File: | jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp |
Warning: | line 147, column 8 Value stored to 'in_native' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 2018, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/shared/tlab_globals.hpp" |
27 | #include "gc/shared/c2/barrierSetC2.hpp" |
28 | #include "opto/arraycopynode.hpp" |
29 | #include "opto/convertnode.hpp" |
30 | #include "opto/graphKit.hpp" |
31 | #include "opto/idealKit.hpp" |
32 | #include "opto/macro.hpp" |
33 | #include "opto/narrowptrnode.hpp" |
34 | #include "opto/runtime.hpp" |
35 | #include "utilities/macros.hpp" |
36 | |
37 | // By default this is a no-op. |
38 | void BarrierSetC2::resolve_address(C2Access& access) const { } |
39 | |
40 | void* C2ParseAccess::barrier_set_state() const { |
41 | return _kit->barrier_set_state(); |
42 | } |
43 | |
44 | PhaseGVN& C2ParseAccess::gvn() const { return _kit->gvn(); } |
45 | |
46 | bool C2Access::needs_cpu_membar() const { |
47 | bool mismatched = (_decorators & C2_MISMATCHED) != 0; |
48 | bool is_unordered = (_decorators & MO_UNORDERED) != 0; |
49 | |
50 | bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0; |
51 | bool in_heap = (_decorators & IN_HEAP) != 0; |
52 | bool in_native = (_decorators & IN_NATIVE) != 0; |
53 | bool is_mixed = !in_heap && !in_native; |
54 | |
55 | bool is_write = (_decorators & C2_WRITE_ACCESS) != 0; |
56 | bool is_read = (_decorators & C2_READ_ACCESS) != 0; |
57 | bool is_atomic = is_read && is_write; |
58 | |
59 | if (is_atomic) { |
60 | // Atomics always need to be wrapped in CPU membars |
61 | return true; |
62 | } |
63 | |
64 | if (anonymous) { |
65 | // We will need memory barriers unless we can determine a unique |
66 | // alias category for this reference. (Note: If for some reason |
67 | // the barriers get omitted and the unsafe reference begins to "pollute" |
68 | // the alias analysis of the rest of the graph, either Compile::can_alias |
69 | // or Compile::must_alias will throw a diagnostic assert.) |
70 | if (is_mixed || !is_unordered || (mismatched && !_addr.type()->isa_aryptr())) { |
71 | return true; |
72 | } |
73 | } else { |
74 | assert(!is_mixed, "not unsafe")do { if (!(!is_mixed)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 74, "assert(" "!is_mixed" ") failed", "not unsafe"); ::breakpoint (); } } while (0); |
75 | } |
76 | |
77 | return false; |
78 | } |
79 | |
80 | Node* BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { |
81 | DecoratorSet decorators = access.decorators(); |
82 | |
83 | bool mismatched = (decorators & C2_MISMATCHED) != 0; |
84 | bool unaligned = (decorators & C2_UNALIGNED) != 0; |
85 | bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0; |
86 | bool requires_atomic_access = (decorators & MO_UNORDERED) == 0; |
87 | |
88 | bool in_native = (decorators & IN_NATIVE) != 0; |
89 | assert(!in_native || (unsafe && !access.is_oop()), "not supported yet")do { if (!(!in_native || (unsafe && !access.is_oop()) )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 89, "assert(" "!in_native || (unsafe && !access.is_oop())" ") failed", "not supported yet"); ::breakpoint(); } } while ( 0); |
90 | |
91 | MemNode::MemOrd mo = access.mem_node_mo(); |
92 | |
93 | Node* store; |
94 | if (access.is_parse_access()) { |
95 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
96 | |
97 | GraphKit* kit = parse_access.kit(); |
98 | if (access.type() == T_DOUBLE) { |
99 | Node* new_val = kit->dstore_rounding(val.node()); |
100 | val.set_node(new_val); |
101 | } |
102 | |
103 | store = kit->store_to_memory(kit->control(), access.addr().node(), val.node(), access.type(), |
104 | access.addr().type(), mo, requires_atomic_access, unaligned, mismatched, unsafe); |
105 | } else { |
106 | assert(!requires_atomic_access, "not yet supported")do { if (!(!requires_atomic_access)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 106, "assert(" "!requires_atomic_access" ") failed", "not yet supported" ); ::breakpoint(); } } while (0); |
107 | assert(access.is_opt_access(), "either parse or opt access")do { if (!(access.is_opt_access())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 107, "assert(" "access.is_opt_access()" ") failed", "either parse or opt access" ); ::breakpoint(); } } while (0); |
108 | C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); |
109 | Node* ctl = opt_access.ctl(); |
110 | MergeMemNode* mm = opt_access.mem(); |
111 | PhaseGVN& gvn = opt_access.gvn(); |
112 | const TypePtr* adr_type = access.addr().type(); |
113 | int alias = gvn.C->get_alias_index(adr_type); |
114 | Node* mem = mm->memory_at(alias); |
115 | |
116 | StoreNode* st = StoreNode::make(gvn, ctl, mem, access.addr().node(), adr_type, val.node(), access.type(), mo); |
117 | if (unaligned) { |
118 | st->set_unaligned_access(); |
119 | } |
120 | if (mismatched) { |
121 | st->set_mismatched_access(); |
