> pc(); |
6830 | |
6831 | __masm-> push(-1); // cookie, this is used for writing the new rsp when deoptimizing |
6832 | |
6833 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6834 | __masm-> enter(); // save rbp |
6835 | |
6836 | // save c_rarg0, because we want to use that value. |
6837 | // We could do without it but then we depend on the number of slots used by pusha |
6838 | __masm-> push(c_rarg0); |
6839 | |
6840 | __masm-> lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address |
6841 | |
6842 | __masm-> pusha(); |
6843 | |
6844 | // The method may have floats as arguments, and we must spill them before calling |
6845 | // the VM runtime. |
6846 | assert(Argument::n_float_register_parameters_j == 8, "Assumption")do { if (!(Argument::n_float_register_parameters_j == 8)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 6846, "assert(" "Argument::n_float_register_parameters_j == 8" ") failed", "Assumption"); ::breakpoint(); } } while (0); |
6847 | const int xmm_size = wordSize * 2; |
6848 | const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; |
6849 | __masm-> subptr(rsp, xmm_spill_size); |
6850 | __masm-> movdqu(Address(rsp, xmm_size * 7), xmm7); |
6851 | __masm-> movdqu(Address(rsp, xmm_size * 6), xmm6); |
6852 | __masm-> movdqu(Address(rsp, xmm_size * 5), xmm5); |
6853 | __masm-> movdqu(Address(rsp, xmm_size * 4), xmm4); |
6854 | __masm-> movdqu(Address(rsp, xmm_size * 3), xmm3); |
6855 | __masm-> movdqu(Address(rsp, xmm_size * 2), xmm2); |
6856 | __masm-> movdqu(Address(rsp, xmm_size * 1), xmm1); |
6857 | __masm-> movdqu(Address(rsp, xmm_size * 0), xmm0); |
6858 | |
6859 | __masm-> call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier))((address)((address_word)(static_cast<int (*)(address*)> (BarrierSetNMethod::nmethod_stub_entry_barrier)))), 1); |
6860 | |
6861 | __masm-> movdqu(xmm0, Address(rsp, xmm_size * 0)); |
6862 | __masm-> movdqu(xmm1, Address(rsp, xmm_size * 1)); |
6863 | __masm-> movdqu(xmm2, Address(rsp, xmm_size * 2)); |
6864 | __masm-> movdqu(xmm3, Address(rsp, xmm_size * 3)); |
6865 | __masm-> movdqu(xmm4, Address(rsp, xmm_size * 4)); |
6866 | __masm-> movdqu(xmm5, Address(rsp, xmm_size * 5)); |
6867 | __masm-> movdqu(xmm6, Address(rsp, xmm_size * 6)); |
6868 | __masm-> movdqu(xmm7, Address(rsp, xmm_size * 7)); |
6869 | __masm-> addptr(rsp, xmm_spill_size); |
6870 | |
6871 | __masm-> cmpl(rax, 1); // 1 means deoptimize |
6872 | __masm-> jcc(Assembler::equal, deoptimize_label); |
6873 | |
6874 | __masm-> popa(); |
6875 | __masm-> pop(c_rarg0); |
6876 | |
6877 | __masm-> leave(); |
6878 | |
6879 | __masm-> addptr(rsp, 1 * wordSize); // cookie |
6880 | __masm-> ret(0); |
6881 | |
6882 | |
6883 | __masm-> BIND(deoptimize_label)bind(deoptimize_label); masm-> block_comment("deoptimize_label" ":"); |
6884 | |
6885 | __masm-> popa(); |
6886 | __masm-> pop(c_rarg0); |
6887 | |
6888 | __masm-> leave(); |
6889 | |
6890 | // this can be taken out, but is good for verification purposes. getting a SIGSEGV |
6891 | // here while still having a correct stack is valuable |
6892 | __masm-> testptr(rsp, Address(rsp, 0)); |
6893 | |
6894 | __masm-> movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier |
6895 | __masm-> jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point |
6896 | |
6897 | return start; |
6898 | } |
6899 | |
6900 | /** |
6901 | * Arguments: |
6902 | * |
6903 | * Input: |
6904 | * c_rarg0 - out address |
6905 | * c_rarg1 - in address |
6906 | * c_rarg2 - offset |
6907 | * c_rarg3 - len |
6908 | * not Win64 |
6909 | * c_rarg4 - k |
6910 | * Win64 |
6911 | * rsp+40 - k |
6912 | */ |
6913 | address generate_mulAdd() { |
6914 | __masm-> align(CodeEntryAlignment); |
6915 | StubCodeMark mark(this, "StubRoutines", "mulAdd"); |
6916 | |
6917 | address start = __masm-> pc(); |
6918 | // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
6919 | // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
6920 | const Register out = rdi; |
6921 | const Register in = rsi; |
6922 | const Register offset = r11; |
6923 | const Register len = rcx; |
6924 | const Register k = r8; |
6925 | |
6926 | // Next registers will be saved on stack in mul_add(). |
6927 | const Register tmp1 = r12; |
6928 | const Register tmp2 = r13; |
6929 | const Register tmp3 = r14; |
6930 | const Register tmp4 = r15; |
6931 | const Register tmp5 = rbx; |
6932 | |
6933 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6934 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
6935 | |
6936 | setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx |
6937 | // len => rcx, k => r8 |
6938 | // r9 and r10 may be used to save non-volatile registers |
6939 | #ifdef _WIN64 |
6940 | // last argument is on stack on Win64 |
6941 | __masm-> movl(k, Address(rsp, 6 * wordSize)); |
6942 | #endif |
6943 | __masm-> movptr(r11, rdx); // move offset in rdx to offset(r11) |
6944 | __masm-> mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); |
6945 | |
6946 | restore_arg_regs(); |
6947 | |
6948 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
6949 | __masm-> ret(0); |
6950 | |
6951 | return start; |
6952 | } |
6953 | |
6954 | address generate_bigIntegerRightShift() { |
6955 | __masm-> align(CodeEntryAlignment); |
6956 | StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); |
6957 | |
6958 | address start = __masm-> pc(); |
6959 | Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; |
6960 | // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. |
6961 | const Register newArr = rdi; |
6962 | const Register oldArr = rsi; |
6963 | const Register newIdx = rdx; |
6964 | const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. |
6965 | const Register totalNumIter = r8; |
6966 | |
6967 | // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. |
6968 | // For everything else, we prefer using r9 and r10 since we do not have to save them before use. |
6969 | const Register tmp1 = r11; // Caller save. |
6970 | const Register tmp2 = rax; // Caller save. |
6971 | const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9)r9; // Windows: Callee save. Linux: Caller save. |
