Bug Summary

File:jdk/src/hotspot/share/opto/chaitin.cpp
Warning:line 558, column 5
Value stored to 'must_spill' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name chaitin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -mthread-model posix -fno-delete-null-pointer-checks -mframe-pointer=all -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/libjvm/objs/precompiled -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D _GNU_SOURCE -D _REENTRANT -D LIBC=gnu -D LINUX -D VM_LITTLE_ENDIAN -D _LP64=1 -D ASSERT -D CHECK_UNHANDLED_OOPS -D TARGET_ARCH_x86 -D INCLUDE_SUFFIX_OS=_linux -D INCLUDE_SUFFIX_CPU=_x86 -D INCLUDE_SUFFIX_COMPILER=_gcc -D TARGET_COMPILER_gcc -D AMD64 -D HOTSPOT_LIB_ARCH="amd64" -D COMPILER1 -D COMPILER2 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -I /home/daniel/Projects/java/jdk/src/hotspot/share/precompiled -I /home/daniel/Projects/java/jdk/src/hotspot/share/include -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix/include -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base/linux -I /home/daniel/Projects/java/jdk/src/java.base/share/native/libjimage -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -D _FORTIFY_SOURCE=2 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-format-zero-length -Wno-unused-parameter -Wno-unused -Wno-parentheses -Wno-comment -Wno-unknown-pragmas -Wno-address -Wno-delete-non-virtual-dtor -Wno-char-subscripts -Wno-array-bounds -Wno-int-in-bool-context -Wno-ignored-qualifiers -Wno-missing-field-initializers -Wno-implicit-fallthrough -Wno-empty-body -Wno-strict-overflow -Wno-sequence-point -Wno-maybe-uninitialized -Wno-misleading-indentation -Wno-cast-function-type -Wno-shift-negative-value -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /home/daniel/Projects/java/jdk/make/hotspot -ferror-limit 19 -fmessage-length 0 -fvisibility hidden -stack-protector 1 -fno-rtti -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /home/daniel/Projects/java/scan/2021-12-21-193737-8510-1 -x c++ /home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp
1/*
2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "compiler/oopMap.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "opto/addnode.hpp"
31#include "opto/block.hpp"
32#include "opto/callnode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/chaitin.hpp"
35#include "opto/coalesce.hpp"
36#include "opto/connode.hpp"
37#include "opto/idealGraphPrinter.hpp"
38#include "opto/indexSet.hpp"
39#include "opto/machnode.hpp"
40#include "opto/memnode.hpp"
41#include "opto/movenode.hpp"
42#include "opto/opcodes.hpp"
43#include "opto/rootnode.hpp"
44#include "utilities/align.hpp"
45
46#ifndef PRODUCT
47void LRG::dump() const {
48 ttyLocker ttyl;
49 tty->print("%d ",num_regs());
50 _mask.dump();
51 if( _msize_valid ) {
52 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
53 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
54 } else {
55 tty->print(", #?(%d) ",_mask.Size());
56 }
57
58 tty->print("EffDeg: ");
59 if( _degree_valid ) tty->print( "%d ", _eff_degree );
60 else tty->print("? ");
61
62 if( is_multidef() ) {
63 tty->print("MultiDef ");
64 if (_defs != NULL__null) {
65 tty->print("(");
66 for (int i = 0; i < _defs->length(); i++) {
67 tty->print("N%d ", _defs->at(i)->_idx);
68 }
69 tty->print(") ");
70 }
71 }
72 else if( _def == 0 ) tty->print("Dead ");
73 else tty->print("Def: N%d ",_def->_idx);
74
75 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
76 // Flags
77 if( _is_oop ) tty->print("Oop ");
78 if( _is_float ) tty->print("Float ");
79 if( _is_vector ) tty->print("Vector ");
80 if( _is_predicate ) tty->print("Predicate ");
81 if( _is_scalable ) tty->print("Scalable ");
82 if( _was_spilled1 ) tty->print("Spilled ");
83 if( _was_spilled2 ) tty->print("Spilled2 ");
84 if( _direct_conflict ) tty->print("Direct_conflict ");
85 if( _fat_proj ) tty->print("Fat ");
86 if( _was_lo ) tty->print("Lo ");
87 if( _has_copy ) tty->print("Copy ");
88 if( _at_risk ) tty->print("Risk ");
89
90 if( _must_spill ) tty->print("Must_spill ");
91 if( _is_bound ) tty->print("Bound ");
92 if( _msize_valid ) {
93 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
94 }
95
96 tty->cr();
97}
98#endif
99
100// Compute score from cost and area. Low score is best to spill.
101static double raw_score( double cost, double area ) {
102 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
103}
104
105double LRG::score() const {
106 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
107 // Bigger area lowers score, encourages spilling this live range.
108 // Bigger cost raise score, prevents spilling this live range.
109 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
110 // to turn a divide by a constant into a multiply by the reciprical).
111 double score = raw_score( _cost, _area);
112
113 // Account for area. Basically, LRGs covering large areas are better
114 // to spill because more other LRGs get freed up.
115 if( _area == 0.0 ) // No area? Then no progress to spill
116 return 1e35;
117
118 if( _was_spilled2 ) // If spilled once before, we are unlikely
119 return score + 1e30; // to make progress again.
120
121 if( _cost >= _area*3.0 ) // Tiny area relative to cost
122 return score + 1e17; // Probably no progress to spill
123
124 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
125 return score + 1e10; // Likely no progress to spill
126
127 return score;
128}
129
130#define NUMBUCKS3 3
131
132// Straight out of Tarjan's union-find algorithm
133uint LiveRangeMap::find_compress(uint lrg) {
134 uint cur = lrg;
135 uint next = _uf_map.at(cur);
136 while (next != cur) { // Scan chain of equivalences
137 assert( next < cur, "always union smaller")do { if (!(next < cur)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 137, "assert(" "next < cur" ") failed", "always union smaller"
); ::breakpoint(); } } while (0)
;
138 cur = next; // until find a fixed-point
139 next = _uf_map.at(cur);
140 }
141
142 // Core of union-find algorithm: update chain of
143 // equivalences to be equal to the root.
144 while (lrg != next) {
145 uint tmp = _uf_map.at(lrg);
146 _uf_map.at_put(lrg, next);
147 lrg = tmp;
148 }
149 return lrg;
150}
151
152// Reset the Union-Find map to identity
153void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
154 _max_lrg_id= max_lrg_id;
155 // Force the Union-Find mapping to be at least this large
156 _uf_map.at_put_grow(_max_lrg_id, 0);
157 // Initialize it to be the ID mapping.
158 for (uint i = 0; i < _max_lrg_id; ++i) {
159 _uf_map.at_put(i, i);
160 }
161}
162
163// Make all Nodes map directly to their final live range; no need for
164// the Union-Find mapping after this call.
165void LiveRangeMap::compress_uf_map_for_nodes() {
166 // For all Nodes, compress mapping
167 uint unique = _names.length();
168 for (uint i = 0; i < unique; ++i) {
169 uint lrg = _names.at(i);
170 uint compressed_lrg = find(lrg);
171 if (lrg != compressed_lrg) {
172 _names.at_put(i, compressed_lrg);
173 }
174 }
175}
176
177// Like Find above, but no path compress, so bad asymptotic behavior
178uint LiveRangeMap::find_const(uint lrg) const {
179 if (!lrg) {
180 return lrg; // Ignore the zero LRG
181 }
182
183 // Off the end? This happens during debugging dumps when you got
184 // brand new live ranges but have not told the allocator yet.
185 if (lrg >= _max_lrg_id) {
186 return lrg;
187 }
188
189 uint next = _uf_map.at(lrg);
190 while (next != lrg) { // Scan chain of equivalences
191 assert(next < lrg, "always union smaller")do { if (!(next < lrg)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 191, "assert(" "next < lrg" ") failed", "always union smaller"
); ::breakpoint(); } } while (0)
;
192 lrg = next; // until find a fixed-point
193 next = _uf_map.at(lrg);
194 }
195 return next;
196}
197
198PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
199 : PhaseRegAlloc(unique, cfg, matcher,
200#ifndef PRODUCT
201 print_chaitin_statistics
202#else
203 NULL__null
204#endif
205 )
206 , _live(0)
207 , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
208 , _oldphi(unique)
209#ifndef PRODUCT
210 , _trace_spilling(C->directive()->TraceSpillingOption)
211#endif
212 , _lrg_map(Thread::current()->resource_area(), unique)
213 , _scheduling_info_generated(scheduling_info_generated)
214 , _sched_int_pressure(0, Matcher::int_pressure_limit())
215 , _sched_float_pressure(0, Matcher::float_pressure_limit())
216 , _scratch_int_pressure(0, Matcher::int_pressure_limit())
217 , _scratch_float_pressure(0, Matcher::float_pressure_limit())
218{
219 Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
220
221 _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ((0.25 * (double) 1500) / FreqCountInvocations)), _cfg.get_outer_loop_frequency());
222
223 // Build a list of basic blocks, sorted by frequency
224 _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks())(Block **) resource_allocate_bytes((_cfg.number_of_blocks()) *
sizeof(Block *))
;
225 // Experiment with sorting strategies to speed compilation
226 double cutoff = BLOCK_FREQUENCY(1.0)((1.0 * (double) 1500) / FreqCountInvocations); // Cutoff for high frequency bucket
227 Block **buckets[NUMBUCKS3]; // Array of buckets
228 uint buckcnt[NUMBUCKS3]; // Array of bucket counters
229 double buckval[NUMBUCKS3]; // Array of bucket value cutoffs
230 for (uint i = 0; i < NUMBUCKS3; i++) {
231 buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks())(Block **) resource_allocate_bytes((_cfg.number_of_blocks()) *
sizeof(Block *))
;
232 buckcnt[i] = 0;
233 // Bump by three orders of magnitude each time
234 cutoff *= 0.001;
235 buckval[i] = cutoff;
236 for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
237 buckets[i][j] = NULL__null;
238 }
239 }
240 // Sort blocks into buckets
241 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
242 for (uint j = 0; j < NUMBUCKS3; j++) {
243 if ((j == NUMBUCKS3 - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
244 // Assign block to end of list for appropriate bucket
245 buckets[j][buckcnt[j]++] = _cfg.get_block(i);
246 break; // kick out of inner loop
247 }
248 }
249 }
250 // Dump buckets into final block array
251 uint blkcnt = 0;
252 for (uint i = 0; i < NUMBUCKS3; i++) {
253 for (uint j = 0; j < buckcnt[i]; j++) {
254 _blks[blkcnt++] = buckets[i][j];
255 }
256 }
257
258 assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled")do { if (!(blkcnt == _cfg.number_of_blocks())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 258, "assert(" "blkcnt == _cfg.number_of_blocks()" ") failed"
, "Block array not totally filled"); ::breakpoint(); } } while
(0)
;
259}
260
261// union 2 sets together.
262void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
263 uint src = _lrg_map.find(src_n);
264 uint dst = _lrg_map.find(dst_n);
265 assert(src, "")do { if (!(src)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 265, "assert(" "src" ") failed", ""); ::breakpoint(); } } while
(0)
;
266 assert(dst, "")do { if (!(dst)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 266, "assert(" "dst" ") failed", ""); ::breakpoint(); } } while
(0)
;
267 assert(src < _lrg_map.max_lrg_id(), "oob")do { if (!(src < _lrg_map.max_lrg_id())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 267, "assert(" "src < _lrg_map.max_lrg_id()" ") failed",
"oob"); ::breakpoint(); } } while (0)
;
268 assert(dst < _lrg_map.max_lrg_id(), "oob")do { if (!(dst < _lrg_map.max_lrg_id())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 268, "assert(" "dst < _lrg_map.max_lrg_id()" ") failed",
"oob"); ::breakpoint(); } } while (0)
;
269 assert(src < dst, "always union smaller")do { if (!(src < dst)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 269, "assert(" "src < dst" ") failed", "always union smaller"
); ::breakpoint(); } } while (0)
;
270 _lrg_map.uf_map(dst, src);
271}
272
273void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
274 // Make the Node->LRG mapping
275 _lrg_map.extend(x->_idx,lrg);
276 // Make the Union-Find mapping an identity function
277 _lrg_map.uf_extend(lrg, lrg);
278}
279
280
281int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
282 assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections")do { if (!(b->find_node(copy) == (idx - 1))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 282, "assert(" "b->find_node(copy) == (idx - 1)" ") failed"
, "incorrect insert index for copy kill projections"); ::breakpoint
(); } } while (0)
;
283 DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )Block* borig = _cfg.get_block_for_node(orig);
284 int found_projs = 0;
285 uint cnt = orig->outcnt();
286 for (uint i = 0; i < cnt; i++) {
287 Node* proj = orig->raw_out(i);
288 if (proj->is_MachProj()) {
289 assert(proj->outcnt() == 0, "only kill projections are expected here")do { if (!(proj->outcnt() == 0)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 289, "assert(" "proj->outcnt() == 0" ") failed", "only kill projections are expected here"
); ::breakpoint(); } } while (0)
;
290 assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections")do { if (!(_cfg.get_block_for_node(proj) == borig)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 290, "assert(" "_cfg.get_block_for_node(proj) == borig" ") failed"
, "incorrect block for kill projections"); ::breakpoint(); } }
while (0)
;
291 found_projs++;
292 // Copy kill projections after the cloned node
293 Node* kills = proj->clone();
294 kills->set_req(0, copy);
295 b->insert_node(kills, idx++);
296 _cfg.map_node_to_block(kills, b);
297 new_lrg(kills, max_lrg_id++);
298 }
299 }
300 return found_projs;
301}
302
303// Renumber the live ranges to compact them. Makes the IFG smaller.
304void PhaseChaitin::compact() {
305 Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
306
307 // Current the _uf_map contains a series of short chains which are headed
308 // by a self-cycle. All the chains run from big numbers to little numbers.
