File: | jdk/src/hotspot/share/opto/matcher.cpp |
Warning: | line 1046, column 7 Value stored to 'mat' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/shared/barrierSet.hpp" |
27 | #include "gc/shared/c2/barrierSetC2.hpp" |
28 | #include "memory/allocation.inline.hpp" |
29 | #include "memory/resourceArea.hpp" |
30 | #include "oops/compressedOops.hpp" |
31 | #include "opto/ad.hpp" |
32 | #include "opto/addnode.hpp" |
33 | #include "opto/callnode.hpp" |
34 | #include "opto/idealGraphPrinter.hpp" |
35 | #include "opto/matcher.hpp" |
36 | #include "opto/memnode.hpp" |
37 | #include "opto/movenode.hpp" |
38 | #include "opto/opcodes.hpp" |
39 | #include "opto/regmask.hpp" |
40 | #include "opto/rootnode.hpp" |
41 | #include "opto/runtime.hpp" |
42 | #include "opto/type.hpp" |
43 | #include "opto/vectornode.hpp" |
44 | #include "runtime/os.hpp" |
45 | #include "runtime/sharedRuntime.hpp" |
46 | #include "utilities/align.hpp" |
47 | |
48 | OptoReg::Name OptoReg::c_frame_pointer; |
49 | |
50 | const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; |
51 | RegMask Matcher::mreg2regmask[_last_Mach_Reg]; |
52 | RegMask Matcher::caller_save_regmask; |
53 | RegMask Matcher::caller_save_regmask_exclude_soe; |
54 | RegMask Matcher::mh_caller_save_regmask; |
55 | RegMask Matcher::mh_caller_save_regmask_exclude_soe; |
56 | RegMask Matcher::STACK_ONLY_mask; |
57 | RegMask Matcher::c_frame_ptr_mask; |
58 | const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; |
59 | const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; |
60 | |
61 | //---------------------------Matcher------------------------------------------- |
62 | Matcher::Matcher() |
63 | : PhaseTransform( Phase::Ins_Select ), |
64 | _states_arena(Chunk::medium_size, mtCompiler), |
65 | _visited(&_states_arena), |
66 | _shared(&_states_arena), |
67 | _dontcare(&_states_arena), |
68 | _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), |
69 | _swallowed(swallowed), |
70 | _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), |
71 | _end_inst_chain_rule(_END_INST_CHAIN_RULE), |
72 | _must_clone(must_clone), |
73 | _shared_nodes(C->comp_arena()), |
74 | #ifndef PRODUCT |
75 | _old2new_map(C->comp_arena()), |
76 | _new2old_map(C->comp_arena()), |
77 | _reused(C->comp_arena()), |
78 | #endif // !PRODUCT |
79 | _allocation_started(false), |
80 | _ruleName(ruleName), |
81 | _register_save_policy(register_save_policy), |
82 | _c_reg_save_policy(c_reg_save_policy), |
83 | _register_save_type(register_save_type) { |
84 | C->set_matcher(this); |
85 | |
86 | idealreg2spillmask [Op_RegI] = NULL__null; |
87 | idealreg2spillmask [Op_RegN] = NULL__null; |
88 | idealreg2spillmask [Op_RegL] = NULL__null; |
89 | idealreg2spillmask [Op_RegF] = NULL__null; |
90 | idealreg2spillmask [Op_RegD] = NULL__null; |
91 | idealreg2spillmask [Op_RegP] = NULL__null; |
92 | idealreg2spillmask [Op_VecA] = NULL__null; |
93 | idealreg2spillmask [Op_VecS] = NULL__null; |
94 | idealreg2spillmask [Op_VecD] = NULL__null; |
95 | idealreg2spillmask [Op_VecX] = NULL__null; |
96 | idealreg2spillmask [Op_VecY] = NULL__null; |
97 | idealreg2spillmask [Op_VecZ] = NULL__null; |
98 | idealreg2spillmask [Op_RegFlags] = NULL__null; |
99 | idealreg2spillmask [Op_RegVectMask] = NULL__null; |
100 | |
101 | idealreg2debugmask [Op_RegI] = NULL__null; |
102 | idealreg2debugmask [Op_RegN] = NULL__null; |
103 | idealreg2debugmask [Op_RegL] = NULL__null; |
104 | idealreg2debugmask [Op_RegF] = NULL__null; |
105 | idealreg2debugmask [Op_RegD] = NULL__null; |
106 | idealreg2debugmask [Op_RegP] = NULL__null; |
107 | idealreg2debugmask [Op_VecA] = NULL__null; |
108 | idealreg2debugmask [Op_VecS] = NULL__null; |
109 | idealreg2debugmask [Op_VecD] = NULL__null; |
110 | idealreg2debugmask [Op_VecX] = NULL__null; |
111 | idealreg2debugmask [Op_VecY] = NULL__null; |
112 | idealreg2debugmask [Op_VecZ] = NULL__null; |
113 | idealreg2debugmask [Op_RegFlags] = NULL__null; |
114 | idealreg2debugmask [Op_RegVectMask] = NULL__null; |
115 | |
116 | idealreg2mhdebugmask[Op_RegI] = NULL__null; |
117 | idealreg2mhdebugmask[Op_RegN] = NULL__null; |
118 | idealreg2mhdebugmask[Op_RegL] = NULL__null; |
119 | idealreg2mhdebugmask[Op_RegF] = NULL__null; |
120 | idealreg2mhdebugmask[Op_RegD] = NULL__null; |
121 | idealreg2mhdebugmask[Op_RegP] = NULL__null; |
122 | idealreg2mhdebugmask[Op_VecA] = NULL__null; |
123 | idealreg2mhdebugmask[Op_VecS] = NULL__null; |
124 | idealreg2mhdebugmask[Op_VecD] = NULL__null; |
125 | idealreg2mhdebugmask[Op_VecX] = NULL__null; |
126 | idealreg2mhdebugmask[Op_VecY] = NULL__null; |
127 | idealreg2mhdebugmask[Op_VecZ] = NULL__null; |
128 | idealreg2mhdebugmask[Op_RegFlags] = NULL__null; |
129 | idealreg2mhdebugmask[Op_RegVectMask] = NULL__null; |
130 | |
131 | debug_only(_mem_node = NULL;)_mem_node = __null; // Ideal memory node consumed by mach node |
132 | } |
133 | |
134 | //------------------------------warp_incoming_stk_arg------------------------ |
135 | // This warps a VMReg into an OptoReg::Name |
136 | OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { |
137 | OptoReg::Name warped; |
138 | if( reg->is_stack() ) { // Stack slot argument? |
139 | warped = OptoReg::add(_old_SP, reg->reg2stack() ); |
140 | warped = OptoReg::add(warped, C->out_preserve_stack_slots()); |
141 | if( warped >= _in_arg_limit ) |
142 | _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen |
143 | if (!RegMask::can_represent_arg(warped)) { |
144 | // the compiler cannot represent this method's calling sequence |
145 | C->record_method_not_compilable("unsupported incoming calling sequence"); |
146 | return OptoReg::Bad; |
147 | } |
148 | return warped; |
149 | } |
150 | return OptoReg::as_OptoReg(reg); |
151 | } |
152 | |
153 | //---------------------------compute_old_SP------------------------------------ |
154 | OptoReg::Name Compile::compute_old_SP() { |
155 | int fixed = fixed_slots(); |
156 | int preserve = in_preserve_stack_slots(); |
157 | return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots())); |
158 | } |
159 | |
160 | |
161 | |
162 | #ifdef ASSERT1 |
163 | void Matcher::verify_new_nodes_only(Node* xroot) { |
164 | // Make sure that the new graph only references new nodes |
165 | ResourceMark rm; |
166 | Unique_Node_List worklist; |
167 | VectorSet visited; |
168 | worklist.push(xroot); |
169 | while (worklist.size() > 0) { |
170 | Node* n = worklist.pop(); |
171 | visited.set(n->_idx); |
172 | assert(C->node_arena()->contains(n), "dead node")do { if (!(C->node_arena()->contains(n))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 172, "assert(" "C->node_arena()->contains(n)" ") failed" , "dead node"); ::breakpoint(); } } while (0); |
173 | for (uint j = 0; j < n->req(); j++) { |
174 | Node* in = n->in(j); |
175 | if (in != NULL__null) { |
176 | assert(C->node_arena()->contains(in), "dead node")do { if (!(C->node_arena()->contains(in))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 176, "assert(" "C->node_arena()->contains(in)" ") failed" , "dead node"); ::breakpoint(); } } while (0); |
177 | if (!visited.test(in->_idx)) { |
178 | worklist.push(in); |
179 | } |
180 | } |
181 | } |
182 | } |
183 | } |
184 | #endif |
185 | |
186 | |
187 | //---------------------------match--------------------------------------------- |
188 | void Matcher::match( ) { |
189 | if( MaxLabelRootDepth < 100 ) { // Too small? |
190 | assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 190, "assert(" "false" ") failed", "invalid MaxLabelRootDepth, increase it to 100 minimum" ); ::breakpoint(); } } while (0); |
191 | MaxLabelRootDepth = 100; |
192 | } |
193 | // One-time initialization of some register masks. |
194 | init_spill_mask( C->root()->in(1) ); |
195 | _return_addr_mask = return_addr(); |
196 | #ifdef _LP641 |
197 | // Pointers take 2 slots in 64-bit land |
198 | _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); |
199 | #endif |
200 | |
201 | // Map a Java-signature return type into return register-value |
202 | // machine registers for 0, 1 and 2 returned values. |
203 | const TypeTuple *range = C->tf()->range(); |
204 | if( range->cnt() > TypeFunc::Parms ) { // If not a void function |
205 | // Get ideal-register return type |
206 | uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); |
207 | // Get machine return register |
208 | uint sop = C->start()->Opcode(); |
209 | OptoRegPair regs = return_value(ireg); |
210 | |
211 | // And mask for same |
212 | _return_value_mask = RegMask(regs.first()); |
213 | if( OptoReg::is_valid(regs.second()) ) |
214 | _return_value_mask.Insert(regs.second()); |
215 | } |
216 | |
217 | // --------------- |
218 | // Frame Layout |
219 | |
220 | // Need the method signature to determine the incoming argument types, |
221 | // because the types determine which registers the incoming arguments are |
222 | // in, and this affects the matched code. |
223 | const TypeTuple *domain = C->tf()->domain(); |
224 | uint argcnt = domain->cnt() - TypeFunc::Parms; |
225 | BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType )); |
226 | VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair )); |
