File: | jdk/src/java.desktop/share/native/liblcms/cmsopt.c |
Warning: | line 1161, column 13 Access to field 'Table16' results in a dereference of a null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
3 | * | |||
4 | * This code is free software; you can redistribute it and/or modify it | |||
5 | * under the terms of the GNU General Public License version 2 only, as | |||
6 | * published by the Free Software Foundation. Oracle designates this | |||
7 | * particular file as subject to the "Classpath" exception as provided | |||
8 | * by Oracle in the LICENSE file that accompanied this code. | |||
9 | * | |||
10 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
13 | * version 2 for more details (a copy is included in the LICENSE file that | |||
14 | * accompanied this code). | |||
15 | * | |||
16 | * You should have received a copy of the GNU General Public License version | |||
17 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
19 | * | |||
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
21 | * or visit www.oracle.com if you need additional information or have any | |||
22 | * questions. | |||
23 | */ | |||
24 | ||||
25 | // This file is available under and governed by the GNU General Public | |||
26 | // License version 2 only, as published by the Free Software Foundation. | |||
27 | // However, the following notice accompanied the original version of this | |||
28 | // file: | |||
29 | // | |||
30 | //--------------------------------------------------------------------------------- | |||
31 | // | |||
32 | // Little Color Management System | |||
33 | // Copyright (c) 1998-2020 Marti Maria Saguer | |||
34 | // | |||
35 | // Permission is hereby granted, free of charge, to any person obtaining | |||
36 | // a copy of this software and associated documentation files (the "Software"), | |||
37 | // to deal in the Software without restriction, including without limitation | |||
38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |||
39 | // and/or sell copies of the Software, and to permit persons to whom the Software | |||
40 | // is furnished to do so, subject to the following conditions: | |||
41 | // | |||
42 | // The above copyright notice and this permission notice shall be included in | |||
43 | // all copies or substantial portions of the Software. | |||
44 | // | |||
45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||
46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |||
47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |||
49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |||
50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |||
51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
52 | // | |||
53 | //--------------------------------------------------------------------------------- | |||
54 | // | |||
55 | ||||
56 | #include "lcms2_internal.h" | |||
57 | ||||
58 | ||||
59 | //---------------------------------------------------------------------------------- | |||
60 | ||||
61 | // Optimization for 8 bits, Shaper-CLUT (3 inputs only) | |||
62 | typedef struct { | |||
63 | ||||
64 | cmsContext ContextID; | |||
65 | ||||
66 | const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer. | |||
67 | ||||
68 | cmsUInt16Number rx[256], ry[256], rz[256]; | |||
69 | cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data | |||
70 | ||||
71 | ||||
72 | } Prelin8Data; | |||
73 | ||||
74 | ||||
75 | // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs) | |||
76 | typedef struct { | |||
77 | ||||
78 | cmsContext ContextID; | |||
79 | ||||
80 | // Number of channels | |||
81 | cmsUInt32Number nInputs; | |||
82 | cmsUInt32Number nOutputs; | |||
83 | ||||
84 | _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS15]; // The maximum number of input channels is known in advance | |||
85 | cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS15]; | |||
86 | ||||
87 | _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid | |||
88 | const cmsInterpParams* CLUTparams; // (not-owned pointer) | |||
89 | ||||
90 | ||||
91 | _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer) | |||
92 | cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer) | |||
93 | ||||
94 | ||||
95 | } Prelin16Data; | |||
96 | ||||
97 | ||||
98 | // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed | |||
99 | ||||
100 | typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits! | |||
101 | ||||
102 | #define DOUBLE_TO_1FIXED14(x)((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) | |||
103 | ||||
104 | typedef struct { | |||
105 | ||||
106 | cmsContext ContextID; | |||
107 | ||||
108 | cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0) | |||
109 | cmsS1Fixed14Number Shaper1G[256]; | |||
110 | cmsS1Fixed14Number Shaper1B[256]; | |||
111 | ||||
112 | cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that) | |||
113 | cmsS1Fixed14Number Off[3]; | |||
114 | ||||
115 | cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255 | |||
116 | cmsUInt16Number Shaper2G[16385]; | |||
117 | cmsUInt16Number Shaper2B[16385]; | |||
118 | ||||
119 | } MatShaper8Data; | |||
120 | ||||
121 | // Curves, optimization is shared between 8 and 16 bits | |||
122 | typedef struct { | |||
123 | ||||
124 | cmsContext ContextID; | |||
125 | ||||
126 | cmsUInt32Number nCurves; // Number of curves | |||
127 | cmsUInt32Number nElements; // Elements in curves | |||
128 | cmsUInt16Number** Curves; // Points to a dynamically allocated array | |||
129 | ||||
130 | } Curves16Data; | |||
131 | ||||
132 | ||||
133 | // Simple optimizations ---------------------------------------------------------------------------------------------------------- | |||
134 | ||||
135 | ||||
136 | // Remove an element in linked chain | |||
137 | static | |||
138 | void _RemoveElement(cmsStage** head) | |||
139 | { | |||
140 | cmsStage* mpe = *head; | |||
141 | cmsStage* next = mpe ->Next; | |||
142 | *head = next; | |||
143 | cmsStageFree(mpe); | |||
144 | } | |||
145 | ||||
146 | // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer. | |||
147 | static | |||
148 | cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp) | |||
149 | { | |||
150 | cmsStage** pt = &Lut ->Elements; | |||
151 | cmsBool AnyOpt = FALSE0; | |||
152 | ||||
153 | while (*pt != NULL((void*)0)) { | |||
154 | ||||
155 | if ((*pt) ->Implements == UnaryOp) { | |||
156 | _RemoveElement(pt); | |||
157 | AnyOpt = TRUE1; | |||
158 | } | |||
159 | else | |||
160 | pt = &((*pt) -> Next); | |||
161 | } | |||
162 | ||||
163 | return AnyOpt; | |||
164 | } | |||
165 | ||||
166 | // Same, but only if two adjacent elements are found | |||
167 | static | |||
168 | cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2) | |||
169 | { | |||
170 | cmsStage** pt1; | |||
171 | cmsStage** pt2; | |||
172 | cmsBool AnyOpt = FALSE0; | |||
173 | ||||
174 | pt1 = &Lut ->Elements; | |||
175 | if (*pt1 == NULL((void*)0)) return AnyOpt; | |||
176 | ||||
177 | while (*pt1 != NULL((void*)0)) { | |||
178 | ||||
179 | pt2 = &((*pt1) -> Next); | |||
180 | if (*pt2 == NULL((void*)0)) return AnyOpt; | |||
181 | ||||
182 | if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) { | |||
183 | _RemoveElement(pt2); | |||
184 | _RemoveElement(pt1); | |||
185 | AnyOpt = TRUE1; | |||
186 | } | |||
187 | else | |||
188 | pt1 = &((*pt1) -> Next); | |||
189 | } | |||
190 | ||||
191 | return AnyOpt; | |||
192 | } | |||
193 | ||||
194 | ||||
195 | static | |||
196 | cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b) | |||
197 | { | |||
198 | return fabs(b - a) < 0.00001f; | |||
199 | } | |||
200 | ||||
201 | static | |||
202 | cmsBool isFloatMatrixIdentity(const cmsMAT3* a) | |||
203 | { | |||
204 | cmsMAT3 Identity; | |||
205 | int i, j; | |||
206 | ||||
207 | _cmsMAT3identity(&Identity); | |||
208 | ||||
209 | for (i = 0; i < 3; i++) | |||
210 | for (j = 0; j < 3; j++) | |||
211 | if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE0; | |||
212 | ||||
213 | return TRUE1; | |||
214 | } | |||
215 | // if two adjacent matrices are found, multiply them. | |||
216 | static | |||
217 | cmsBool _MultiplyMatrix(cmsPipeline* Lut) | |||
218 | { | |||
219 | cmsStage** pt1; | |||
220 | cmsStage** pt2; | |||
221 | cmsStage* chain; | |||
222 | cmsBool AnyOpt = FALSE0; | |||
223 | ||||
224 | pt1 = &Lut->Elements; | |||
225 | if (*pt1 == NULL((void*)0)) return AnyOpt; | |||
226 | ||||
227 | while (*pt1 != NULL((void*)0)) { | |||
228 | ||||
229 | pt2 = &((*pt1)->Next); | |||
230 | if (*pt2 == NULL((void*)0)) return AnyOpt; | |||
231 | ||||
232 | if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) { | |||
233 | ||||
234 | // Get both matrices | |||
235 | _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1); | |||
236 | _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2); | |||
237 | cmsMAT3 res; | |||
238 | ||||
239 | // Input offset and output offset should be zero to use this optimization | |||
240 | if (m1->Offset != NULL((void*)0) || m2 ->Offset != NULL((void*)0) || | |||
241 | cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 || | |||
242 | cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3) | |||
243 | return FALSE0; | |||
244 | ||||
245 | // Multiply both matrices to get the result | |||
246 | _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double); | |||
247 | ||||
248 | // Get the next in chain after the matrices | |||
249 | chain = (*pt2)->Next; | |||
250 | ||||
251 | // Remove both matrices | |||
252 | _RemoveElement(pt2); | |||
253 | _RemoveElement(pt1); | |||
254 | ||||
255 | // Now what if the result is a plain identity? | |||
256 | if (!isFloatMatrixIdentity(&res)) { | |||
257 | ||||
258 | // We can not get rid of full matrix | |||
259 | cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL((void*)0)); | |||
260 | if (Multmat == NULL((void*)0)) return FALSE0; // Should never happen | |||
261 | ||||