122 | } |
123 | store = gvn.transform(st); |
124 | if (store == st) { |
125 | mm->set_memory_at(alias, st); |
126 | } |
127 | } |
128 | access.set_raw_access(store); |
129 | |
130 | return store; |
131 | } |
132 | |
133 | Node* BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { |
134 | DecoratorSet decorators = access.decorators(); |
135 | |
136 | Node* adr = access.addr().node(); |
137 | const TypePtr* adr_type = access.addr().type(); |
138 | |
139 | bool mismatched = (decorators & C2_MISMATCHED) != 0; |
140 | bool requires_atomic_access = (decorators & MO_UNORDERED) == 0; |
141 | bool unaligned = (decorators & C2_UNALIGNED) != 0; |
142 | bool control_dependent = (decorators & C2_CONTROL_DEPENDENT_LOAD) != 0; |
143 | bool unknown_control = (decorators & C2_UNKNOWN_CONTROL_LOAD) != 0; |
144 | bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0; |
145 | bool immutable = (decorators & C2_IMMUTABLE_MEMORY) != 0; |
146 | |
147 | bool in_native = (decorators & IN_NATIVE) != 0; |
Value stored to 'in_native' during its initialization is never read | |
148 | |
149 | MemNode::MemOrd mo = access.mem_node_mo(); |
150 | LoadNode::ControlDependency dep = unknown_control ? LoadNode::UnknownControl : LoadNode::DependsOnlyOnTest; |
151 | |
152 | Node* load; |
153 | if (access.is_parse_access()) { |
154 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
155 | GraphKit* kit = parse_access.kit(); |
156 | Node* control = control_dependent ? kit->control() : NULL__null; |
157 | |
158 | if (immutable) { |
159 | assert(!requires_atomic_access, "can't ensure atomicity")do { if (!(!requires_atomic_access)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 159, "assert(" "!requires_atomic_access" ") failed", "can't ensure atomicity" ); ::breakpoint(); } } while (0); |
160 | Compile* C = Compile::current(); |
161 | Node* mem = kit->immutable_memory(); |
162 | load = LoadNode::make(kit->gvn(), control, mem, adr, |
163 | adr_type, val_type, access.type(), mo, dep, unaligned, |
164 | mismatched, unsafe, access.barrier_data()); |
165 | load = kit->gvn().transform(load); |
166 | } else { |
167 | load = kit->make_load(control, adr, val_type, access.type(), adr_type, mo, |
168 | dep, requires_atomic_access, unaligned, mismatched, unsafe, |
169 | access.barrier_data()); |
170 | } |
171 | } else { |
172 | assert(!requires_atomic_access, "not yet supported")do { if (!(!requires_atomic_access)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 172, "assert(" "!requires_atomic_access" ") failed", "not yet supported" ); ::breakpoint(); } } while (0); |
173 | assert(access.is_opt_access(), "either parse or opt access")do { if (!(access.is_opt_access())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 173, "assert(" "access.is_opt_access()" ") failed", "either parse or opt access" ); ::breakpoint(); } } while (0); |
174 | C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); |
175 | Node* control = control_dependent ? opt_access.ctl() : NULL__null; |
176 | MergeMemNode* mm = opt_access.mem(); |
177 | PhaseGVN& gvn = opt_access.gvn(); |
178 | Node* mem = mm->memory_at(gvn.C->get_alias_index(adr_type)); |
179 | load = LoadNode::make(gvn, control, mem, adr, adr_type, val_type, access.type(), mo, |
180 | dep, unaligned, mismatched, unsafe, access.barrier_data()); |
181 | load = gvn.transform(load); |
182 | } |
183 | access.set_raw_access(load); |
184 | |
185 | return load; |
186 | } |
187 | |
188 | class C2AccessFence: public StackObj { |
189 | C2Access& _access; |
190 | Node* _leading_membar; |
191 | |
192 | public: |
193 | C2AccessFence(C2Access& access) : |
194 | _access(access), _leading_membar(NULL__null) { |
195 | GraphKit* kit = NULL__null; |
196 | if (access.is_parse_access()) { |
197 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
198 | kit = parse_access.kit(); |
199 | } |
200 | DecoratorSet decorators = access.decorators(); |
201 | |
202 | bool is_write = (decorators & C2_WRITE_ACCESS) != 0; |
203 | bool is_read = (decorators & C2_READ_ACCESS) != 0; |
204 | bool is_atomic = is_read && is_write; |
205 | |
206 | bool is_volatile = (decorators & MO_SEQ_CST) != 0; |
207 | bool is_release = (decorators & MO_RELEASE) != 0; |
208 | |
209 | if (is_atomic) { |
210 | assert(kit != NULL, "unsupported at optimization time")do { if (!(kit != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 210, "assert(" "kit != __null" ") failed", "unsupported at optimization time" ); ::breakpoint(); } } while (0); |
211 | // Memory-model-wise, a LoadStore acts like a little synchronized |
212 | // block, so needs barriers on each side. These don't translate |
213 | // into actual barriers on most machines, but we still need rest of |
214 | // compiler to respect ordering. |
215 | if (is_release) { |
216 | _leading_membar = kit->insert_mem_bar(Op_MemBarRelease); |
217 | } else if (is_volatile) { |