227 | _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt )(OptoRegPair*) resource_allocate_bytes((argcnt) * sizeof(OptoRegPair )); |
228 | _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt )(RegMask*) resource_allocate_bytes((argcnt) * sizeof(RegMask) ); |
229 | uint i; |
230 | for( i = 0; i<argcnt; i++ ) { |
231 | sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); |
232 | } |
233 | |
234 | // Pass array of ideal registers and length to USER code (from the AD file) |
235 | // that will convert this to an array of register numbers. |
236 | const StartNode *start = C->start(); |
237 | start->calling_convention( sig_bt, vm_parm_regs, argcnt ); |
238 | #ifdef ASSERT1 |
239 | // Sanity check users' calling convention. Real handy while trying to |
240 | // get the initial port correct. |
241 | { for (uint i = 0; i<argcnt; i++) { |
242 | if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { |
243 | assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" )do { if (!(domain->field_at(i+TypeFunc::Parms)==Type::HALF )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 243, "assert(" "domain->field_at(i+TypeFunc::Parms)==Type::HALF" ") failed", "only allowed on halve"); ::breakpoint(); } } while (0); |
244 | _parm_regs[i].set_bad(); |
245 | continue; |
246 | } |
247 | VMReg parm_reg = vm_parm_regs[i].first(); |
248 | assert(parm_reg->is_valid(), "invalid arg?")do { if (!(parm_reg->is_valid())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 248, "assert(" "parm_reg->is_valid()" ") failed", "invalid arg?" ); ::breakpoint(); } } while (0); |
249 | if (parm_reg->is_reg()) { |
250 | OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); |
251 | assert(can_be_java_arg(opto_parm_reg) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) |
252 | C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) |
253 | opto_parm_reg == inline_cache_reg(),do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) |
254 | "parameters in register must be preserved by runtime stubs")do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0); |
255 | } |
256 | for (uint j = 0; j < i; j++) { |
257 | assert(parm_reg != vm_parm_regs[j].first(),do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0) |
258 | "calling conv. must produce distinct regs")do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0); |
259 | } |
260 | } |
261 | } |
262 | #endif |
263 | |
264 | // Do some initial frame layout. |
265 | |
266 | // Compute the old incoming SP (may be called FP) as |
267 | // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. |
268 | _old_SP = C->compute_old_SP(); |
269 | assert( is_even(_old_SP), "must be even" )do { if (!(is_even(_old_SP))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 269, "assert(" "is_even(_old_SP)" ") failed", "must be even" ); ::breakpoint(); } } while (0); |
270 | |
271 | // Compute highest incoming stack argument as |
272 | // _old_SP + out_preserve_stack_slots + incoming argument size. |
273 | _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); |
274 | assert( is_even(_in_arg_limit), "out_preserve must be even" )do { if (!(is_even(_in_arg_limit))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 274, "assert(" "is_even(_in_arg_limit)" ") failed", "out_preserve must be even" ); ::breakpoint(); } } while (0); |
275 | for( i = 0; i < argcnt; i++ ) { |
276 | // Permit args to have no register |
277 | _calling_convention_mask[i].Clear(); |
278 | if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { |
279 | continue; |
280 | } |
281 | // calling_convention returns stack arguments as a count of |
282 | // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to |
283 | // the allocators point of view, taking into account all the |
284 | // preserve area, locks & pad2. |
285 | |
286 | OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); |
287 | if( OptoReg::is_valid(reg1)) |
288 | _calling_convention_mask[i].Insert(reg1); |
289 | |
290 | OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); |
291 | if( OptoReg::is_valid(reg2)) |
292 | _calling_convention_mask[i].Insert(reg2); |
293 | |
294 | // Saved biased stack-slot register number |
295 | _parm_regs[i].set_pair(reg2, reg1); |
296 | } |
297 | |
298 | // Finally, make sure the incoming arguments take up an even number of |
299 | // words, in case the arguments or locals need to contain doubleword stack |
300 | // slots. The rest of the system assumes that stack slot pairs (in |
301 | // particular, in the spill area) which look aligned will in fact be |
302 | // aligned relative to the stack pointer in the target machine. Double |
303 | // stack slots will always be allocated aligned. |
304 | _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong)); |
305 | |
306 | // Compute highest outgoing stack argument as |
307 | // _new_SP + out_preserve_stack_slots + max(outgoing argument size). |
308 | _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); |
309 | assert( is_even(_out_arg_limit), "out_preserve must be even" )do { if (!(is_even(_out_arg_limit))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 309, "assert(" "is_even(_out_arg_limit)" ") failed", "out_preserve must be even" ); ::breakpoint(); } } while (0); |
310 | |
311 | if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { |
312 | // the compiler cannot represent this method's calling sequence |
313 | C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); |
314 | } |
315 | |
316 | if (C->failing()) return; // bailed out on incoming arg failure |
317 | |
318 | // --------------- |
319 | // Collect roots of matcher trees. Every node for which |
320 | // _shared[_idx] is cleared is guaranteed to not be shared, and thus |
321 | // can be a valid interior of some tree. |
322 | find_shared( C->root() ); |
323 | find_shared( C->top() ); |
324 | |
325 | C->print_method(PHASE_BEFORE_MATCHING); |
326 | |
327 | // Create new ideal node ConP #NULL even if it does exist in old space |
328 | // to avoid false sharing if the corresponding mach node is not used. |
329 | // The corresponding mach node is only used in rare cases for derived |
330 | // pointers. |
331 | Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); |
332 | |
333 | // Swap out to old-space; emptying new-space |
334 | Arena *old = C->node_arena()->move_contents(C->old_arena()); |
335 | |
336 | // Save debug and profile information for nodes in old space: |
337 | _old_node_note_array = C->node_note_array(); |
338 | if (_old_node_note_array != NULL__null) { |
339 | C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> |
340 | (C->comp_arena(), _old_node_note_array->length(), |
341 | 0, NULL__null)); |
342 | } |
343 | |
344 | // Pre-size the new_node table to avoid the need for range checks. |
345 | grow_new_node_array(C->unique()); |
346 | |
347 | // Reset node counter so MachNodes start with _idx at 0 |
348 | int live_nodes = C->live_nodes(); |
349 | C->set_unique(0); |
350 | C->reset_dead_node_list(); |
351 | |
352 | // Recursively match trees from old space into new space. |
353 | // Correct leaves of new-space Nodes; they point to old-space. |
354 | _visited.clear(); |
355 | C->set_cached_top_node(xform( C->top(), live_nodes )); |
356 | if (!C->failing()) { |
357 | Node* xroot = xform( C->root(), 1 ); |
358 | if (xroot == NULL__null) { |
359 | Matcher::soft_match_failure(); // recursive matching process failed |
360 | C->record_method_not_compilable("instruction match failed"); |
361 | } else { |
362 | // During matching shared constants were attached to C->root() |
363 | // because xroot wasn't available yet, so transfer the uses to |
364 | // the xroot. |
365 | for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { |
366 | Node* n = C->root()->fast_out(j); |
367 | if (C->node_arena()->contains(n)) { |
368 | assert(n->in(0) == C->root(), "should be control user")do { if (!(n->in(0) == C->root())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 368, "assert(" "n->in(0) == C->root()" ") failed", "should be control user" ); ::breakpoint(); } } while (0); |
369 | n->set_req(0, xroot); |
370 | --j; |
371 | --jmax; |
372 | } |
373 | } |
374 | |
375 | // Generate new mach node for ConP #NULL |
376 | assert(new_ideal_null != NULL, "sanity")do { if (!(new_ideal_null != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 376, "assert(" "new_ideal_null != __null" ") failed", "sanity" ); ::breakpoint(); } } while (0); |
377 | _mach_null = match_tree(new_ideal_null); |
378 | // Don't set control, it will confuse GCM since there are no uses. |
379 | // The control will be set when this node is used first time |
380 | // in find_base_for_derived(). |
381 | assert(_mach_null != NULL, "")do { if (!(_mach_null != __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 381, "assert(" "_mach_null != __null" ") failed", ""); ::breakpoint (); } } while (0); |
382 | |
383 | C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL__null); |
384 | |
385 | #ifdef ASSERT1 |
386 | verify_new_nodes_only(xroot); |
387 | #endif |
388 | } |
389 | } |
390 | if (C->top() == NULL__null || C->root() == NULL__null) { |
391 | C->record_method_not_compilable("graph lost"); // %%% cannot happen? |