262 | // Recover the chain | |||
263 | Multmat->Next = chain; | |||
264 | *pt1 = Multmat; | |||
265 | } | |||
266 | ||||
267 | AnyOpt = TRUE1; | |||
268 | } | |||
269 | else | |||
270 | pt1 = &((*pt1)->Next); | |||
271 | } | |||
272 | ||||
273 | return AnyOpt; | |||
274 | } | |||
275 | ||||
276 | ||||
277 | // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed | |||
278 | // by a v4 to v2 and vice-versa. The elements are then discarded. | |||
279 | static | |||
280 | cmsBool PreOptimize(cmsPipeline* Lut) | |||
281 | { | |||
282 | cmsBool AnyOpt = FALSE0, Opt; | |||
283 | ||||
284 | do { | |||
285 | ||||
286 | Opt = FALSE0; | |||
287 | ||||
288 | // Remove all identities | |||
289 | Opt |= _Remove1Op(Lut, cmsSigIdentityElemType); | |||
290 | ||||
291 | // Remove XYZ2Lab followed by Lab2XYZ | |||
292 | Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType); | |||
293 | ||||
294 | // Remove Lab2XYZ followed by XYZ2Lab | |||
295 | Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType); | |||
296 | ||||
297 | // Remove V4 to V2 followed by V2 to V4 | |||
298 | Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4); | |||
299 | ||||
300 | // Remove V2 to V4 followed by V4 to V2 | |||
301 | Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2); | |||
302 | ||||
303 | // Remove float pcs Lab conversions | |||
304 | Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab); | |||
305 | ||||
306 | // Remove float pcs Lab conversions | |||
307 | Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ); | |||
308 | ||||
309 | // Simplify matrix. | |||
310 | Opt |= _MultiplyMatrix(Lut); | |||
311 | ||||
312 | if (Opt) AnyOpt = TRUE1; | |||
313 | ||||
314 | } while (Opt); | |||
315 | ||||
316 | return AnyOpt; | |||
317 | } | |||
318 | ||||
319 | static | |||
320 | void Eval16nop1D(CMSREGISTERregister const cmsUInt16Number Input[], | |||
321 | CMSREGISTERregister cmsUInt16Number Output[], | |||
322 | CMSREGISTERregister const struct _cms_interp_struc* p) | |||
323 | { | |||
324 | Output[0] = Input[0]; | |||
325 | ||||
326 | cmsUNUSED_PARAMETER(p)((void)p); | |||
327 | } | |||
328 | ||||
329 | static | |||
330 | void PrelinEval16(CMSREGISTERregister const cmsUInt16Number Input[], | |||
331 | CMSREGISTERregister cmsUInt16Number Output[], | |||
332 | CMSREGISTERregister const void* D) | |||
333 | { | |||
334 | Prelin16Data* p16 = (Prelin16Data*) D; | |||
335 | cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS15]; | |||
336 | cmsUInt16Number StageDEF[cmsMAXCHANNELS16]; | |||
337 | cmsUInt32Number i; | |||
338 | ||||
339 | for (i=0; i < p16 ->nInputs; i++) { | |||
340 | ||||
341 | p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]); | |||
342 | } | |||
343 | ||||
344 | p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams); | |||
345 | ||||
346 | for (i=0; i < p16 ->nOutputs; i++) { | |||
347 | ||||
348 | p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]); | |||
349 | } | |||
350 | } | |||
351 | ||||
352 | ||||
353 | static | |||
354 | void PrelinOpt16free(cmsContext ContextID, void* ptr) | |||
355 | { | |||
356 | Prelin16Data* p16 = (Prelin16Data*) ptr; | |||
357 | ||||
358 | _cmsFree(ContextID, p16 ->EvalCurveOut16); | |||
359 | _cmsFree(ContextID, p16 ->ParamsCurveOut16); | |||
360 | ||||
361 | _cmsFree(ContextID, p16); | |||
362 | } | |||
363 | ||||
364 | static | |||
365 | void* Prelin16dup(cmsContext ContextID, const void* ptr) | |||
366 | { | |||
367 | Prelin16Data* p16 = (Prelin16Data*) ptr; | |||
368 | Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data)); | |||
369 | ||||
370 | if (Duped == NULL((void*)0)) return NULL((void*)0); | |||
371 | ||||
372 | Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16)); | |||
373 | Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*)); | |||
374 | ||||
375 | return Duped; | |||
376 | } | |||
377 | ||||
378 | ||||
379 | static | |||
380 | Prelin16Data* PrelinOpt16alloc(cmsContext ContextID, | |||
381 | const cmsInterpParams* ColorMap, | |||
382 | cmsUInt32Number nInputs, cmsToneCurve** In, | |||
383 | cmsUInt32Number nOutputs, cmsToneCurve** Out ) | |||
384 | { | |||
385 | cmsUInt32Number i; | |||
386 | Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data)); | |||
387 | if (p16 == NULL((void*)0)) return NULL((void*)0); | |||
388 | ||||
389 | p16 ->nInputs = nInputs; | |||
390 | p16 ->nOutputs = nOutputs; | |||
391 | ||||
392 | ||||
393 | for (i=0; i < nInputs; i++) { | |||
394 | ||||
395 | if (In == NULL((void*)0)) { | |||
396 | p16 -> ParamsCurveIn16[i] = NULL((void*)0); | |||
397 | p16 -> EvalCurveIn16[i] = Eval16nop1D; | |||
398 | ||||
399 | } | |||
400 | else { | |||
401 | p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams; | |||
402 | p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16; | |||
403 | } | |||
404 | } | |||
405 | ||||
406 | p16 ->CLUTparams = ColorMap; | |||
407 | p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16; | |||
408 | ||||
409 | ||||
410 | p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16)); | |||
411 | if (p16->EvalCurveOut16 == NULL((void*)0)) | |||
412 | { | |||
413 | _cmsFree(ContextID, p16); | |||
414 | return NULL((void*)0); | |||
415 | } | |||
416 | ||||
417 | p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* )); | |||
418 | if (p16->ParamsCurveOut16 == NULL((void*)0)) | |||
419 | { | |||
420 | ||||
421 | _cmsFree(ContextID, p16->EvalCurveOut16); | |||
422 | _cmsFree(ContextID, p16); | |||
423 | return NULL((void*)0); | |||
424 | } | |||
425 | ||||
426 | for (i=0; i < nOutputs; i++) { | |||
427 | ||||
428 | if (Out == NULL((void*)0)) { | |||
429 | p16 ->ParamsCurveOut16[i] = NULL((void*)0); | |||
430 | p16 -> EvalCurveOut16[i] = Eval16nop1D; | |||
431 | } | |||
432 | else { | |||
433 | ||||
434 | p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams; | |||
435 | p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16; | |||
436 | } | |||
437 | } | |||
438 | ||||
439 | return p16; | |||
440 | } | |||
441 | ||||
442 | ||||
443 | ||||
444 | // Resampling --------------------------------------------------------------------------------- | |||
445 | ||||
446 | #define PRELINEARIZATION_POINTS4096 4096 | |||
447 | ||||
448 | // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for | |||
449 | // almost any transform. We use floating point precision and then convert from floating point to 16 bits. | |||
450 | static | |||
451 | cmsInt32Number XFormSampler16(CMSREGISTERregister const cmsUInt16Number In[], | |||
452 | CMSREGISTERregister cmsUInt16Number Out[], | |||
453 | CMSREGISTERregister void* Cargo) | |||
454 | { | |||
455 | cmsPipeline* Lut = (cmsPipeline*) Cargo; | |||
456 | cmsFloat32Number InFloat[cmsMAXCHANNELS16], OutFloat[cmsMAXCHANNELS16]; | |||
457 | cmsUInt32Number i; | |||
458 | ||||
459 | _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS)(((Lut -> InputChannels < 16)) ? (void) (0) : __assert_fail ("(Lut -> InputChannels < 16)", "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsopt.c" , 459, __extension__ __PRETTY_FUNCTION__)); | |||
460 | _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS)(((Lut -> OutputChannels < 16)) ? (void) (0) : __assert_fail ("(Lut -> OutputChannels < 16)", "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsopt.c" , 460, __extension__ __PRETTY_FUNCTION__)); | |||
461 | ||||
462 | // From 16 bit to floating point | |||
463 | for (i=0; i < Lut ->InputChannels; i++) | |||
464 | InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0); | |||
465 | ||||
466 | // Evaluate in floating point | |||
467 | cmsPipelineEvalFloat(InFloat, OutFloat, Lut); | |||
468 | ||||
469 | // Back to 16 bits representation | |||
470 | for (i=0; i < Lut ->OutputChannels; i++) | |||
471 | Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0); | |||
472 | ||||
473 | // Always succeed | |||
474 | return TRUE1; | |||
475 | } | |||
476 | ||||
477 | // Try to see if the curves of a given MPE are linear | |||
478 | static | |||
479 | cmsBool AllCurvesAreLinear(cmsStage* mpe) | |||
480 | { | |||
481 | cmsToneCurve** Curves; | |||
482 | cmsUInt32Number i, n; | |||
483 | ||||
484 | Curves = _cmsStageGetPtrToCurveSet(mpe); | |||
485 | if (Curves == NULL((void*)0)) return FALSE0; | |||
486 | ||||
487 | n = cmsStageOutputChannels(mpe); | |||
488 | ||||
489 | for (i=0; i < n; i++) { | |||
490 | if (!cmsIsToneCurveLinear(Curves[i])) return FALSE0; | |||
491 | } | |||
492 | ||||
493 | return TRUE1; | |||
494 | } | |||
495 | ||||
496 | // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose | |||
497 | // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels | |||
498 | static | |||
499 | cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[], | |||
500 | cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn) | |||
501 | { | |||
502 | _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data; | |||
503 | cmsInterpParams* p16 = Grid ->Params; | |||
504 | cmsFloat64Number px, py, pz, pw; | |||
505 | int x0, y0, z0, w0; | |||
506 | int i, index; | |||
507 | ||||
508 | if (CLUT -> Type != cmsSigCLutElemType) { | |||
509 | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL3, "(internal) Attempt to PatchLUT on non-lut stage"); | |||
510 | return FALSE0; | |||
511 | } | |||
512 | ||||
513 | if (nChannelsIn == 4) { | |||
514 | ||||
515 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | |||
516 | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; | |||
517 | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; | |||
518 | pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0; | |||
519 | ||||
520 | x0 = (int) floor(px); | |||
521 | y0 = (int) floor(py); | |||
522 | z0 = (int) floor(pz); | |||
523 | w0 = (int) floor(pw); | |||
524 | ||||
525 | if (((px - x0) != 0) || | |||
526 | ((py - y0) != 0) || | |||
527 | ((pz - z0) != 0) || | |||
528 | ((pw - w0) != 0)) return FALSE0; // Not on exact node | |||
529 | ||||