6972 | const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10)r10; // Windows: Callee save. Linux: Caller save. |
6973 | const Register tmp5 = r14; // Callee save. |
6974 | const Register tmp6 = r15; |
6975 | |
6976 | const XMMRegister x0 = xmm0; |
6977 | const XMMRegister x1 = xmm1; |
6978 | const XMMRegister x2 = xmm2; |
6979 | |
6980 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
6981 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
6982 | |
6983 | #ifdef _WINDOWS |
6984 | setup_arg_regs(4); |
6985 | // For windows, since last argument is on stack, we need to move it to the appropriate register. |
6986 | __masm-> movl(totalNumIter, Address(rsp, 6 * wordSize)); |
6987 | // Save callee save registers. |
6988 | __masm-> push(tmp3); |
6989 | __masm-> push(tmp4); |
6990 | #endif |
6991 | __masm-> push(tmp5); |
6992 | |
6993 | // Rename temps used throughout the code. |
6994 | const Register idx = tmp1; |
6995 | const Register nIdx = tmp2; |
6996 | |
6997 | __masm-> xorl(idx, idx); |
6998 | |
6999 | // Start right shift from end of the array. |
7000 | // For example, if #iteration = 4 and newIdx = 1 |
7001 | // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) |
7002 | // if #iteration = 4 and newIdx = 0 |
7003 | // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) |
7004 | __masm-> movl(idx, totalNumIter); |
7005 | __masm-> movl(nIdx, idx); |
7006 | __masm-> addl(nIdx, newIdx); |
7007 | |
7008 | // If vectorization is enabled, check if the number of iterations is at least 64 |
7009 | // If not, then go to ShifTwo processing 2 iterations |
7010 | if (VM_Version::supports_avx512_vbmi2()) { |
7011 | __masm-> cmpptr(totalNumIter, (AVX3Threshold/64)); |
7012 | __masm-> jcc(Assembler::less, ShiftTwo); |
7013 | |
7014 | if (AVX3Threshold < 16 * 64) { |
7015 | __masm-> cmpl(totalNumIter, 16); |
7016 | __masm-> jcc(Assembler::less, ShiftTwo); |
7017 | } |
7018 | __masm-> evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); |
7019 | __masm-> subl(idx, 16); |
7020 | __masm-> subl(nIdx, 16); |
7021 | __masm-> BIND(Shift512Loop)bind(Shift512Loop); masm-> block_comment("Shift512Loop" ":" ); |
7022 | __masm-> evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); |
7023 | __masm-> evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); |
7024 | __masm-> vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); |
7025 | __masm-> evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); |
7026 | __masm-> subl(nIdx, 16); |
7027 | __masm-> subl(idx, 16); |
7028 | __masm-> jcc(Assembler::greaterEqual, Shift512Loop); |
7029 | __masm-> addl(idx, 16); |
7030 | __masm-> addl(nIdx, 16); |
7031 | } |
7032 | __masm-> BIND(ShiftTwo)bind(ShiftTwo); masm-> block_comment("ShiftTwo" ":"); |
7033 | __masm-> cmpl(idx, 2); |
7034 | __masm-> jcc(Assembler::less, ShiftOne); |
7035 | __masm-> subl(idx, 2); |
7036 | __masm-> subl(nIdx, 2); |
7037 | __masm-> BIND(ShiftTwoLoop)bind(ShiftTwoLoop); masm-> block_comment("ShiftTwoLoop" ":" ); |
7038 | __masm-> movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); |
7039 | __masm-> movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); |
7040 | __masm-> movl(tmp3, Address(oldArr, idx, Address::times_4)); |
7041 | __masm-> shrdl(tmp5, tmp4); |
7042 | __masm-> shrdl(tmp4, tmp3); |
7043 | __masm-> movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); |
7044 | __masm-> movl(Address(newArr, nIdx, Address::times_4), tmp4); |
7045 | __masm-> subl(nIdx, 2); |
7046 | __masm-> subl(idx, 2); |
7047 | __masm-> jcc(Assembler::greaterEqual, ShiftTwoLoop); |
7048 | __masm-> addl(idx, 2); |
7049 | __masm-> addl(nIdx, 2); |
7050 | |
7051 | // Do the last iteration |
7052 | __masm-> BIND(ShiftOne)bind(ShiftOne); masm-> block_comment("ShiftOne" ":"); |
7053 | __masm-> cmpl(idx, 1); |
7054 | __masm-> jcc(Assembler::less, Exit); |
7055 | __masm-> subl(idx, 1); |
7056 | __masm-> subl(nIdx, 1); |
7057 | __masm-> movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); |
7058 | __masm-> movl(tmp3, Address(oldArr, idx, Address::times_4)); |
7059 | __masm-> shrdl(tmp4, tmp3); |
7060 | __masm-> movl(Address(newArr, nIdx, Address::times_4), tmp4); |
7061 | __masm-> BIND(Exit)bind(Exit); masm-> block_comment("Exit" ":"); |
7062 | // Restore callee save registers. |
7063 | __masm-> pop(tmp5); |
7064 | #ifdef _WINDOWS |
7065 | __masm-> pop(tmp4); |
7066 | __masm-> pop(tmp3); |
7067 | restore_arg_regs(); |
7068 | #endif |
7069 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7070 | __masm-> ret(0); |
7071 | return start; |
7072 | } |
7073 | |
7074 | /** |
7075 | * Arguments: |
7076 | * |
7077 | * Input: |
7078 | * c_rarg0 - newArr address |
7079 | * c_rarg1 - oldArr address |
7080 | * c_rarg2 - newIdx |
7081 | * c_rarg3 - shiftCount |
7082 | * not Win64 |
7083 | * c_rarg4 - numIter |
7084 | * Win64 |
7085 | * rsp40 - numIter |
7086 | */ |
7087 | address generate_bigIntegerLeftShift() { |
7088 | __masm-> align(CodeEntryAlignment); |
7089 | StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); |
7090 | address start = __masm-> pc(); |
7091 | Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; |
7092 | // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. |
7093 | const Register newArr = rdi; |
7094 | const Register oldArr = rsi; |
7095 | const Register newIdx = rdx; |
7096 | const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. |
7097 | const Register totalNumIter = r8; |
7098 | // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. |
7099 | // For everything else, we prefer using r9 and r10 since we do not have to save them before use. |
7100 | const Register tmp1 = r11; // Caller save. |
7101 | const Register tmp2 = rax; // Caller save. |
7102 | const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9)r9; // Windows: Callee save. Linux: Caller save. |
7103 | const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10)r10; // Windows: Callee save. Linux: Caller save. |
7104 | const Register tmp5 = r14; // Callee save. |
7105 | |
7106 | const XMMRegister x0 = xmm0; |
7107 | const XMMRegister x1 = xmm1; |