392 | } |
393 | if (C->failing()) { |
394 | // delete old; |
395 | old->destruct_contents(); |
396 | return; |
397 | } |
398 | assert( C->top(), "" )do { if (!(C->top())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 398, "assert(" "C->top()" ") failed", ""); ::breakpoint( ); } } while (0); |
399 | assert( C->root(), "" )do { if (!(C->root())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 399, "assert(" "C->root()" ") failed", ""); ::breakpoint (); } } while (0); |
400 | validate_null_checks(); |
401 | |
402 | // Now smoke old-space |
403 | NOT_DEBUG( old->destruct_contents() ); |
404 | |
405 | // ------------------------ |
406 | // Set up save-on-entry registers. |
407 | Fixup_Save_On_Entry( ); |
408 | |
409 | { // Cleanup mach IR after selection phase is over. |
410 | Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]); |
411 | do_postselect_cleanup(); |
412 | if (C->failing()) return; |
413 | assert(verify_after_postselect_cleanup(), "")do { if (!(verify_after_postselect_cleanup())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 413, "assert(" "verify_after_postselect_cleanup()" ") failed" , ""); ::breakpoint(); } } while (0); |
414 | } |
415 | } |
416 | |
417 | //------------------------------Fixup_Save_On_Entry---------------------------- |
418 | // The stated purpose of this routine is to take care of save-on-entry |
419 | // registers. However, the overall goal of the Match phase is to convert into |
420 | // machine-specific instructions which have RegMasks to guide allocation. |
421 | // So what this procedure really does is put a valid RegMask on each input |
422 | // to the machine-specific variations of all Return, TailCall and Halt |
423 | // instructions. It also adds edgs to define the save-on-entry values (and of |
424 | // course gives them a mask). |
425 | |
426 | static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { |
427 | RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size )(RegMask*) resource_allocate_bytes((size) * sizeof(RegMask)); |
428 | // Do all the pre-defined register masks |
429 | rms[TypeFunc::Control ] = RegMask::Empty; |
430 | rms[TypeFunc::I_O ] = RegMask::Empty; |
431 | rms[TypeFunc::Memory ] = RegMask::Empty; |
432 | rms[TypeFunc::ReturnAdr] = ret_adr; |
433 | rms[TypeFunc::FramePtr ] = fp; |
434 | return rms; |
435 | } |
436 | |
437 | const int Matcher::scalable_predicate_reg_slots() { |
438 | assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(),do { if (!(Matcher::has_predicated_vectors() && Matcher ::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()" ") failed", "scalable predicate vector should be supported") ; ::breakpoint(); } } while (0) |
439 | "scalable predicate vector should be supported")do { if (!(Matcher::has_predicated_vectors() && Matcher ::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()" ") failed", "scalable predicate vector should be supported") ; ::breakpoint(); } } while (0); |
440 | int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte; |
441 | // We assume each predicate register is one-eighth of the size of |
442 | // scalable vector register, one mask bit per vector byte. |
443 | int predicate_reg_bit_size = vector_reg_bit_size >> 3; |
444 | // Compute number of slots which is required when scalable predicate |
445 | // register is spilled. E.g. if scalable vector register is 640 bits, |
446 | // predicate register is 80 bits, which is 2.5 * slots. |
447 | // We will round up the slot number to power of 2, which is required |
448 | // by find_first_set(). |
449 | int slots = predicate_reg_bit_size & (BitsPerInt - 1) |
450 | ? (predicate_reg_bit_size >> LogBitsPerInt) + 1 |
451 | : predicate_reg_bit_size >> LogBitsPerInt; |
452 | return round_up_power_of_2(slots); |
453 | } |
454 | |
455 | #define NOF_STACK_MASKS(3*13) (3*13) |
456 | |
457 | // Create the initial stack mask used by values spilling to the stack. |
458 | // Disallow any debug info in outgoing argument areas by setting the |
459 | // initial mask accordingly. |
460 | void Matcher::init_first_stack_mask() { |
461 | |
462 | // Allocate storage for spill masks as masks for the appropriate load type. |
463 | RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS(3*13)); |
464 | |
465 | // Initialize empty placeholder masks into the newly allocated arena |
466 | for (int i = 0; i < NOF_STACK_MASKS(3*13); i++) { |
467 | new (rms + i) RegMask(); |
468 | } |
469 | |
470 | idealreg2spillmask [Op_RegN] = &rms[0]; |
471 | idealreg2spillmask [Op_RegI] = &rms[1]; |
472 | idealreg2spillmask [Op_RegL] = &rms[2]; |
473 | idealreg2spillmask [Op_RegF] = &rms[3]; |
474 | idealreg2spillmask [Op_RegD] = &rms[4]; |
475 | idealreg2spillmask [Op_RegP] = &rms[5]; |
476 | |
477 | idealreg2debugmask [Op_RegN] = &rms[6]; |
478 | idealreg2debugmask [Op_RegI] = &rms[7]; |
479 | idealreg2debugmask [Op_RegL] = &rms[8]; |
480 | idealreg2debugmask [Op_RegF] = &rms[9]; |
481 | idealreg2debugmask [Op_RegD] = &rms[10]; |
482 | idealreg2debugmask [Op_RegP] = &rms[11]; |
483 | |
484 | idealreg2mhdebugmask[Op_RegN] = &rms[12]; |
485 | idealreg2mhdebugmask[Op_RegI] = &rms[13]; |
486 | idealreg2mhdebugmask[Op_RegL] = &rms[14]; |
487 | idealreg2mhdebugmask[Op_RegF] = &rms[15]; |
488 | idealreg2mhdebugmask[Op_RegD] = &rms[16]; |
489 | idealreg2mhdebugmask[Op_RegP] = &rms[17]; |
490 | |
491 | idealreg2spillmask [Op_VecA] = &rms[18]; |
492 | idealreg2spillmask [Op_VecS] = &rms[19]; |
493 | idealreg2spillmask [Op_VecD] = &rms[20]; |
494 | idealreg2spillmask [Op_VecX] = &rms[21]; |
495 | idealreg2spillmask [Op_VecY] = &rms[22]; |
496 | idealreg2spillmask [Op_VecZ] = &rms[23]; |
497 | |
498 | idealreg2debugmask [Op_VecA] = &rms[24]; |
499 | idealreg2debugmask [Op_VecS] = &rms[25]; |
500 | idealreg2debugmask [Op_VecD] = &rms[26]; |
501 | idealreg2debugmask [Op_VecX] = &rms[27]; |
502 | idealreg2debugmask [Op_VecY] = &rms[28]; |
503 | idealreg2debugmask [Op_VecZ] = &rms[29]; |
504 | |
505 | idealreg2mhdebugmask[Op_VecA] = &rms[30]; |
506 | idealreg2mhdebugmask[Op_VecS] = &rms[31]; |
507 | idealreg2mhdebugmask[Op_VecD] = &rms[32]; |
508 | idealreg2mhdebugmask[Op_VecX] = &rms[33]; |
509 | idealreg2mhdebugmask[Op_VecY] = &rms[34]; |
510 | idealreg2mhdebugmask[Op_VecZ] = &rms[35]; |
511 | |
512 | idealreg2spillmask [Op_RegVectMask] = &rms[36]; |
513 | idealreg2debugmask [Op_RegVectMask] = &rms[37]; |
514 | idealreg2mhdebugmask[Op_RegVectMask] = &rms[38]; |
515 | |
516 | OptoReg::Name i; |
517 | |
518 | // At first, start with the empty mask |
519 | C->FIRST_STACK_mask().Clear(); |
520 | |
521 | // Add in the incoming argument area |
522 | OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); |
523 | for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { |
524 | C->FIRST_STACK_mask().Insert(i); |
525 | } |
526 | // Add in all bits past the outgoing argument area |
527 | guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit ,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))" ") failed", "must be able to represent all call arguments in reg mask" ); ::breakpoint(); } } while (0) |
528 | "must be able to represent all call arguments in reg mask")do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit ,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))" ") failed", "must be able to represent all call arguments in reg mask" ); ::breakpoint(); } } while (0); |
529 | OptoReg::Name init = _out_arg_limit; |
530 | for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { |
531 | C->FIRST_STACK_mask().Insert(i); |
532 | } |
533 | // Finally, set the "infinite stack" bit. |
534 | C->FIRST_STACK_mask().set_AllStack(); |
535 | |
536 | // Make spill masks. Registers for their class, plus FIRST_STACK_mask. |
537 | RegMask aligned_stack_mask = C->FIRST_STACK_mask(); |
538 | // Keep spill masks aligned. |
539 | aligned_stack_mask.clear_to_pairs(); |
540 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 540, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); |
541 | RegMask scalable_stack_mask = aligned_stack_mask; |
542 | |
543 | *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; |
544 | #ifdef _LP641 |
545 | *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; |
546 | idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); |
547 | idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); |
548 | #else |
549 | idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); |
550 | #endif |
551 | *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; |
552 | idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); |
553 | *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; |
554 | idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); |
555 | *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; |
556 | idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); |
557 | *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; |
558 | idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); |
559 | |
560 | if (Matcher::has_predicated_vectors()) { |
561 | *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; |
562 | idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask); |