530 | index = (int) p16 -> opta[3] * x0 + | |||
531 | (int) p16 -> opta[2] * y0 + | |||
532 | (int) p16 -> opta[1] * z0 + | |||
533 | (int) p16 -> opta[0] * w0; | |||
534 | } | |||
535 | else | |||
536 | if (nChannelsIn == 3) { | |||
537 | ||||
538 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | |||
539 | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; | |||
540 | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; | |||
541 | ||||
542 | x0 = (int) floor(px); | |||
543 | y0 = (int) floor(py); | |||
544 | z0 = (int) floor(pz); | |||
545 | ||||
546 | if (((px - x0) != 0) || | |||
547 | ((py - y0) != 0) || | |||
548 | ((pz - z0) != 0)) return FALSE0; // Not on exact node | |||
549 | ||||
550 | index = (int) p16 -> opta[2] * x0 + | |||
551 | (int) p16 -> opta[1] * y0 + | |||
552 | (int) p16 -> opta[0] * z0; | |||
553 | } | |||
554 | else | |||
555 | if (nChannelsIn == 1) { | |||
556 | ||||
557 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | |||
558 | ||||
559 | x0 = (int) floor(px); | |||
560 | ||||
561 | if (((px - x0) != 0)) return FALSE0; // Not on exact node | |||
562 | ||||
563 | index = (int) p16 -> opta[0] * x0; | |||
564 | } | |||
565 | else { | |||
566 | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL3, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn); | |||
567 | return FALSE0; | |||
568 | } | |||
569 | ||||
570 | for (i = 0; i < (int) nChannelsOut; i++) | |||
571 | Grid->Tab.T[index + i] = Value[i]; | |||
572 | ||||
573 | return TRUE1; | |||
574 | } | |||
575 | ||||
576 | // Auxiliary, to see if two values are equal or very different | |||
577 | static | |||
578 | cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] ) | |||
579 | { | |||
580 | cmsUInt32Number i; | |||
581 | ||||
582 | for (i=0; i < n; i++) { | |||
583 | ||||
584 | if (abs(White1[i] - White2[i]) > 0xf000) return TRUE1; // Values are so extremely different that the fixup should be avoided | |||
585 | if (White1[i] != White2[i]) return FALSE0; | |||
586 | } | |||
587 | return TRUE1; | |||
588 | } | |||
589 | ||||
590 | ||||
591 | // Locate the node for the white point and fix it to pure white in order to avoid scum dot. | |||
592 | static | |||
593 | cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace) | |||
594 | { | |||
595 | cmsUInt16Number *WhitePointIn, *WhitePointOut; | |||
596 | cmsUInt16Number WhiteIn[cmsMAXCHANNELS16], WhiteOut[cmsMAXCHANNELS16], ObtainedOut[cmsMAXCHANNELS16]; | |||
597 | cmsUInt32Number i, nOuts, nIns; | |||
598 | cmsStage *PreLin = NULL((void*)0), *CLUT = NULL((void*)0), *PostLin = NULL((void*)0); | |||
599 | ||||
600 | if (!_cmsEndPointsBySpace(EntryColorSpace, | |||
601 | &WhitePointIn, NULL((void*)0), &nIns)) return FALSE0; | |||
602 | ||||
603 | if (!_cmsEndPointsBySpace(ExitColorSpace, | |||
604 | &WhitePointOut, NULL((void*)0), &nOuts)) return FALSE0; | |||
605 | ||||
606 | // It needs to be fixed? | |||
607 | if (Lut ->InputChannels != nIns) return FALSE0; | |||
608 | if (Lut ->OutputChannels != nOuts) return FALSE0; | |||
609 | ||||
610 | cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut); | |||
611 | ||||
612 | if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE1; // whites already match | |||
613 | ||||
614 | // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations | |||
615 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin)) | |||
616 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT)) | |||
617 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin)) | |||
618 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT)) | |||
619 | return FALSE0; | |||
620 | ||||
621 | // We need to interpolate white points of both, pre and post curves | |||
622 | if (PreLin) { | |||
623 | ||||
624 | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin); | |||
625 | ||||
626 | for (i=0; i < nIns; i++) { | |||
627 | WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]); | |||
628 | } | |||
629 | } | |||
630 | else { | |||
631 | for (i=0; i < nIns; i++) | |||
632 | WhiteIn[i] = WhitePointIn[i]; | |||
633 | } | |||
634 | ||||
635 | // If any post-linearization, we need to find how is represented white before the curve, do | |||
636 | // a reverse interpolation in this case. | |||
637 | if (PostLin) { | |||
638 | ||||
639 | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin); | |||
640 | ||||
641 | for (i=0; i < nOuts; i++) { | |||
642 | ||||
643 | cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]); | |||
644 | if (InversePostLin == NULL((void*)0)) { | |||
645 | WhiteOut[i] = WhitePointOut[i]; | |||
646 | ||||
647 | } else { | |||
648 | ||||
649 | WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]); | |||
650 | cmsFreeToneCurve(InversePostLin); | |||
651 | } | |||
652 | } | |||
653 | } | |||
654 | else { | |||
655 | for (i=0; i < nOuts; i++) | |||
656 | WhiteOut[i] = WhitePointOut[i]; | |||
657 | } | |||
658 | ||||
659 | // Ok, proceed with patching. May fail and we don't care if it fails | |||
660 | PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns); | |||
661 | ||||
662 | return TRUE1; | |||
663 | } | |||
664 | ||||
665 | // ----------------------------------------------------------------------------------------------------------------------------------------------- | |||
666 | // This function creates simple LUT from complex ones. The generated LUT has an optional set of | |||
667 | // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables. | |||
668 | // These curves have to exist in the original LUT in order to be used in the simplified output. | |||
669 | // Caller may also use the flags to allow this feature. | |||
670 | // LUTS with all curves will be simplified to a single curve. Parametric curves are lost. | |||
671 | // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified | |||
672 | // ----------------------------------------------------------------------------------------------------------------------------------------------- | |||
673 | ||||
674 | static | |||
675 | cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |||
676 | { | |||
677 | cmsPipeline* Src = NULL((void*)0); | |||
678 | cmsPipeline* Dest = NULL((void*)0); | |||
679 | cmsStage* mpe; | |||
680 | cmsStage* CLUT; | |||
681 | cmsStage *KeepPreLin = NULL((void*)0), *KeepPostLin = NULL((void*)0); | |||
682 | cmsUInt32Number nGridPoints; | |||
683 | cmsColorSpaceSignature ColorSpace, OutputColorSpace; | |||
684 | cmsStage *NewPreLin = NULL((void*)0); | |||
685 | cmsStage *NewPostLin = NULL((void*)0); | |||
686 | _cmsStageCLutData* DataCLUT; | |||
687 | cmsToneCurve** DataSetIn; | |||
688 | cmsToneCurve** DataSetOut; | |||
689 | Prelin16Data* p16; | |||
690 | ||||
691 | // This is a lossy optimization! does not apply in floating-point cases | |||
692 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE0; | |||
693 | ||||
694 | ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)(((*InputFormat)>>16)&31)); | |||
695 | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)(((*OutputFormat)>>16)&31)); | |||
696 | ||||
697 | // Color space must be specified | |||
698 | if (ColorSpace == (cmsColorSpaceSignature)0 || | |||
699 | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE0; | |||
700 | ||||
701 | nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); | |||
702 | ||||
703 | // For empty LUTs, 2 points are enough | |||
704 | if (cmsPipelineStageCount(*Lut) == 0) | |||
705 | nGridPoints = 2; | |||
706 | ||||
707 | Src = *Lut; | |||
708 | ||||
709 | // Named color pipelines cannot be optimized either | |||
710 | for (mpe = cmsPipelineGetPtrToFirstStage(Src); | |||
711 | mpe != NULL((void*)0); | |||
712 | mpe = cmsStageNext(mpe)) { | |||
713 | if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE0; | |||
714 | } | |||
715 | ||||
716 | // Allocate an empty LUT | |||
717 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); | |||
718 | if (!Dest) return FALSE0; | |||
719 | ||||
720 | // Prelinearization tables are kept unless indicated by flags | |||
721 | if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION0x0010) { | |||
722 | ||||
723 | // Get a pointer to the prelinearization element | |||
724 | cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src); | |||
725 | ||||
726 | // Check if suitable | |||
727 | if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) { | |||
728 | ||||
729 | // Maybe this is a linear tram, so we can avoid the whole stuff | |||
730 | if (!AllCurvesAreLinear(PreLin)) { | |||
731 | ||||
732 | // All seems ok, proceed. | |||
733 | NewPreLin = cmsStageDup(PreLin); | |||
734 | if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin)) | |||
735 | goto Error; | |||
736 | ||||
737 | // Remove prelinearization. Since we have duplicated the curve | |||
738 | // in destination LUT, the sampling should be applied after this stage. | |||
739 | cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin); | |||
740 | } | |||
741 | } | |||
742 | } | |||
743 | ||||
744 | // Allocate the CLUT | |||
745 | CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL((void*)0)); | |||
746 | if (CLUT == NULL((void*)0)) goto Error; | |||
747 | ||||
748 | // Add the CLUT to the destination LUT | |||
749 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) { | |||
750 | goto Error; | |||
751 | } | |||
752 | ||||
753 | // Postlinearization tables are kept unless indicated by flags | |||
754 | if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION0x0001) { | |||
755 | ||||
756 | // Get a pointer to the postlinearization if present | |||
757 | cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src); | |||
758 | ||||
759 | // Check if suitable | |||
760 | if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) { | |||
761 | ||||
762 | // Maybe this is a linear tram, so we can avoid the whole stuff | |||
763 | if (!AllCurvesAreLinear(PostLin)) { | |||
764 | ||||
765 | // All seems ok, proceed. | |||