218 | if (support_IRIW_for_not_multiple_copy_atomic_cpu) { |
219 | _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile); |
220 | } else { |
221 | _leading_membar = kit->insert_mem_bar(Op_MemBarRelease); |
222 | } |
223 | } |
224 | } else if (is_write) { |
225 | // If reference is volatile, prevent following memory ops from |
226 | // floating down past the volatile write. Also prevents commoning |
227 | // another volatile read. |
228 | if (is_volatile || is_release) { |
229 | assert(kit != NULL, "unsupported at optimization time")do { if (!(kit != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 229, "assert(" "kit != __null" ") failed", "unsupported at optimization time" ); ::breakpoint(); } } while (0); |
230 | _leading_membar = kit->insert_mem_bar(Op_MemBarRelease); |
231 | } |
232 | } else { |
233 | // Memory barrier to prevent normal and 'unsafe' accesses from |
234 | // bypassing each other. Happens after null checks, so the |
235 | // exception paths do not take memory state from the memory barrier, |
236 | // so there's no problems making a strong assert about mixing users |
237 | // of safe & unsafe memory. |
238 | if (is_volatile && support_IRIW_for_not_multiple_copy_atomic_cpu) { |
239 | assert(kit != NULL, "unsupported at optimization time")do { if (!(kit != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 239, "assert(" "kit != __null" ") failed", "unsupported at optimization time" ); ::breakpoint(); } } while (0); |
240 | _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile); |
241 | } |
242 | } |
243 | |
244 | if (access.needs_cpu_membar()) { |
245 | assert(kit != NULL, "unsupported at optimization time")do { if (!(kit != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 245, "assert(" "kit != __null" ") failed", "unsupported at optimization time" ); ::breakpoint(); } } while (0); |
246 | kit->insert_mem_bar(Op_MemBarCPUOrder); |
247 | } |
248 | |
249 | if (is_atomic) { |
250 | // 4984716: MemBars must be inserted before this |
251 | // memory node in order to avoid a false |
252 | // dependency which will confuse the scheduler. |
253 | access.set_memory(); |
254 | } |
255 | } |
256 | |
257 | ~C2AccessFence() { |
258 | GraphKit* kit = NULL__null; |
259 | if (_access.is_parse_access()) { |
260 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(_access); |
261 | kit = parse_access.kit(); |
262 | } |
263 | DecoratorSet decorators = _access.decorators(); |
264 | |
265 | bool is_write = (decorators & C2_WRITE_ACCESS) != 0; |
266 | bool is_read = (decorators & C2_READ_ACCESS) != 0; |
267 | bool is_atomic = is_read && is_write; |
268 | |
269 | bool is_volatile = (decorators & MO_SEQ_CST) != 0; |
270 | bool is_acquire = (decorators & MO_ACQUIRE) != 0; |
271 | |
272 | // If reference is volatile, prevent following volatiles ops from |
273 | // floating up before the volatile access. |
274 | if (_access.needs_cpu_membar()) { |
275 | kit->insert_mem_bar(Op_MemBarCPUOrder); |
276 | } |
277 | |
278 | if (is_atomic) { |
279 | assert(kit != NULL, "unsupported at optimization time")do { if (!(kit != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 279, "assert(" "kit != __null" ") failed", "unsupported at optimization time" ); ::breakpoint(); } } while (0); |
280 | if (is_acquire || is_volatile) { |
281 | Node* n = _access.raw_access(); |
282 | Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n); |
283 | if (_leading_membar != NULL__null) { |
284 | MemBarNode::set_load_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar()); |
285 | } |
286 | } |
287 | } else if (is_write) { |
288 | // If not multiple copy atomic, we do the MemBarVolatile before the load. |
289 | if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) { |
290 | assert(kit != NULL, "unsupported at optimization time")do { if (!(kit != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 290, "assert(" "kit != __null" ") failed", "unsupported at optimization time" ); ::breakpoint(); } } while (0); |
291 | Node* n = _access.raw_access(); |
292 | Node* mb = kit->insert_mem_bar(Op_MemBarVolatile, n); // Use fat membar |
293 | if (_leading_membar != NULL__null) { |
294 | MemBarNode::set_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar()); |
295 | } |
296 | } |
297 | } else { |
298 | if (is_volatile || is_acquire) { |
299 | assert(kit != NULL, "unsupported at optimization time")do { if (!(kit != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 299, "assert(" "kit != __null" ") failed", "unsupported at optimization time" ); ::breakpoint(); } } while (0); |
300 | Node* n = _access.raw_access(); |
301 | assert(_leading_membar == NULL || support_IRIW_for_not_multiple_copy_atomic_cpu, "no leading membar expected")do { if (!(_leading_membar == __null || support_IRIW_for_not_multiple_copy_atomic_cpu )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 301, "assert(" "_leading_membar == __null || support_IRIW_for_not_multiple_copy_atomic_cpu" ") failed", "no leading membar expected"); ::breakpoint(); } } while (0); |