563 | } else { |
564 | *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty; |
565 | } |
566 | |
567 | if (Matcher::vector_size_supported(T_BYTE,4)) { |
568 | *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; |
569 | idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); |
570 | } else { |
571 | *idealreg2spillmask[Op_VecS] = RegMask::Empty; |
572 | } |
573 | |
574 | if (Matcher::vector_size_supported(T_FLOAT,2)) { |
575 | // For VecD we need dual alignment and 8 bytes (2 slots) for spills. |
576 | // RA guarantees such alignment since it is needed for Double and Long values. |
577 | *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; |
578 | idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); |
579 | } else { |
580 | *idealreg2spillmask[Op_VecD] = RegMask::Empty; |
581 | } |
582 | |
583 | if (Matcher::vector_size_supported(T_FLOAT,4)) { |
584 | // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. |
585 | // |
586 | // RA can use input arguments stack slots for spills but until RA |
587 | // we don't know frame size and offset of input arg stack slots. |
588 | // |
589 | // Exclude last input arg stack slots to avoid spilling vectors there |
590 | // otherwise vector spills could stomp over stack slots in caller frame. |
591 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); |
592 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { |
593 | aligned_stack_mask.Remove(in); |
594 | in = OptoReg::add(in, -1); |
595 | } |
596 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); |
597 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 597, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); |
598 | *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; |
599 | idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); |
600 | } else { |
601 | *idealreg2spillmask[Op_VecX] = RegMask::Empty; |
602 | } |
603 | |
604 | if (Matcher::vector_size_supported(T_FLOAT,8)) { |
605 | // For VecY we need octo alignment and 32 bytes (8 slots) for spills. |
606 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); |
607 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { |
608 | aligned_stack_mask.Remove(in); |
609 | in = OptoReg::add(in, -1); |
610 | } |
611 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); |
612 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 612, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); |
613 | *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; |
614 | idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); |
615 | } else { |
616 | *idealreg2spillmask[Op_VecY] = RegMask::Empty; |
617 | } |
618 | |
619 | if (Matcher::vector_size_supported(T_FLOAT,16)) { |
620 | // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. |
621 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); |
622 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { |
623 | aligned_stack_mask.Remove(in); |
624 | in = OptoReg::add(in, -1); |
625 | } |
626 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); |
627 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 627, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); |
628 | *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; |
629 | idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); |
630 | } else { |
631 | *idealreg2spillmask[Op_VecZ] = RegMask::Empty; |
632 | } |
633 | |
634 | if (Matcher::supports_scalable_vector()) { |
635 | int k = 1; |
636 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); |
637 | if (Matcher::has_predicated_vectors()) { |
638 | // Exclude last input arg stack slots to avoid spilling vector register there, |
639 | // otherwise RegVectMask spills could stomp over stack slots in caller frame. |
640 | for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) { |
641 | scalable_stack_mask.Remove(in); |
642 | in = OptoReg::add(in, -1); |
643 | } |
644 | |
645 | // For RegVectMask |
646 | scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots()); |
647 | assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 647, "assert(" "scalable_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); |
648 | *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; |
649 | idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask); |
650 | } |
651 | |
652 | // Exclude last input arg stack slots to avoid spilling vector register there, |
653 | // otherwise vector spills could stomp over stack slots in caller frame. |
654 | for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) { |
655 | scalable_stack_mask.Remove(in); |
656 | in = OptoReg::add(in, -1); |
657 | } |
658 | |
659 | // For VecA |
660 | scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA); |
661 | assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 661, "assert(" "scalable_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); |
662 | *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA]; |
663 | idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask); |
664 | } else { |
665 | *idealreg2spillmask[Op_VecA] = RegMask::Empty; |
666 | } |
667 | |
668 | if (UseFPUForSpilling) { |
669 | // This mask logic assumes that the spill operations are |
670 | // symmetric and that the registers involved are the same size. |
671 | // On sparc for instance we may have to use 64 bit moves will |
672 | // kill 2 registers when used with F0-F31. |
673 | idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); |
674 | idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); |
675 | #ifdef _LP641 |
676 | idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); |
677 | idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); |
678 | idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); |
679 | idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); |
680 | #else |
681 | idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); |
682 | #ifdef ARM |
683 | // ARM has support for moving 64bit values between a pair of |
684 | // integer registers and a double register |
685 | idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); |
686 | idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); |
687 | #endif |
688 | #endif |
689 | } |
690 | |
691 | // Make up debug masks. Any spill slot plus callee-save (SOE) registers. |
692 | // Caller-save (SOC, AS) registers are assumed to be trashable by the various |
693 | // inline-cache fixup routines. |
694 | *idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN]; |
695 | *idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI]; |
696 | *idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL]; |
697 | *idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF]; |
698 | *idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD]; |
699 | *idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP]; |
700 | *idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; |
701 | |
702 | *idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA]; |
703 | *idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS]; |
704 | *idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD]; |
705 | *idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX]; |
706 | *idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY]; |
707 | *idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ]; |
708 | |
709 | *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN]; |
710 | *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI]; |
711 | *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL]; |
712 | *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF]; |
713 | *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD]; |
714 | *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP]; |
715 | *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; |
716 | |
717 | *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA]; |
718 | *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS]; |
719 | *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD]; |
720 | *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX]; |
721 | *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY]; |
722 | *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ]; |
723 | |
724 | // Prevent stub compilations from attempting to reference |
725 | // callee-saved (SOE) registers from debug info |
726 | bool exclude_soe = !Compile::current()->is_method_compilation(); |
727 | RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask; |
728 | RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask; |
729 | |
730 | idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask); |
731 | idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask); |
732 | idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask); |
733 | idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask); |
734 | idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask); |
735 | idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask); |
736 | idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask); |
737 | |
738 | idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask); |
739 | idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask); |