766 | NewPostLin = cmsStageDup(PostLin); | |||
767 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin)) | |||
768 | goto Error; | |||
769 | ||||
770 | // In destination LUT, the sampling should be applied after this stage. | |||
771 | cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin); | |||
772 | } | |||
773 | } | |||
774 | } | |||
775 | ||||
776 | // Now its time to do the sampling. We have to ignore pre/post linearization | |||
777 | // The source LUT without pre/post curves is passed as parameter. | |||
778 | if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) { | |||
779 | Error: | |||
780 | // Ops, something went wrong, Restore stages | |||
781 | if (KeepPreLin != NULL((void*)0)) { | |||
782 | if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) { | |||
783 | _cmsAssert(0)(((0)) ? (void) (0) : __assert_fail ("(0)", "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsopt.c" , 783, __extension__ __PRETTY_FUNCTION__)); // This never happens | |||
784 | } | |||
785 | } | |||
786 | if (KeepPostLin != NULL((void*)0)) { | |||
787 | if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) { | |||
788 | _cmsAssert(0)(((0)) ? (void) (0) : __assert_fail ("(0)", "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsopt.c" , 788, __extension__ __PRETTY_FUNCTION__)); // This never happens | |||
789 | } | |||
790 | } | |||
791 | cmsPipelineFree(Dest); | |||
792 | return FALSE0; | |||
793 | } | |||
794 | ||||
795 | // Done. | |||
796 | ||||
797 | if (KeepPreLin != NULL((void*)0)) cmsStageFree(KeepPreLin); | |||
798 | if (KeepPostLin != NULL((void*)0)) cmsStageFree(KeepPostLin); | |||
799 | cmsPipelineFree(Src); | |||
800 | ||||
801 | DataCLUT = (_cmsStageCLutData*) CLUT ->Data; | |||
802 | ||||
803 | if (NewPreLin == NULL((void*)0)) DataSetIn = NULL((void*)0); | |||
804 | else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves; | |||
805 | ||||
806 | if (NewPostLin == NULL((void*)0)) DataSetOut = NULL((void*)0); | |||
807 | else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves; | |||
808 | ||||
809 | ||||
810 | if (DataSetIn == NULL((void*)0) && DataSetOut == NULL((void*)0)) { | |||
811 | ||||
812 | _cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL((void*)0), NULL((void*)0)); | |||
813 | } | |||
814 | else { | |||
815 | ||||
816 | p16 = PrelinOpt16alloc(Dest ->ContextID, | |||
817 | DataCLUT ->Params, | |||
818 | Dest ->InputChannels, | |||
819 | DataSetIn, | |||
820 | Dest ->OutputChannels, | |||
821 | DataSetOut); | |||
822 | ||||
823 | _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); | |||
824 | } | |||
825 | ||||
826 | ||||
827 | // Don't fix white on absolute colorimetric | |||
828 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC3) | |||
829 | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP0x0004; | |||
830 | ||||
831 | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP0x0004)) { | |||
832 | ||||
833 | FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace); | |||
834 | } | |||
835 | ||||
836 | *Lut = Dest; | |||
837 | return TRUE1; | |||
838 | ||||
839 | cmsUNUSED_PARAMETER(Intent)((void)Intent); | |||
840 | } | |||
841 | ||||
842 | ||||
843 | // ----------------------------------------------------------------------------------------------------------------------------------------------- | |||
844 | // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on | |||
845 | // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works | |||
846 | // for RGB transforms. See the paper for more details | |||
847 | // ----------------------------------------------------------------------------------------------------------------------------------------------- | |||
848 | ||||
849 | ||||
850 | // Normalize endpoints by slope limiting max and min. This assures endpoints as well. | |||
851 | // Descending curves are handled as well. | |||
852 | static | |||
853 | void SlopeLimiting(cmsToneCurve* g) | |||
854 | { | |||
855 | int BeginVal, EndVal; | |||
856 | int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2% | |||
857 | int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98% | |||
858 | cmsFloat64Number Val, Slope, beta; | |||
859 | int i; | |||
860 | ||||
861 | if (cmsIsToneCurveDescending(g)) { | |||
862 | BeginVal = 0xffff; EndVal = 0; | |||
863 | } | |||
864 | else { | |||
865 | BeginVal = 0; EndVal = 0xffff; | |||
866 | } | |||
867 | ||||
868 | // Compute slope and offset for begin of curve | |||
869 | Val = g ->Table16[AtBegin]; | |||
870 | Slope = (Val - BeginVal) / AtBegin; | |||
871 | beta = Val - Slope * AtBegin; | |||
872 | ||||
873 | for (i=0; i < AtBegin; i++) | |||
874 | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); | |||
875 | ||||
876 | // Compute slope and offset for the end | |||
877 | Val = g ->Table16[AtEnd]; | |||
878 | Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases | |||
879 | beta = Val - Slope * AtEnd; | |||
880 | ||||
881 | for (i = AtEnd; i < (int) g ->nEntries; i++) | |||
882 | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); | |||
883 | } | |||
884 | ||||
885 | ||||
886 | // Precomputes tables for 8-bit on input devicelink. | |||
887 | static | |||
888 | Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3]) | |||
889 | { | |||
890 | int i; | |||
891 | cmsUInt16Number Input[3]; | |||
892 | cmsS15Fixed16Number v1, v2, v3; | |||
893 | Prelin8Data* p8; | |||
894 | ||||
895 | p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data)); | |||
896 | if (p8 == NULL((void*)0)) return NULL((void*)0); | |||
897 | ||||
898 | // Since this only works for 8 bit input, values comes always as x * 257, | |||
899 | // we can safely take msb byte (x << 8 + x) | |||
900 | ||||
901 | for (i=0; i < 256; i++) { | |||
902 | ||||
903 | if (G != NULL((void*)0)) { | |||
904 | ||||
905 | // Get 16-bit representation | |||
906 | Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i)(cmsUInt16Number) ((((cmsUInt16Number) (i)) << 8)|(i))); | |||
907 | Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i)(cmsUInt16Number) ((((cmsUInt16Number) (i)) << 8)|(i))); | |||
908 | Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i)(cmsUInt16Number) ((((cmsUInt16Number) (i)) << 8)|(i))); | |||
909 | } | |||
910 | else { | |||
911 | Input[0] = FROM_8_TO_16(i)(cmsUInt16Number) ((((cmsUInt16Number) (i)) << 8)|(i)); | |||
912 | Input[1] = FROM_8_TO_16(i)(cmsUInt16Number) ((((cmsUInt16Number) (i)) << 8)|(i)); | |||
913 | Input[2] = FROM_8_TO_16(i)(cmsUInt16Number) ((((cmsUInt16Number) (i)) << 8)|(i)); | |||
914 | } | |||
915 | ||||
916 | ||||
917 | // Move to 0..1.0 in fixed domain | |||
918 | v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0])); | |||
919 | v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1])); | |||
920 | v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2])); | |||
921 | ||||
922 | // Store the precalculated table of nodes | |||
923 | p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1)((v1)>>16)); | |||
924 | p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2)((v2)>>16)); | |||
925 | p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3)((v3)>>16)); | |||
926 | ||||
927 | // Store the precalculated table of offsets | |||
928 | p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1)((v1)&0xFFFFU); | |||
929 | p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2)((v2)&0xFFFFU); | |||
930 | p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3)((v3)&0xFFFFU); | |||
931 | } | |||
932 | ||||
933 | p8 ->ContextID = ContextID; | |||
934 | p8 ->p = p; | |||
935 | ||||
936 | return p8; | |||
937 | } | |||
938 | ||||
939 | static | |||
940 | void Prelin8free(cmsContext ContextID, void* ptr) | |||
941 | { | |||
942 | _cmsFree(ContextID, ptr); | |||
943 | } | |||
944 | ||||
945 | static | |||
946 | void* Prelin8dup(cmsContext ContextID, const void* ptr) | |||
947 | { | |||
948 | return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data)); | |||
949 | } | |||
950 | ||||
951 | ||||
952 | ||||
953 | // A optimized interpolation for 8-bit input. | |||
954 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |||
955 | static CMS_NO_SANITIZE__attribute__((no_sanitize("signed-integer-overflow"))) | |||
956 | void PrelinEval8(CMSREGISTERregister const cmsUInt16Number Input[], | |||
957 | CMSREGISTERregister cmsUInt16Number Output[], | |||
958 | CMSREGISTERregister const void* D) | |||
959 | { | |||
960 | ||||
961 | cmsUInt8Number r, g, b; | |||
962 | cmsS15Fixed16Number rx, ry, rz; | |||
963 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; | |||
964 | int OutChan; | |||
965 | CMSREGISTERregister cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; | |||
966 | Prelin8Data* p8 = (Prelin8Data*) D; | |||
967 | CMSREGISTERregister const cmsInterpParams* p = p8 ->p; | |||
968 | int TotalOut = (int) p -> nOutputs; | |||
969 | const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table; | |||
970 | ||||
971 | r = (cmsUInt8Number) (Input[0] >> 8); | |||
972 | g = (cmsUInt8Number) (Input[1] >> 8); | |||
973 | b = (cmsUInt8Number) (Input[2] >> 8); | |||
974 | ||||
975 | X0 = (cmsS15Fixed16Number) p8->X0[r]; | |||
976 | Y0 = (cmsS15Fixed16Number) p8->Y0[g]; | |||
977 | Z0 = (cmsS15Fixed16Number) p8->Z0[b]; | |||
978 | ||||
979 | rx = p8 ->rx[r]; | |||
980 | ry = p8 ->ry[g]; | |||
981 | rz = p8 ->rz[b]; | |||
982 | ||||
983 | X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]); | |||
984 | Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]); | |||
985 | Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]); | |||
986 | ||||
987 | ||||
988 | // These are the 6 Tetrahedral | |||
989 | for (OutChan=0; OutChan < TotalOut; OutChan++) { | |||
990 | ||||
991 | c0 = DENS(X0, Y0, Z0); | |||
992 | ||||
993 | if (rx >= ry && ry >= rz) | |||
994 | { | |||
995 | c1 = DENS(X1, Y0, Z0) - c0; | |||
996 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |||