302 | Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n); |
303 | mb->as_MemBar()->set_trailing_load(); |
304 | } |
305 | } |
306 | } |
307 | }; |
308 | |
309 | Node* BarrierSetC2::store_at(C2Access& access, C2AccessValue& val) const { |
310 | C2AccessFence fence(access); |
311 | resolve_address(access); |
312 | return store_at_resolved(access, val); |
313 | } |
314 | |
315 | Node* BarrierSetC2::load_at(C2Access& access, const Type* val_type) const { |
316 | C2AccessFence fence(access); |
317 | resolve_address(access); |
318 | return load_at_resolved(access, val_type); |
319 | } |
320 | |
321 | MemNode::MemOrd C2Access::mem_node_mo() const { |
322 | bool is_write = (_decorators & C2_WRITE_ACCESS) != 0; |
323 | bool is_read = (_decorators & C2_READ_ACCESS) != 0; |
324 | if ((_decorators & MO_SEQ_CST) != 0) { |
325 | if (is_write && is_read) { |
326 | // For atomic operations |
327 | return MemNode::seqcst; |
328 | } else if (is_write) { |
329 | return MemNode::release; |
330 | } else { |
331 | assert(is_read, "what else?")do { if (!(is_read)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 331, "assert(" "is_read" ") failed", "what else?"); ::breakpoint (); } } while (0); |
332 | return MemNode::acquire; |
333 | } |
334 | } else if ((_decorators & MO_RELEASE) != 0) { |
335 | return MemNode::release; |
336 | } else if ((_decorators & MO_ACQUIRE) != 0) { |
337 | return MemNode::acquire; |
338 | } else if (is_write) { |
339 | // Volatile fields need releasing stores. |
340 | // Non-volatile fields also need releasing stores if they hold an |
341 | // object reference, because the object reference might point to |
342 | // a freshly created object. |
343 | // Conservatively release stores of object references. |
344 | return StoreNode::release_if_reference(_type); |
345 | } else { |
346 | return MemNode::unordered; |
347 | } |
348 | } |
349 | |
350 | void C2Access::fixup_decorators() { |
351 | bool default_mo = (_decorators & MO_DECORATOR_MASK) == 0; |
352 | bool is_unordered = (_decorators & MO_UNORDERED) != 0 || default_mo; |
353 | bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0; |
354 | |
355 | bool is_read = (_decorators & C2_READ_ACCESS) != 0; |
356 | bool is_write = (_decorators & C2_WRITE_ACCESS) != 0; |
357 | |
358 | if (AlwaysAtomicAccesses && is_unordered) { |
359 | _decorators &= ~MO_DECORATOR_MASK; // clear the MO bits |
360 | _decorators |= MO_RELAXED; // Force the MO_RELAXED decorator with AlwaysAtomicAccess |
361 | } |
362 | |
363 | _decorators = AccessInternal::decorator_fixup(_decorators); |
364 | |
365 | if (is_read && !is_write && anonymous) { |
366 | // To be valid, unsafe loads may depend on other conditions than |
367 | // the one that guards them: pin the Load node |
368 | _decorators |= C2_CONTROL_DEPENDENT_LOAD; |
369 | _decorators |= C2_UNKNOWN_CONTROL_LOAD; |
370 | const TypePtr* adr_type = _addr.type(); |
371 | Node* adr = _addr.node(); |
372 | if (!needs_cpu_membar() && adr_type->isa_instptr()) { |
373 | assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null")do { if (!(adr_type->meet(TypePtr::NULL_PTR) != adr_type-> remove_speculative())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 373, "assert(" "adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative()" ") failed", "should be not null"); ::breakpoint(); } } while (0); |
374 | intptr_t offset = Type::OffsetBot; |
375 | AddPNode::Ideal_base_and_offset(adr, &gvn(), offset); |
376 | if (offset >= 0) { |
377 | int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper()); |
378 | if (offset < s) { |
379 | // Guaranteed to be a valid access, no need to pin it |
380 | _decorators ^= C2_CONTROL_DEPENDENT_LOAD; |
381 | _decorators ^= C2_UNKNOWN_CONTROL_LOAD; |
382 | } |
383 | } |
384 | } |
385 | } |
386 | } |
387 | |
388 | //--------------------------- atomic operations--------------------------------- |
389 | |
390 | void BarrierSetC2::pin_atomic_op(C2AtomicParseAccess& access) const { |
391 | if (!access.needs_pinning()) { |
392 | return; |
393 | } |
394 | // SCMemProjNodes represent the memory state of a LoadStore. Their |
395 | // main role is to prevent LoadStore nodes from being optimized away |
396 | // when their results aren't used. |
397 | assert(access.is_parse_access(), "entry not supported at optimization time")do { if (!(access.is_parse_access())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 397, "assert(" "access.is_parse_access()" ") failed", "entry not supported at optimization time" ); ::breakpoint(); } } while (0); |
398 | C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); |
399 | GraphKit* kit = parse_access.kit(); |
400 | Node* load_store = access.raw_access(); |