309 // The Find() call chases the chains & shortens them for the next Find call.
310 // We are going to change this structure slightly. Numbers above a moving
311 // wave 'i' are unchanged. Numbers below 'j' point directly to their
312 // compacted live range with no further chaining. There are no chains or
313 // cycles below 'i', so the Find call no longer works.
314 uint j=1;
315 uint i;
316 for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
317 uint lr = _lrg_map.uf_live_range_id(i);
318 // Ignore unallocated live ranges
319 if (!lr) {
320 continue;
321 }
322 assert(lr <= i, "")do { if (!(lr <= i)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 322, "assert(" "lr <= i" ") failed", ""); ::breakpoint()
; } } while (0)
;
323 _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
324 }
325 // Now change the Node->LR mapping to reflect the compacted names
326 uint unique = _lrg_map.size();
327 for (i = 0; i < unique; i++) {
328 uint lrg_id = _lrg_map.live_range_id(i);
329 _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
330 }
331
332 // Reset the Union-Find mapping
333 _lrg_map.reset_uf_map(j);
334}
335
336void PhaseChaitin::Register_Allocate() {
337
338 // Above the OLD FP (and in registers) are the incoming arguments. Stack
339 // slots in this area are called "arg_slots". Above the NEW FP (and in
340 // registers) is the outgoing argument area; above that is the spill/temp
341 // area. These are all "frame_slots". Arg_slots start at the zero
342 // stack_slots and count up to the known arg_size. Frame_slots start at
343 // the stack_slot #arg_size and go up. After allocation I map stack
344 // slots to actual offsets. Stack-slots in the arg_slot area are biased
345 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
346
347 _trip_cnt = 0;
348 _alternate = 0;
349 _matcher._allocation_started = true;
350
351 ResourceArea split_arena(mtCompiler); // Arena for Split local resources
352 ResourceArea live_arena(mtCompiler); // Arena for liveness & IFG info
353 ResourceMark rm(&live_arena);
354
355 // Need live-ness for the IFG; need the IFG for coalescing. If the
356 // liveness is JUST for coalescing, then I can get some mileage by renaming
357 // all copy-related live ranges low and then using the max copy-related
358 // live range as a cut-off for LIVE and the IFG. In other words, I can
359 // build a subset of LIVE and IFG just for copies.
360 PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
361
362 // Need IFG for coalescing and coloring
363 PhaseIFG ifg(&live_arena);
364 _ifg = &ifg;
365
366 // Come out of SSA world to the Named world. Assign (virtual) registers to
367 // Nodes. Use the same register for all inputs and the output of PhiNodes
368 // - effectively ending SSA form. This requires either coalescing live
369 // ranges or inserting copies. For the moment, we insert "virtual copies"
370 // - we pretend there is a copy prior to each Phi in predecessor blocks.
371 // We will attempt to coalesce such "virtual copies" before we manifest
372 // them for real.
373 de_ssa();
374
375#ifdef ASSERT1
376 // Veify the graph before RA.
377 verify(&live_arena);
378#endif
379
380 {
381 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
382 _live = NULL__null; // Mark live as being not available
383 rm.reset_to_mark(); // Reclaim working storage
384 IndexSet::reset_memory(C, &live_arena);
385 ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
386 gather_lrg_masks( false ); // Collect LRG masks
387 live.compute(_lrg_map.max_lrg_id()); // Compute liveness
388 _live = &live; // Mark LIVE as being available
389 }
390
391 // Base pointers are currently "used" by instructions which define new
392 // derived pointers. This makes base pointers live up to the where the
393 // derived pointer is made, but not beyond. Really, they need to be live
394 // across any GC point where the derived value is live. So this code looks
395 // at all the GC points, and "stretches" the live range of any base pointer
396 // to the GC point.
397 if (stretch_base_pointer_live_ranges(&live_arena)) {
398 Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
399 // Since some live range stretched, I need to recompute live
400 _live = NULL__null;
401 rm.reset_to_mark(); // Reclaim working storage
402 IndexSet::reset_memory(C, &live_arena);
403 ifg.init(_lrg_map.max_lrg_id());
404 gather_lrg_masks(false);
405 live.compute(_lrg_map.max_lrg_id());
406 _live = &live;
407 }
408 // Create the interference graph using virtual copies
409 build_ifg_virtual(); // Include stack slots this time
410
411 // The IFG is/was triangular. I am 'squaring it up' so Union can run
412 // faster. Union requires a 'for all' operation which is slow on the
413 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
414 // meaning I can visit all the Nodes neighbors less than a Node in time
415 // O(# of neighbors), but I have to visit all the Nodes greater than a
416 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
417 _ifg->SquareUp();
418
419 // Aggressive (but pessimistic) copy coalescing.
420 // This pass works on virtual copies. Any virtual copies which are not
421 // coalesced get manifested as actual copies
422 {
423 Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
424
425 PhaseAggressiveCoalesce coalesce(*this);
426 coalesce.coalesce_driver();
427 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
428 // not match the Phi itself, insert a copy.
429 coalesce.insert_copies(_matcher);
430 if (C->failing()) {
431 return;
432 }
433 }
434
435 // After aggressive coalesce, attempt a first cut at coloring.
436 // To color, we need the IFG and for that we need LIVE.
437 {
438 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
439 _live = NULL__null;
440 rm.reset_to_mark(); // Reclaim working storage
441 IndexSet::reset_memory(C, &live_arena);
442 ifg.init(_lrg_map.max_lrg_id());
443 gather_lrg_masks( true );
444 live.compute(_lrg_map.max_lrg_id());
445 _live = &live;
446 }
447
448 // Build physical interference graph
449 uint must_spill = 0;
450 must_spill = build_ifg_physical(&live_arena);
451 // If we have a guaranteed spill, might as well spill now
452 if (must_spill) {
453 if(!_lrg_map.max_lrg_id()) {
454 return;
455 }
456 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
457 C->check_node_count(10*must_spill, "out of nodes before split");
458 if (C->failing()) {
459 return;
460 }
461
462 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
463 _lrg_map.set_max_lrg_id(new_max_lrg_id);
464 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
465 // or we failed to split
466 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
467 if (C->failing()) {
468 return;
469 }
470
471 NOT_PRODUCT(C->verify_graph_edges();)C->verify_graph_edges();
472
473 compact(); // Compact LRGs; return new lower max lrg
474
475 {
476 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
477 _live = NULL__null;
478 rm.reset_to_mark(); // Reclaim working storage
479 IndexSet::reset_memory(C, &live_arena);
480 ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
481 gather_lrg_masks( true ); // Collect intersect mask
482 live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
483 _live = &live;
484 }
485 build_ifg_physical(&live_arena);
486 _ifg->SquareUp();
487 _ifg->Compute_Effective_Degree();
488 // Only do conservative coalescing if requested
489 if (OptoCoalesce) {
490 Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
491 // Conservative (and pessimistic) copy coalescing of those spills
492 PhaseConservativeCoalesce coalesce(*this);
493 // If max live ranges greater than cutoff, don't color the stack.
494 // This cutoff can be larger than below since it is only done once.
495 coalesce.coalesce_driver();
496 }
497 _lrg_map.compress_uf_map_for_nodes();
498
499#ifdef ASSERT1
500 verify(&live_arena, true);
501#endif
502 } else {
503 ifg.SquareUp();
504 ifg.Compute_Effective_Degree();
505#ifdef ASSERT1
506 set_was_low();
507#endif
508 }
509
510 // Prepare for Simplify & Select
511 cache_lrg_info(); // Count degree of LRGs
512
513 // Simplify the InterFerence Graph by removing LRGs of low degree.
514 // LRGs of low degree are trivially colorable.
515 Simplify();
516
517 // Select colors by re-inserting LRGs back into the IFG in reverse order.
518 // Return whether or not something spills.
519 uint spills = Select( );
520
521 // If we spill, split and recycle the entire thing
522 while( spills ) {
523 if( _trip_cnt++ > 24 ) {
524 DEBUG_ONLY( dump_for_spill_split_recycle(); )dump_for_spill_split_recycle();
525 if( _trip_cnt > 27 ) {
526 C->record_method_not_compilable("failed spill-split-recycle sanity check");
527 return;
528 }
529 }
530
531 if (!_lrg_map.max_lrg_id()) {
532 return;
533 }
534 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
535 _lrg_map.set_max_lrg_id(new_max_lrg_id);
536 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
537 C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
538 if (C->failing()) {
539 return;
540 }
541
542 compact(); // Compact LRGs; return new lower max lrg
543
544 // Nuke the live-ness and interference graph and LiveRanGe info
545 {
546 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
547 _live = NULL__null;
548 rm.reset_to_mark(); // Reclaim working storage
549 IndexSet::reset_memory(C, &live_arena);
550 ifg.init(_lrg_map.max_lrg_id());
551
552 // Create LiveRanGe array.
553 // Intersect register masks for all USEs and DEFs
554 gather_lrg_masks(true);
555 live.compute(_lrg_map.max_lrg_id());
556 _live = &live;
557 }
558 must_spill = build_ifg_physical(&live_arena);
Value stored to 'must_spill' is never read
559 _ifg->SquareUp();
560 _ifg->Compute_Effective_Degree();
561
562 // Only do conservative coalescing if requested
563 if (OptoCoalesce) {
564 Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
565 // Conservative (and pessimistic) copy coalescing
566 PhaseConservativeCoalesce coalesce(*this);
567 // Check for few live ranges determines how aggressive coalesce is.
568 coalesce.coalesce_driver();
569 }
570 _lrg_map.compress_uf_map_for_nodes();
571#ifdef ASSERT1
572 verify(&live_arena, true);
573#endif
574 cache_lrg_info(); // Count degree of LRGs
575
576 // Simplify the InterFerence Graph by removing LRGs of low degree.
577 // LRGs of low degree are trivially colorable.
578 Simplify();
579
580 // Select colors by re-inserting LRGs back into the IFG in reverse order.
581 // Return whether or not something spills.
582 spills = Select();
583 }
584
585 // Count number of Simplify-Select trips per coloring success.
586 _allocator_attempts += _trip_cnt + 1;
587 _allocator_successes += 1;
588
589 // Peephole remove copies
590 post_allocate_copy_removal();
591
592 // Merge multidefs if multiple defs representing the same value are used in a single block.
593 merge_multidefs();
594
595#ifdef ASSERT1
596 // Veify the graph after RA.
597 verify(&live_arena);
598#endif
599
600 // max_reg is past the largest *register* used.
601 // Convert that to a frame_slot number.
602 if (_max_reg <= _matcher._new_SP) {
603 _framesize = C->out_preserve_stack_slots();
604 }
605 else {
606 _framesize = _max_reg -_matcher._new_SP;
607 }
608 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough")do { if (!((int)(_matcher._new_SP+_framesize) >= (int)_matcher
._out_arg_limit)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 608, "assert(" "(int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit"
") failed", "framesize must be large enough"); ::breakpoint(
); } } while (0)
;
609
610 // This frame must preserve the required fp alignment
611 _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
612 assert(_framesize <= 1000000, "sanity check")do { if (!(_framesize <= 1000000)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 612, "assert(" "_framesize <= 1000000" ") failed", "sanity check"
); ::breakpoint(); } } while (0)
;
613#ifndef PRODUCT
614 _total_framesize += _framesize;
615 if ((int)_framesize > _max_framesize) {
616 _max_framesize = _framesize;
617 }
618#endif
619
620 // Convert CISC spills
621 fixup_spills();
622
623 // Log regalloc results
624 CompileLog* log = Compile::current()->log();
625 if (log != NULL__null) {
626 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
627 }
628
629 if (C->failing()) {
630 return;
631 }
632
633 NOT_PRODUCT(C->verify_graph_edges();)C->verify_graph_edges();
634
635 // Move important info out of the live_arena to longer lasting storage.
636 alloc_node_regs(_lrg_map.size());
637 for (uint i=0; i < _lrg_map.size(); i++) {
638 if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
639 LRG &lrg = lrgs(_lrg_map.live_range_id(i));
640 if (!lrg.alive()) {
641 set_bad(i);
642 } else if ((lrg.num_regs() == 1 && !lrg.is_scalable()) ||
643 (lrg.is_scalable() && lrg.scalable_reg_slots() == 1)) {
644 set1(i, lrg.reg());
645 } else { // Must be a register-set
646 if (!lrg._fat_proj) { // Must be aligned adjacent register set
647 // Live ranges record the highest register in their mask.
648 // We want the low register for the AD file writer's convenience.
649 OptoReg::Name hi = lrg.reg(); // Get hi register
650 int num_regs = lrg.num_regs();
651 if (lrg.is_scalable() && OptoReg::is_stack(hi)) {
652 // For scalable vector registers, when they are allocated in physical
653 // registers, num_regs is RegMask::SlotsPerVecA for reg mask of scalable
654 // vector. If they are allocated on stack, we need to get the actual
655 // num_regs, which reflects the physical length of scalable registers.
656 num_regs = lrg.scalable_reg_slots();
657 }
658 if (num_regs == 1) {
659 set1(i, hi);
660 } else {
661 OptoReg::Name lo = OptoReg::add(hi, (1 - num_regs)); // Find lo
662 // We have to use pair [lo,lo+1] even for wide vectors/vmasks because
663 // the rest of code generation works only with pairs. It is safe
664 // since for registers encoding only 'lo' is used.
665 // Second reg from pair is used in ScheduleAndBundle with vector max
666 // size 8 which corresponds to registers pair.
667 // It is also used in BuildOopMaps but oop operations are not
668 // vectorized.
669 set2(i, lo);
670 }
671 } else { // Misaligned; extract 2 bits
672 OptoReg::Name hi = lrg.reg(); // Get hi register
673 lrg.Remove(hi); // Yank from mask
674 int lo = lrg.mask().find_first_elem(); // Find lo
675 set_pair(i, hi, lo);
676 }
677 }
678 if( lrg._is_oop ) _node_oops.set(i);
679 } else {
680 set_bad(i);
681 }
682 }
683
684 // Done!