997 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
998 | } | |||
999 | else | |||
1000 | if (rx >= rz && rz >= ry) | |||
1001 | { | |||
1002 | c1 = DENS(X1, Y0, Z0) - c0; | |||
1003 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
1004 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |||
1005 | } | |||
1006 | else | |||
1007 | if (rz >= rx && rx >= ry) | |||
1008 | { | |||
1009 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |||
1010 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |||
1011 | c3 = DENS(X0, Y0, Z1) - c0; | |||
1012 | } | |||
1013 | else | |||
1014 | if (ry >= rx && rx >= rz) | |||
1015 | { | |||
1016 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |||
1017 | c2 = DENS(X0, Y1, Z0) - c0; | |||
1018 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |||
1019 | } | |||
1020 | else | |||
1021 | if (ry >= rz && rz >= rx) | |||
1022 | { | |||
1023 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
1024 | c2 = DENS(X0, Y1, Z0) - c0; | |||
1025 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |||
1026 | } | |||
1027 | else | |||
1028 | if (rz >= ry && ry >= rx) | |||
1029 | { | |||
1030 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |||
1031 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |||
1032 | c3 = DENS(X0, Y0, Z1) - c0; | |||
1033 | } | |||
1034 | else { | |||
1035 | c1 = c2 = c3 = 0; | |||
1036 | } | |||
1037 | ||||
1038 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |||
1039 | Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16)); | |||
1040 | ||||
1041 | } | |||
1042 | } | |||
1043 | ||||
1044 | #undef DENS | |||
1045 | ||||
1046 | ||||
1047 | // Curves that contain wide empty areas are not optimizeable | |||
1048 | static | |||
1049 | cmsBool IsDegenerated(const cmsToneCurve* g) | |||
1050 | { | |||
1051 | cmsUInt32Number i, Zeros = 0, Poles = 0; | |||
1052 | cmsUInt32Number nEntries = g ->nEntries; | |||
1053 | ||||
1054 | for (i=0; i < nEntries; i++) { | |||
1055 | ||||
1056 | if (g ->Table16[i] == 0x0000) Zeros++; | |||
1057 | if (g ->Table16[i] == 0xffff) Poles++; | |||
1058 | } | |||
1059 | ||||
1060 | if (Zeros == 1 && Poles == 1) return FALSE0; // For linear tables | |||
1061 | if (Zeros > (nEntries / 20)) return TRUE1; // Degenerated, many zeros | |||
1062 | if (Poles > (nEntries / 20)) return TRUE1; // Degenerated, many poles | |||
1063 | ||||
1064 | return FALSE0; | |||
1065 | } | |||
1066 | ||||
1067 | // -------------------------------------------------------------------------------------------------------------- | |||
1068 | // We need xput over here | |||
1069 | ||||
1070 | static | |||
1071 | cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |||
1072 | { | |||
1073 | cmsPipeline* OriginalLut; | |||
1074 | cmsUInt32Number nGridPoints; | |||
1075 | cmsToneCurve *Trans[cmsMAXCHANNELS16], *TransReverse[cmsMAXCHANNELS16]; | |||
1076 | cmsUInt32Number t, i; | |||
1077 | cmsFloat32Number v, In[cmsMAXCHANNELS16], Out[cmsMAXCHANNELS16]; | |||
1078 | cmsBool lIsSuitable, lIsLinear; | |||
1079 | cmsPipeline* OptimizedLUT = NULL((void*)0), *LutPlusCurves = NULL((void*)0); | |||
1080 | cmsStage* OptimizedCLUTmpe; | |||
1081 | cmsColorSpaceSignature ColorSpace, OutputColorSpace; | |||
1082 | cmsStage* OptimizedPrelinMpe; | |||
1083 | cmsStage* mpe; | |||
1084 | cmsToneCurve** OptimizedPrelinCurves; | |||
1085 | _cmsStageCLutData* OptimizedPrelinCLUT; | |||
1086 | ||||
1087 | ||||
1088 | // This is a lossy optimization! does not apply in floating-point cases | |||
1089 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE0; | |||
| ||||
1090 | ||||
1091 | // Only on chunky RGB | |||
1092 | if (T_COLORSPACE(*InputFormat)(((*InputFormat)>>16)&31) != PT_RGB4) return FALSE0; | |||
1093 | if (T_PLANAR(*InputFormat)(((*InputFormat)>>12)&1)) return FALSE0; | |||
1094 | ||||
1095 | if (T_COLORSPACE(*OutputFormat)(((*OutputFormat)>>16)&31) != PT_RGB4) return FALSE0; | |||
1096 | if (T_PLANAR(*OutputFormat)(((*OutputFormat)>>12)&1)) return FALSE0; | |||
1097 | ||||
1098 | // On 16 bits, user has to specify the feature | |||
1099 | if (!_cmsFormatterIs8bit(*InputFormat)) { | |||
1100 | if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION0x0010)) return FALSE0; | |||
1101 | } | |||
1102 | ||||
1103 | OriginalLut = *Lut; | |||
1104 | ||||
1105 | // Named color pipelines cannot be optimized either | |||
1106 | for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut); | |||
1107 | mpe != NULL((void*)0); | |||
1108 | mpe = cmsStageNext(mpe)) { | |||
1109 | if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE0; | |||
1110 | } | |||
1111 | ||||
1112 | ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)(((*InputFormat)>>16)&31)); | |||
1113 | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)(((*OutputFormat)>>16)&31)); | |||
1114 | ||||
1115 | // Color space must be specified | |||
1116 | if (ColorSpace == (cmsColorSpaceSignature)0 || | |||
1117 | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE0; | |||
1118 | ||||
1119 | nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); | |||
1120 | ||||
1121 | // Empty gamma containers | |||
1122 | memset(Trans, 0, sizeof(Trans)); | |||
1123 | memset(TransReverse, 0, sizeof(TransReverse)); | |||
1124 | ||||
1125 | // If the last stage of the original lut are curves, and those curves are | |||
1126 | // degenerated, it is likely the transform is squeezing and clipping | |||
1127 | // the output from previous CLUT. We cannot optimize this case | |||
1128 | { | |||
1129 | cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut); | |||
1130 | ||||
1131 | if (last == NULL((void*)0)) goto Error; | |||
1132 | if (cmsStageType(last) == cmsSigCurveSetElemType) { | |||
1133 | ||||
1134 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last); | |||
1135 | for (i = 0; i < Data->nCurves; i++) { | |||
1136 | if (IsDegenerated(Data->TheCurves[i])) | |||
1137 | goto Error; | |||
1138 | } | |||
1139 | } | |||
1140 | } | |||
1141 | ||||
1142 | for (t = 0; t < OriginalLut ->InputChannels; t++) { | |||
1143 | Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS4096, NULL((void*)0)); | |||
1144 | if (Trans[t] == NULL((void*)0)) goto Error; | |||
1145 | } | |||
1146 | ||||
1147 | // Populate the curves | |||
1148 | for (i=0; i < PRELINEARIZATION_POINTS4096; i++) { | |||
1149 | ||||
1150 | v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS4096 - 1)); | |||
1151 | ||||
1152 | // Feed input with a gray ramp | |||
1153 | for (t=0; t < OriginalLut ->InputChannels; t++) | |||
1154 | In[t] = v; | |||
1155 | ||||
1156 | // Evaluate the gray value | |||
1157 | cmsPipelineEvalFloat(In, Out, OriginalLut); | |||
1158 | ||||
1159 | // Store result in curve | |||
1160 | for (t=0; t < OriginalLut ->InputChannels; t++) | |||
1161 | Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0); | |||
| ||||
1162 | } | |||
1163 | ||||
1164 | // Slope-limit the obtained curves | |||
1165 | for (t = 0; t < OriginalLut ->InputChannels; t++) | |||
1166 | SlopeLimiting(Trans[t]); | |||
1167 | ||||
1168 | // Check for validity | |||
1169 | lIsSuitable = TRUE1; | |||
1170 | lIsLinear = TRUE1; | |||
1171 | for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) { | |||
1172 | ||||
1173 | // Exclude if already linear | |||
1174 | if (!cmsIsToneCurveLinear(Trans[t])) | |||
1175 | lIsLinear = FALSE0; | |||
1176 | ||||
1177 | // Exclude if non-monotonic | |||
1178 | if (!cmsIsToneCurveMonotonic(Trans[t])) | |||
1179 | lIsSuitable = FALSE0; | |||
1180 | ||||
1181 | if (IsDegenerated(Trans[t])) | |||
1182 | lIsSuitable = FALSE0; | |||
1183 | } | |||
1184 | ||||
1185 | // If it is not suitable, just quit | |||
1186 | if (!lIsSuitable) goto Error; | |||
1187 | ||||
1188 | // Invert curves if possible | |||
1189 | for (t = 0; t < OriginalLut ->InputChannels; t++) { | |||
1190 | TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS4096, Trans[t]); | |||
1191 | if (TransReverse[t] == NULL((void*)0)) goto Error; | |||
1192 | } | |||
1193 | ||||
1194 | // Now inset the reversed curves at the begin of transform | |||
1195 | LutPlusCurves = cmsPipelineDup(OriginalLut); | |||
1196 | if (LutPlusCurves == NULL((void*)0)) goto Error; | |||
1197 | ||||
1198 | if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse))) | |||
1199 | goto Error; | |||
1200 | ||||
1201 | // Create the result LUT | |||
1202 | OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels); | |||
1203 | if (OptimizedLUT == NULL((void*)0)) goto Error; | |||
1204 | ||||
1205 | OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans); | |||
1206 | ||||
1207 | // Create and insert the curves at the beginning | |||
1208 | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe)) | |||
1209 | goto Error; | |||
1210 | ||||
1211 | // Allocate the CLUT for result | |||
1212 | OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL((void*)0)); | |||
1213 | ||||
1214 | // Add the CLUT to the destination LUT | |||
1215 | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe)) | |||
1216 | goto Error; | |||
1217 | ||||
1218 | // Resample the LUT | |||
1219 | if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error; | |||
1220 | ||||
1221 | // Free resources | |||
1222 | for (t = 0; t < OriginalLut ->InputChannels; t++) { | |||
1223 | ||||
1224 | if (Trans[t]) cmsFreeToneCurve(Trans[t]); | |||
1225 | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); | |||
1226 | } | |||
1227 | ||||
1228 | cmsPipelineFree(LutPlusCurves); | |||
1229 | ||||
1230 | ||||
1231 | OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe); | |||
1232 | OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data; | |||
1233 | ||||
1234 | // Set the evaluator if 8-bit | |||
1235 | if (_cmsFormatterIs8bit(*InputFormat)) { | |||
1236 | ||||
1237 | Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID, | |||
1238 | OptimizedPrelinCLUT ->Params, | |||