401 | assert(load_store != NULL, "must pin atomic op")do { if (!(load_store != __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 401, "assert(" "load_store != __null" ") failed", "must pin atomic op" ); ::breakpoint(); } } while (0); |
402 | Node* proj = kit->gvn().transform(new SCMemProjNode(load_store)); |
403 | kit->set_memory(proj, access.alias_idx()); |
404 | } |
405 | |
406 | void C2AtomicParseAccess::set_memory() { |
407 | Node *mem = _kit->memory(_alias_idx); |
408 | _memory = mem; |
409 | } |
410 | |
411 | Node* BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
412 | Node* new_val, const Type* value_type) const { |
413 | GraphKit* kit = access.kit(); |
414 | MemNode::MemOrd mo = access.mem_node_mo(); |
415 | Node* mem = access.memory(); |
416 | |
417 | Node* adr = access.addr().node(); |
418 | const TypePtr* adr_type = access.addr().type(); |
419 | |
420 | Node* load_store = NULL__null; |
421 | |
422 | if (access.is_oop()) { |
423 | #ifdef _LP641 |
424 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
425 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
426 | Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); |
427 | load_store = new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo); |
428 | } else |
429 | #endif |
430 | { |
431 | load_store = new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo); |
432 | } |
433 | } else { |
434 | switch (access.type()) { |
435 | case T_BYTE: { |
436 | load_store = new CompareAndExchangeBNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo); |
437 | break; |
438 | } |
439 | case T_SHORT: { |
440 | load_store = new CompareAndExchangeSNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo); |
441 | break; |
442 | } |
443 | case T_INT: { |
444 | load_store = new CompareAndExchangeINode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo); |
445 | break; |
446 | } |
447 | case T_LONG: { |
448 | load_store = new CompareAndExchangeLNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo); |
449 | break; |
450 | } |
451 | default: |
452 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 452); ::breakpoint(); } while (0); |
453 | } |
454 | } |
455 | |
456 | load_store->as_LoadStore()->set_barrier_data(access.barrier_data()); |
457 | load_store = kit->gvn().transform(load_store); |
458 | |
459 | access.set_raw_access(load_store); |
460 | pin_atomic_op(access); |
461 | |
462 | #ifdef _LP641 |
463 | if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) { |
464 | return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); |
465 | } |
466 | #endif |
467 | |
468 | return load_store; |
469 | } |
470 | |
471 | Node* BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
472 | Node* new_val, const Type* value_type) const { |
473 | GraphKit* kit = access.kit(); |
474 | DecoratorSet decorators = access.decorators(); |
475 | MemNode::MemOrd mo = access.mem_node_mo(); |
476 | Node* mem = access.memory(); |
477 | bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; |
478 | Node* load_store = NULL__null; |
479 | Node* adr = access.addr().node(); |
480 | |
481 | if (access.is_oop()) { |
482 | #ifdef _LP641 |
483 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
484 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
485 | Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); |
486 | if (is_weak_cas) { |
487 | load_store = new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo); |
488 | } else { |
489 | load_store = new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo); |
490 | } |
491 | } else |
492 | #endif |
493 | { |
494 | if (is_weak_cas) { |
495 | load_store = new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo); |
496 | } else { |
497 | load_store = new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo); |
498 | } |
499 | } |
500 | } else { |
501 | switch(access.type()) { |
502 | case T_BYTE: { |
503 | if (is_weak_cas) { |
504 | load_store = new WeakCompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo); |
505 | } else { |
506 | load_store = new CompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo); |
507 | } |
508 | break; |
509 | } |
510 | case T_SHORT: { |
511 | if (is_weak_cas) { |
512 | load_store = new WeakCompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo); |
513 | } else { |
514 | load_store = new CompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo); |
515 | } |
516 | break; |
517 | } |
518 | case T_INT: { |
519 | if (is_weak_cas) { |
520 | load_store = new WeakCompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo); |
521 | } else { |
522 | load_store = new CompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo); |
523 | } |
524 | break; |
525 | } |
526 | case T_LONG: { |
527 | if (is_weak_cas) { |
528 | load_store = new WeakCompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo); |
529 | } else { |