7108 | const XMMRegister x2 = xmm2; |
7109 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7110 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7111 | |
7112 | #ifdef _WINDOWS |
7113 | setup_arg_regs(4); |
7114 | // For windows, since last argument is on stack, we need to move it to the appropriate register. |
7115 | __masm-> movl(totalNumIter, Address(rsp, 6 * wordSize)); |
7116 | // Save callee save registers. |
7117 | __masm-> push(tmp3); |
7118 | __masm-> push(tmp4); |
7119 | #endif |
7120 | __masm-> push(tmp5); |
7121 | |
7122 | // Rename temps used throughout the code |
7123 | const Register idx = tmp1; |
7124 | const Register numIterTmp = tmp2; |
7125 | |
7126 | // Start idx from zero. |
7127 | __masm-> xorl(idx, idx); |
7128 | // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. |
7129 | __masm-> lea(newArr, Address(newArr, newIdx, Address::times_4)); |
7130 | __masm-> movl(numIterTmp, totalNumIter); |
7131 | |
7132 | // If vectorization is enabled, check if the number of iterations is at least 64 |
7133 | // If not, then go to ShiftTwo shifting two numbers at a time |
7134 | if (VM_Version::supports_avx512_vbmi2()) { |
7135 | __masm-> cmpl(totalNumIter, (AVX3Threshold/64)); |
7136 | __masm-> jcc(Assembler::less, ShiftTwo); |
7137 | |
7138 | if (AVX3Threshold < 16 * 64) { |
7139 | __masm-> cmpl(totalNumIter, 16); |
7140 | __masm-> jcc(Assembler::less, ShiftTwo); |
7141 | } |
7142 | __masm-> evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); |
7143 | __masm-> subl(numIterTmp, 16); |
7144 | __masm-> BIND(Shift512Loop)bind(Shift512Loop); masm-> block_comment("Shift512Loop" ":" ); |
7145 | __masm-> evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); |
7146 | __masm-> evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); |
7147 | __masm-> vpshldvd(x1, x2, x0, Assembler::AVX_512bit); |
7148 | __masm-> evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); |
7149 | __masm-> addl(idx, 16); |
7150 | __masm-> subl(numIterTmp, 16); |
7151 | __masm-> jcc(Assembler::greaterEqual, Shift512Loop); |
7152 | __masm-> addl(numIterTmp, 16); |
7153 | } |
7154 | __masm-> BIND(ShiftTwo)bind(ShiftTwo); masm-> block_comment("ShiftTwo" ":"); |
7155 | __masm-> cmpl(totalNumIter, 1); |
7156 | __masm-> jcc(Assembler::less, Exit); |
7157 | __masm-> movl(tmp3, Address(oldArr, idx, Address::times_4)); |
7158 | __masm-> subl(numIterTmp, 2); |
7159 | __masm-> jcc(Assembler::less, ShiftOne); |
7160 | |
7161 | __masm-> BIND(ShiftTwoLoop)bind(ShiftTwoLoop); masm-> block_comment("ShiftTwoLoop" ":" ); |
7162 | __masm-> movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); |
7163 | __masm-> movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); |
7164 | __masm-> shldl(tmp3, tmp4); |
7165 | __masm-> shldl(tmp4, tmp5); |
7166 | __masm-> movl(Address(newArr, idx, Address::times_4), tmp3); |
7167 | __masm-> movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); |
7168 | __masm-> movl(tmp3, tmp5); |
7169 | __masm-> addl(idx, 2); |
7170 | __masm-> subl(numIterTmp, 2); |
7171 | __masm-> jcc(Assembler::greaterEqual, ShiftTwoLoop); |
7172 | |
7173 | // Do the last iteration |
7174 | __masm-> BIND(ShiftOne)bind(ShiftOne); masm-> block_comment("ShiftOne" ":"); |
7175 | __masm-> addl(numIterTmp, 2); |
7176 | __masm-> cmpl(numIterTmp, 1); |
7177 | __masm-> jcc(Assembler::less, Exit); |
7178 | __masm-> movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); |
7179 | __masm-> shldl(tmp3, tmp4); |
7180 | __masm-> movl(Address(newArr, idx, Address::times_4), tmp3); |
7181 | |
7182 | __masm-> BIND(Exit)bind(Exit); masm-> block_comment("Exit" ":"); |
7183 | // Restore callee save registers. |
7184 | __masm-> pop(tmp5); |
7185 | #ifdef _WINDOWS |
7186 | __masm-> pop(tmp4); |
7187 | __masm-> pop(tmp3); |
7188 | restore_arg_regs(); |
7189 | #endif |
7190 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7191 | __masm-> ret(0); |
7192 | return start; |
7193 | } |
7194 | |
7195 | address generate_libmExp() { |
7196 | StubCodeMark mark(this, "StubRoutines", "libmExp"); |
7197 | |
7198 | address start = __masm-> pc(); |
7199 | |
7200 | const XMMRegister x0 = xmm0; |
7201 | const XMMRegister x1 = xmm1; |
7202 | const XMMRegister x2 = xmm2; |
7203 | const XMMRegister x3 = xmm3; |
7204 | |
7205 | const XMMRegister x4 = xmm4; |
7206 | const XMMRegister x5 = xmm5; |
7207 | const XMMRegister x6 = xmm6; |
7208 | const XMMRegister x7 = xmm7; |
7209 | |
7210 | const Register tmp = r11; |
7211 | |
7212 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7213 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7214 | |
7215 | __masm-> fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); |
7216 | |
7217 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7218 | __masm-> ret(0); |
7219 | |
7220 | return start; |
7221 | |
7222 | } |
7223 | |
7224 | address generate_libmLog() { |
7225 | StubCodeMark mark(this, "StubRoutines", "libmLog"); |
7226 | |
7227 | address start = __masm-> pc(); |
7228 | |
7229 | const XMMRegister x0 = xmm0; |
7230 | const XMMRegister x1 = xmm1; |
7231 | const XMMRegister x2 = xmm2; |
7232 | const XMMRegister x3 = xmm3; |
7233 | |
7234 | const XMMRegister x4 = xmm4; |
7235 | const XMMRegister x5 = xmm5; |
7236 | const XMMRegister x6 = xmm6; |
7237 | const XMMRegister x7 = xmm7; |
7238 | |
7239 | const Register tmp1 = r11; |
7240 | const Register tmp2 = r8; |
7241 | |
7242 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7243 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7244 | |
7245 | __masm-> fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2); |
7246 | |
7247 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7248 | __masm-> ret(0); |
7249 | |
7250 | return start; |
7251 | |
7252 | } |
7253 | |
7254 | address generate_libmLog10() { |
7255 | StubCodeMark mark(this, "StubRoutines", "libmLog10"); |
7256 | |
7257 | address start = __masm-> pc(); |
7258 | |
7259 | const XMMRegister x0 = xmm0; |
7260 | const XMMRegister x1 = xmm1; |
7261 | const XMMRegister x2 = xmm2; |
7262 | const XMMRegister x3 = xmm3; |
7263 | |
7264 | const XMMRegister x4 = xmm4; |