1239 | OptimizedPrelinCurves); | |||
1240 | if (p8 == NULL((void*)0)) return FALSE0; | |||
1241 | ||||
1242 | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup); | |||
1243 | ||||
1244 | } | |||
1245 | else | |||
1246 | { | |||
1247 | Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID, | |||
1248 | OptimizedPrelinCLUT ->Params, | |||
1249 | 3, OptimizedPrelinCurves, 3, NULL((void*)0)); | |||
1250 | if (p16 == NULL((void*)0)) return FALSE0; | |||
1251 | ||||
1252 | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); | |||
1253 | ||||
1254 | } | |||
1255 | ||||
1256 | // Don't fix white on absolute colorimetric | |||
1257 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC3) | |||
1258 | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP0x0004; | |||
1259 | ||||
1260 | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP0x0004)) { | |||
1261 | ||||
1262 | if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) { | |||
1263 | ||||
1264 | return FALSE0; | |||
1265 | } | |||
1266 | } | |||
1267 | ||||
1268 | // And return the obtained LUT | |||
1269 | ||||
1270 | cmsPipelineFree(OriginalLut); | |||
1271 | *Lut = OptimizedLUT; | |||
1272 | return TRUE1; | |||
1273 | ||||
1274 | Error: | |||
1275 | ||||
1276 | for (t = 0; t < OriginalLut ->InputChannels; t++) { | |||
1277 | ||||
1278 | if (Trans[t]) cmsFreeToneCurve(Trans[t]); | |||
1279 | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); | |||
1280 | } | |||
1281 | ||||
1282 | if (LutPlusCurves != NULL((void*)0)) cmsPipelineFree(LutPlusCurves); | |||
1283 | if (OptimizedLUT != NULL((void*)0)) cmsPipelineFree(OptimizedLUT); | |||
1284 | ||||
1285 | return FALSE0; | |||
1286 | ||||
1287 | cmsUNUSED_PARAMETER(Intent)((void)Intent); | |||
1288 | cmsUNUSED_PARAMETER(lIsLinear)((void)lIsLinear); | |||
1289 | } | |||
1290 | ||||
1291 | ||||
1292 | // Curves optimizer ------------------------------------------------------------------------------------------------------------------ | |||
1293 | ||||
1294 | static | |||
1295 | void CurvesFree(cmsContext ContextID, void* ptr) | |||
1296 | { | |||
1297 | Curves16Data* Data = (Curves16Data*) ptr; | |||
1298 | cmsUInt32Number i; | |||
1299 | ||||
1300 | for (i=0; i < Data -> nCurves; i++) { | |||
1301 | ||||
1302 | _cmsFree(ContextID, Data ->Curves[i]); | |||
1303 | } | |||
1304 | ||||
1305 | _cmsFree(ContextID, Data ->Curves); | |||
1306 | _cmsFree(ContextID, ptr); | |||
1307 | } | |||
1308 | ||||
1309 | static | |||
1310 | void* CurvesDup(cmsContext ContextID, const void* ptr) | |||
1311 | { | |||
1312 | Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data)); | |||
1313 | cmsUInt32Number i; | |||
1314 | ||||
1315 | if (Data == NULL((void*)0)) return NULL((void*)0); | |||
1316 | ||||
1317 | Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*)); | |||
1318 | ||||
1319 | for (i=0; i < Data -> nCurves; i++) { | |||
1320 | Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number)); | |||
1321 | } | |||
1322 | ||||
1323 | return (void*) Data; | |||
1324 | } | |||
1325 | ||||
1326 | // Precomputes tables for 8-bit on input devicelink. | |||
1327 | static | |||
1328 | Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G) | |||
1329 | { | |||
1330 | cmsUInt32Number i, j; | |||
1331 | Curves16Data* c16; | |||
1332 | ||||
1333 | c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data)); | |||
1334 | if (c16 == NULL((void*)0)) return NULL((void*)0); | |||
1335 | ||||
1336 | c16 ->nCurves = nCurves; | |||
1337 | c16 ->nElements = nElements; | |||
1338 | ||||
1339 | c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*)); | |||
1340 | if (c16->Curves == NULL((void*)0)) { | |||
1341 | _cmsFree(ContextID, c16); | |||
1342 | return NULL((void*)0); | |||
1343 | } | |||
1344 | ||||
1345 | for (i=0; i < nCurves; i++) { | |||
1346 | ||||
1347 | c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number)); | |||
1348 | ||||
1349 | if (c16->Curves[i] == NULL((void*)0)) { | |||
1350 | ||||
1351 | for (j=0; j < i; j++) { | |||
1352 | _cmsFree(ContextID, c16->Curves[j]); | |||
1353 | } | |||
1354 | _cmsFree(ContextID, c16->Curves); | |||
1355 | _cmsFree(ContextID, c16); | |||
1356 | return NULL((void*)0); | |||
1357 | } | |||
1358 | ||||
1359 | if (nElements == 256U) { | |||
1360 | ||||
1361 | for (j=0; j < nElements; j++) { | |||
1362 | ||||
1363 | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j)(cmsUInt16Number) ((((cmsUInt16Number) (j)) << 8)|(j))); | |||
1364 | } | |||
1365 | } | |||
1366 | else { | |||
1367 | ||||
1368 | for (j=0; j < nElements; j++) { | |||
1369 | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j); | |||
1370 | } | |||
1371 | } | |||
1372 | } | |||
1373 | ||||
1374 | return c16; | |||
1375 | } | |||
1376 | ||||
1377 | static | |||
1378 | void FastEvaluateCurves8(CMSREGISTERregister const cmsUInt16Number In[], | |||
1379 | CMSREGISTERregister cmsUInt16Number Out[], | |||
1380 | CMSREGISTERregister const void* D) | |||
1381 | { | |||
1382 | Curves16Data* Data = (Curves16Data*) D; | |||
1383 | int x; | |||
1384 | cmsUInt32Number i; | |||
1385 | ||||
1386 | for (i=0; i < Data ->nCurves; i++) { | |||
1387 | ||||
1388 | x = (In[i] >> 8); | |||
1389 | Out[i] = Data -> Curves[i][x]; | |||
1390 | } | |||
1391 | } | |||
1392 | ||||
1393 | ||||
1394 | static | |||
1395 | void FastEvaluateCurves16(CMSREGISTERregister const cmsUInt16Number In[], | |||
1396 | CMSREGISTERregister cmsUInt16Number Out[], | |||
1397 | CMSREGISTERregister const void* D) | |||
1398 | { | |||
1399 | Curves16Data* Data = (Curves16Data*) D; | |||
1400 | cmsUInt32Number i; | |||
1401 | ||||
1402 | for (i=0; i < Data ->nCurves; i++) { | |||
1403 | Out[i] = Data -> Curves[i][In[i]]; | |||
1404 | } | |||
1405 | } | |||
1406 | ||||
1407 | ||||
1408 | static | |||
1409 | void FastIdentity16(CMSREGISTERregister const cmsUInt16Number In[], | |||
1410 | CMSREGISTERregister cmsUInt16Number Out[], | |||
1411 | CMSREGISTERregister const void* D) | |||
1412 | { | |||
1413 | cmsPipeline* Lut = (cmsPipeline*) D; | |||
1414 | cmsUInt32Number i; | |||
1415 | ||||
1416 | for (i=0; i < Lut ->InputChannels; i++) { | |||
1417 | Out[i] = In[i]; | |||
1418 | } | |||
1419 | } | |||
1420 | ||||
1421 | ||||
1422 | // If the target LUT holds only curves, the optimization procedure is to join all those | |||
1423 | // curves together. That only works on curves and does not work on matrices. | |||
1424 | static | |||
1425 | cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |||
1426 | { | |||
1427 | cmsToneCurve** GammaTables = NULL((void*)0); | |||
1428 | cmsFloat32Number InFloat[cmsMAXCHANNELS16], OutFloat[cmsMAXCHANNELS16]; | |||
1429 | cmsUInt32Number i, j; | |||
1430 | cmsPipeline* Src = *Lut; | |||
1431 | cmsPipeline* Dest = NULL((void*)0); | |||
1432 | cmsStage* mpe; | |||
1433 | cmsStage* ObtainedCurves = NULL((void*)0); | |||
1434 | ||||
1435 | ||||
1436 | // This is a lossy optimization! does not apply in floating-point cases | |||
1437 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE0; | |||
1438 | ||||
1439 | // Only curves in this LUT? | |||
1440 | for (mpe = cmsPipelineGetPtrToFirstStage(Src); | |||
1441 | mpe != NULL((void*)0); | |||
1442 | mpe = cmsStageNext(mpe)) { | |||
1443 | if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE0; | |||
1444 | } | |||
1445 | ||||
1446 | // Allocate an empty LUT | |||
1447 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); | |||
1448 | if (Dest == NULL((void*)0)) return FALSE0; | |||
1449 | ||||
1450 | // Create target curves | |||
1451 | GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*)); | |||
1452 | if (GammaTables == NULL((void*)0)) goto Error; | |||
1453 | ||||
1454 | for (i=0; i < Src ->InputChannels; i++) { | |||
1455 | GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS4096, NULL((void*)0)); | |||
1456 | if (GammaTables[i] == NULL((void*)0)) goto Error; | |||
1457 | } | |||
1458 | ||||
1459 | // Compute 16 bit result by using floating point | |||
1460 | for (i=0; i < PRELINEARIZATION_POINTS4096; i++) { | |||
1461 | ||||
1462 | for (j=0; j < Src ->InputChannels; j++) | |||
1463 | InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS4096 - 1)); | |||
1464 | ||||
1465 | cmsPipelineEvalFloat(InFloat, OutFloat, Src); | |||
1466 | ||||
1467 | for (j=0; j < Src ->InputChannels; j++) | |||
1468 | GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0); | |||
1469 | } | |||
1470 | ||||
1471 | ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables); | |||
1472 | if (ObtainedCurves == NULL((void*)0)) goto Error; | |||
1473 | ||||
1474 | for (i=0; i < Src ->InputChannels; i++) { | |||
1475 | cmsFreeToneCurve(GammaTables[i]); | |||
1476 | GammaTables[i] = NULL((void*)0); | |||
1477 | } | |||
1478 | ||||
1479 | if (GammaTables != NULL((void*)0)) { | |||
1480 | _cmsFree(Src->ContextID, GammaTables); | |||
1481 | GammaTables = NULL((void*)0); | |||
1482 | } | |||
1483 | ||||
1484 | // Maybe the curves are linear at the end | |||
1485 | if (!AllCurvesAreLinear(ObtainedCurves)) { | |||
1486 | _cmsStageToneCurvesData* Data; | |||
1487 | ||||
1488 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves)) | |||
1489 | goto Error; | |||
1490 | Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves); | |||
1491 | ObtainedCurves = NULL((void*)0); | |||
1492 | ||||
1493 | // If the curves are to be applied in 8 bits, we can save memory | |||
1494 | if (_cmsFormatterIs8bit(*InputFormat)) { | |||
1495 | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves); | |||
1496 | ||||
1497 | if (c16 == NULL((void*)0)) goto Error; | |||
1498 | *dwFlags |= cmsFLAGS_NOCACHE0x0040; | |||
1499 | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup); | |||
1500 | ||||
1501 | } | |||
1502 | else { | |||
1503 | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves); | |||
1504 | ||||
1505 | if (c16 == NULL((void*)0)) goto Error; | |||
1506 | *dwFlags |= cmsFLAGS_NOCACHE0x0040; | |||