685 _live = NULL__null;
686 _ifg = NULL__null;
687 C->set_indexSet_arena(NULL__null); // ResourceArea is at end of scope
688}
689
690void PhaseChaitin::de_ssa() {
691 // Set initial Names for all Nodes. Most Nodes get the virtual register
692 // number. A few get the ZERO live range number. These do not
693 // get allocated, but instead rely on correct scheduling to ensure that
694 // only one instance is simultaneously live at a time.
695 uint lr_counter = 1;
696 for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
697 Block* block = _cfg.get_block(i);
698 uint cnt = block->number_of_nodes();
699
700 // Handle all the normal Nodes in the block
701 for( uint j = 0; j < cnt; j++ ) {
702 Node *n = block->get_node(j);
703 // Pre-color to the zero live range, or pick virtual register
704 const RegMask &rm = n->out_RegMask();
705 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
706 }
707 }
708
709 // Reset the Union-Find mapping to be identity
710 _lrg_map.reset_uf_map(lr_counter);
711}
712
713void PhaseChaitin::mark_ssa() {
714 // Use ssa names to populate the live range maps or if no mask
715 // is available, use the 0 entry.
716 uint max_idx = 0;
717 for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
718 Block* block = _cfg.get_block(i);
719 uint cnt = block->number_of_nodes();
720
721 // Handle all the normal Nodes in the block
722 for ( uint j = 0; j < cnt; j++ ) {
723 Node *n = block->get_node(j);
724 // Pre-color to the zero live range, or pick virtual register
725 const RegMask &rm = n->out_RegMask();
726 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
727 max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
728 }
729 }
730 _lrg_map.set_max_lrg_id(max_idx+1);
731
732 // Reset the Union-Find mapping to be identity
733 _lrg_map.reset_uf_map(max_idx+1);
734}
735
736
737// Gather LiveRanGe information, including register masks. Modification of
738// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
739void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
740
741 // Nail down the frame pointer live range
742 uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
743 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
744
745 // For all blocks
746 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
747 Block* block = _cfg.get_block(i);
748
749 // For all instructions
750 for (uint j = 1; j < block->number_of_nodes(); j++) {
751 Node* n = block->get_node(j);
752 uint input_edge_start =1; // Skip control most nodes
753 bool is_machine_node = false;
754 if (n->is_Mach()) {
755 is_machine_node = true;
756 input_edge_start = n->as_Mach()->oper_input_base();
757 }
758 uint idx = n->is_Copy();
759
760 // Get virtual register number, same as LiveRanGe index
761 uint vreg = _lrg_map.live_range_id(n);
762 LRG& lrg = lrgs(vreg);
763 if (vreg) { // No vreg means un-allocable (e.g. memory)
764
765 // Check for float-vs-int live range (used in register-pressure
766 // calculations)
767 const Type *n_type = n->bottom_type();
768 if (n_type->is_floatingpoint()) {
769 lrg._is_float = 1;
770 }
771
772 // Check for twice prior spilling. Once prior spilling might have
773 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
774 // further spilling is unlikely to make progress.
775 if (_spilled_once.test(n->_idx)) {
776 lrg._was_spilled1 = 1;
777 if (_spilled_twice.test(n->_idx)) {
778 lrg._was_spilled2 = 1;
779 }
780 }
781
782#ifndef PRODUCT
783 // Collect bits not used by product code, but which may be useful for
784 // debugging.
785
786 // Collect has-copy bit
787 if (idx) {
788 lrg._has_copy = 1;
789 uint clidx = _lrg_map.live_range_id(n->in(idx));
790 LRG& copy_src = lrgs(clidx);
791 copy_src._has_copy = 1;
792 }
793
794 if (trace_spilling() && lrg._def != NULL__null) {
795 // collect defs for MultiDef printing
796 if (lrg._defs == NULL__null) {
797 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL__null);
798 lrg._defs->append(lrg._def);
799 }
800 lrg._defs->append(n);
801 }
802#endif
803
804 // Check for a single def LRG; these can spill nicely
805 // via rematerialization. Flag as NULL for no def found
806 // yet, or 'n' for single def or -1 for many defs.
807 lrg._def = lrg._def ? NodeSentinel(Node*)-1 : n;
808
809 // Limit result register mask to acceptable registers
810 const RegMask &rm = n->out_RegMask();
811 lrg.AND( rm );
812
813 uint ireg = n->ideal_reg();
814 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,do { if (!(!n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 815, "assert(" "!n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP"
") failed", "oops must be in Op_RegP's"); ::breakpoint(); } }
while (0)
815 "oops must be in Op_RegP's" )do { if (!(!n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 815, "assert(" "!n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP"
") failed", "oops must be in Op_RegP's"); ::breakpoint(); } }
while (0)
;
816
817 // Check for vector live range (only if vector register is used).
818 // On SPARC vector uses RegD which could be misaligned so it is not
819 // processes as vector in RA.
820 if (RegMask::is_vector(ireg)) {
821 lrg._is_vector = 1;
822 if (Matcher::implements_scalable_vector && ireg == Op_VecA) {
823 assert(Matcher::supports_scalable_vector(), "scalable vector should be supported")do { if (!(Matcher::supports_scalable_vector())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 823, "assert(" "Matcher::supports_scalable_vector()" ") failed"
, "scalable vector should be supported"); ::breakpoint(); } }
while (0)
;
824 lrg._is_scalable = 1;
825 // For scalable vector, when it is allocated in physical register,
826 // num_regs is RegMask::SlotsPerVecA for reg mask,
827 // which may not be the actual physical register size.
828 // If it is allocated in stack, we need to get the actual
829 // physical length of scalable vector register.
830 lrg.set_scalable_reg_slots(Matcher::scalable_vector_reg_size(T_FLOAT));
831 }
832 }
833
834 if (ireg == Op_RegVectMask) {
835 assert(Matcher::has_predicated_vectors(), "predicated vector should be supported")do { if (!(Matcher::has_predicated_vectors())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 835, "assert(" "Matcher::has_predicated_vectors()" ") failed"
, "predicated vector should be supported"); ::breakpoint(); }
} while (0)
;
836 lrg._is_predicate = 1;
837 if (Matcher::supports_scalable_vector()) {
838 lrg._is_scalable = 1;
839 // For scalable predicate, when it is allocated in physical register,
840 // num_regs is RegMask::SlotsPerRegVectMask for reg mask,
841 // which may not be the actual physical register size.
842 // If it is allocated in stack, we need to get the actual
843 // physical length of scalable predicate register.
844 lrg.set_scalable_reg_slots(Matcher::scalable_predicate_reg_slots());
845 }
846 }
847 assert(n_type->isa_vect() == NULL || lrg._is_vector ||do { if (!(n_type->isa_vect() == __null || lrg._is_vector ||
ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 849, "assert(" "n_type->isa_vect() == __null || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask"
") failed", "vector must be in vector registers"); ::breakpoint
(); } } while (0)
848 ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask,do { if (!(n_type->isa_vect() == __null || lrg._is_vector ||
ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 849, "assert(" "n_type->isa_vect() == __null || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask"
") failed", "vector must be in vector registers"); ::breakpoint
(); } } while (0)
849 "vector must be in vector registers")do { if (!(n_type->isa_vect() == __null || lrg._is_vector ||
ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 849, "assert(" "n_type->isa_vect() == __null || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask"
") failed", "vector must be in vector registers"); ::breakpoint
(); } } while (0)
;
850
851 // Check for bound register masks
852 const RegMask &lrgmask = lrg.mask();
853 if (lrgmask.is_bound(ireg)) {
854 lrg._is_bound = 1;
855 }
856
857 // Check for maximum frequency value
858 if (lrg._maxfreq < block->_freq) {
859 lrg._maxfreq = block->_freq;
860 }
861
862 // Check for oop-iness, or long/double
863 // Check for multi-kill projection
864 switch (ireg) {
865 case MachProjNode::fat_proj:
866 // Fat projections have size equal to number of registers killed
867 lrg.set_num_regs(rm.Size());
868 lrg.set_reg_pressure(lrg.num_regs());
869 lrg._fat_proj = 1;
870 lrg._is_bound = 1;
871 break;
872 case Op_RegP:
873#ifdef _LP641
874 lrg.set_num_regs(2); // Size is 2 stack words
875#else
876 lrg.set_num_regs(1); // Size is 1 stack word
877#endif
878 // Register pressure is tracked relative to the maximum values
879 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
880 // and relative to other types which compete for the same regs.
881 //
882 // The following table contains suggested values based on the
883 // architectures as defined in each .ad file.
884 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
885 // compile-speed or performance.
886 // Note1:
887 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
888 // since .ad registers are defined as high and low halves.
889 // These reg_pressure values remain compatible with the code
890 // in is_high_pressure() which relates get_invalid_mask_size(),
891 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
892 // Note2:
893 // SPARC -d32 has 24 registers available for integral values,
894 // but only 10 of these are safe for 64-bit longs.
895 // Using set_reg_pressure(2) for both int and long means
896 // the allocator will believe it can fit 26 longs into
897 // registers. Using 2 for longs and 1 for ints means the
898 // allocator will attempt to put 52 integers into registers.
899 // The settings below limit this problem to methods with
900 // many long values which are being run on 32-bit SPARC.
901 //
902 // ------------------- reg_pressure --------------------
903 // Each entry is reg_pressure_per_value,number_of_regs
904 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
905 // IA32 2 1 1 1 1 6 6
906 // IA64 1 1 1 1 1 50 41
907 // SPARC 2 2 2 2 2 48 (24) 52 (26)
908 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
909 // AMD64 1 1 1 1 1 14 15
910 // -----------------------------------------------------
911 lrg.set_reg_pressure(1); // normally one value per register
912 if( n_type->isa_oop_ptr() ) {
913 lrg._is_oop = 1;
914 }
915 break;
916 case Op_RegL: // Check for long or double
917 case Op_RegD:
918 lrg.set_num_regs(2);
919 // Define platform specific register pressure
920#if defined(ARM32)
921 lrg.set_reg_pressure(2);
922#elif defined(IA32)
923 if( ireg == Op_RegL ) {
924 lrg.set_reg_pressure(2);
925 } else {
926 lrg.set_reg_pressure(1);
927 }
928#else
929 lrg.set_reg_pressure(1); // normally one value per register
930#endif
931 // If this def of a double forces a mis-aligned double,
932 // flag as '_fat_proj' - really flag as allowing misalignment
933 // AND changes how we count interferences. A mis-aligned
934 // double can interfere with TWO aligned pairs, or effectively
935 // FOUR registers!
936 if (rm.is_misaligned_pair()) {
937 lrg._fat_proj = 1;
938 lrg._is_bound = 1;
939 }
940 break;
941 case Op_RegVectMask:
942 assert(Matcher::has_predicated_vectors(), "sanity")do { if (!(Matcher::has_predicated_vectors())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 942, "assert(" "Matcher::has_predicated_vectors()" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
943 assert(RegMask::num_registers(Op_RegVectMask) == RegMask::SlotsPerRegVectMask, "sanity")do { if (!(RegMask::num_registers(Op_RegVectMask) == RegMask::
SlotsPerRegVectMask)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 943, "assert(" "RegMask::num_registers(Op_RegVectMask) == RegMask::SlotsPerRegVectMask"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
944 lrg.set_num_regs(RegMask::SlotsPerRegVectMask);
945 lrg.set_reg_pressure(1);
946 break;
947 case Op_RegF:
948 case Op_RegI:
949 case Op_RegN:
950 case Op_RegFlags:
951 case 0: // not an ideal register
952 lrg.set_num_regs(1);
953 lrg.set_reg_pressure(1);
954 break;
955 case Op_VecA:
956 assert(Matcher::supports_scalable_vector(), "does not support scalable vector")do { if (!(Matcher::supports_scalable_vector())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 956, "assert(" "Matcher::supports_scalable_vector()" ") failed"
, "does not support scalable vector"); ::breakpoint(); } } while
(0)
;
957 assert(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA, "sanity")do { if (!(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 957, "assert(" "RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
958 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA), "vector should be aligned")do { if (!(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA))) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 958, "assert(" "lrgmask.is_aligned_sets(RegMask::SlotsPerVecA)"
") failed", "vector should be aligned"); ::breakpoint(); } }
while (0)
;
959 lrg.set_num_regs(RegMask::SlotsPerVecA);
960 lrg.set_reg_pressure(1);
961 break;
962 case Op_VecS:
963 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity")do { if (!(Matcher::vector_size_supported(T_BYTE,4))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 963, "assert(" "Matcher::vector_size_supported(T_BYTE,4)" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
964 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity")do { if (!(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 964, "assert(" "RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
965 lrg.set_num_regs(RegMask::SlotsPerVecS);
966 lrg.set_reg_pressure(1);
967 break;
968 case Op_VecD:
969 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity")do { if (!(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 969, "assert(" "Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD)"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
970 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity")do { if (!(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 970, "assert(" "RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
971 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned")do { if (!(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD))) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 971, "assert(" "lrgmask.is_aligned_sets(RegMask::SlotsPerVecD)"
") failed", "vector should be aligned"); ::breakpoint(); } }
while (0)
;
972 lrg.set_num_regs(RegMask::SlotsPerVecD);
973 lrg.set_reg_pressure(1);
974 break;
975 case Op_VecX:
976 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity")do { if (!(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 976, "assert(" "Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX)"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
977 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity")do { if (!(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 977, "assert(" "RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
978 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned")do { if (!(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX))) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 978, "assert(" "lrgmask.is_aligned_sets(RegMask::SlotsPerVecX)"
") failed", "vector should be aligned"); ::breakpoint(); } }
while (0)
;
979 lrg.set_num_regs(RegMask::SlotsPerVecX);
980 lrg.set_reg_pressure(1);
981 break;
982 case Op_VecY:
983 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity")do { if (!(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 983, "assert(" "Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY)"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
984 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity")do { if (!(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 984, "assert(" "RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
985 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned")do { if (!(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY))) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 985, "assert(" "lrgmask.is_aligned_sets(RegMask::SlotsPerVecY)"
") failed", "vector should be aligned"); ::breakpoint(); } }
while (0)
;
986 lrg.set_num_regs(RegMask::SlotsPerVecY);
987 lrg.set_reg_pressure(1);
988 break;
989 case Op_VecZ:
990 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity")do { if (!(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 990, "assert(" "Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ)"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
991 assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity")do { if (!(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 991, "assert(" "RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
992 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned")do { if (!(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ))) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 992, "assert(" "lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ)"
") failed", "vector should be aligned"); ::breakpoint(); } }
while (0)
;
993 lrg.set_num_regs(RegMask::SlotsPerVecZ);
994 lrg.set_reg_pressure(1);
995 break;
996 default:
997 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 997); ::breakpoint(); } while (0)
;
998 }
999 }
1000
1001 // Now do the same for inputs
1002 uint cnt = n->req();
1003 // Setup for CISC SPILLING
1004 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
1005 if( UseCISCSpill && after_aggressive ) {
1006 inp = n->cisc_operand();
1007 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
1008 // Convert operand number to edge index number
1009 inp = n->as_Mach()->operand_index(inp);
1010 }
1011
1012 // Prepare register mask for each input
1013 for( uint k = input_edge_start; k < cnt; k++ ) {
1014 uint vreg = _lrg_map.live_range_id(n->in(k));
1015 if (!vreg) {
1016 continue;
1017 }
1018
1019 // If this instruction is CISC Spillable, add the flags
1020 // bit to its appropriate input
1021 if( UseCISCSpill && after_aggressive && inp == k ) {
1022#ifndef PRODUCT
1023 if( TraceCISCSpill ) {
1024 tty->print(" use_cisc_RegMask: ");
1025 n->dump();
1026 }
1027#endif
1028 n->as_Mach()->use_cisc_RegMask();
1029 }
1030
1031 if (is_machine_node && _scheduling_info_generated) {
1032 MachNode* cur_node = n->as_Mach();
1033 // this is cleaned up by register allocation
1034 if (k >= cur_node->num_opnds()) continue;
1035 }
1036
1037 LRG &lrg = lrgs(vreg);
1038 // // Testing for floating point code shape
1039 // Node *test = n->in(k);
1040 // if( test->is_Mach() ) {
1041 // MachNode *m = test->as_Mach();
1042 // int op = m->ideal_Opcode();
1043 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
1044 // int zzz = 1;
1045 // }
1046 // }
1047
1048 // Limit result register mask to acceptable registers.