7265 | const XMMRegister x5 = xmm5; |
7266 | const XMMRegister x6 = xmm6; |
7267 | const XMMRegister x7 = xmm7; |
7268 | |
7269 | const Register tmp = r11; |
7270 | |
7271 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7272 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7273 | |
7274 | __masm-> fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); |
7275 | |
7276 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7277 | __masm-> ret(0); |
7278 | |
7279 | return start; |
7280 | |
7281 | } |
7282 | |
7283 | address generate_libmPow() { |
7284 | StubCodeMark mark(this, "StubRoutines", "libmPow"); |
7285 | |
7286 | address start = __masm-> pc(); |
7287 | |
7288 | const XMMRegister x0 = xmm0; |
7289 | const XMMRegister x1 = xmm1; |
7290 | const XMMRegister x2 = xmm2; |
7291 | const XMMRegister x3 = xmm3; |
7292 | |
7293 | const XMMRegister x4 = xmm4; |
7294 | const XMMRegister x5 = xmm5; |
7295 | const XMMRegister x6 = xmm6; |
7296 | const XMMRegister x7 = xmm7; |
7297 | |
7298 | const Register tmp1 = r8; |
7299 | const Register tmp2 = r9; |
7300 | const Register tmp3 = r10; |
7301 | const Register tmp4 = r11; |
7302 | |
7303 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7304 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7305 | |
7306 | __masm-> fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
7307 | |
7308 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7309 | __masm-> ret(0); |
7310 | |
7311 | return start; |
7312 | |
7313 | } |
7314 | |
7315 | address generate_libmSin() { |
7316 | StubCodeMark mark(this, "StubRoutines", "libmSin"); |
7317 | |
7318 | address start = __masm-> pc(); |
7319 | |
7320 | const XMMRegister x0 = xmm0; |
7321 | const XMMRegister x1 = xmm1; |
7322 | const XMMRegister x2 = xmm2; |
7323 | const XMMRegister x3 = xmm3; |
7324 | |
7325 | const XMMRegister x4 = xmm4; |
7326 | const XMMRegister x5 = xmm5; |
7327 | const XMMRegister x6 = xmm6; |
7328 | const XMMRegister x7 = xmm7; |
7329 | |
7330 | const Register tmp1 = r8; |
7331 | const Register tmp2 = r9; |
7332 | const Register tmp3 = r10; |
7333 | const Register tmp4 = r11; |
7334 | |
7335 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7336 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7337 | |
7338 | #ifdef _WIN64 |
7339 | __masm-> push(rsi); |
7340 | __masm-> push(rdi); |
7341 | #endif |
7342 | __masm-> fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
7343 | |
7344 | #ifdef _WIN64 |
7345 | __masm-> pop(rdi); |
7346 | __masm-> pop(rsi); |
7347 | #endif |
7348 | |
7349 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7350 | __masm-> ret(0); |
7351 | |
7352 | return start; |
7353 | |
7354 | } |
7355 | |
7356 | address generate_libmCos() { |
7357 | StubCodeMark mark(this, "StubRoutines", "libmCos"); |
7358 | |
7359 | address start = __masm-> pc(); |
7360 | |
7361 | const XMMRegister x0 = xmm0; |
7362 | const XMMRegister x1 = xmm1; |
7363 | const XMMRegister x2 = xmm2; |
7364 | const XMMRegister x3 = xmm3; |
7365 | |
7366 | const XMMRegister x4 = xmm4; |
7367 | const XMMRegister x5 = xmm5; |
7368 | const XMMRegister x6 = xmm6; |
7369 | const XMMRegister x7 = xmm7; |
7370 | |
7371 | const Register tmp1 = r8; |
7372 | const Register tmp2 = r9; |
7373 | const Register tmp3 = r10; |
7374 | const Register tmp4 = r11; |
7375 | |
7376 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7377 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7378 | |
7379 | #ifdef _WIN64 |
7380 | __masm-> push(rsi); |
7381 | __masm-> push(rdi); |
7382 | #endif |
7383 | __masm-> fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
7384 | |
7385 | #ifdef _WIN64 |
7386 | __masm-> pop(rdi); |
7387 | __masm-> pop(rsi); |
7388 | #endif |
7389 | |
7390 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7391 | __masm-> ret(0); |
7392 | |
7393 | return start; |
7394 | |
7395 | } |
7396 | |
7397 | address generate_libmTan() { |
7398 | StubCodeMark mark(this, "StubRoutines", "libmTan"); |
7399 | |
7400 | address start = __masm-> pc(); |
7401 | |
7402 | const XMMRegister x0 = xmm0; |
7403 | const XMMRegister x1 = xmm1; |
7404 | const XMMRegister x2 = xmm2; |
7405 | const XMMRegister x3 = xmm3; |
7406 | |
7407 | const XMMRegister x4 = xmm4; |
7408 | const XMMRegister x5 = xmm5; |
7409 | const XMMRegister x6 = xmm6; |
7410 | const XMMRegister x7 = xmm7; |
7411 | |
7412 | const Register tmp1 = r8; |
7413 | const Register tmp2 = r9; |
7414 | const Register tmp3 = r10; |
7415 | const Register tmp4 = r11; |
7416 | |
7417 | BLOCK_COMMENT("Entry:")masm-> block_comment("Entry:"); |
7418 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7419 | |
7420 | #ifdef _WIN64 |
7421 | __masm-> push(rsi); |
7422 | __masm-> push(rdi); |
7423 | #endif |
7424 | __masm-> fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); |
7425 | |
7426 | #ifdef _WIN64 |
7427 | __masm-> pop(rdi); |
7428 | __masm-> pop(rsi); |
7429 | #endif |
7430 | |
7431 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7432 | __masm-> ret(0); |
7433 | |
7434 | return start; |
7435 | |
7436 | } |
7437 | |
7438 | #undef __masm-> |
7439 | #define __masm-> masm-> |
7440 | |
7441 | // Continuation point for throwing of implicit exceptions that are |
7442 | // not handled in the current activation. Fabricates an exception |
7443 | // oop and initiates normal exception dispatching in this |
7444 | // frame. Since we need to preserve callee-saved values (currently |
7445 | // only for C2, but done for C1 as well) we need a callee-saved oop |
7446 | // map and therefore have to make these stubs into RuntimeStubs |
7447 | // rather than BufferBlobs. If the compiler needs all registers to |
7448 | // be preserved between the fault point and the exception handler |
7449 | // then it must assume responsibility for that in |
7450 | // AbstractCompiler::continuation_for_implicit_null_exception or |
7451 | // continuation_for_implicit_division_by_zero_exception. All other |
7452 | // implicit exceptions (e.g., NullPointerException or |
7453 | // AbstractMethodError on entry) are either at call sites or |