740 | idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask); |
741 | idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask); |
742 | idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask); |
743 | idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask); |
744 | |
745 | idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask); |
746 | idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask); |
747 | idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask); |
748 | idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask); |
749 | idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask); |
750 | idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask); |
751 | idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask); |
752 | |
753 | idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask); |
754 | idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask); |
755 | idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask); |
756 | idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask); |
757 | idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask); |
758 | idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask); |
759 | } |
760 | |
761 | //---------------------------is_save_on_entry---------------------------------- |
762 | bool Matcher::is_save_on_entry(int reg) { |
763 | return |
764 | _register_save_policy[reg] == 'E' || |
765 | _register_save_policy[reg] == 'A'; // Save-on-entry register? |
766 | } |
767 | |
768 | //---------------------------Fixup_Save_On_Entry------------------------------- |
769 | void Matcher::Fixup_Save_On_Entry( ) { |
770 | init_first_stack_mask(); |
771 | |
772 | Node *root = C->root(); // Short name for root |
773 | // Count number of save-on-entry registers. |
774 | uint soe_cnt = number_of_saved_registers(); |
775 | uint i; |
776 | |
777 | // Find the procedure Start Node |
778 | StartNode *start = C->start(); |
779 | assert( start, "Expect a start node" )do { if (!(start)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 779, "assert(" "start" ") failed", "Expect a start node"); :: breakpoint(); } } while (0); |
780 | |
781 | // Input RegMask array shared by all Returns. |
782 | // The type for doubles and longs has a count of 2, but |
783 | // there is only 1 returned value |
784 | uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); |
785 | RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); |
786 | // Returns have 0 or 1 returned values depending on call signature. |
787 | // Return register is specified by return_value in the AD file. |
788 | if (ret_edge_cnt > TypeFunc::Parms) |
789 | ret_rms[TypeFunc::Parms+0] = _return_value_mask; |
790 | |
791 | // Input RegMask array shared by all Rethrows. |
792 | uint reth_edge_cnt = TypeFunc::Parms+1; |
793 | RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); |
794 | // Rethrow takes exception oop only, but in the argument 0 slot. |
795 | OptoReg::Name reg = find_receiver(); |
796 | if (reg >= 0) { |
797 | reth_rms[TypeFunc::Parms] = mreg2regmask[reg]; |
798 | #ifdef _LP641 |
799 | // Need two slots for ptrs in 64-bit land |
800 | reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1)); |
801 | #endif |
802 | } |
803 | |
804 | // Input RegMask array shared by all TailCalls |
805 | uint tail_call_edge_cnt = TypeFunc::Parms+2; |
806 | RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); |
807 | |
808 | // Input RegMask array shared by all TailJumps |
809 | uint tail_jump_edge_cnt = TypeFunc::Parms+2; |
810 | RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); |
811 | |
812 | // TailCalls have 2 returned values (target & moop), whose masks come |
813 | // from the usual MachNode/MachOper mechanism. Find a sample |
814 | // TailCall to extract these masks and put the correct masks into |
815 | // the tail_call_rms array. |
816 | for( i=1; i < root->req(); i++ ) { |
817 | MachReturnNode *m = root->in(i)->as_MachReturn(); |
818 | if( m->ideal_Opcode() == Op_TailCall ) { |
819 | tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); |
820 | tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); |
821 | break; |
822 | } |
823 | } |
824 | |
825 | // TailJumps have 2 returned values (target & ex_oop), whose masks come |
826 | // from the usual MachNode/MachOper mechanism. Find a sample |
827 | // TailJump to extract these masks and put the correct masks into |
828 | // the tail_jump_rms array. |
829 | for( i=1; i < root->req(); i++ ) { |
830 | MachReturnNode *m = root->in(i)->as_MachReturn(); |
831 | if( m->ideal_Opcode() == Op_TailJump ) { |
832 | tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); |
833 | tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); |
834 | break; |
835 | } |
836 | } |
837 | |
838 | // Input RegMask array shared by all Halts |
839 | uint halt_edge_cnt = TypeFunc::Parms; |
840 | RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); |
841 | |
842 | // Capture the return input masks into each exit flavor |
843 | for( i=1; i < root->req(); i++ ) { |
844 | MachReturnNode *exit = root->in(i)->as_MachReturn(); |
845 | switch( exit->ideal_Opcode() ) { |
846 | case Op_Return : exit->_in_rms = ret_rms; break; |
847 | case Op_Rethrow : exit->_in_rms = reth_rms; break; |
848 | case Op_TailCall : exit->_in_rms = tail_call_rms; break; |
849 | case Op_TailJump : exit->_in_rms = tail_jump_rms; break; |
850 | case Op_Halt : exit->_in_rms = halt_rms; break; |
851 | default : ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 851); ::breakpoint(); } while (0); |
852 | } |
853 | } |
854 | |
855 | // Next unused projection number from Start. |
856 | int proj_cnt = C->tf()->domain()->cnt(); |
857 | |
858 | // Do all the save-on-entry registers. Make projections from Start for |
859 | // them, and give them a use at the exit points. To the allocator, they |
860 | // look like incoming register arguments. |
861 | for( i = 0; i < _last_Mach_Reg; i++ ) { |
862 | if( is_save_on_entry(i) ) { |
863 | |
864 | // Add the save-on-entry to the mask array |
865 | ret_rms [ ret_edge_cnt] = mreg2regmask[i]; |
866 | reth_rms [ reth_edge_cnt] = mreg2regmask[i]; |
867 | tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; |
868 | tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; |
869 | // Halts need the SOE registers, but only in the stack as debug info. |
870 | // A just-prior uncommon-trap or deoptimization will use the SOE regs. |
871 | halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; |
872 | |
873 | Node *mproj; |
874 | |
875 | // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's |
876 | // into a single RegD. |
877 | if( (i&1) == 0 && |
878 | _register_save_type[i ] == Op_RegF && |
879 | _register_save_type[i+1] == Op_RegF && |
880 | is_save_on_entry(i+1) ) { |
881 | // Add other bit for double |
882 | ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); |
883 | reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); |
884 | tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); |
885 | tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); |
886 | halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); |
887 | mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); |
888 | proj_cnt += 2; // Skip 2 for doubles |
889 | } |
890 | else if( (i&1) == 1 && // Else check for high half of double |
891 | _register_save_type[i-1] == Op_RegF && |
892 | _register_save_type[i ] == Op_RegF && |
893 | is_save_on_entry(i-1) ) { |
894 | ret_rms [ ret_edge_cnt] = RegMask::Empty; |
895 | reth_rms [ reth_edge_cnt] = RegMask::Empty; |
896 | tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; |
897 | tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; |
898 | halt_rms [ halt_edge_cnt] = RegMask::Empty; |
899 | mproj = C->top(); |
900 | } |
901 | // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's |
902 | // into a single RegL. |
903 | else if( (i&1) == 0 && |
904 | _register_save_type[i ] == Op_RegI && |
905 | _register_save_type[i+1] == Op_RegI && |
906 | is_save_on_entry(i+1) ) { |
907 | // Add other bit for long |
908 | ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); |
909 | reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); |
910 | tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); |
911 | tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); |
912 | halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); |
913 | mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); |
914 | proj_cnt += 2; // Skip 2 for longs |
915 | } |
916 | else if( (i&1) == 1 && // Else check for high half of long |
917 | _register_save_type[i-1] == Op_RegI && |
918 | _register_save_type[i ] == Op_RegI && |
919 | is_save_on_entry(i-1) ) { |
920 | ret_rms [ ret_edge_cnt] = RegMask::Empty; |
921 | reth_rms [ reth_edge_cnt] = RegMask::Empty; |
922 | tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; |
923 | tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; |
924 | halt_rms [ halt_edge_cnt] = RegMask::Empty; |
925 | mproj = C->top(); |
926 | } else { |
927 | // Make a projection for it off the Start |
928 | mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); |