530 | load_store = new CompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo); |
531 | } |
532 | break; |
533 | } |
534 | default: |
535 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 535); ::breakpoint(); } while (0); |
536 | } |
537 | } |
538 | |
539 | load_store->as_LoadStore()->set_barrier_data(access.barrier_data()); |
540 | load_store = kit->gvn().transform(load_store); |
541 | |
542 | access.set_raw_access(load_store); |
543 | pin_atomic_op(access); |
544 | |
545 | return load_store; |
546 | } |
547 | |
548 | Node* BarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
549 | GraphKit* kit = access.kit(); |
550 | Node* mem = access.memory(); |
551 | Node* adr = access.addr().node(); |
552 | const TypePtr* adr_type = access.addr().type(); |
553 | Node* load_store = NULL__null; |
554 | |
555 | if (access.is_oop()) { |
556 | #ifdef _LP641 |
557 | if (adr->bottom_type()->is_ptr_to_narrowoop()) { |
558 | Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); |
559 | load_store = kit->gvn().transform(new GetAndSetNNode(kit->control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop())); |
560 | } else |
561 | #endif |
562 | { |
563 | load_store = new GetAndSetPNode(kit->control(), mem, adr, new_val, adr_type, value_type->is_oopptr()); |
564 | } |
565 | } else { |
566 | switch (access.type()) { |
567 | case T_BYTE: |
568 | load_store = new GetAndSetBNode(kit->control(), mem, adr, new_val, adr_type); |
569 | break; |
570 | case T_SHORT: |
571 | load_store = new GetAndSetSNode(kit->control(), mem, adr, new_val, adr_type); |
572 | break; |
573 | case T_INT: |
574 | load_store = new GetAndSetINode(kit->control(), mem, adr, new_val, adr_type); |
575 | break; |
576 | case T_LONG: |
577 | load_store = new GetAndSetLNode(kit->control(), mem, adr, new_val, adr_type); |
578 | break; |
579 | default: |
580 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 580); ::breakpoint(); } while (0); |
581 | } |
582 | } |
583 | |
584 | load_store->as_LoadStore()->set_barrier_data(access.barrier_data()); |
585 | load_store = kit->gvn().transform(load_store); |
586 | |
587 | access.set_raw_access(load_store); |
588 | pin_atomic_op(access); |
589 | |
590 | #ifdef _LP641 |
591 | if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) { |
592 | return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); |
593 | } |
594 | #endif |
595 | |
596 | return load_store; |
597 | } |
598 | |
599 | Node* BarrierSetC2::atomic_add_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
600 | Node* load_store = NULL__null; |
601 | GraphKit* kit = access.kit(); |
602 | Node* adr = access.addr().node(); |
603 | const TypePtr* adr_type = access.addr().type(); |
604 | Node* mem = access.memory(); |
605 | |
606 | switch(access.type()) { |
607 | case T_BYTE: |
608 | load_store = new GetAndAddBNode(kit->control(), mem, adr, new_val, adr_type); |
609 | break; |
610 | case T_SHORT: |
611 | load_store = new GetAndAddSNode(kit->control(), mem, adr, new_val, adr_type); |
612 | break; |
613 | case T_INT: |
614 | load_store = new GetAndAddINode(kit->control(), mem, adr, new_val, adr_type); |
615 | break; |
616 | case T_LONG: |
617 | load_store = new GetAndAddLNode(kit->control(), mem, adr, new_val, adr_type); |
618 | break; |
619 | default: |
620 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 620); ::breakpoint(); } while (0); |
621 | } |
622 | |
623 | load_store->as_LoadStore()->set_barrier_data(access.barrier_data()); |
624 | load_store = kit->gvn().transform(load_store); |
625 | |
626 | access.set_raw_access(load_store); |
627 | pin_atomic_op(access); |
628 | |
629 | return load_store; |
630 | } |
631 | |
632 | Node* BarrierSetC2::atomic_cmpxchg_val_at(C2AtomicParseAccess& access, Node* expected_val, |
633 | Node* new_val, const Type* value_type) const { |
634 | C2AccessFence fence(access); |
635 | resolve_address(access); |
636 | return atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); |
637 | } |
638 | |
639 | Node* BarrierSetC2::atomic_cmpxchg_bool_at(C2AtomicParseAccess& access, Node* expected_val, |
640 | Node* new_val, const Type* value_type) const { |
641 | C2AccessFence fence(access); |
642 | resolve_address(access); |
643 | return atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); |
644 | } |
645 | |
646 | Node* BarrierSetC2::atomic_xchg_at(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
647 | C2AccessFence fence(access); |
648 | resolve_address(access); |
649 | return atomic_xchg_at_resolved(access, new_val, value_type); |
650 | } |
651 | |
652 | Node* BarrierSetC2::atomic_add_at(C2AtomicParseAccess& access, Node* new_val, const Type* value_type) const { |
653 | C2AccessFence fence(access); |
654 | resolve_address(access); |
655 | return atomic_add_at_resolved(access, new_val, value_type); |
656 | } |
657 | |
658 | int BarrierSetC2::arraycopy_payload_base_offset(bool is_array) { |