7454 | // otherwise assume that stack unwinding will be initiated, so |
7455 | // caller saved registers were assumed volatile in the compiler. |
7456 | address generate_throw_exception(const char* name, |
7457 | address runtime_entry, |
7458 | Register arg1 = noreg, |
7459 | Register arg2 = noreg) { |
7460 | // Information about frame layout at time of blocking runtime call. |
7461 | // Note that we only have to preserve callee-saved registers since |
7462 | // the compilers are responsible for supplying a continuation point |
7463 | // if they expect all registers to be preserved. |
7464 | enum layout { |
7465 | rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, |
7466 | rbp_off2, |
7467 | return_off, |
7468 | return_off2, |
7469 | framesize // inclusive of return address |
7470 | }; |
7471 | |
7472 | int insts_size = 512; |
7473 | int locs_size = 64; |
7474 | |
7475 | CodeBuffer code(name, insts_size, locs_size); |
7476 | OopMapSet* oop_maps = new OopMapSet(); |
7477 | MacroAssembler* masm = new MacroAssembler(&code); |
7478 | |
7479 | address start = __masm-> pc(); |
7480 | |
7481 | // This is an inlined and slightly modified version of call_VM |
7482 | // which has the ability to fetch the return PC out of |
7483 | // thread-local storage and also sets up last_Java_sp slightly |
7484 | // differently than the real call_VM |
7485 | |
7486 | __masm-> enter(); // required for proper stackwalking of RuntimeStub frame |
7487 | |
7488 | assert(is_even(framesize/2), "sp not 16-byte aligned")do { if (!(is_even(framesize/2))) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 7488, "assert(" "is_even(framesize/2)" ") failed", "sp not 16-byte aligned" ); ::breakpoint(); } } while (0); |
7489 | |
7490 | // return address and rbp are already in place |
7491 | __masm-> subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog |
7492 | |
7493 | int frame_complete = __masm-> pc() - start; |
7494 | |
7495 | // Set up last_Java_sp and last_Java_fp |
7496 | address the_pc = __masm-> pc(); |
7497 | __masm-> set_last_Java_frame(rsp, rbp, the_pc); |
7498 | __masm-> andptr(rsp, -(StackAlignmentInBytes)); // Align stack |
7499 | |
7500 | // Call runtime |
7501 | if (arg1 != noreg) { |
7502 | assert(arg2 != c_rarg1, "clobbered")do { if (!(arg2 != c_rarg1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/stubGenerator_x86_64.cpp" , 7502, "assert(" "arg2 != c_rarg1" ") failed", "clobbered"); ::breakpoint(); } } while (0); |
7503 | __masm-> movptr(c_rarg1, arg1); |
7504 | } |
7505 | if (arg2 != noreg) { |
7506 | __masm-> movptr(c_rarg2, arg2); |
7507 | } |
7508 | __masm-> movptr(c_rarg0, r15_thread); |
7509 | BLOCK_COMMENT("call runtime_entry")masm-> block_comment("call runtime_entry"); |
7510 | __masm-> call(RuntimeAddress(runtime_entry)); |
7511 | |
7512 | // Generate oop map |
7513 | OopMap* map = new OopMap(framesize, 0); |
7514 | |
7515 | oop_maps->add_gc_map(the_pc - start, map); |
7516 | |
7517 | __masm-> reset_last_Java_frame(true); |
7518 | |
7519 | __masm-> leave(); // required for proper stackwalking of RuntimeStub frame |
7520 | |
7521 | // check for pending exceptions |
7522 | #ifdef ASSERT1 |
7523 | Label L; |
7524 | __masm-> cmpptr(Address(r15_thread, Thread::pending_exception_offset()), |
7525 | (int32_t) NULL_WORD0L); |
7526 | __masm-> jcc(Assembler::notEqual, L); |
7527 | __masm-> should_not_reach_here(); |
7528 | __masm-> bind(L); |
7529 | #endif // ASSERT |
7530 | __masm-> jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
7531 | |
7532 | |
7533 | // codeBlob framesize is in words (not VMRegImpl::slot_size) |
7534 | RuntimeStub* stub = |
7535 | RuntimeStub::new_runtime_stub(name, |
7536 | &code, |
7537 | frame_complete, |
7538 | (framesize >> (LogBytesPerWord - LogBytesPerInt)), |
7539 | oop_maps, false); |
7540 | return stub->entry_point(); |
7541 | } |
7542 | |
7543 | void create_control_words() { |
7544 | // Round to nearest, 64-bit mode, exceptions masked |
7545 | StubRoutines::x86::_mxcsr_std = 0x1F80; |
7546 | } |
7547 | |
7548 | // Initialization |
7549 | void generate_initial() { |
7550 | // Generates all stubs and initializes the entry points |
7551 | |
7552 | // This platform-specific settings are needed by generate_call_stub() |
7553 | create_control_words(); |
7554 | |
7555 | // entry points that exist in all platforms Note: This is code |
7556 | // that could be shared among different platforms - however the |
7557 | // benefit seems to be smaller than the disadvantage of having a |
7558 | // much more complicated generator structure. See also comment in |
7559 | // stubRoutines.hpp. |
7560 | |
7561 | StubRoutines::_forward_exception_entry = generate_forward_exception(); |
7562 | |
7563 | StubRoutines::_call_stub_entry = |
7564 | generate_call_stub(StubRoutines::_call_stub_return_address); |
7565 | |
7566 | // is referenced by megamorphic call |
7567 | StubRoutines::_catch_exception_entry = generate_catch_exception(); |
7568 | |
7569 | // atomic calls |
7570 | StubRoutines::_fence_entry = generate_orderaccess_fence(); |
7571 | |
7572 | // platform dependent |
7573 | StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); |
7574 | |
7575 | StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); |
7576 | |
7577 | StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); |
7578 | StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); |
7579 | StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); |
7580 | StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); |
7581 | |
7582 | StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); |
7583 | StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); |
7584 | StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); |
7585 | StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); |
7586 | |
7587 | // Build this early so it's available for the interpreter. |
7588 | StubRoutines::_throw_StackOverflowError_entry = |
7589 | generate_throw_exception("StackOverflowError throw_exception", |
7590 | CAST_FROM_FN_PTR(address,((address)((address_word)(SharedRuntime:: throw_StackOverflowError ))) |