1049 // Do not limit registers from uncommon uses before
1050 // AggressiveCoalesce. This effectively pre-virtual-splits
1051 // around uncommon uses of common defs.
1052 const RegMask &rm = n->in_RegMask(k);
1053 if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1054 // Since we are BEFORE aggressive coalesce, leave the register
1055 // mask untrimmed by the call. This encourages more coalescing.
1056 // Later, AFTER aggressive, this live range will have to spill
1057 // but the spiller handles slow-path calls very nicely.
1058 } else {
1059 lrg.AND( rm );
1060 }
1061
1062 // Check for bound register masks
1063 const RegMask &lrgmask = lrg.mask();
1064 uint kreg = n->in(k)->ideal_reg();
1065 bool is_vect = RegMask::is_vector(kreg);
1066 assert(n->in(k)->bottom_type()->isa_vect() == NULL || is_vect ||do { if (!(n->in(k)->bottom_type()->isa_vect() == __null
|| is_vect || kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1068, "assert(" "n->in(k)->bottom_type()->isa_vect() == __null || is_vect || kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask"
") failed", "vector must be in vector registers"); ::breakpoint
(); } } while (0)
1067 kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask,do { if (!(n->in(k)->bottom_type()->isa_vect() == __null
|| is_vect || kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1068, "assert(" "n->in(k)->bottom_type()->isa_vect() == __null || is_vect || kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask"
") failed", "vector must be in vector registers"); ::breakpoint
(); } } while (0)
1068 "vector must be in vector registers")do { if (!(n->in(k)->bottom_type()->isa_vect() == __null
|| is_vect || kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1068, "assert(" "n->in(k)->bottom_type()->isa_vect() == __null || is_vect || kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask"
") failed", "vector must be in vector registers"); ::breakpoint
(); } } while (0)
;
1069 if (lrgmask.is_bound(kreg))
1070 lrg._is_bound = 1;
1071
1072 // If this use of a double forces a mis-aligned double,
1073 // flag as '_fat_proj' - really flag as allowing misalignment
1074 // AND changes how we count interferences. A mis-aligned
1075 // double can interfere with TWO aligned pairs, or effectively
1076 // FOUR registers!
1077#ifdef ASSERT1
1078 if (is_vect && !_scheduling_info_generated) {
1079 if (lrg.num_regs() != 0) {
1080 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned")do { if (!(lrgmask.is_aligned_sets(lrg.num_regs()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1080, "assert(" "lrgmask.is_aligned_sets(lrg.num_regs())" ") failed"
, "vector should be aligned"); ::breakpoint(); } } while (0)
;
1081 assert(!lrg._fat_proj, "sanity")do { if (!(!lrg._fat_proj)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1081, "assert(" "!lrg._fat_proj" ") failed", "sanity"); ::breakpoint
(); } } while (0)
;
1082 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity")do { if (!(RegMask::num_registers(kreg) == lrg.num_regs())) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1082, "assert(" "RegMask::num_registers(kreg) == lrg.num_regs()"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1083 } else {
1084 assert(n->is_Phi(), "not all inputs processed only if Phi")do { if (!(n->is_Phi())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1084, "assert(" "n->is_Phi()" ") failed", "not all inputs processed only if Phi"
); ::breakpoint(); } } while (0)
;
1085 }
1086 }
1087#endif
1088 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1089 lrg._fat_proj = 1;
1090 lrg._is_bound = 1;
1091 }
1092 // if the LRG is an unaligned pair, we will have to spill
1093 // so clear the LRG's register mask if it is not already spilled
1094 if (!is_vect && !n->is_SpillCopy() &&
1095 (lrg._def == NULL__null || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1096 lrgmask.is_misaligned_pair()) {
1097 lrg.Clear();
1098 }
1099
1100 // Check for maximum frequency value
1101 if (lrg._maxfreq < block->_freq) {
1102 lrg._maxfreq = block->_freq;
1103 }
1104
1105 } // End for all allocated inputs
1106 } // end for all instructions
1107 } // end for all blocks
1108
1109 // Final per-liverange setup
1110 for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1111 LRG &lrg = lrgs(i2);
1112 assert(!lrg._is_vector || !lrg._fat_proj, "sanity")do { if (!(!lrg._is_vector || !lrg._fat_proj)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1112, "assert(" "!lrg._is_vector || !lrg._fat_proj" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
1113 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1114 lrg.clear_to_sets();
1115 }
1116 lrg.compute_set_mask_size();
1117 if (lrg.not_free()) { // Handle case where we lose from the start
1118 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1119 lrg._direct_conflict = 1;
1120 }
1121 lrg.set_degree(0); // no neighbors in IFG yet
1122 }
1123}
1124
1125// Set the was-lo-degree bit. Conservative coalescing should not change the
1126// colorability of the graph. If any live range was of low-degree before
1127// coalescing, it should Simplify. This call sets the was-lo-degree bit.
1128// The bit is checked in Simplify.
1129void PhaseChaitin::set_was_low() {
1130#ifdef ASSERT1
1131 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1132 int size = lrgs(i).num_regs();
1133 uint old_was_lo = lrgs(i)._was_lo;
1134 lrgs(i)._was_lo = 0;
1135 if( lrgs(i).lo_degree() ) {
1136 lrgs(i)._was_lo = 1; // Trivially of low degree
1137 } else { // Else check the Brigg's assertion
1138 // Brigg's observation is that the lo-degree neighbors of a
1139 // hi-degree live range will not interfere with the color choices
1140 // of said hi-degree live range. The Simplify reverse-stack-coloring
1141 // order takes care of the details. Hence you do not have to count
1142 // low-degree neighbors when determining if this guy colors.
1143 int briggs_degree = 0;
1144 IndexSet *s = _ifg->neighbors(i);
1145 IndexSetIterator elements(s);
1146 uint lidx;
1147 while((lidx = elements.next()) != 0) {
1148 if( !lrgs(lidx).lo_degree() )
1149 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1150 }
1151 if( briggs_degree < lrgs(i).degrees_of_freedom() )
1152 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
1153 }
1154 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease")do { if (!(old_was_lo <= lrgs(i)._was_lo)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1154, "assert(" "old_was_lo <= lrgs(i)._was_lo" ") failed"
, "_was_lo may not decrease"); ::breakpoint(); } } while (0)
;
1155 }
1156#endif
1157}
1158
1159// Compute cost/area ratio, in case we spill. Build the lo-degree list.
1160void PhaseChaitin::cache_lrg_info( ) {
1161 Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1162
1163 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1164 LRG &lrg = lrgs(i);
1165
1166 // Check for being of low degree: means we can be trivially colored.
1167 // Low degree, dead or must-spill guys just get to simplify right away
1168 if( lrg.lo_degree() ||
1169 !lrg.alive() ||
1170 lrg._must_spill ) {
1171 // Split low degree list into those guys that must get a
1172 // register and those that can go to register or stack.
1173 // The idea is LRGs that can go register or stack color first when
1174 // they have a good chance of getting a register. The register-only
1175 // lo-degree live ranges always get a register.
1176 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1177 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1178 lrg._next = _lo_stk_degree;
1179 _lo_stk_degree = i;
1180 } else {
1181 lrg._next = _lo_degree;
1182 _lo_degree = i;
1183 }
1184 } else { // Else high degree
1185 lrgs(_hi_degree)._prev = i;
1186 lrg._next = _hi_degree;
1187 lrg._prev = 0;
1188 _hi_degree = i;
1189 }
1190 }
1191}
1192
1193// Simplify the IFG by removing LRGs of low degree.
1194void PhaseChaitin::Simplify( ) {
1195 Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1196
1197 while( 1 ) { // Repeat till simplified it all
1198 // May want to explore simplifying lo_degree before _lo_stk_degree.
1199 // This might result in more spills coloring into registers during
1200 // Select().
1201 while( _lo_degree || _lo_stk_degree ) {
1202 // If possible, pull from lo_stk first
1203 uint lo;
1204 if( _lo_degree ) {
1205 lo = _lo_degree;
1206 _lo_degree = lrgs(lo)._next;
1207 } else {
1208 lo = _lo_stk_degree;
1209 _lo_stk_degree = lrgs(lo)._next;
1210 }
1211
1212 // Put the simplified guy on the simplified list.
1213 lrgs(lo)._next = _simplified;
1214 _simplified = lo;
1215 // If this guy is "at risk" then mark his current neighbors
1216 if (lrgs(lo)._at_risk && !_ifg->neighbors(lo)->is_empty()) {
1217 IndexSetIterator elements(_ifg->neighbors(lo));
1218 uint datum;
1219 while ((datum = elements.next()) != 0) {
1220 lrgs(datum)._risk_bias = lo;
1221 }
1222 }
1223
1224 // Yank this guy from the IFG.
1225 IndexSet *adj = _ifg->remove_node(lo);
1226 if (adj->is_empty()) {
1227 continue;
1228 }
1229
1230 // If any neighbors' degrees fall below their number of
1231 // allowed registers, then put that neighbor on the low degree
1232 // list. Note that 'degree' can only fall and 'numregs' is
1233 // unchanged by this action. Thus the two are equal at most once,
1234 // so LRGs hit the lo-degree worklist at most once.
1235 IndexSetIterator elements(adj);
1236 uint neighbor;
1237 while ((neighbor = elements.next()) != 0) {
1238 LRG *n = &lrgs(neighbor);
1239#ifdef ASSERT1
1240 if (VerifyRegisterAllocator) {
1241 assert( _ifg->effective_degree(neighbor) == n->degree(), "" )do { if (!(_ifg->effective_degree(neighbor) == n->degree
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1241, "assert(" "_ifg->effective_degree(neighbor) == n->degree()"
") failed", ""); ::breakpoint(); } } while (0)
;
1242 }
1243#endif
1244
1245 // Check for just becoming of-low-degree just counting registers.
1246 // _must_spill live ranges are already on the low degree list.
1247 if (n->just_lo_degree() && !n->_must_spill) {
1248 assert(!_ifg->_yanked->test(neighbor), "Cannot move to lo degree twice")do { if (!(!_ifg->_yanked->test(neighbor))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1248, "assert(" "!_ifg->_yanked->test(neighbor)" ") failed"
, "Cannot move to lo degree twice"); ::breakpoint(); } } while
(0)
;
1249 // Pull from hi-degree list
1250 uint prev = n->_prev;
1251 uint next = n->_next;
1252 if (prev) {
1253 lrgs(prev)._next = next;
1254 } else {
1255 _hi_degree = next;
1256 }
1257 lrgs(next)._prev = prev;
1258 n->_next = _lo_degree;
1259 _lo_degree = neighbor;
1260 }
1261 }
1262 } // End of while lo-degree/lo_stk_degree worklist not empty
1263
1264 // Check for got everything: is hi-degree list empty?