659 | // Exclude the header but include array length to copy by 8 bytes words. |
660 | // Can't use base_offset_in_bytes(bt) since basic type is unknown. |
661 | int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() : |
662 | instanceOopDesc::base_offset_in_bytes(); |
663 | // base_off: |
664 | // 8 - 32-bit VM |
665 | // 12 - 64-bit VM, compressed klass |
666 | // 16 - 64-bit VM, normal klass |
667 | if (base_off % BytesPerLong != 0) { |
668 | assert(UseCompressedClassPointers, "")do { if (!(UseCompressedClassPointers)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 668, "assert(" "UseCompressedClassPointers" ") failed", "") ; ::breakpoint(); } } while (0); |
669 | if (is_array) { |
670 | // Exclude length to copy by 8 bytes words. |
671 | base_off += sizeof(int); |
672 | } else { |
673 | // Include klass to copy by 8 bytes words. |
674 | base_off = instanceOopDesc::klass_offset_in_bytes(); |
675 | } |
676 | assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment")do { if (!(base_off % BytesPerLong == 0)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp" , 676, "assert(" "base_off % BytesPerLong == 0" ") failed", "expect 8 bytes alignment" ); ::breakpoint(); } } while (0); |
677 | } |
678 | return base_off; |
679 | } |
680 | |
681 | void BarrierSetC2::clone(GraphKit* kit, Node* src_base, Node* dst_base, Node* size, bool is_array) const { |
682 | int base_off = arraycopy_payload_base_offset(is_array); |
683 | Node* payload_size = size; |
684 | Node* offset = kit->MakeConXlongcon(base_off); |
685 | payload_size = kit->gvn().transform(new SubXNodeSubLNode(payload_size, offset)); |
686 | payload_size = kit->gvn().transform(new URShiftXNodeURShiftLNode(payload_size, kit->intcon(LogBytesPerLong))); |
687 | ArrayCopyNode* ac = ArrayCopyNode::make(kit, false, src_base, offset, dst_base, offset, payload_size, true, false); |
688 | if (is_array) { |
689 | ac->set_clone_array(); |
690 | } else { |
691 | ac->set_clone_inst(); |
692 | } |
693 | Node* n = kit->gvn().transform(ac); |
694 | if (n == ac) { |
695 | const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; |
696 | ac->set_adr_type(TypeRawPtr::BOTTOM); |
697 | kit->set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type); |
698 | } else { |
699 | kit->set_all_memory(n); |
700 | } |
701 | } |
702 | |
703 | Node* BarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* mem, Node* toobig_false, Node* size_in_bytes, |
704 | Node*& i_o, Node*& needgc_ctrl, |
705 | Node*& fast_oop_ctrl, Node*& fast_oop_rawmem, |
706 | intx prefetch_lines) const { |
707 | |
708 | Node* eden_top_adr; |
709 | Node* eden_end_adr; |
710 | |
711 | macro->set_eden_pointers(eden_top_adr, eden_end_adr); |
712 | |
713 | // Load Eden::end. Loop invariant and hoisted. |
714 | // |
715 | // Note: We set the control input on "eden_end" and "old_eden_top" when using |
716 | // a TLAB to work around a bug where these values were being moved across |
717 | // a safepoint. These are not oops, so they cannot be include in the oop |
718 | // map, but they can be changed by a GC. The proper way to fix this would |
719 | // be to set the raw memory state when generating a SafepointNode. However |
720 | // this will require extensive changes to the loop optimization in order to |
721 | // prevent a degradation of the optimization. |
722 | // See comment in memnode.hpp, around line 227 in class LoadPNode. |
723 | Node *eden_end = macro->make_load(toobig_false, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS); |
724 | |
725 | // We need a Region for the loop-back contended case. |
726 | enum { fall_in_path = 1, contended_loopback_path = 2 }; |
727 | Node *contended_region; |
728 | Node *contended_phi_rawmem; |
729 | if (UseTLAB) { |
730 | contended_region = toobig_false; |
731 | contended_phi_rawmem = mem; |
732 | } else { |
733 | contended_region = new RegionNode(3); |
734 | contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM); |
735 | // Now handle the passing-too-big test. We fall into the contended |
736 | // loop-back merge point. |
737 | contended_region ->init_req(fall_in_path, toobig_false); |
738 | contended_phi_rawmem->init_req(fall_in_path, mem); |
739 | macro->transform_later(contended_region); |
740 | macro->transform_later(contended_phi_rawmem); |
741 | } |
742 | |
743 | // Load(-locked) the heap top. |
744 | // See note above concerning the control input when using a TLAB |
745 | Node *old_eden_top = UseTLAB |
746 | ? new LoadPNode (toobig_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered) |
747 | : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire); |
748 | |
749 | macro->transform_later(old_eden_top); |
750 | // Add to heap top to get a new heap top |
751 | Node *new_eden_top = new AddPNode(macro->top(), old_eden_top, size_in_bytes); |
752 | macro->transform_later(new_eden_top); |