7591 | SharedRuntime::((address)((address_word)(SharedRuntime:: throw_StackOverflowError ))) |
7592 | throw_StackOverflowError)((address)((address_word)(SharedRuntime:: throw_StackOverflowError )))); |
7593 | StubRoutines::_throw_delayed_StackOverflowError_entry = |
7594 | generate_throw_exception("delayed StackOverflowError throw_exception", |
7595 | CAST_FROM_FN_PTR(address,((address)((address_word)(SharedRuntime:: throw_delayed_StackOverflowError ))) |
7596 | SharedRuntime::((address)((address_word)(SharedRuntime:: throw_delayed_StackOverflowError ))) |
7597 | throw_delayed_StackOverflowError)((address)((address_word)(SharedRuntime:: throw_delayed_StackOverflowError )))); |
7598 | if (UseCRC32Intrinsics) { |
7599 | // set table address before stub generation which use it |
7600 | StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; |
7601 | StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); |
7602 | } |
7603 | |
7604 | if (UseCRC32CIntrinsics) { |
7605 | bool supports_clmul = VM_Version::supports_clmul(); |
7606 | StubRoutines::x86::generate_CRC32C_table(supports_clmul); |
7607 | StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; |
7608 | StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); |
7609 | } |
7610 | |
7611 | if (UseAdler32Intrinsics) { |
7612 | StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); |
7613 | } |
7614 | |
7615 | if (UseLibmIntrinsic && InlineIntrinsics) { |
7616 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) || |
7617 | vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) || |
7618 | vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { |
7619 | StubRoutines::x86::_ONEHALF_adr = (address)StubRoutines::x86::_ONEHALF; |
7620 | StubRoutines::x86::_P_2_adr = (address)StubRoutines::x86::_P_2; |
7621 | StubRoutines::x86::_SC_4_adr = (address)StubRoutines::x86::_SC_4; |
7622 | StubRoutines::x86::_Ctable_adr = (address)StubRoutines::x86::_Ctable; |
7623 | StubRoutines::x86::_SC_2_adr = (address)StubRoutines::x86::_SC_2; |
7624 | StubRoutines::x86::_SC_3_adr = (address)StubRoutines::x86::_SC_3; |
7625 | StubRoutines::x86::_SC_1_adr = (address)StubRoutines::x86::_SC_1; |
7626 | StubRoutines::x86::_PI_INV_TABLE_adr = (address)StubRoutines::x86::_PI_INV_TABLE; |
7627 | StubRoutines::x86::_PI_4_adr = (address)StubRoutines::x86::_PI_4; |
7628 | StubRoutines::x86::_PI32INV_adr = (address)StubRoutines::x86::_PI32INV; |
7629 | StubRoutines::x86::_SIGN_MASK_adr = (address)StubRoutines::x86::_SIGN_MASK; |
7630 | StubRoutines::x86::_P_1_adr = (address)StubRoutines::x86::_P_1; |
7631 | StubRoutines::x86::_P_3_adr = (address)StubRoutines::x86::_P_3; |
7632 | StubRoutines::x86::_NEG_ZERO_adr = (address)StubRoutines::x86::_NEG_ZERO; |
7633 | } |
7634 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { |
7635 | StubRoutines::_dexp = generate_libmExp(); |
7636 | } |
7637 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { |
7638 | StubRoutines::_dlog = generate_libmLog(); |
7639 | } |
7640 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { |
7641 | StubRoutines::_dlog10 = generate_libmLog10(); |
7642 | } |
7643 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { |
7644 | StubRoutines::_dpow = generate_libmPow(); |
7645 | } |
7646 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { |
7647 | StubRoutines::_dsin = generate_libmSin(); |
7648 | } |
7649 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { |
7650 | StubRoutines::_dcos = generate_libmCos(); |
7651 | } |
7652 | if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { |
7653 | StubRoutines::_dtan = generate_libmTan(); |
7654 | } |
7655 | } |
7656 | |
7657 | // Safefetch stubs. |
7658 | generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, |
7659 | &StubRoutines::_safefetch32_fault_pc, |
7660 | &StubRoutines::_safefetch32_continuation_pc); |
7661 | generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, |
7662 | &StubRoutines::_safefetchN_fault_pc, |
7663 | &StubRoutines::_safefetchN_continuation_pc); |
7664 | } |
7665 | |
7666 | void generate_all() { |
7667 | // Generates all stubs and initializes the entry points |
7668 | |
7669 | // These entry points require SharedInfo::stack0 to be set up in |
7670 | // non-core builds and need to be relocatable, so they each |
7671 | // fabricate a RuntimeStub internally. |
7672 | StubRoutines::_throw_AbstractMethodError_entry = |
7673 | generate_throw_exception("AbstractMethodError throw_exception", |
7674 | CAST_FROM_FN_PTR(address,((address)((address_word)(SharedRuntime:: throw_AbstractMethodError ))) |
7675 | SharedRuntime::((address)((address_word)(SharedRuntime:: throw_AbstractMethodError ))) |
7676 | throw_AbstractMethodError)((address)((address_word)(SharedRuntime:: throw_AbstractMethodError )))); |
7677 | |
7678 | StubRoutines::_throw_IncompatibleClassChangeError_entry = |
7679 | generate_throw_exception("IncompatibleClassChangeError throw_exception", |
7680 | CAST_FROM_FN_PTR(address,((address)((address_word)(SharedRuntime:: throw_IncompatibleClassChangeError ))) |
7681 | SharedRuntime::((address)((address_word)(SharedRuntime:: throw_IncompatibleClassChangeError ))) |
7682 | throw_IncompatibleClassChangeError)((address)((address_word)(SharedRuntime:: throw_IncompatibleClassChangeError )))); |
7683 | |
7684 | StubRoutines::_throw_NullPointerException_at_call_entry = |
7685 | generate_throw_exception("NullPointerException at call throw_exception", |
7686 | CAST_FROM_FN_PTR(address,((address)((address_word)(SharedRuntime:: throw_NullPointerException_at_call ))) |
7687 | SharedRuntime::((address)((address_word)(SharedRuntime:: throw_NullPointerException_at_call ))) |
7688 | throw_NullPointerException_at_call)((address)((address_word)(SharedRuntime:: throw_NullPointerException_at_call )))); |
7689 | |
7690 | // entry points that are platform specific |
7691 | StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); |
7692 | StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); |
7693 | StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); |
7694 | StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); |