1265 if (!_hi_degree) break;
1266
1267 // Time to pick a potential spill guy
1268 uint lo_score = _hi_degree;
1269 double score = lrgs(lo_score).score();
1270 double area = lrgs(lo_score)._area;
1271 double cost = lrgs(lo_score)._cost;
1272 bool bound = lrgs(lo_score)._is_bound;
1273
1274 // Find cheapest guy
1275 debug_only( int lo_no_simplify=0; )int lo_no_simplify=0;;
1276 for (uint i = _hi_degree; i; i = lrgs(i)._next) {
1277 assert(!_ifg->_yanked->test(i), "")do { if (!(!_ifg->_yanked->test(i))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1277, "assert(" "!_ifg->_yanked->test(i)" ") failed",
""); ::breakpoint(); } } while (0)
;
1278 // It's just vaguely possible to move hi-degree to lo-degree without
1279 // going through a just-lo-degree stage: If you remove a double from
1280 // a float live range it's degree will drop by 2 and you can skip the
1281 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
1282 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
1283 if( lrgs(i).lo_degree() ) {
1284 lo_score = i;
1285 break;
1286 }
1287 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; )if( lrgs(i)._was_lo ) lo_no_simplify=i;;
1288 double iscore = lrgs(i).score();
1289 double iarea = lrgs(i)._area;
1290 double icost = lrgs(i)._cost;
1291 bool ibound = lrgs(i)._is_bound;
1292
1293 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
1294 // wins. Ties happen because all live ranges in question have spilled
1295 // a few times before and the spill-score adds a huge number which
1296 // washes out the low order bits. We are choosing the lesser of 2
1297 // evils; in this case pick largest area to spill.
1298 // Ties also happen when live ranges are defined and used only inside
1299 // one block. In which case their area is 0 and score set to max.
1300 // In such case choose bound live range over unbound to free registers
1301 // or with smaller cost to spill.
1302 if ( iscore < score ||
1303 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1304 (iscore == score && iarea == area &&
1305 ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) {
1306 lo_score = i;
1307 score = iscore;
1308 area = iarea;
1309 cost = icost;
1310 bound = ibound;
1311 }
1312 }
1313 LRG *lo_lrg = &lrgs(lo_score);
1314 // The live range we choose for spilling is either hi-degree, or very
1315 // rarely it can be low-degree. If we choose a hi-degree live range
1316 // there better not be any lo-degree choices.
1317 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" )do { if (!(lo_lrg->lo_degree() || !lo_no_simplify)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1317, "assert(" "lo_lrg->lo_degree() || !lo_no_simplify"
") failed", "Live range was lo-degree before coalesce; should simplify"
); ::breakpoint(); } } while (0)
;
1318
1319 // Pull from hi-degree list
1320 uint prev = lo_lrg->_prev;
1321 uint next = lo_lrg->_next;
1322 if( prev ) lrgs(prev)._next = next;
1323 else _hi_degree = next;
1324 lrgs(next)._prev = prev;
1325 // Jam him on the lo-degree list, despite his high degree.
1326 // Maybe he'll get a color, and maybe he'll spill.
1327 // Only Select() will know.
1328 lrgs(lo_score)._at_risk = true;
1329 _lo_degree = lo_score;
1330 lo_lrg->_next = 0;
1331
1332 } // End of while not simplified everything
1333
1334}
1335
1336// Is 'reg' register legal for 'lrg'?
1337static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1338 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1339 lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1340 // RA uses OptoReg which represent the highest element of a registers set.
1341 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1342 // in which XMMd is used by RA to represent such vectors. A double value
1343 // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1344 // The register mask uses largest bits set of overlapping register sets.
1345 // On x86 with AVX it uses 8 bits for each XMM registers set.
1346 //
1347 // The 'lrg' already has cleared-to-set register mask (done in Select()
1348 // before calling choose_color()). Passing mask.Member(reg) check above
1349 // indicates that the size (num_regs) of 'reg' set is less or equal to
1350 // 'lrg' set size.
1351 // For set size 1 any register which is member of 'lrg' mask is legal.
1352 if (lrg.num_regs()==1)
1353 return true;
1354 // For larger sets only an aligned register with the same set size is legal.
1355 int mask = lrg.num_regs()-1;
1356 if ((reg&mask) == mask)
1357 return true;
1358 }
1359 return false;
1360}
1361
1362static OptoReg::Name find_first_set(LRG &lrg, RegMask mask, int chunk) {
1363 int num_regs = lrg.num_regs();
1364 OptoReg::Name assigned = mask.find_first_set(lrg, num_regs);
1365
1366 if (lrg.is_scalable()) {
1367 // a physical register is found
1368 if (chunk == 0 && OptoReg::is_reg(assigned)) {
1369 return assigned;
1370 }
1371
1372 // find available stack slots for scalable register
1373 if (lrg._is_vector) {
1374 num_regs = lrg.scalable_reg_slots();
1375 // if actual scalable vector register is exactly SlotsPerVecA * 32 bits
1376 if (num_regs == RegMask::SlotsPerVecA) {
1377 return assigned;
1378 }
1379
1380 // mask has been cleared out by clear_to_sets(SlotsPerVecA) before choose_color, but it
1381 // does not work for scalable size. We have to find adjacent scalable_reg_slots() bits
1382 // instead of SlotsPerVecA bits.
1383 assigned = mask.find_first_set(lrg, num_regs); // find highest valid reg
1384 while (OptoReg::is_valid(assigned) && RegMask::can_represent(assigned)) {
1385 // Verify the found reg has scalable_reg_slots() bits set.
1386 if (mask.is_valid_reg(assigned, num_regs)) {
1387 return assigned;
1388 } else {
1389 // Remove more for each iteration
1390 mask.Remove(assigned - num_regs + 1); // Unmask the lowest reg
1391 mask.clear_to_sets(RegMask::SlotsPerVecA); // Align by SlotsPerVecA bits
1392 assigned = mask.find_first_set(lrg, num_regs);
1393 }
1394 }
1395 return OptoReg::Bad; // will cause chunk change, and retry next chunk
1396 } else if (lrg._is_predicate) {
1397 assert(num_regs == RegMask::SlotsPerRegVectMask, "scalable predicate register")do { if (!(num_regs == RegMask::SlotsPerRegVectMask)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1397, "assert(" "num_regs == RegMask::SlotsPerRegVectMask" ") failed"
, "scalable predicate register"); ::breakpoint(); } } while (
0)
;
1398 num_regs = lrg.scalable_reg_slots();
1399 mask.clear_to_sets(num_regs);
1400 return mask.find_first_set(lrg, num_regs);
1401 }
1402 }
1403
1404 return assigned;
1405}
1406
1407// Choose a color using the biasing heuristic
1408OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1409
1410 // Check for "at_risk" LRG's
1411 uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1412 if (risk_lrg != 0 && !_ifg->neighbors(risk_lrg)->is_empty()) {
1413 // Walk the colored neighbors of the "at_risk" candidate
1414 // Choose a color which is both legal and already taken by a neighbor
1415 // of the "at_risk" candidate in order to improve the chances of the
1416 // "at_risk" candidate of coloring
1417 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1418 uint datum;
1419 while ((datum = elements.next()) != 0) {
1420 OptoReg::Name reg = lrgs(datum).reg();
1421 // If this LRG's register is legal for us, choose it
1422 if (is_legal_reg(lrg, reg, chunk))
1423 return reg;
1424 }
1425 }
1426
1427 uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1428 if (copy_lrg != 0) {
1429 // If he has a color,
1430 if(!_ifg->_yanked->test(copy_lrg)) {
1431 OptoReg::Name reg = lrgs(copy_lrg).reg();
1432 // And it is legal for you,
1433 if (is_legal_reg(lrg, reg, chunk))
1434 return reg;
1435 } else if( chunk == 0 ) {
1436 // Choose a color which is legal for him
1437 RegMask tempmask = lrg.mask();
1438 tempmask.AND(lrgs(copy_lrg).mask());
1439 tempmask.clear_to_sets(lrg.num_regs());
1440 OptoReg::Name reg = find_first_set(lrg, tempmask, chunk);
1441 if (OptoReg::is_valid(reg))
1442 return reg;
1443 }
1444 }
1445
1446 // If no bias info exists, just go with the register selection ordering
1447 if (lrg._is_vector || lrg.num_regs() == 2 || lrg.is_scalable()) {
1448 // Find an aligned set
1449 return OptoReg::add(find_first_set(lrg, lrg.mask(), chunk), chunk);
1450 }
1451
1452 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
1453 // copy removal to remove many more copies, by preventing a just-assigned
1454 // register from being repeatedly assigned.
1455 OptoReg::Name reg = lrg.mask().find_first_elem();
1456 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1457 // This 'Remove; find; Insert' idiom is an expensive way to find the
1458 // SECOND element in the mask.
1459 lrg.Remove(reg);
1460 OptoReg::Name reg2 = lrg.mask().find_first_elem();
1461 lrg.Insert(reg);
1462 if( OptoReg::is_reg(reg2))
1463 reg = reg2;
1464 }
1465 return OptoReg::add( reg, chunk );
1466}
1467
1468// Choose a color in the current chunk
1469OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1470 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)")do { if (!(C->in_preserve_stack_slots() == 0 || chunk != 0
|| lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member
(OptoReg::Name(_matcher._old_SP-1)))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1470, "assert(" "C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1))"
") failed", "must not allocate stack0 (inside preserve area)"
); ::breakpoint(); } } while (0)
;
1471 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)")do { if (!(C->out_preserve_stack_slots() == 0 || chunk != 0
|| lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member
(OptoReg::Name(_matcher._old_SP+0)))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1471, "assert(" "C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0))"
") failed", "must not allocate stack0 (inside preserve area)"
); ::breakpoint(); } } while (0)
;
1472
1473 if( lrg.num_regs() == 1 || // Common Case
1474 !lrg._fat_proj ) // Aligned+adjacent pairs ok
1475 // Use a heuristic to "bias" the color choice
1476 return bias_color(lrg, chunk);
1477
1478 assert(!lrg._is_vector, "should be not vector here" )do { if (!(!lrg._is_vector)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1478, "assert(" "!lrg._is_vector" ") failed", "should be not vector here"
); ::breakpoint(); } } while (0)
;
1479 assert( lrg.num_regs() >= 2, "dead live ranges do not color" )do { if (!(lrg.num_regs() >= 2)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1479, "assert(" "lrg.num_regs() >= 2" ") failed", "dead live ranges do not color"
); ::breakpoint(); } } while (0)
;
1480
1481 // Fat-proj case or misaligned double argument.
1482 assert(lrg.compute_mask_size() == lrg.num_regs() ||do { if (!(lrg.compute_mask_size() == lrg.num_regs() || lrg.num_regs
() == 2)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1483, "assert(" "lrg.compute_mask_size() == lrg.num_regs() || lrg.num_regs() == 2"
") failed", "fat projs exactly color"); ::breakpoint(); } } while
(0)
1483 lrg.num_regs() == 2,"fat projs exactly color" )do { if (!(lrg.compute_mask_size() == lrg.num_regs() || lrg.num_regs
() == 2)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1483, "assert(" "lrg.compute_mask_size() == lrg.num_regs() || lrg.num_regs() == 2"
") failed", "fat projs exactly color"); ::breakpoint(); } } while
(0)
;
1484 assert( !chunk, "always color in 1st chunk" )do { if (!(!chunk)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1484, "assert(" "!chunk" ") failed", "always color in 1st chunk"
); ::breakpoint(); } } while (0)
;
1485 // Return the highest element in the set.
1486 return lrg.mask().find_last_elem();
1487}
1488
1489// Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
1490// in reverse order of removal. As long as nothing of hi-degree was yanked,
1491// everything going back is guaranteed a color. Select that color. If some
1492// hi-degree LRG cannot get a color then we record that we must spill.
1493uint PhaseChaitin::Select( ) {
1494 Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1495
1496 uint spill_reg = LRG::SPILL_REG;
1497 _max_reg = OptoReg::Name(0); // Past max register used
1498 while( _simplified ) {
1499 // Pull next LRG from the simplified list - in reverse order of removal
1500 uint lidx = _simplified;
1501 LRG *lrg = &lrgs(lidx);
1502 _simplified = lrg->_next;
1503
1504#ifndef PRODUCT
1505 if (trace_spilling()) {
1506 ttyLocker ttyl;
1507 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1508 lrg->degrees_of_freedom());
1509 lrg->dump();
1510 }
1511#endif
1512
1513 // Re-insert into the IFG
1514 _ifg->re_insert(lidx);
1515 if( !lrg->alive() ) continue;
1516 // capture allstackedness flag before mask is hacked
1517 const int is_allstack = lrg->mask().is_AllStack();
1518
1519 // Yeah, yeah, yeah, I know, I know. I can refactor this
1520 // to avoid the GOTO, although the refactored code will not
1521 // be much clearer. We arrive here IFF we have a stack-based
1522 // live range that cannot color in the current chunk, and it
1523 // has to move into the next free stack chunk.
1524 int chunk = 0; // Current chunk is first chunk
1525 retry_next_chunk:
1526
1527 // Remove neighbor colors
1528 IndexSet *s = _ifg->neighbors(lidx);
1529 debug_only(RegMask orig_mask = lrg->mask();)RegMask orig_mask = lrg->mask();
1530
1531 if (!s->is_empty()) {
1532 IndexSetIterator elements(s);
1533 uint neighbor;
1534 while ((neighbor = elements.next()) != 0) {
1535 // Note that neighbor might be a spill_reg. In this case, exclusion
1536 // of its color will be a no-op, since the spill_reg chunk is in outer
1537 // space. Also, if neighbor is in a different chunk, this exclusion
1538 // will be a no-op. (Later on, if lrg runs out of possible colors in
1539 // its chunk, a new chunk of color may be tried, in which case
1540 // examination of neighbors is started again, at retry_next_chunk.)