753 | // Check for needing a GC; compare against heap end |
754 | Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end); |
755 | macro->transform_later(needgc_cmp); |
756 | Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge); |
757 | macro->transform_later(needgc_bol); |
758 | IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4)(1e-4f), COUNT_UNKNOWN(-1.0f)); |
759 | macro->transform_later(needgc_iff); |
760 | |
761 | // Plug the failing-heap-space-need-gc test into the slow-path region |
762 | Node *needgc_true = new IfTrueNode(needgc_iff); |
763 | macro->transform_later(needgc_true); |
764 | needgc_ctrl = needgc_true; |
765 | |
766 | // No need for a GC. Setup for the Store-Conditional |
767 | Node *needgc_false = new IfFalseNode(needgc_iff); |
768 | macro->transform_later(needgc_false); |
769 | |
770 | i_o = macro->prefetch_allocation(i_o, needgc_false, contended_phi_rawmem, |
771 | old_eden_top, new_eden_top, prefetch_lines); |
772 | |
773 | Node* fast_oop = old_eden_top; |
774 | |
775 | // Store (-conditional) the modified eden top back down. |
776 | // StorePConditional produces flags for a test PLUS a modified raw |
777 | // memory state. |
778 | if (UseTLAB) { |
779 | Node* store_eden_top = |
780 | new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr, |
781 | TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered); |
782 | macro->transform_later(store_eden_top); |
783 | fast_oop_ctrl = needgc_false; // No contention, so this is the fast path |
784 | fast_oop_rawmem = store_eden_top; |
785 | } else { |
786 | Node* store_eden_top = |
787 | new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr, |
788 | new_eden_top, fast_oop/*old_eden_top*/); |
789 | macro->transform_later(store_eden_top); |
790 | Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne); |
791 | macro->transform_later(contention_check); |
792 | store_eden_top = new SCMemProjNode(store_eden_top); |
793 | macro->transform_later(store_eden_top); |
794 | |
795 | // If not using TLABs, check to see if there was contention. |
796 | IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN(1e-6f), COUNT_UNKNOWN(-1.0f)); |
797 | macro->transform_later(contention_iff); |
798 | Node *contention_true = new IfTrueNode(contention_iff); |
799 | macro->transform_later(contention_true); |
800 | // If contention, loopback and try again. |
801 | contended_region->init_req(contended_loopback_path, contention_true); |
802 | contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top); |
803 | |
804 | // Fast-path succeeded with no contention! |
805 | Node *contention_false = new IfFalseNode(contention_iff); |
806 | macro->transform_later(contention_false); |
807 | fast_oop_ctrl = contention_false; |
808 | |
809 | // Bump total allocated bytes for this thread |
810 | Node* thread = new ThreadLocalNode(); |
811 | macro->transform_later(thread); |
812 | Node* alloc_bytes_adr = macro->basic_plus_adr(macro->top()/*not oop*/, thread, |
813 | in_bytes(JavaThread::allocated_bytes_offset())); |
814 | Node* alloc_bytes = macro->make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, |
815 | 0, TypeLong::LONG, T_LONG); |
816 | #ifdef _LP641 |
817 | Node* alloc_size = size_in_bytes; |
818 | #else |
819 | Node* alloc_size = new ConvI2LNode(size_in_bytes); |
820 | macro->transform_later(alloc_size); |
821 | #endif |
822 | Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size); |
823 | macro->transform_later(new_alloc_bytes); |
824 | fast_oop_rawmem = macro->make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, |
825 | 0, new_alloc_bytes, T_LONG); |
826 | } |
827 | return fast_oop; |
828 | } |
829 | |
830 | #define XTOP LP64_ONLY(COMMA phase->top()), phase->top() |
831 | |
832 | void BarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { |
833 | Node* ctrl = ac->in(TypeFunc::Control); |
834 | Node* mem = ac->in(TypeFunc::Memory); |
835 | Node* src = ac->in(ArrayCopyNode::Src); |
836 | Node* src_offset = ac->in(ArrayCopyNode::SrcPos); |
837 | Node* dest = ac->in(ArrayCopyNode::Dest); |
838 | Node* dest_offset = ac->in(ArrayCopyNode::DestPos); |
839 | Node* length = ac->in(ArrayCopyNode::Length); |
840 | |
841 | Node* payload_src = phase->basic_plus_adr(src, src_offset); |
842 | Node* payload_dst = phase->basic_plus_adr(dest, dest_offset); |
843 | |
844 | const char* copyfunc_name = "arraycopy"; |
845 | address copyfunc_addr = phase->basictype2arraycopy(T_LONG, NULL__null, NULL__null, true, copyfunc_name, true); |
846 | |
847 | const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; |
848 | const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); |
849 | |
850 | Node* call = phase->make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, payload_src, payload_dst, length XTOP); |
851 | phase->transform_later(call); |
852 | |
853 | phase->igvn().replace_node(ac, call); |
854 | } |
855 | |
856 | #undef XTOP |