7695 | StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); |
7696 | StubRoutines::x86::_vector_int_mask_cmp_bits = generate_vector_mask("vector_int_mask_cmp_bits", 0x0000000100000001); |
7697 | StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); |
7698 | StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); |
7699 | StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); |
7700 | StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); |
7701 | StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, |
7702 | 0xFFFFFFFF, 0, 0, 0); |
7703 | StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, |
7704 | 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); |
7705 | StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); |
7706 | StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); |
7707 | StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); |
7708 | StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); |
7709 | StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); |
7710 | StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); |
7711 | |
7712 | // support for verify_oop (must happen after universe_init) |
7713 | if (VerifyOops) { |
7714 | StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); |
7715 | } |
7716 | |
7717 | // data cache line writeback |
7718 | StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); |
7719 | StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); |
7720 | |
7721 | // arraycopy stubs used by compilers |
7722 | generate_arraycopy_stubs(); |
7723 | |
7724 | // don't bother generating these AES intrinsic stubs unless global flag is set |
7725 | if (UseAESIntrinsics) { |
7726 | StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others |
7727 | StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); |
7728 | StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); |
7729 | StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); |
7730 | if (VM_Version::supports_avx512_vaes() && VM_Version::supports_avx512vl() && VM_Version::supports_avx512dq() ) { |
7731 | StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptVectorAESCrypt(); |
7732 | StubRoutines::_electronicCodeBook_encryptAESCrypt = generate_electronicCodeBook_encryptAESCrypt(); |
7733 | StubRoutines::_electronicCodeBook_decryptAESCrypt = generate_electronicCodeBook_decryptAESCrypt(); |
7734 | StubRoutines::x86::_counter_mask_addr = counter_mask_addr(); |
7735 | StubRoutines::x86::_ghash_poly512_addr = ghash_polynomial512_addr(); |
7736 | StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask(); |
7737 | StubRoutines::_galoisCounterMode_AESCrypt = generate_galoisCounterMode_AESCrypt(); |
7738 | } else { |
7739 | StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); |
7740 | } |
7741 | } |
7742 | |
7743 | if (UseAESCTRIntrinsics) { |
7744 | if (VM_Version::supports_avx512_vaes() && VM_Version::supports_avx512bw() && VM_Version::supports_avx512vl()) { |
7745 | if (StubRoutines::x86::_counter_mask_addr == NULL__null) { |
7746 | StubRoutines::x86::_counter_mask_addr = counter_mask_addr(); |
7747 | } |
7748 | StubRoutines::_counterMode_AESCrypt = generate_counterMode_VectorAESCrypt(); |
7749 | } else { |
7750 | StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask(); |
7751 | StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel(); |
7752 | } |
7753 | } |
7754 | |
7755 | if (UseMD5Intrinsics) { |
7756 | StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); |
7757 | StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); |
7758 | } |
7759 | if (UseSHA1Intrinsics) { |
7760 | StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); |
7761 | StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); |
7762 | StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); |
7763 | StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); |
7764 | } |
7765 | if (UseSHA256Intrinsics) { |
7766 | StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; |
7767 | char* dst = (char*)StubRoutines::x86::_k256_W; |
7768 | char* src = (char*)StubRoutines::x86::_k256; |
7769 | for (int ii = 0; ii < 16; ++ii) { |
7770 | memcpy(dst + 32 * ii, src + 16 * ii, 16); |
7771 | memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); |
7772 | } |
7773 | StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; |
7774 | StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); |
7775 | StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); |
7776 | StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); |
7777 | } |
7778 | if (UseSHA512Intrinsics) { |
7779 | StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; |
7780 | StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); |
7781 | StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); |
7782 | StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); |
7783 | } |
7784 | |
7785 | // Generate GHASH intrinsics code |
7786 | if (UseGHASHIntrinsics) { |
7787 | if (StubRoutines::x86::_ghash_long_swap_mask_addr == NULL__null) { |
7788 | StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask(); |
7789 | } |
7790 | StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask(); |
7791 | if (VM_Version::supports_avx()) { |
7792 | StubRoutines::x86::_ghash_shuffmask_addr = ghash_shufflemask_addr(); |
7793 | StubRoutines::x86::_ghash_poly_addr = ghash_polynomial_addr(); |
7794 | StubRoutines::_ghash_processBlocks = generate_avx_ghash_processBlocks(); |
7795 | } else { |
7796 | StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks(); |
7797 | } |
7798 | } |
7799 | |
7800 | |
7801 | if (UseBASE64Intrinsics) { |
7802 | if(VM_Version::supports_avx2() && |
7803 | VM_Version::supports_avx512bw() && |
7804 | VM_Version::supports_avx512vl()) { |
7805 | StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); |
7806 | StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); |
7807 | StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); |
7808 | } |
7809 | StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); |
7810 | if (VM_Version::supports_avx512_vbmi()) { |