1507 | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup); | |||
1508 | } | |||
1509 | } | |||
1510 | else { | |||
1511 | ||||
1512 | // LUT optimizes to nothing. Set the identity LUT | |||
1513 | cmsStageFree(ObtainedCurves); | |||
1514 | ObtainedCurves = NULL((void*)0); | |||
1515 | ||||
1516 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels))) | |||
1517 | goto Error; | |||
1518 | ||||
1519 | *dwFlags |= cmsFLAGS_NOCACHE0x0040; | |||
1520 | _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL((void*)0), NULL((void*)0)); | |||
1521 | } | |||
1522 | ||||
1523 | // We are done. | |||
1524 | cmsPipelineFree(Src); | |||
1525 | *Lut = Dest; | |||
1526 | return TRUE1; | |||
1527 | ||||
1528 | Error: | |||
1529 | ||||
1530 | if (ObtainedCurves != NULL((void*)0)) cmsStageFree(ObtainedCurves); | |||
1531 | if (GammaTables != NULL((void*)0)) { | |||
1532 | for (i=0; i < Src ->InputChannels; i++) { | |||
1533 | if (GammaTables[i] != NULL((void*)0)) cmsFreeToneCurve(GammaTables[i]); | |||
1534 | } | |||
1535 | ||||
1536 | _cmsFree(Src ->ContextID, GammaTables); | |||
1537 | } | |||
1538 | ||||
1539 | if (Dest != NULL((void*)0)) cmsPipelineFree(Dest); | |||
1540 | return FALSE0; | |||
1541 | ||||
1542 | cmsUNUSED_PARAMETER(Intent)((void)Intent); | |||
1543 | cmsUNUSED_PARAMETER(InputFormat)((void)InputFormat); | |||
1544 | cmsUNUSED_PARAMETER(OutputFormat)((void)OutputFormat); | |||
1545 | cmsUNUSED_PARAMETER(dwFlags)((void)dwFlags); | |||
1546 | } | |||
1547 | ||||
1548 | // ------------------------------------------------------------------------------------------------------------------------------------- | |||
1549 | // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles | |||
1550 | ||||
1551 | ||||
1552 | static | |||
1553 | void FreeMatShaper(cmsContext ContextID, void* Data) | |||
1554 | { | |||
1555 | if (Data != NULL((void*)0)) _cmsFree(ContextID, Data); | |||
1556 | } | |||
1557 | ||||
1558 | static | |||
1559 | void* DupMatShaper(cmsContext ContextID, const void* Data) | |||
1560 | { | |||
1561 | return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data)); | |||
1562 | } | |||
1563 | ||||
1564 | ||||
1565 | // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point | |||
1566 | // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits, | |||
1567 | // in total about 50K, and the performance boost is huge! | |||
1568 | static | |||
1569 | void MatShaperEval16(CMSREGISTERregister const cmsUInt16Number In[], | |||
1570 | CMSREGISTERregister cmsUInt16Number Out[], | |||
1571 | CMSREGISTERregister const void* D) | |||
1572 | { | |||
1573 | MatShaper8Data* p = (MatShaper8Data*) D; | |||
1574 | cmsS1Fixed14Number l1, l2, l3, r, g, b; | |||
1575 | cmsUInt32Number ri, gi, bi; | |||
1576 | ||||
1577 | // In this case (and only in this case!) we can use this simplification since | |||
1578 | // In[] is assured to come from a 8 bit number. (a << 8 | a) | |||
1579 | ri = In[0] & 0xFFU; | |||
1580 | gi = In[1] & 0xFFU; | |||
1581 | bi = In[2] & 0xFFU; | |||
1582 | ||||
1583 | // Across first shaper, which also converts to 1.14 fixed point | |||
1584 | r = p->Shaper1R[ri]; | |||
1585 | g = p->Shaper1G[gi]; | |||
1586 | b = p->Shaper1B[bi]; | |||
1587 | ||||
1588 | // Evaluate the matrix in 1.14 fixed point | |||
1589 | l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14; | |||
1590 | l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14; | |||
1591 | l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14; | |||
1592 | ||||
1593 | // Now we have to clip to 0..1.0 range | |||
1594 | ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1); | |||
1595 | gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2); | |||
1596 | bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3); | |||
1597 | ||||
1598 | // And across second shaper, | |||
1599 | Out[0] = p->Shaper2R[ri]; | |||
1600 | Out[1] = p->Shaper2G[gi]; | |||
1601 | Out[2] = p->Shaper2B[bi]; | |||
1602 | ||||
1603 | } | |||
1604 | ||||
1605 | // This table converts from 8 bits to 1.14 after applying the curve | |||
1606 | static | |||
1607 | void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve) | |||
1608 | { | |||
1609 | int i; | |||
1610 | cmsFloat32Number R, y; | |||
1611 | ||||
1612 | for (i=0; i < 256; i++) { | |||
1613 | ||||
1614 | R = (cmsFloat32Number) (i / 255.0); | |||
1615 | y = cmsEvalToneCurveFloat(Curve, R); | |||
1616 | ||||
1617 | if (y < 131072.0) | |||
1618 | Table[i] = DOUBLE_TO_1FIXED14(y)((cmsS1Fixed14Number) floor((y) * 16384.0 + 0.5)); | |||
1619 | else | |||
1620 | Table[i] = 0x7fffffff; | |||
1621 | } | |||
1622 | } | |||
1623 | ||||
1624 | // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve | |||
1625 | static | |||
1626 | void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput) | |||
1627 | { | |||
1628 | int i; | |||
1629 | cmsFloat32Number R, Val; | |||
1630 | ||||
1631 | for (i=0; i < 16385; i++) { | |||
1632 | ||||
1633 | R = (cmsFloat32Number) (i / 16384.0); | |||
1634 | Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0 | |||
1635 | ||||
1636 | if (Val < 0) | |||
1637 | Val = 0; | |||
1638 | ||||
1639 | if (Val > 1.0) | |||
1640 | Val = 1.0; | |||
1641 | ||||
1642 | if (Is8BitsOutput) { | |||
1643 | ||||
1644 | // If 8 bits output, we can optimize further by computing the / 257 part. | |||
1645 | // first we compute the resulting byte and then we store the byte times | |||
1646 | // 257. This quantization allows to round very quick by doing a >> 8, but | |||
1647 | // since the low byte is always equal to msb, we can do a & 0xff and this works! | |||
1648 | cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0); | |||
1649 | cmsUInt8Number b = FROM_16_TO_8(w)(cmsUInt8Number) ((((cmsUInt32Number)(w) * 65281U + 8388608U) >> 24) & 0xFFU); | |||
1650 | ||||
1651 | Table[i] = FROM_8_TO_16(b)(cmsUInt16Number) ((((cmsUInt16Number) (b)) << 8)|(b)); | |||
1652 | } | |||
1653 | else Table[i] = _cmsQuickSaturateWord(Val * 65535.0); | |||
1654 | } | |||
1655 | } | |||
1656 | ||||
1657 | // Compute the matrix-shaper structure | |||
1658 | static | |||
1659 | cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat) | |||
1660 | { | |||
1661 | MatShaper8Data* p; | |||
1662 | int i, j; | |||
1663 | cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat); | |||
1664 | ||||
1665 | // Allocate a big chuck of memory to store precomputed tables | |||
1666 | p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data)); | |||
1667 | if (p == NULL((void*)0)) return FALSE0; | |||
1668 | ||||
1669 | p -> ContextID = Dest -> ContextID; | |||
1670 | ||||
1671 | // Precompute tables | |||
1672 | FillFirstShaper(p ->Shaper1R, Curve1[0]); | |||
1673 | FillFirstShaper(p ->Shaper1G, Curve1[1]); | |||
1674 | FillFirstShaper(p ->Shaper1B, Curve1[2]); | |||
1675 | ||||
1676 | FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits); | |||
1677 | FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits); | |||
1678 | FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits); | |||
1679 | ||||
1680 | // Convert matrix to nFixed14. Note that those values may take more than 16 bits | |||
1681 | for (i=0; i < 3; i++) { | |||
1682 | for (j=0; j < 3; j++) { | |||
1683 | p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j])((cmsS1Fixed14Number) floor((Mat->v[i].n[j]) * 16384.0 + 0.5 )); | |||
1684 | } | |||
1685 | } | |||
1686 | ||||
1687 | for (i=0; i < 3; i++) { | |||
1688 | ||||
1689 | if (Off == NULL((void*)0)) { | |||
1690 | p ->Off[i] = 0; | |||
1691 | } | |||
1692 | else { | |||
1693 | p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i])((cmsS1Fixed14Number) floor((Off->n[i]) * 16384.0 + 0.5)); | |||
1694 | } | |||
1695 | } | |||
1696 | ||||
1697 | // Mark as optimized for faster formatter | |||
1698 | if (Is8Bits) | |||
1699 | *OutputFormat |= OPTIMIZED_SH(1)((1) << 21); | |||
1700 | ||||
1701 | // Fill function pointers | |||
1702 | _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper); | |||
1703 | return TRUE1; | |||
1704 | } | |||
1705 | ||||
1706 | // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast! | |||
1707 | static | |||
1708 | cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |||
1709 | { | |||
1710 | cmsStage* Curve1, *Curve2; | |||
1711 | cmsStage* Matrix1, *Matrix2; | |||
1712 | cmsMAT3 res; | |||
1713 | cmsBool IdentityMat; | |||
1714 | cmsPipeline* Dest, *Src; | |||
1715 | cmsFloat64Number* Offset; | |||
1716 | ||||
1717 | // Only works on RGB to RGB | |||
1718 | if (T_CHANNELS(*InputFormat)(((*InputFormat)>>3)&15) != 3 || T_CHANNELS(*OutputFormat)(((*OutputFormat)>>3)&15) != 3) return FALSE0; | |||
1719 | ||||
1720 | // Only works on 8 bit input | |||
1721 | if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE0; | |||
1722 | ||||
1723 | // Seems suitable, proceed | |||
1724 | Src = *Lut; | |||
1725 | ||||
1726 | // Check for: | |||
1727 | // | |||
1728 | // shaper-matrix-matrix-shaper | |||
1729 | // shaper-matrix-shaper | |||
1730 | // | |||
1731 | // Both of those constructs are possible (first because abs. colorimetric). | |||
1732 | // additionally, In the first case, the input matrix offset should be zero. | |||
1733 | ||||
1734 | IdentityMat = FALSE0; | |||
1735 | if (cmsPipelineCheckAndRetreiveStages(Src, 4, | |||
1736 | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, | |||
1737 | &Curve1, &Matrix1, &Matrix2, &Curve2)) { | |||
1738 | ||||
1739 | // Get both matrices | |||
1740 | _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1); | |||
1741 | _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2); | |||
1742 | ||||
1743 | // Input offset should be zero | |||
1744 | if (Data1->Offset != NULL((void*)0)) return FALSE0; | |||
1745 | ||||
1746 | // Multiply both matrices to get the result | |||
1747 | _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double); | |||
1748 | ||||