1541 LRG &nlrg = lrgs(neighbor);
1542 OptoReg::Name nreg = nlrg.reg();
1543 // Only subtract masks in the same chunk
1544 if (nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE) {
1545#ifndef PRODUCT
1546 uint size = lrg->mask().Size();
1547 RegMask rm = lrg->mask();
1548#endif
1549 lrg->SUBTRACT(nlrg.mask());
1550#ifndef PRODUCT
1551 if (trace_spilling() && lrg->mask().Size() != size) {
1552 ttyLocker ttyl;
1553 tty->print("L%d ", lidx);
1554 rm.dump();
1555 tty->print(" intersected L%d ", neighbor);
1556 nlrg.mask().dump();
1557 tty->print(" removed ");
1558 rm.SUBTRACT(lrg->mask());
1559 rm.dump();
1560 tty->print(" leaving ");
1561 lrg->mask().dump();
1562 tty->cr();
1563 }
1564#endif
1565 }
1566 }
1567 }
1568 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1569 // Aligned pairs need aligned masks
1570 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity")do { if (!(!lrg->_is_vector || !lrg->_fat_proj)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1570, "assert(" "!lrg->_is_vector || !lrg->_fat_proj"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1571 if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1572 lrg->clear_to_sets();
1573 }
1574
1575 // Check if a color is available and if so pick the color
1576 OptoReg::Name reg = choose_color( *lrg, chunk );
1577
1578 //---------------
1579 // If we fail to color and the AllStack flag is set, trigger
1580 // a chunk-rollover event
1581 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1582 // Bump register mask up to next stack chunk
1583 chunk += RegMask::CHUNK_SIZE;
1584 lrg->Set_All();
1585 goto retry_next_chunk;
1586 }
1587
1588 //---------------
1589 // Did we get a color?
1590 else if( OptoReg::is_valid(reg)) {
1591#ifndef PRODUCT
1592 RegMask avail_rm = lrg->mask();
1593#endif
1594
1595 // Record selected register
1596 lrg->set_reg(reg);
1597
1598 if( reg >= _max_reg ) // Compute max register limit
1599 _max_reg = OptoReg::add(reg,1);
1600 // Fold reg back into normal space
1601 reg = OptoReg::add(reg,-chunk);
1602
1603 // If the live range is not bound, then we actually had some choices
1604 // to make. In this case, the mask has more bits in it than the colors
1605 // chosen. Restrict the mask to just what was picked.
1606 int n_regs = lrg->num_regs();
1607 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity")do { if (!(!lrg->_is_vector || !lrg->_fat_proj)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1607, "assert(" "!lrg->_is_vector || !lrg->_fat_proj"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1608 if (n_regs == 1 || !lrg->_fat_proj) {
1609 if (Matcher::supports_scalable_vector()) {
1610 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA, "sanity")do { if (!(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1610, "assert(" "!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1611 } else {
1612 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity")do { if (!(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1612, "assert(" "!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1613 }
1614 lrg->Clear(); // Clear the mask
1615 lrg->Insert(reg); // Set regmask to match selected reg
1616 // For vectors and pairs, also insert the low bit of the pair
1617 // We always choose the high bit, then mask the low bits by register size
1618 if (lrg->is_scalable() && OptoReg::is_stack(lrg->reg())) { // stack
1619 n_regs = lrg->scalable_reg_slots();
1620 }
1621 for (int i = 1; i < n_regs; i++) {
1622 lrg->Insert(OptoReg::add(reg,-i));
1623 }
1624 lrg->set_mask_size(n_regs);
1625 } else { // Else fatproj
1626 // mask must be equal to fatproj bits, by definition
1627 }
1628#ifndef PRODUCT
1629 if (trace_spilling()) {
1630 ttyLocker ttyl;
1631 tty->print("L%d selected ", lidx);
1632 lrg->mask().dump();
1633 tty->print(" from ");
1634 avail_rm.dump();
1635 tty->cr();
1636 }
1637#endif
1638 // Note that reg is the highest-numbered register in the newly-bound mask.
1639 } // end color available case
1640
1641 //---------------
1642 // Live range is live and no colors available
1643 else {
1644 assert( lrg->alive(), "" )do { if (!(lrg->alive())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1644, "assert(" "lrg->alive()" ") failed", ""); ::breakpoint
(); } } while (0)
;
1645 assert( !lrg->_fat_proj || lrg->is_multidef() ||do { if (!(!lrg->_fat_proj || lrg->is_multidef() || lrg
->_def->outcnt() > 0)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1646, "assert(" "!lrg->_fat_proj || lrg->is_multidef() || lrg->_def->outcnt() > 0"
") failed", "fat_proj cannot spill"); ::breakpoint(); } } while
(0)
1646 lrg->_def->outcnt() > 0, "fat_proj cannot spill")do { if (!(!lrg->_fat_proj || lrg->is_multidef() || lrg
->_def->outcnt() > 0)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1646, "assert(" "!lrg->_fat_proj || lrg->is_multidef() || lrg->_def->outcnt() > 0"
") failed", "fat_proj cannot spill"); ::breakpoint(); } } while
(0)
;
1647 assert( !orig_mask.is_AllStack(), "All Stack does not spill" )do { if (!(!orig_mask.is_AllStack())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1647, "assert(" "!orig_mask.is_AllStack()" ") failed", "All Stack does not spill"
); ::breakpoint(); } } while (0)
;
1648
1649 // Assign the special spillreg register
1650 lrg->set_reg(OptoReg::Name(spill_reg++));
1651 // Do not empty the regmask; leave mask_size lying around
1652 // for use during Spilling
1653#ifndef PRODUCT
1654 if( trace_spilling() ) {
1655 ttyLocker ttyl;
1656 tty->print("L%d spilling with neighbors: ", lidx);
1657 s->dump();
1658 debug_only(tty->print(" original mask: "))tty->print(" original mask: ");
1659 debug_only(orig_mask.dump())orig_mask.dump();
1660 dump_lrg(lidx);
1661 }
1662#endif
1663 } // end spill case
1664
1665 }
1666
1667 return spill_reg-LRG::SPILL_REG; // Return number of spills
1668}
1669
1670// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1671void PhaseChaitin::set_was_spilled( Node *n ) {
1672 if( _spilled_once.test_set(n->_idx) )
1673 _spilled_twice.set(n->_idx);
1674}
1675
1676// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1677// Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1678void PhaseChaitin::fixup_spills() {
1679 // This function does only cisc spill work.
1680 if( !UseCISCSpill ) return;
1681
1682 Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1683
1684 // Grab the Frame Pointer
1685 Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1686
1687 // For all blocks
1688 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1689 Block* block = _cfg.get_block(i);
1690
1691 // For all instructions in block
1692 uint last_inst = block->end_idx();
1693 for (uint j = 1; j <= last_inst; j++) {
1694 Node* n = block->get_node(j);
1695
1696 // Dead instruction???
1697 assert( n->outcnt() != 0 ||// Nothing dead after post allocdo { if (!(n->outcnt() != 0 || C->top() == n || n->is_Proj
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1700, "assert(" "n->outcnt() != 0 || C->top() == n || n->is_Proj()"
") failed", "No dead instructions after post-alloc"); ::breakpoint
(); } } while (0)
1698 C->top() == n || // Or the random TOP nodedo { if (!(n->outcnt() != 0 || C->top() == n || n->is_Proj
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1700, "assert(" "n->outcnt() != 0 || C->top() == n || n->is_Proj()"
") failed", "No dead instructions after post-alloc"); ::breakpoint
(); } } while (0)
1699 n->is_Proj(), // Or a fat-proj kill nodedo { if (!(n->outcnt() != 0 || C->top() == n || n->is_Proj
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1700, "assert(" "n->outcnt() != 0 || C->top() == n || n->is_Proj()"
") failed", "No dead instructions after post-alloc"); ::breakpoint
(); } } while (0)
1700 "No dead instructions after post-alloc" )do { if (!(n->outcnt() != 0 || C->top() == n || n->is_Proj
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1700, "assert(" "n->outcnt() != 0 || C->top() == n || n->is_Proj()"
") failed", "No dead instructions after post-alloc"); ::breakpoint
(); } } while (0)
;
1701
1702 int inp = n->cisc_operand();
1703 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1704 // Convert operand number to edge index number
1705 MachNode *mach = n->as_Mach();
1706 inp = mach->operand_index(inp);
1707 Node *src = n->in(inp); // Value to load or store
1708 LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1709 OptoReg::Name src_reg = lrg_cisc.reg();
1710 // Doubles record the HIGH register of an adjacent pair.
1711 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1712 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1713 // This is a CISC Spill, get stack offset and construct new node
1714#ifndef PRODUCT
1715 if( TraceCISCSpill ) {
1716 tty->print(" reg-instr: ");
1717 n->dump();
1718 }
1719#endif
1720 int stk_offset = reg2offset(src_reg);
1721 // Bailout if we might exceed node limit when spilling this instruction
1722 C->check_node_count(0, "out of nodes fixing spills");
1723 if (C->failing()) return;
1724 // Transform node
1725 MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1726 cisc->set_req(inp,fp); // Base register is frame pointer
1727 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1728 assert( cisc->oper_input_base() == 2, "Only adding one edge")do { if (!(cisc->oper_input_base() == 2)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1728, "assert(" "cisc->oper_input_base() == 2" ") failed"
, "Only adding one edge"); ::breakpoint(); } } while (0)
;
1729 cisc->ins_req(1,src); // Requires a memory edge
1730 }
1731 block->map_node(cisc, j); // Insert into basic block
1732 n->subsume_by(cisc, C); // Correct graph
1733 //
1734 ++_used_cisc_instructions;
1735#ifndef PRODUCT
1736 if( TraceCISCSpill ) {
1737 tty->print(" cisc-instr: ");
1738 cisc->dump();
1739 }
1740#endif
1741 } else {
1742#ifndef PRODUCT
1743 if( TraceCISCSpill ) {
1744 tty->print(" using reg-instr: ");
1745 n->dump();
1746 }
1747#endif
1748 ++_unused_cisc_instructions; // input can be on stack
1749 }
1750 }
1751
1752 } // End of for all instructions
1753
1754 } // End of for all blocks
1755}
1756
1757// Helper to stretch above; recursively discover the base Node for a
1758// given derived Node. Easy for AddP-related machine nodes, but needs
1759// to be recursive for derived Phis.
1760Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1761 // See if already computed; if so return it
1762 if( derived_base_map[derived->_idx] )
1763 return derived_base_map[derived->_idx];
1764
1765 // See if this happens to be a base.
1766 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1767 // pointers derived from NULL! These are always along paths that
1768 // can't happen at run-time but the optimizer cannot deduce it so
1769 // we have to handle it gracefully.
1770 assert(!derived->bottom_type()->isa_narrowoop() ||do { if (!(!derived->bottom_type()->isa_narrowoop() || derived
->bottom_type()->make_ptr()->is_ptr()->_offset ==
0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1771, "assert(" "!derived->bottom_type()->isa_narrowoop() || derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0"
") failed", "sanity"); ::breakpoint(); } } while (0)
1771 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity")do { if (!(!derived->bottom_type()->isa_narrowoop() || derived
->bottom_type()->make_ptr()->is_ptr()->_offset ==
0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1771, "assert(" "!derived->bottom_type()->isa_narrowoop() || derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1772 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1773 // If its an OOP with a non-zero offset, then it is derived.
1774 if( tj == NULL__null || tj->_offset == 0 ) {
1775 derived_base_map[derived->_idx] = derived;
1776 return derived;
1777 }
1778 // Derived is NULL+offset? Base is NULL!
1779 if( derived->is_Con() ) {
1780 Node *base = _matcher.mach_null();
1781 assert(base != NULL, "sanity")do { if (!(base != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1781, "assert(" "base != __null" ") failed", "sanity"); ::breakpoint
(); } } while (0)
;
1782 if (base->in(0) == NULL__null) {
1783 // Initialize it once and make it shared:
1784 // set control to _root and place it into Start block
1785 // (where top() node is placed).
1786 base->init_req(0, _cfg.get_root_node());
1787 Block *startb = _cfg.get_block_for_node(C->top());
1788 uint node_pos = startb->find_node(C->top());
1789 startb->insert_node(base, node_pos);
1790 _cfg.map_node_to_block(base, startb);
1791 assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet")do { if (!(_lrg_map.live_range_id(base) == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1791, "assert(" "_lrg_map.live_range_id(base) == 0" ") failed"
, "should not have LRG yet"); ::breakpoint(); } } while (0)
;
1792
1793 // The loadConP0 might have projection nodes depending on architecture
1794 // Add the projection nodes to the CFG
1795 for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1796 Node* use = base->fast_out(i);
1797 if (use->is_MachProj()) {
1798 startb->insert_node(use, ++node_pos);
1799 _cfg.map_node_to_block(use, startb);
1800 new_lrg(use, maxlrg++);
1801 }
1802 }
1803 }
1804 if (_lrg_map.live_range_id(base) == 0) {
1805 new_lrg(base, maxlrg++);
1806 }
1807 assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared")do { if (!(base->in(0) == _cfg.get_root_node() && _cfg
.get_block_for_node(base) == _cfg.get_block_for_node(C->top
()))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1807, "assert(" "base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top())"
") failed", "base NULL should be shared"); ::breakpoint(); }
} while (0)
;
1808 derived_base_map[derived->_idx] = base;
1809 return base;
1810 }
1811
1812 // Check for AddP-related opcodes
1813 if (!derived->is_Phi()) {
1814 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name())do { if (!(derived->as_Mach()->ideal_Opcode() == Op_AddP
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1814, "assert(" "derived->as_Mach()->ideal_Opcode() == Op_AddP"
") failed", "but is: %s", derived->Name()); ::breakpoint(
); } } while (0)
;
1815 Node *base = derived->in(AddPNode::Base);
1816 derived_base_map[derived->_idx] = base;
1817 return base;
1818 }
1819
1820 // Recursively find bases for Phis.
1821 // First check to see if we can avoid a base Phi here.