929 | } |
930 | |
931 | ret_edge_cnt ++; |
932 | reth_edge_cnt ++; |
933 | tail_call_edge_cnt ++; |
934 | tail_jump_edge_cnt ++; |
935 | halt_edge_cnt ++; |
936 | |
937 | // Add a use of the SOE register to all exit paths |
938 | for( uint j=1; j < root->req(); j++ ) |
939 | root->in(j)->add_req(mproj); |
940 | } // End of if a save-on-entry register |
941 | } // End of for all machine registers |
942 | } |
943 | |
944 | //------------------------------init_spill_mask-------------------------------- |
945 | void Matcher::init_spill_mask( Node *ret ) { |
946 | if( idealreg2regmask[Op_RegI] ) return; // One time only init |
947 | |
948 | OptoReg::c_frame_pointer = c_frame_pointer(); |
949 | c_frame_ptr_mask = c_frame_pointer(); |
950 | #ifdef _LP641 |
951 | // pointers are twice as big |
952 | c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); |
953 | #endif |
954 | |
955 | // Start at OptoReg::stack0() |
956 | STACK_ONLY_mask.Clear(); |
957 | OptoReg::Name init = OptoReg::stack2reg(0); |
958 | // STACK_ONLY_mask is all stack bits |
959 | OptoReg::Name i; |
960 | for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) |
961 | STACK_ONLY_mask.Insert(i); |
962 | // Also set the "infinite stack" bit. |
963 | STACK_ONLY_mask.set_AllStack(); |
964 | |
965 | for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) { |
966 | // Copy the register names over into the shared world. |
967 | // SharedInfo::regName[i] = regName[i]; |
968 | // Handy RegMasks per machine register |
969 | mreg2regmask[i].Insert(i); |
970 | |
971 | // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks. |
972 | if (_register_save_policy[i] == 'C' || |
973 | _register_save_policy[i] == 'A') { |
974 | caller_save_regmask.Insert(i); |
975 | mh_caller_save_regmask.Insert(i); |
976 | } |
977 | // Exclude save-on-entry registers from debug masks for stub compilations. |
978 | if (_register_save_policy[i] == 'C' || |
979 | _register_save_policy[i] == 'A' || |
980 | _register_save_policy[i] == 'E') { |
981 | caller_save_regmask_exclude_soe.Insert(i); |
982 | mh_caller_save_regmask_exclude_soe.Insert(i); |
983 | } |
984 | } |
985 | |
986 | // Also exclude the register we use to save the SP for MethodHandle |
987 | // invokes to from the corresponding MH debug masks |
988 | const RegMask sp_save_mask = method_handle_invoke_SP_save_mask(); |
989 | mh_caller_save_regmask.OR(sp_save_mask); |
990 | mh_caller_save_regmask_exclude_soe.OR(sp_save_mask); |
991 | |
992 | // Grab the Frame Pointer |
993 | Node *fp = ret->in(TypeFunc::FramePtr); |
994 | // Share frame pointer while making spill ops |
995 | set_shared(fp); |
996 | |
997 | // Get the ADLC notion of the right regmask, for each basic type. |
998 | #ifdef _LP641 |
999 | idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret); |
1000 | #endif |
1001 | idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret); |
1002 | idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret); |
1003 | idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret); |
1004 | idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret); |
1005 | idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret); |
1006 | idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret); |
1007 | idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret); |
1008 | idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret); |
1009 | idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret); |
1010 | idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret); |
1011 | idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret); |
1012 | idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret); |
1013 | } |
1014 | |
1015 | #ifdef ASSERT1 |
1016 | static void match_alias_type(Compile* C, Node* n, Node* m) { |
1017 | if (!VerifyAliases) return; // do not go looking for trouble by default |
1018 | const TypePtr* nat = n->adr_type(); |
1019 | const TypePtr* mat = m->adr_type(); |
1020 | int nidx = C->get_alias_index(nat); |
1021 | int midx = C->get_alias_index(mat); |
1022 | // Detune the assert for cases like (AndI 0xFF (LoadB p)). |
1023 | if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { |
1024 | for (uint i = 1; i < n->req(); i++) { |
1025 | Node* n1 = n->in(i); |
1026 | const TypePtr* n1at = n1->adr_type(); |
1027 | if (n1at != NULL__null) { |
1028 | nat = n1at; |
1029 | nidx = C->get_alias_index(n1at); |
1030 | } |
1031 | } |
1032 | } |
1033 | // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: |
1034 | if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { |
1035 | switch (n->Opcode()) { |
1036 | case Op_PrefetchAllocation: |
1037 | nidx = Compile::AliasIdxRaw; |
1038 | nat = TypeRawPtr::BOTTOM; |
1039 | break; |
1040 | } |
1041 | } |
1042 | if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { |
1043 | switch (n->Opcode()) { |
1044 | case Op_ClearArray: |
1045 | midx = Compile::AliasIdxRaw; |
1046 | mat = TypeRawPtr::BOTTOM; |
Value stored to 'mat' is never read | |
1047 | break; |
1048 | } |
1049 | } |
1050 | if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { |
1051 | switch (n->Opcode()) { |
1052 | case Op_Return: |
1053 | case Op_Rethrow: |
1054 | case Op_Halt: |
1055 | case Op_TailCall: |
1056 | case Op_TailJump: |
1057 | nidx = Compile::AliasIdxBot; |
1058 | nat = TypePtr::BOTTOM; |
1059 | break; |
1060 | } |
1061 | } |
1062 | if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { |
1063 | switch (n->Opcode()) { |
1064 | case Op_StrComp: |
1065 | case Op_StrEquals: |
1066 | case Op_StrIndexOf: |
1067 | case Op_StrIndexOfChar: |
1068 | case Op_AryEq: |
1069 | case Op_HasNegatives: |
1070 | case Op_MemBarVolatile: |
1071 | case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? |
1072 | case Op_StrInflatedCopy: |
1073 | case Op_StrCompressedCopy: |
1074 | case Op_OnSpinWait: |
1075 | case Op_EncodeISOArray: |
1076 | nidx = Compile::AliasIdxTop; |
1077 | nat = NULL__null; |
1078 | break; |
1079 | } |
1080 | } |
1081 | if (nidx != midx) { |
1082 | if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { |
1083 | tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); |
1084 | n->dump(); |
1085 | m->dump(); |
1086 | } |
1087 | assert(C->subsume_loads() && C->must_alias(nat, midx),do { if (!(C->subsume_loads() && C->must_alias( nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)" ") failed", "must not lose alias info when matching"); ::breakpoint (); } } while (0) |
1088 | "must not lose alias info when matching")do { if (!(C->subsume_loads() && C->must_alias( nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)" ") failed", "must not lose alias info when matching"); ::breakpoint (); } } while (0); |
1089 | } |
1090 | } |
1091 | #endif |
1092 | |
1093 | //------------------------------xform------------------------------------------ |
1094 | // Given a Node in old-space, Match him (Label/Reduce) to produce a machine |
1095 | // Node in new-space. Given a new-space Node, recursively walk his children. |
1096 | Node *Matcher::transform( Node *n ) { ShouldNotCallThis()do { (*g_assert_poison) = 'X';; report_should_not_call("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1096); ::breakpoint(); } while (0); return n; } |
1097 | Node *Matcher::xform( Node *n, int max_stack ) { |
1098 | // Use one stack to keep both: child's node/state and parent's node/index |
1099 | MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 |
1100 | mstack.push(n, Visit, NULL__null, -1); // set NULL as parent to indicate root |
1101 | while (mstack.is_nonempty()) { |
1102 | C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); |
1103 | if (C->failing()) return NULL__null; |
1104 | n = mstack.node(); // Leave node on stack |
1105 | Node_State nstate = mstack.state(); |
1106 | if (nstate == Visit) { |
1107 | mstack.set_state(Post_Visit); |
1108 | Node *oldn = n; |
1109 | // Old-space or new-space check |
1110 | if (!C->node_arena()->contains(n)) { |
1111 | // Old space! |
1112 | Node* m; |
1113 | if (has_new_node(n)) { // Not yet Label/Reduced |
1114 | m = new_node(n); |
1115 | } else { |
1116 | if (!is_dontcare(n)) { // Matcher can match this guy |
1117 | // Calls match special. They match alone with no children. |
1118 | // Their children, the incoming arguments, match normally. |
1119 | m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); |
1120 | if (C->failing()) return NULL__null; |
1121 | if (m == NULL__null) { Matcher::soft_match_failure(); return NULL__null; } |
1122 | if (n->is_MemBar()) { |
1123 | m->as_MachMemBar()->set_adr_type(n->adr_type()); |
1124 | } |
1125 | } else { // Nothing the matcher cares about |
1126 | if (n->is_Proj() && n->in(0) != NULL__null && n->in(0)->is_Multi()) { // Projections? |
1127 | // Convert to machine-dependent projection |
1128 | m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); |
1129 | NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n); |
1130 | if (m->in(0) != NULL__null) // m might be top |
1131 | collect_null_checks(m, n); |
1132 | } else { // Else just a regular 'ol guy |
1133 | m = n->clone(); // So just clone into new-space |