7811 | StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); |
7812 | StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); |
7813 | StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); |
7814 | StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); |
7815 | StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); |
7816 | StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); |
7817 | StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); |
7818 | StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); |
7819 | StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); |
7820 | } |
7821 | StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); |
7822 | StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); |
7823 | StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); |
7824 | } |
7825 | |
7826 | BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); |
7827 | if (bs_nm != NULL__null) { |
7828 | StubRoutines::x86::_method_entry_barrier = generate_method_entry_barrier(); |
7829 | } |
7830 | #ifdef COMPILER21 |
7831 | if (UseMultiplyToLenIntrinsic) { |
7832 | StubRoutines::_multiplyToLen = generate_multiplyToLen(); |
7833 | } |
7834 | if (UseSquareToLenIntrinsic) { |
7835 | StubRoutines::_squareToLen = generate_squareToLen(); |
7836 | } |
7837 | if (UseMulAddIntrinsic) { |
7838 | StubRoutines::_mulAdd = generate_mulAdd(); |
7839 | } |
7840 | if (VM_Version::supports_avx512_vbmi2()) { |
7841 | StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); |
7842 | StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); |
7843 | } |
7844 | if (UseMontgomeryMultiplyIntrinsic) { |
7845 | StubRoutines::_montgomeryMultiply |
7846 | = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply)((address)((address_word)(SharedRuntime::montgomery_multiply) )); |
7847 | } |
7848 | if (UseMontgomerySquareIntrinsic) { |
7849 | StubRoutines::_montgomerySquare |
7850 | = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square)((address)((address_word)(SharedRuntime::montgomery_square))); |
7851 | } |
7852 | |
7853 | // Get svml stub routine addresses |
7854 | void *libjsvml = NULL__null; |
7855 | char ebuf[1024]; |
7856 | char dll_name[JVM_MAXPATHLEN4096 + 1]; |
7857 | if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { |
7858 | libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); |
7859 | } |
7860 | if (libjsvml != NULL__null) { |
7861 | // SVML method naming convention |
7862 | // All the methods are named as __jsvml_op<T><N>_ha_<VV> |
7863 | // Where: |
7864 | // ha stands for high accuracy |
7865 | // <T> is optional to indicate float/double |
7866 | // Set to f for vector float operation |
7867 | // Omitted for vector double operation |
7868 | // <N> is the number of elements in the vector |
7869 | // 1, 2, 4, 8, 16 |
7870 | // e.g. 128 bit float vector has 4 float elements |
7871 | // <VV> indicates the avx/sse level: |
7872 | // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 |
7873 | // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns |
7874 | // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns |
7875 | |
7876 | log_info(library)(!(LogImpl<(LogTag::_library), (LogTag::__NO_TAG), (LogTag ::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag:: __NO_TAG)>::is_level(LogLevel::Info))) ? (void)0 : LogImpl <(LogTag::_library), (LogTag::__NO_TAG), (LogTag::__NO_TAG ), (LogTag::__NO_TAG), (LogTag::__NO_TAG), (LogTag::__NO_TAG) >::write<LogLevel::Info>("Loaded library %s, handle " INTPTR_FORMAT"0x%016" "l" "x", JNI_LIB_PREFIX"lib" "jsvml" JNI_LIB_SUFFIX".so", p2i(libjsvml)); |
7877 | if (UseAVX > 2) { |
7878 | for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { |
7879 | int vop = VectorSupport::VECTOR_OP_SVML_START + op; |
7880 | if ((!VM_Version::supports_avx512dq()) && |
7881 | (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { |
7882 | continue; |
7883 | } |
7884 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::svmlname[op]); |
7885 | StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7886 | |
7887 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::svmlname[op]); |
7888 | StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7889 | } |
7890 | } |
7891 | const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); |
7892 | for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { |
7893 | int vop = VectorSupport::VECTOR_OP_SVML_START + op; |
7894 | if (vop == VectorSupport::VECTOR_OP_POW) { |
7895 | continue; |
7896 | } |
7897 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); |
7898 | StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7899 | |
7900 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); |
7901 | StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7902 | |
7903 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::svmlname[op], avx_sse_str); |
7904 | StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7905 | |
7906 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::svmlname[op], avx_sse_str); |
7907 | StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7908 | |
7909 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::svmlname[op], avx_sse_str); |
7910 | StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7911 | |
7912 | snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); |
7913 | StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); |
7914 | } |
7915 | } |
7916 | #endif // COMPILER2 |
7917 | |
7918 | if (UseVectorizedMismatchIntrinsic) { |
7919 | StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); |
7920 | } |
7921 | } |
7922 | |
7923 | public: |
7924 | StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { |
7925 | if (all) { |
7926 | generate_all(); |
7927 | } else { |
7928 | generate_initial(); |
7929 | } |
7930 | } |
7931 | }; // end class declaration |
7932 | |
7933 | #define UCM_TABLE_MAX_ENTRIES16 16 |
7934 | void StubGenerator_generate(CodeBuffer* code, bool all) { |
7935 | if (UnsafeCopyMemory::_table == NULL__null) { |
7936 | UnsafeCopyMemory::create_table(UCM_TABLE_MAX_ENTRIES16); |
7937 | } |
7938 | StubGenerator g(code, all); |
7939 | } |