1822 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1823 uint i;
1824 for( i = 2; i < derived->req(); i++ )
1825 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1826 break;
1827 // Went to the end without finding any different bases?
1828 if( i == derived->req() ) { // No need for a base Phi here
1829 derived_base_map[derived->_idx] = base;
1830 return base;
1831 }
1832
1833 // Now we see we need a base-Phi here to merge the bases
1834 const Type *t = base->bottom_type();
1835 base = new PhiNode( derived->in(0), t );
1836 for( i = 1; i < derived->req(); i++ ) {
1837 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1838 t = t->meet(base->in(i)->bottom_type());
1839 }
1840 base->as_Phi()->set_type(t);
1841
1842 // Search the current block for an existing base-Phi
1843 Block *b = _cfg.get_block_for_node(derived);
1844 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1845 Node *phi = b->get_node(i);
1846 if( !phi->is_Phi() ) { // Found end of Phis with no match?
1847 b->insert_node(base, i); // Must insert created Phi here as base
1848 _cfg.map_node_to_block(base, b);
1849 new_lrg(base,maxlrg++);
1850 break;
1851 }
1852 // See if Phi matches.
1853 uint j;
1854 for( j = 1; j < base->req(); j++ )
1855 if( phi->in(j) != base->in(j) &&
1856 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1857 break;
1858 if( j == base->req() ) { // All inputs match?
1859 base = phi; // Then use existing 'phi' and drop 'base'
1860 break;
1861 }
1862 }
1863
1864
1865 // Cache info for later passes
1866 derived_base_map[derived->_idx] = base;
1867 return base;
1868}
1869
1870// At each Safepoint, insert extra debug edges for each pair of derived value/
1871// base pointer that is live across the Safepoint for oopmap building. The
1872// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1873// required edge set.
1874bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1875 int must_recompute_live = false;
1876 uint maxlrg = _lrg_map.max_lrg_id();
1877 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1878 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1879
1880 // For all blocks in RPO do...
1881 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1882 Block* block = _cfg.get_block(i);
1883 // Note use of deep-copy constructor. I cannot hammer the original
1884 // liveout bits, because they are needed by the following coalesce pass.
1885 IndexSet liveout(_live->live(block));
1886
1887 for (uint j = block->end_idx() + 1; j > 1; j--) {
1888 Node* n = block->get_node(j - 1);
1889
1890 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
1891 // like to see in the same register. Compare uses the loop-phi and so
1892 // extends its live range BUT cannot be part of the cycle. If this
1893 // extended live range overlaps with the update of the loop-phi value
1894 // we need both alive at the same time -- which requires at least 1
1895 // copy. But because Intel has only 2-address registers we end up with
1896 // at least 2 copies, one before the loop-phi update instruction and
1897 // one after. Instead we split the input to the compare just after the
1898 // phi.
1899 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1900 Node *phi = n->in(1);
1901 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1902 Block *phi_block = _cfg.get_block_for_node(phi);
1903 if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1904 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1905 Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1906 insert_proj( phi_block, 1, spill, maxlrg++ );
1907 n->set_req(1,spill);
1908 must_recompute_live = true;
1909 }
1910 }
1911 }
1912
1913 // Get value being defined
1914 uint lidx = _lrg_map.live_range_id(n);
1915 // Ignore the occasional brand-new live range
1916 if (lidx && lidx < _lrg_map.max_lrg_id()) {
1917 // Remove from live-out set
1918 liveout.remove(lidx);
1919
1920 // Copies do not define a new value and so do not interfere.
1921 // Remove the copies source from the liveout set before interfering.
1922 uint idx = n->is_Copy();
1923 if (idx) {
1924 liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1925 }
1926 }
1927
1928 // Found a safepoint?
1929 JVMState *jvms = n->jvms();
1930 if (jvms && !liveout.is_empty()) {
1931 // Now scan for a live derived pointer
1932 IndexSetIterator elements(&liveout);
1933 uint neighbor;
1934 while ((neighbor = elements.next()) != 0) {
1935 // Find reaching DEF for base and derived values
1936 // This works because we are still in SSA during this call.
1937 Node *derived = lrgs(neighbor)._def;
1938 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1939 assert(!derived->bottom_type()->isa_narrowoop() ||do { if (!(!derived->bottom_type()->isa_narrowoop() || derived
->bottom_type()->make_ptr()->is_ptr()->_offset ==
0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1940, "assert(" "!derived->bottom_type()->isa_narrowoop() || derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0"
") failed", "sanity"); ::breakpoint(); } } while (0)
1940 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity")do { if (!(!derived->bottom_type()->isa_narrowoop() || derived
->bottom_type()->make_ptr()->is_ptr()->_offset ==
0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1940, "assert(" "!derived->bottom_type()->isa_narrowoop() || derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1941 // If its an OOP with a non-zero offset, then it is derived.
1942 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1943 Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1944 assert(base->_idx < _lrg_map.size(), "")do { if (!(base->_idx < _lrg_map.size())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 1944, "assert(" "base->_idx < _lrg_map.size()" ") failed"
, ""); ::breakpoint(); } } while (0)
;
1945 // Add reaching DEFs of derived pointer and base pointer as a
1946 // pair of inputs
1947 n->add_req(derived);
1948 n->add_req(base);
1949
1950 // See if the base pointer is already live to this point.
1951 // Since I'm working on the SSA form, live-ness amounts to
1952 // reaching def's. So if I find the base's live range then
1953 // I know the base's def reaches here.
1954 if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1955 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1956 (_lrg_map.live_range_id(base) > 0) && // not a constant
1957 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1958 // Base pointer is not currently live. Since I stretched
1959 // the base pointer to here and it crosses basic-block
1960 // boundaries, the global live info is now incorrect.
1961 // Recompute live.
1962 must_recompute_live = true;
1963 } // End of if base pointer is not live to debug info
1964 }
1965 } // End of scan all live data for derived ptrs crossing GC point
1966 } // End of if found a GC point
1967
1968 // Make all inputs live
1969 if (!n->is_Phi()) { // Phi function uses come from prior block
1970 for (uint k = 1; k < n->req(); k++) {
1971 uint lidx = _lrg_map.live_range_id(n->in(k));
1972 if (lidx < _lrg_map.max_lrg_id()) {
1973 liveout.insert(lidx);
1974 }
1975 }
1976 }
1977
1978 } // End of forall instructions in block
1979 liveout.clear(); // Free the memory used by liveout.
1980
1981 } // End of forall blocks
1982 _lrg_map.set_max_lrg_id(maxlrg);
1983
1984 // If I created a new live range I need to recompute live
1985 if (maxlrg != _ifg->_maxlrg) {
1986 must_recompute_live = true;
1987 }
1988
1989 return must_recompute_live != 0;
1990}
1991
1992// Extend the node to LRG mapping
1993
1994void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1995 _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1996}
1997
1998#ifndef PRODUCT
1999void PhaseChaitin::dump(const Node* n) const {
2000 uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
2001 tty->print("L%d",r);
2002 if (r && n->Opcode() != Op_Phi) {
2003 if( _node_regs ) { // Got a post-allocation copy of allocation?
2004 tty->print("[");
2005 OptoReg::Name second = get_reg_second(n);
2006 if( OptoReg::is_valid(second) ) {
2007 if( OptoReg::is_reg(second) )
2008 tty->print("%s:",Matcher::regName[second]);
2009 else
2010 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
2011 }
2012 OptoReg::Name first = get_reg_first(n);
2013 if( OptoReg::is_reg(first) )
2014 tty->print("%s]",Matcher::regName[first]);
2015 else
2016 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
2017 } else
2018 n->out_RegMask().dump();
2019 }
2020 tty->print("/N%d\t",n->_idx);
2021 tty->print("%s === ", n->Name());
2022 uint k;
2023 for (k = 0; k < n->req(); k++) {
2024 Node *m = n->in(k);
2025 if (!m) {
2026 tty->print("_ ");
2027 }
2028 else {
2029 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2030 tty->print("L%d",r);
2031 // Data MultiNode's can have projections with no real registers.
2032 // Don't die while dumping them.
2033 int op = n->Opcode();
2034 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
2035 if( _node_regs ) {
2036 tty->print("[");
2037 OptoReg::Name second = get_reg_second(n->in(k));
2038 if( OptoReg::is_valid(second) ) {
2039 if( OptoReg::is_reg(second) )
2040 tty->print("%s:",Matcher::regName[second]);
2041 else
2042 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2043 reg2offset_unchecked(second));
2044 }
2045 OptoReg::Name first = get_reg_first(n->in(k));
2046 if( OptoReg::is_reg(first) )
2047 tty->print("%s]",Matcher::regName[first]);
2048 else
2049 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2050 reg2offset_unchecked(first));
2051 } else
2052 n->in_RegMask(k).dump();
2053 }
2054 tty->print("/N%d ",m->_idx);
2055 }
2056 }
2057 if( k < n->len() && n->in(k) ) tty->print("| ");
2058 for( ; k < n->len(); k++ ) {
2059 Node *m = n->in(k);
2060 if(!m) {
2061 break;
2062 }
2063 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2064 tty->print("L%d",r);
2065 tty->print("/N%d ",m->_idx);
2066 }
2067 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2068 else n->dump_spec(tty);
2069 if( _spilled_once.test(n->_idx ) ) {
2070 tty->print(" Spill_1");
2071 if( _spilled_twice.test(n->_idx ) )
2072 tty->print(" Spill_2");
2073 }
2074 tty->print("\n");
2075}
2076
2077void PhaseChaitin::dump(const Block* b) const {
2078 b->dump_head(&_cfg);
2079
2080 // For all instructions
2081 for( uint j = 0; j < b->number_of_nodes(); j++ )
2082 dump(b->get_node(j));
2083 // Print live-out info at end of block
2084 if( _live ) {
2085 tty->print("Liveout: ");
2086 IndexSet *live = _live->live(b);
2087 IndexSetIterator elements(live);
2088 tty->print("{");
2089 uint i;
2090 while ((i = elements.next()) != 0) {
2091 tty->print("L%d ", _lrg_map.find_const(i));
2092 }
2093 tty->print_cr("}");
2094 }
2095 tty->print("\n");
2096}
2097
2098void PhaseChaitin::dump() const {
2099 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
2100 _matcher._new_SP, _framesize );
2101
2102 // For all blocks
2103 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2104 dump(_cfg.get_block(i));
2105 }
2106 // End of per-block dump
2107 tty->print("\n");
2108
2109 if (!_ifg) {
2110 tty->print("(No IFG.)\n");
2111 return;
2112 }
2113
2114 // Dump LRG array
2115 tty->print("--- Live RanGe Array ---\n");
2116 for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2117 tty->print("L%d: ",i2);
2118 if (i2 < _ifg->_maxlrg) {
2119 lrgs(i2).dump();
2120 }
2121 else {
2122 tty->print_cr("new LRG");
2123 }
2124 }
2125 tty->cr();
2126
2127 // Dump lo-degree list
2128 tty->print("Lo degree: ");
2129 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2130 tty->print("L%d ",i3);
2131 tty->cr();
2132
2133 // Dump lo-stk-degree list
2134 tty->print("Lo stk degree: ");
2135 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2136 tty->print("L%d ",i4);
2137 tty->cr();
2138
2139 // Dump lo-degree list
2140 tty->print("Hi degree: ");
2141 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2142 tty->print("L%d ",i5);
2143 tty->cr();
2144}
2145
2146void PhaseChaitin::dump_degree_lists() const {
2147 // Dump lo-degree list
2148 tty->print("Lo degree: ");
2149 for( uint i = _lo_degree; i; i = lrgs(i)._next )
2150 tty->print("L%d ",i);
2151 tty->cr();
2152
2153 // Dump lo-stk-degree list
2154 tty->print("Lo stk degree: ");
2155 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2156 tty->print("L%d ",i2);
2157 tty->cr();
2158
2159 // Dump lo-degree list
2160 tty->print("Hi degree: ");
2161 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2162 tty->print("L%d ",i3);
2163 tty->cr();
2164}
2165
2166void PhaseChaitin::dump_simplified() const {
2167 tty->print("Simplified: ");
2168 for( uint i = _simplified; i; i = lrgs(i)._next )
2169 tty->print("L%d ",i);
2170 tty->cr();
2171}
2172
2173static char *print_reg(OptoReg::Name reg, const PhaseChaitin* pc, char* buf) {
2174 if ((int)reg < 0)
2175 sprintf(buf, "<OptoReg::%d>", (int)reg);
2176 else if (OptoReg::is_reg(reg))
2177 strcpy(buf, Matcher::regName[reg]);
2178 else
2179 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2180 pc->reg2offset(reg));
2181 return buf+strlen(buf);
2182}
2183
2184// Dump a register name into a buffer. Be intelligent if we get called
2185// before allocation is complete.