1134 | NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n); |
1135 | // Def-Use edges will be added incrementally as Uses |
1136 | // of this node are matched. |
1137 | assert(m->outcnt() == 0, "no Uses of this clone yet")do { if (!(m->outcnt() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1137, "assert(" "m->outcnt() == 0" ") failed", "no Uses of this clone yet" ); ::breakpoint(); } } while (0); |
1138 | } |
1139 | } |
1140 | |
1141 | set_new_node(n, m); // Map old to new |
1142 | if (_old_node_note_array != NULL__null) { |
1143 | Node_Notes* nn = C->locate_node_notes(_old_node_note_array, |
1144 | n->_idx); |
1145 | C->set_node_notes_at(m->_idx, nn); |
1146 | } |
1147 | debug_only(match_alias_type(C, n, m))match_alias_type(C, n, m); |
1148 | } |
1149 | n = m; // n is now a new-space node |
1150 | mstack.set_node(n); |
1151 | } |
1152 | |
1153 | // New space! |
1154 | if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) |
1155 | |
1156 | int i; |
1157 | // Put precedence edges on stack first (match them last). |
1158 | for (i = oldn->req(); (uint)i < oldn->len(); i++) { |
1159 | Node *m = oldn->in(i); |
1160 | if (m == NULL__null) break; |
1161 | // set -1 to call add_prec() instead of set_req() during Step1 |
1162 | mstack.push(m, Visit, n, -1); |
1163 | } |
1164 | |
1165 | // Handle precedence edges for interior nodes |
1166 | for (i = n->len()-1; (uint)i >= n->req(); i--) { |
1167 | Node *m = n->in(i); |
1168 | if (m == NULL__null || C->node_arena()->contains(m)) continue; |
1169 | n->rm_prec(i); |
1170 | // set -1 to call add_prec() instead of set_req() during Step1 |
1171 | mstack.push(m, Visit, n, -1); |
1172 | } |
1173 | |
1174 | // For constant debug info, I'd rather have unmatched constants. |
1175 | int cnt = n->req(); |
1176 | JVMState* jvms = n->jvms(); |
1177 | int debug_cnt = jvms ? jvms->debug_start() : cnt; |
1178 | |
1179 | // Now do only debug info. Clone constants rather than matching. |
1180 | // Constants are represented directly in the debug info without |
1181 | // the need for executable machine instructions. |
1182 | // Monitor boxes are also represented directly. |
1183 | for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do |
1184 | Node *m = n->in(i); // Get input |
1185 | int op = m->Opcode(); |
1186 | assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites")do { if (!((op == Op_BoxLock) == jvms->is_monitor_use(i))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1186, "assert(" "(op == Op_BoxLock) == jvms->is_monitor_use(i)" ") failed", "boxes only at monitor sites"); ::breakpoint(); } } while (0); |
1187 | if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || |
1188 | op == Op_ConF || op == Op_ConD || op == Op_ConL |
1189 | // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp |
1190 | ) { |
1191 | m = m->clone(); |
1192 | NOT_PRODUCT(record_new2old(m, n))record_new2old(m, n); |
1193 | mstack.push(m, Post_Visit, n, i); // Don't need to visit |
1194 | mstack.push(m->in(0), Visit, m, 0); |
1195 | } else { |
1196 | mstack.push(m, Visit, n, i); |
1197 | } |
1198 | } |
1199 | |
1200 | // And now walk his children, and convert his inputs to new-space. |
1201 | for( ; i >= 0; --i ) { // For all normal inputs do |
1202 | Node *m = n->in(i); // Get input |
1203 | if(m != NULL__null) |
1204 | mstack.push(m, Visit, n, i); |
1205 | } |
1206 | |
1207 | } |
1208 | else if (nstate == Post_Visit) { |
1209 | // Set xformed input |
1210 | Node *p = mstack.parent(); |
1211 | if (p != NULL__null) { // root doesn't have parent |
1212 | int i = (int)mstack.index(); |
1213 | if (i >= 0) |
1214 | p->set_req(i, n); // required input |
1215 | else if (i == -1) |
1216 | p->add_prec(n); // precedence input |
1217 | else |
1218 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1218); ::breakpoint(); } while (0); |
1219 | } |
1220 | mstack.pop(); // remove processed node from stack |
1221 | } |
1222 | else { |
1223 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1223); ::breakpoint(); } while (0); |
1224 | } |
1225 | } // while (mstack.is_nonempty()) |
1226 | return n; // Return new-space Node |
1227 | } |
1228 | |
1229 | //------------------------------warp_outgoing_stk_arg------------------------ |
1230 | OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { |
1231 | // Convert outgoing argument location to a pre-biased stack offset |
1232 | if (reg->is_stack()) { |
1233 | OptoReg::Name warped = reg->reg2stack(); |
1234 | // Adjust the stack slot offset to be the register number used |
1235 | // by the allocator. |
1236 | warped = OptoReg::add(begin_out_arg_area, warped); |
1237 | // Keep track of the largest numbered stack slot used for an arg. |
1238 | // Largest used slot per call-site indicates the amount of stack |
1239 | // that is killed by the call. |
1240 | if( warped >= out_arg_limit_per_call ) |
1241 | out_arg_limit_per_call = OptoReg::add(warped,1); |
1242 | if (!RegMask::can_represent_arg(warped)) { |
1243 | C->record_method_not_compilable("unsupported calling sequence"); |
1244 | return OptoReg::Bad; |
1245 | } |
1246 | return warped; |
1247 | } |
1248 | return OptoReg::as_OptoReg(reg); |
1249 | } |
1250 | |
1251 | |
1252 | //------------------------------match_sfpt------------------------------------- |
1253 | // Helper function to match call instructions. Calls match special. |
1254 | // They match alone with no children. Their children, the incoming |
1255 | // arguments, match normally. |
1256 | MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { |
1257 | MachSafePointNode *msfpt = NULL__null; |
1258 | MachCallNode *mcall = NULL__null; |
1259 | uint cnt; |
1260 | // Split out case for SafePoint vs Call |
1261 | CallNode *call; |
1262 | const TypeTuple *domain; |
1263 | ciMethod* method = NULL__null; |
1264 | bool is_method_handle_invoke = false; // for special kill effects |
1265 | if( sfpt->is_Call() ) { |
1266 | call = sfpt->as_Call(); |
1267 | domain = call->tf()->domain(); |
1268 | cnt = domain->cnt(); |
1269 | |
1270 | // Match just the call, nothing else |
1271 | MachNode *m = match_tree(call); |
1272 | if (C->failing()) return NULL__null; |
1273 | if( m == NULL__null ) { Matcher::soft_match_failure(); return NULL__null; } |
1274 | |
1275 | // Copy data from the Ideal SafePoint to the machine version |
1276 | mcall = m->as_MachCall(); |
1277 | |
1278 | mcall->set_tf( call->tf()); |
1279 | mcall->set_entry_point( call->entry_point()); |
1280 | mcall->set_cnt( call->cnt()); |
1281 | mcall->set_guaranteed_safepoint(call->guaranteed_safepoint()); |
1282 | |
1283 | if( mcall->is_MachCallJava() ) { |
1284 | MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); |
1285 | const CallJavaNode *call_java = call->as_CallJava(); |
1286 | assert(call_java->validate_symbolic_info(), "inconsistent info")do { if (!(call_java->validate_symbolic_info())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1286, "assert(" "call_java->validate_symbolic_info()" ") failed" , "inconsistent info"); ::breakpoint(); } } while (0); |
1287 | method = call_java->method(); |
1288 | mcall_java->_method = method; |
1289 | mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); |
1290 | is_method_handle_invoke = call_java->is_method_handle_invoke(); |
1291 | mcall_java->_method_handle_invoke = is_method_handle_invoke; |
1292 | mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); |
1293 | mcall_java->_arg_escape = call_java->arg_escape(); |
1294 | if (is_method_handle_invoke) { |
1295 | C->set_has_method_handle_invokes(true); |
1296 | } |
1297 | if( mcall_java->is_MachCallStaticJava() ) |
1298 | mcall_java->as_MachCallStaticJava()->_name = |
1299 | call_java->as_CallStaticJava()->_name; |
1300 | if( mcall_java->is_MachCallDynamicJava() ) |
1301 | mcall_java->as_MachCallDynamicJava()->_vtable_index = |
1302 | call_java->as_CallDynamicJava()->_vtable_index; |
1303 | } |
1304 | else if( mcall->is_MachCallRuntime() ) { |
1305 | MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime(); |
1306 | mach_call_rt->_name = call->as_CallRuntime()->_name; |
1307 | mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP(); |
1308 | } |
1309 | else if( mcall->is_MachCallNative() ) { |
1310 | MachCallNativeNode* mach_call_native = mcall->as_MachCallNative(); |
1311 | CallNativeNode* call_native = call->as_CallNative(); |
1312 | mach_call_native->_name = call_native->_name; |
1313 | mach_call_native->_arg_regs = call_native->_arg_regs; |
1314 | mach_call_native->_ret_regs = call_native->_ret_regs; |
1315 | } |
1316 | msfpt = mcall; |
1317 | } |
1318 | // This is a non-call safepoint |
1319 | else { |
1320 | call = NULL__null; |
1321 | domain = NULL__null; |
1322 | MachNode *mn = match_tree(sfpt); |
1323 | if (C->failing()) return NULL__null; |
1324 | msfpt = mn->as_MachSafePoint(); |
1325 | cnt = TypeFunc::Parms; |
1326 | } |
1327 | msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope(); |
1328 | |
1329 | // Advertise the correct memory effects (for anti-dependence computation). |
1330 | msfpt->set_adr_type(sfpt->adr_type()); |
1331 | |
1332 | // Allocate a private array of RegMasks. These RegMasks are not shared. |