1749 | // Only 2nd matrix has offset, or it is zero | |||
1750 | Offset = Data2->Offset; | |||
1751 | ||||
1752 | // Now the result is in res + Data2 -> Offset. Maybe is a plain identity? | |||
1753 | if (_cmsMAT3isIdentity(&res) && Offset == NULL((void*)0)) { | |||
1754 | ||||
1755 | // We can get rid of full matrix | |||
1756 | IdentityMat = TRUE1; | |||
1757 | } | |||
1758 | ||||
1759 | } | |||
1760 | else { | |||
1761 | ||||
1762 | if (cmsPipelineCheckAndRetreiveStages(Src, 3, | |||
1763 | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, | |||
1764 | &Curve1, &Matrix1, &Curve2)) { | |||
1765 | ||||
1766 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1); | |||
1767 | ||||
1768 | // Copy the matrix to our result | |||
1769 | memcpy(&res, Data->Double, sizeof(res)); | |||
1770 | ||||
1771 | // Preserve the Odffset (may be NULL as a zero offset) | |||
1772 | Offset = Data->Offset; | |||
1773 | ||||
1774 | if (_cmsMAT3isIdentity(&res) && Offset == NULL((void*)0)) { | |||
1775 | ||||
1776 | // We can get rid of full matrix | |||
1777 | IdentityMat = TRUE1; | |||
1778 | } | |||
1779 | } | |||
1780 | else | |||
1781 | return FALSE0; // Not optimizeable this time | |||
1782 | ||||
1783 | } | |||
1784 | ||||
1785 | // Allocate an empty LUT | |||
1786 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); | |||
1787 | if (!Dest) return FALSE0; | |||
1788 | ||||
1789 | // Assamble the new LUT | |||
1790 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1))) | |||
1791 | goto Error; | |||
1792 | ||||
1793 | if (!IdentityMat) { | |||
1794 | ||||
1795 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset))) | |||
1796 | goto Error; | |||
1797 | } | |||
1798 | ||||
1799 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2))) | |||
1800 | goto Error; | |||
1801 | ||||
1802 | // If identity on matrix, we can further optimize the curves, so call the join curves routine | |||
1803 | if (IdentityMat) { | |||
1804 | ||||
1805 | OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags); | |||
1806 | } | |||
1807 | else { | |||
1808 | _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1); | |||
1809 | _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2); | |||
1810 | ||||
1811 | // In this particular optimization, cache does not help as it takes more time to deal with | |||
1812 | // the cache that with the pixel handling | |||
1813 | *dwFlags |= cmsFLAGS_NOCACHE0x0040; | |||
1814 | ||||
1815 | // Setup the optimizarion routines | |||
1816 | SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat); | |||
1817 | } | |||
1818 | ||||
1819 | cmsPipelineFree(Src); | |||
1820 | *Lut = Dest; | |||
1821 | return TRUE1; | |||
1822 | Error: | |||
1823 | // Leave Src unchanged | |||
1824 | cmsPipelineFree(Dest); | |||
1825 | return FALSE0; | |||
1826 | } | |||
1827 | ||||
1828 | ||||
1829 | // ------------------------------------------------------------------------------------------------------------------------------------- | |||
1830 | // Optimization plug-ins | |||
1831 | ||||
1832 | // List of optimizations | |||
1833 | typedef struct _cmsOptimizationCollection_st { | |||
1834 | ||||
1835 | _cmsOPToptimizeFn OptimizePtr; | |||
1836 | ||||
1837 | struct _cmsOptimizationCollection_st *Next; | |||
1838 | ||||
1839 | } _cmsOptimizationCollection; | |||
1840 | ||||
1841 | ||||
1842 | // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling | |||
1843 | static _cmsOptimizationCollection DefaultOptimization[] = { | |||
1844 | ||||
1845 | { OptimizeByJoiningCurves, &DefaultOptimization[1] }, | |||
1846 | { OptimizeMatrixShaper, &DefaultOptimization[2] }, | |||
1847 | { OptimizeByComputingLinearization, &DefaultOptimization[3] }, | |||
1848 | { OptimizeByResampling, NULL((void*)0) } | |||
1849 | }; | |||
1850 | ||||
1851 | // The linked list head | |||
1852 | _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL((void*)0) }; | |||
1853 | ||||
1854 | ||||
1855 | // Duplicates the zone of memory used by the plug-in in the new context | |||
1856 | static | |||
1857 | void DupPluginOptimizationList(struct _cmsContext_struct* ctx, | |||
1858 | const struct _cmsContext_struct* src) | |||
1859 | { | |||
1860 | _cmsOptimizationPluginChunkType newHead = { NULL((void*)0) }; | |||
1861 | _cmsOptimizationCollection* entry; | |||
1862 | _cmsOptimizationCollection* Anterior = NULL((void*)0); | |||
1863 | _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin]; | |||
1864 | ||||
1865 | _cmsAssert(ctx != NULL)(((ctx != ((void*)0))) ? (void) (0) : __assert_fail ("(ctx != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsopt.c" , 1865, __extension__ __PRETTY_FUNCTION__)); | |||
1866 | _cmsAssert(head != NULL)(((head != ((void*)0))) ? (void) (0) : __assert_fail ("(head != ((void*)0))" , "/home/daniel/Projects/java/jdk/src/java.desktop/share/native/liblcms/cmsopt.c" , 1866, __extension__ __PRETTY_FUNCTION__)); | |||
1867 | ||||
1868 | // Walk the list copying all nodes | |||
1869 | for (entry = head->OptimizationCollection; | |||
1870 | entry != NULL((void*)0); | |||
1871 | entry = entry ->Next) { | |||
1872 | ||||
1873 | _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection)); | |||
1874 | ||||
1875 | if (newEntry == NULL((void*)0)) | |||
1876 | return; | |||
1877 | ||||
1878 | // We want to keep the linked list order, so this is a little bit tricky | |||
1879 | newEntry -> Next = NULL((void*)0); | |||
1880 | if (Anterior) | |||
1881 | Anterior -> Next = newEntry; | |||
1882 | ||||
1883 | Anterior = newEntry; | |||
1884 | ||||
1885 | if (newHead.OptimizationCollection == NULL((void*)0)) | |||
1886 | newHead.OptimizationCollection = newEntry; | |||
1887 | } | |||
1888 | ||||
1889 | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType)); | |||
1890 | } | |||
1891 | ||||
1892 | void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, | |||
1893 | const struct _cmsContext_struct* src) | |||
1894 | { | |||
1895 | if (src != NULL((void*)0)) { | |||
1896 | ||||
1897 | // Copy all linked list | |||
1898 | DupPluginOptimizationList(ctx, src); | |||
1899 | } | |||
1900 | else { | |||
1901 | static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL((void*)0) }; | |||
1902 | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType)); | |||
1903 | } | |||
1904 | } | |||
1905 | ||||
1906 | ||||
1907 | // Register new ways to optimize | |||
1908 | cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data) | |||
1909 | { | |||
1910 | cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data; | |||
1911 | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); | |||
1912 | _cmsOptimizationCollection* fl; | |||
1913 | ||||
1914 | if (Data == NULL((void*)0)) { | |||
1915 | ||||
1916 | ctx->OptimizationCollection = NULL((void*)0); | |||
1917 | return TRUE1; | |||
1918 | } | |||
1919 | ||||
1920 | // Optimizer callback is required | |||
1921 | if (Plugin ->OptimizePtr == NULL((void*)0)) return FALSE0; | |||
1922 | ||||
1923 | fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection)); | |||
1924 | if (fl == NULL((void*)0)) return FALSE0; | |||
1925 | ||||
1926 | // Copy the parameters | |||
1927 | fl ->OptimizePtr = Plugin ->OptimizePtr; | |||
1928 | ||||
1929 | // Keep linked list | |||
1930 | fl ->Next = ctx->OptimizationCollection; | |||
1931 | ||||
1932 | // Set the head | |||
1933 | ctx ->OptimizationCollection = fl; | |||
1934 | ||||
1935 | // All is ok | |||
1936 | return TRUE1; | |||
1937 | } | |||
1938 | ||||
1939 | // The entry point for LUT optimization | |||
1940 | cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID, | |||
1941 | cmsPipeline** PtrLut, | |||
1942 | cmsUInt32Number Intent, | |||
1943 | cmsUInt32Number* InputFormat, | |||
1944 | cmsUInt32Number* OutputFormat, | |||
1945 | cmsUInt32Number* dwFlags) | |||
1946 | { | |||
1947 | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); | |||
1948 | _cmsOptimizationCollection* Opts; | |||
1949 | cmsBool AnySuccess = FALSE0; | |||
1950 | ||||
1951 | // A CLUT is being asked, so force this specific optimization | |||
1952 | if (*dwFlags & cmsFLAGS_FORCE_CLUT0x0002) { | |||
1953 | ||||
1954 | PreOptimize(*PtrLut); | |||
1955 | return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags); | |||
1956 | } | |||
1957 | ||||
1958 | // Anything to optimize? | |||
1959 | if ((*PtrLut) ->Elements == NULL((void*)0)) { | |||
1960 | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL((void*)0), NULL((void*)0)); | |||
1961 | return TRUE1; | |||
1962 | } | |||
1963 | ||||
1964 | // Try to get rid of identities and trivial conversions. | |||
1965 | AnySuccess = PreOptimize(*PtrLut); | |||
1966 | ||||
1967 | // After removal do we end with an identity? | |||
1968 | if ((*PtrLut) ->Elements == NULL((void*)0)) { | |||
1969 | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL((void*)0), NULL((void*)0)); | |||
1970 | return TRUE1; | |||
1971 | } | |||
1972 | ||||
1973 | // Do not optimize, keep all precision | |||
1974 | if (*dwFlags & cmsFLAGS_NOOPTIMIZE0x0100) | |||
1975 | return FALSE0; | |||
1976 | ||||
1977 | // Try plug-in optimizations | |||
1978 | for (Opts = ctx->OptimizationCollection; | |||
1979 | Opts != NULL((void*)0); | |||
1980 | Opts = Opts ->Next) { | |||
1981 | ||||
1982 | // If one schema succeeded, we are done | |||
1983 | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { | |||
1984 | ||||
1985 | return TRUE1; // Optimized! | |||
1986 | } | |||
1987 | } | |||
1988 | ||||
1989 | // Try built-in optimizations | |||
1990 | for (Opts = DefaultOptimization; | |||
1991 | Opts != NULL((void*)0); | |||
1992 | Opts = Opts ->Next) { | |||
1993 | ||||
1994 | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { | |||
1995 | ||||
1996 | return TRUE1; | |||
1997 | } | |||
1998 | } | |||
1999 | ||||
2000 | // Only simple optimizations succeeded | |||
2001 | return AnySuccess; | |||
2002 | } | |||
2003 | ||||
2004 | ||||
2005 |