2186char *PhaseChaitin::dump_register(const Node* n, char* buf) const {
2187 if( _node_regs ) {
2188 // Post allocation, use direct mappings, no LRG info available
2189 print_reg( get_reg_first(n), this, buf );
2190 } else {
2191 uint lidx = _lrg_map.find_const(n); // Grab LRG number
2192 if( !_ifg ) {
2193 sprintf(buf,"L%d",lidx); // No register binding yet
2194 } else if( !lidx ) { // Special, not allocated value
2195 strcpy(buf,"Special");
2196 } else {
2197 if (lrgs(lidx)._is_vector) {
2198 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2199 print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2200 else
2201 sprintf(buf,"L%d",lidx); // No register binding yet
2202 } else if( (lrgs(lidx).num_regs() == 1)
2203 ? lrgs(lidx).mask().is_bound1()
2204 : lrgs(lidx).mask().is_bound_pair() ) {
2205 // Hah! We have a bound machine register
2206 print_reg( lrgs(lidx).reg(), this, buf );
2207 } else {
2208 sprintf(buf,"L%d",lidx); // No register binding yet
2209 }
2210 }
2211 }
2212 return buf+strlen(buf);
2213}
2214
2215void PhaseChaitin::dump_for_spill_split_recycle() const {
2216 if( WizardMode && (PrintCompilation || PrintOpto) ) {
2217 // Display which live ranges need to be split and the allocator's state
2218 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2219 for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2220 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2221 tty->print("L%d: ", bidx);
2222 lrgs(bidx).dump();
2223 }
2224 }
2225 tty->cr();
2226 dump();
2227 }
2228}
2229
2230void PhaseChaitin::dump_frame() const {
2231 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2232 const TypeTuple *domain = C->tf()->domain();
2233 const int argcnt = domain->cnt() - TypeFunc::Parms;
2234
2235 // Incoming arguments in registers dump
2236 for( int k = 0; k < argcnt; k++ ) {
2237 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2238 if( OptoReg::is_reg(parmreg)) {
2239 const char *reg_name = OptoReg::regname(parmreg);
2240 tty->print("#r%3.3d %s", parmreg, reg_name);
2241 parmreg = _matcher._parm_regs[k].second();
2242 if( OptoReg::is_reg(parmreg)) {
2243 tty->print(":%s", OptoReg::regname(parmreg));
2244 }
2245 tty->print(" : parm %d: ", k);
2246 domain->field_at(k + TypeFunc::Parms)->dump();
2247 tty->cr();
2248 }
2249 }
2250
2251 // Check for un-owned padding above incoming args
2252 OptoReg::Name reg = _matcher._new_SP;
2253 if( reg > _matcher._in_arg_limit ) {
2254 reg = OptoReg::add(reg, -1);
2255 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2256 }
2257
2258 // Incoming argument area dump
2259 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2260 while( reg > begin_in_arg ) {
2261 reg = OptoReg::add(reg, -1);
2262 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2263 int j;
2264 for( j = 0; j < argcnt; j++) {
2265 if( _matcher._parm_regs[j].first() == reg ||
2266 _matcher._parm_regs[j].second() == reg ) {
2267 tty->print("parm %d: ",j);
2268 domain->field_at(j + TypeFunc::Parms)->dump();
2269 tty->cr();
2270 break;
2271 }
2272 }
2273 if( j >= argcnt )
2274 tty->print_cr("HOLE, owned by SELF");
2275 }
2276
2277 // Old outgoing preserve area
2278 while( reg > _matcher._old_SP ) {
2279 reg = OptoReg::add(reg, -1);
2280 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2281 }
2282
2283 // Old SP
2284 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2285 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2286
2287 // Preserve area dump
2288 int fixed_slots = C->fixed_slots();
2289 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2290 OptoReg::Name return_addr = _matcher.return_addr();
2291
2292 reg = OptoReg::add(reg, -1);
2293 while (OptoReg::is_stack(reg)) {
2294 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2295 if (return_addr == reg) {
2296 tty->print_cr("return address");
2297 } else if (reg >= begin_in_preserve) {
2298 // Preserved slots are present on x86
2299 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2300 tty->print_cr("saved fp register");
2301 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2302 VerifyStackAtCalls)
2303 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
2304 else
2305 tty->print_cr("in_preserve");
2306 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2307 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2308 } else {
2309 tty->print_cr("pad2, stack alignment");
2310 }
2311 reg = OptoReg::add(reg, -1);
2312 }
2313
2314 // Spill area dump
2315 reg = OptoReg::add(_matcher._new_SP, _framesize );
2316 while( reg > _matcher._out_arg_limit ) {
2317 reg = OptoReg::add(reg, -1);
2318 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2319 }
2320
2321 // Outgoing argument area dump
2322 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2323 reg = OptoReg::add(reg, -1);
2324 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2325 }
2326
2327 // Outgoing new preserve area
2328 while( reg > _matcher._new_SP ) {
2329 reg = OptoReg::add(reg, -1);
2330 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2331 }
2332 tty->print_cr("#");
2333}
2334
2335void PhaseChaitin::dump_bb(uint pre_order) const {
2336 tty->print_cr("---dump of B%d---",pre_order);
2337 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2338 Block* block = _cfg.get_block(i);
2339 if (block->_pre_order == pre_order) {
2340 dump(block);
2341 }
2342 }
2343}
2344
2345void PhaseChaitin::dump_lrg(uint lidx, bool defs_only) const {
2346 tty->print_cr("---dump of L%d---",lidx);
2347
2348 if (_ifg) {
2349 if (lidx >= _lrg_map.max_lrg_id()) {
2350 tty->print("Attempt to print live range index beyond max live range.\n");
2351 return;
2352 }
2353 tty->print("L%d: ",lidx);
2354 if (lidx < _ifg->_maxlrg) {
2355 lrgs(lidx).dump();
2356 } else {
2357 tty->print_cr("new LRG");
2358 }
2359 }
2360 if( _ifg && lidx < _ifg->_maxlrg) {
2361 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2362 _ifg->neighbors(lidx)->dump();
2363 tty->cr();
2364 }
2365 // For all blocks
2366 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2367 Block* block = _cfg.get_block(i);
2368 int dump_once = 0;
2369
2370 // For all instructions
2371 for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2372 Node *n = block->get_node(j);
2373 if (_lrg_map.find_const(n) == lidx) {
2374 if (!dump_once++) {
2375 tty->cr();
2376 block->dump_head(&_cfg);
2377 }
2378 dump(n);
2379 continue;
2380 }
2381 if (!defs_only) {
2382 uint cnt = n->req();
2383 for( uint k = 1; k < cnt; k++ ) {
2384 Node *m = n->in(k);
2385 if (!m) {
2386 continue; // be robust in the dumper
2387 }
2388 if (_lrg_map.find_const(m) == lidx) {
2389 if (!dump_once++) {
2390 tty->cr();
2391 block->dump_head(&_cfg);
2392 }
2393 dump(n);
2394 }
2395 }
2396 }
2397 }
2398 } // End of per-block dump
2399 tty->cr();
2400}
2401#endif // not PRODUCT
2402
2403#ifdef ASSERT1
2404// Verify that base pointers and derived pointers are still sane.
2405void PhaseChaitin::verify_base_ptrs(ResourceArea* a) const {
2406 Unique_Node_List worklist(a);
2407 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2408 Block* block = _cfg.get_block(i);
2409 for (uint j = block->end_idx() + 1; j > 1; j--) {
2410 Node* n = block->get_node(j-1);
2411 if (n->is_Phi()) {
2412 break;
2413 }
2414 // Found a safepoint?
2415 if (n->is_MachSafePoint()) {
2416 MachSafePointNode* sfpt = n->as_MachSafePoint();
2417 JVMState* jvms = sfpt->jvms();
2418 if (jvms != NULL__null) {
2419 // Now scan for a live derived pointer
2420 if (jvms->oopoff() < sfpt->req()) {
2421 // Check each derived/base pair
2422 for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
2423 Node* check = sfpt->in(idx);
2424 bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
2425 // search upwards through spills and spill phis for AddP
2426 worklist.clear();
2427 worklist.push(check);
2428 uint k = 0;
2429 while (k < worklist.size()) {
2430 check = worklist.at(k);
2431 assert(check, "Bad base or derived pointer")do { if (!(check)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2431, "assert(" "check" ") failed", "Bad base or derived pointer"
); ::breakpoint(); } } while (0)
;
2432 // See PhaseChaitin::find_base_for_derived() for all cases.
2433 int isc = check->is_Copy();
2434 if (isc) {
2435 worklist.push(check->in(isc));
2436 } else if (check->is_Phi()) {
2437 for (uint m = 1; m < check->req(); m++) {
2438 worklist.push(check->in(m));
2439 }
2440 } else if (check->is_Con()) {
2441 if (is_derived && check->bottom_type()->is_ptr()->_offset != 0) {
2442 // Derived is NULL+non-zero offset, base must be NULL.
2443 assert(check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad derived pointer")do { if (!(check->bottom_type()->is_ptr()->ptr() == TypePtr
::Null)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2443, "assert(" "check->bottom_type()->is_ptr()->ptr() == TypePtr::Null"
") failed", "Bad derived pointer"); ::breakpoint(); } } while
(0)
;
2444 } else {
2445 assert(check->bottom_type()->is_ptr()->_offset == 0, "Bad base pointer")do { if (!(check->bottom_type()->is_ptr()->_offset ==
0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2445, "assert(" "check->bottom_type()->is_ptr()->_offset == 0"
") failed", "Bad base pointer"); ::breakpoint(); } } while (
0)
;
2446 // Base either ConP(NULL) or loadConP
2447 if (check->is_Mach()) {
2448 assert(check->as_Mach()->ideal_Opcode() == Op_ConP, "Bad base pointer")do { if (!(check->as_Mach()->ideal_Opcode() == Op_ConP)
) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2448, "assert(" "check->as_Mach()->ideal_Opcode() == Op_ConP"
") failed", "Bad base pointer"); ::breakpoint(); } } while (
0)
;
2449 } else {
2450 assert(check->Opcode() == Op_ConP &&do { if (!(check->Opcode() == Op_ConP && check->
bottom_type()->is_ptr()->ptr() == TypePtr::Null)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2451, "assert(" "check->Opcode() == Op_ConP && check->bottom_type()->is_ptr()->ptr() == TypePtr::Null"
") failed", "Bad base pointer"); ::breakpoint(); } } while (
0)
2451 check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad base pointer")do { if (!(check->Opcode() == Op_ConP && check->
bottom_type()->is_ptr()->ptr() == TypePtr::Null)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2451, "assert(" "check->Opcode() == Op_ConP && check->bottom_type()->is_ptr()->ptr() == TypePtr::Null"
") failed", "Bad base pointer"); ::breakpoint(); } } while (
0)
;
2452 }
2453 }
2454 } else if (check->bottom_type()->is_ptr()->_offset == 0) {
2455 if (check->is_Proj() || (check->is_Mach() &&
2456 (check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
2457 check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
2458 check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
2459 check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
2460#ifdef _LP641
2461 (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) ||
2462 (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) ||
2463 (UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) ||
2464#endif // _LP64
2465 check->as_Mach()->ideal_Opcode() == Op_LoadP ||
2466 check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) {
2467 // Valid nodes
2468 } else {
2469 check->dump();
2470 assert(false, "Bad base or derived pointer")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2470, "assert(" "false" ") failed", "Bad base or derived pointer"
); ::breakpoint(); } } while (0)
;
2471 }
2472 } else {
2473 assert(is_derived, "Bad base pointer")do { if (!(is_derived)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2473, "assert(" "is_derived" ") failed", "Bad base pointer"
); ::breakpoint(); } } while (0)
;
2474 assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP, "Bad derived pointer")do { if (!(check->is_Mach() && check->as_Mach()
->ideal_Opcode() == Op_AddP)) { (*g_assert_poison) = 'X';;
report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2474, "assert(" "check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP"
") failed", "Bad derived pointer"); ::breakpoint(); } } while
(0)
;
2475 }
2476 k++;
2477 assert(k < 100000, "Derived pointer checking in infinite loop")do { if (!(k < 100000)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/chaitin.cpp"
, 2477, "assert(" "k < 100000" ") failed", "Derived pointer checking in infinite loop"
); ::breakpoint(); } } while (0)
;
2478 } // End while
2479 }
2480 } // End of check for derived pointers
2481 } // End of Kcheck for debug info
2482 } // End of if found a safepoint
2483 } // End of forall instructions in block
2484 } // End of forall blocks
2485}
2486
2487// Verify that graphs and base pointers are still sane.
2488void PhaseChaitin::verify(ResourceArea* a, bool verify_ifg) const {
2489 if (VerifyRegisterAllocator) {
2490 _cfg.verify();
2491 verify_base_ptrs(a);
2492 if (verify_ifg) {
2493 _ifg->verify(this);
2494 }
2495 }
2496}
2497#endif // ASSERT
2498
2499int PhaseChaitin::_final_loads = 0;
2500int PhaseChaitin::_final_stores = 0;
2501int PhaseChaitin::_final_memoves= 0;
2502int PhaseChaitin::_final_copies = 0;
2503double PhaseChaitin::_final_load_cost = 0;
2504double PhaseChaitin::_final_store_cost = 0;
2505double PhaseChaitin::_final_memove_cost= 0;
2506double PhaseChaitin::_final_copy_cost = 0;
2507int PhaseChaitin::_conserv_coalesce = 0;
2508int PhaseChaitin::_conserv_coalesce_pair = 0;
2509int PhaseChaitin::_conserv_coalesce_trie = 0;
2510int PhaseChaitin::_conserv_coalesce_quad = 0;
2511int PhaseChaitin::_post_alloc = 0;
2512int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2513int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2514int PhaseChaitin::_used_cisc_instructions = 0;
2515int PhaseChaitin::_unused_cisc_instructions = 0;
2516int PhaseChaitin::_allocator_attempts = 0;
2517int PhaseChaitin::_allocator_successes = 0;
2518
2519#ifndef PRODUCT
2520uint PhaseChaitin::_high_pressure = 0;
2521uint PhaseChaitin::_low_pressure = 0;
2522
2523void PhaseChaitin::print_chaitin_statistics() {
2524 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2525 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2526 tty->print_cr("Adjusted spill cost = %7.0f.",
2527 _final_load_cost*4.0 + _final_store_cost * 2.0 +
2528 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2529 tty->print("Conservatively coalesced %d copies, %d pairs",
2530 _conserv_coalesce, _conserv_coalesce_pair);
2531 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2532 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2533 tty->print_cr(", %d post alloc.", _post_alloc);
2534 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2535 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2536 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2537 if( _used_cisc_instructions || _unused_cisc_instructions )
2538 tty->print_cr("Used cisc instruction %d, remained in register %d",
2539 _used_cisc_instructions, _unused_cisc_instructions);
2540 if( _allocator_successes != 0 )
2541 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2542 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2543}
2544#endif // not PRODUCT