1333 | msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt )(RegMask*) resource_allocate_bytes((cnt) * sizeof(RegMask)); |
1334 | // Empty them all. |
1335 | for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask(); |
1336 | |
1337 | // Do all the pre-defined non-Empty register masks |
1338 | msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; |
1339 | msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; |
1340 | |
1341 | // Place first outgoing argument can possibly be put. |
1342 | OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); |
1343 | assert( is_even(begin_out_arg_area), "" )do { if (!(is_even(begin_out_arg_area))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1343, "assert(" "is_even(begin_out_arg_area)" ") failed", "" ); ::breakpoint(); } } while (0); |
1344 | // Compute max outgoing register number per call site. |
1345 | OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; |
1346 | // Calls to C may hammer extra stack slots above and beyond any arguments. |
1347 | // These are usually backing store for register arguments for varargs. |
1348 | if( call != NULL__null && call->is_CallRuntime() ) |
1349 | out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); |
1350 | if( call != NULL__null && call->is_CallNative() ) |
1351 | out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call, call->as_CallNative()->_shadow_space_bytes); |
1352 | |
1353 | |
1354 | // Do the normal argument list (parameters) register masks |
1355 | int argcnt = cnt - TypeFunc::Parms; |
1356 | if( argcnt > 0 ) { // Skip it all if we have no args |
1357 | BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType )); |
1358 | VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair )); |
1359 | int i; |
1360 | for( i = 0; i < argcnt; i++ ) { |
1361 | sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); |
1362 | } |
1363 | // V-call to pick proper calling convention |
1364 | call->calling_convention( sig_bt, parm_regs, argcnt ); |
1365 | |
1366 | #ifdef ASSERT1 |
1367 | // Sanity check users' calling convention. Really handy during |
1368 | // the initial porting effort. Fairly expensive otherwise. |
1369 | { for (int i = 0; i<argcnt; i++) { |
1370 | if( !parm_regs[i].first()->is_valid() && |
1371 | !parm_regs[i].second()->is_valid() ) continue; |
1372 | VMReg reg1 = parm_regs[i].first(); |
1373 | VMReg reg2 = parm_regs[i].second(); |
1374 | for (int j = 0; j < i; j++) { |
1375 | if( !parm_regs[j].first()->is_valid() && |
1376 | !parm_regs[j].second()->is_valid() ) continue; |
1377 | VMReg reg3 = parm_regs[j].first(); |
1378 | VMReg reg4 = parm_regs[j].second(); |
1379 | if( !reg1->is_valid() ) { |
1380 | assert( !reg2->is_valid(), "valid halvsies" )do { if (!(!reg2->is_valid())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1380, "assert(" "!reg2->is_valid()" ") failed", "valid halvsies" ); ::breakpoint(); } } while (0); |
1381 | } else if( !reg3->is_valid() ) { |
1382 | assert( !reg4->is_valid(), "valid halvsies" )do { if (!(!reg4->is_valid())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1382, "assert(" "!reg4->is_valid()" ") failed", "valid halvsies" ); ::breakpoint(); } } while (0); |
1383 | } else { |
1384 | assert( reg1 != reg2, "calling conv. must produce distinct regs")do { if (!(reg1 != reg2)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1384, "assert(" "reg1 != reg2" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); |
1385 | assert( reg1 != reg3, "calling conv. must produce distinct regs")do { if (!(reg1 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1385, "assert(" "reg1 != reg3" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); |
1386 | assert( reg1 != reg4, "calling conv. must produce distinct regs")do { if (!(reg1 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1386, "assert(" "reg1 != reg4" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); |
1387 | assert( reg2 != reg3, "calling conv. must produce distinct regs")do { if (!(reg2 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1387, "assert(" "reg2 != reg3" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); |
1388 | assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs")do { if (!(reg2 != reg4 || !reg2->is_valid())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1388, "assert(" "reg2 != reg4 || !reg2->is_valid()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0); |
1389 | assert( reg3 != reg4, "calling conv. must produce distinct regs")do { if (!(reg3 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1389, "assert(" "reg3 != reg4" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); |
1390 | } |
1391 | } |
1392 | } |
1393 | } |
1394 | #endif |
1395 | |
1396 | // Visit each argument. Compute its outgoing register mask. |
1397 | // Return results now can have 2 bits returned. |
1398 | // Compute max over all outgoing arguments both per call-site |
1399 | // and over the entire method. |
1400 | for( i = 0; i < argcnt; i++ ) { |
1401 | // Address of incoming argument mask to fill in |
1402 | RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; |
1403 | VMReg first = parm_regs[i].first(); |
1404 | VMReg second = parm_regs[i].second(); |
1405 | if(!first->is_valid() && |
1406 | !second->is_valid()) { |
1407 | continue; // Avoid Halves |
1408 | } |
1409 | // Handle case where arguments are in vector registers. |
1410 | if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) { |
1411 | OptoReg::Name reg_fst = OptoReg::as_OptoReg(first); |
1412 | OptoReg::Name reg_snd = OptoReg::as_OptoReg(second); |
1413 | assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd)do { if (!(reg_fst <= reg_snd)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1413, "assert(" "reg_fst <= reg_snd" ") failed", "fst=%d snd=%d" , reg_fst, reg_snd); ::breakpoint(); } } while (0); |
1414 | for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) { |
1415 | rm->Insert(r); |
1416 | } |
1417 | } |
1418 | // Grab first register, adjust stack slots and insert in mask. |
1419 | OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call ); |
1420 | if (OptoReg::is_valid(reg1)) |
1421 | rm->Insert( reg1 ); |
1422 | // Grab second register (if any), adjust stack slots and insert in mask. |
1423 | OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call ); |
1424 | if (OptoReg::is_valid(reg2)) |
1425 | rm->Insert( reg2 ); |
1426 | } // End of for all arguments |
1427 | } |
1428 | |
1429 | // Compute the max stack slot killed by any call. These will not be |
1430 | // available for debug info, and will be used to adjust FIRST_STACK_mask |
1431 | // after all call sites have been visited. |
1432 | if( _out_arg_limit < out_arg_limit_per_call) |
1433 | _out_arg_limit = out_arg_limit_per_call; |
1434 | |
1435 | if (mcall) { |
1436 | // Kill the outgoing argument area, including any non-argument holes and |
1437 | // any legacy C-killed slots. Use Fat-Projections to do the killing. |
1438 | // Since the max-per-method covers the max-per-call-site and debug info |
1439 | // is excluded on the max-per-method basis, debug info cannot land in |
1440 | // this killed area. |
1441 | uint r_cnt = mcall->tf()->range()->cnt(); |
1442 | MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); |
1443 | if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { |
1444 | C->record_method_not_compilable("unsupported outgoing calling sequence"); |
1445 | } else { |
1446 | for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) |
1447 | proj->_rout.Insert(OptoReg::Name(i)); |
1448 | } |
1449 | if (proj->_rout.is_NotEmpty()) { |
1450 | push_projection(proj); |
1451 | } |
1452 | } |
1453 | // Transfer the safepoint information from the call to the mcall |
1454 | // Move the JVMState list |
1455 | msfpt->set_jvms(sfpt->jvms()); |
1456 | for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { |
1457 | jvms->set_map(sfpt); |
1458 | } |
1459 | |
1460 | // Debug inputs begin just after the last incoming parameter |
1461 | assert((mcall == NULL) || (mcall->jvms() == NULL) ||do { if (!((mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall ->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())" ") failed", ""); ::breakpoint(); } } while (0) |
1462 | (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "")do { if (!((mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall ->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())" ") failed", ""); ::breakpoint(); } } while (0); |
1463 | |
1464 | // Add additional edges. |
1465 | if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { |
1466 | // For these calls we can not add MachConstantBase in expand(), as the |
1467 | // ins are not complete then. |
1468 | msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); |
1469 | if (msfpt->jvms() && |
1470 | msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { |
1471 | // We added an edge before jvms, so we must adapt the position of the ins. |
1472 | msfpt->jvms()->adapt_position(+1); |
1473 | } |
1474 | } |
1475 | |
1476 | // Registers killed by the call are set in the local scheduling pass |
1477 | // of Global Code Motion. |
1478 | return msfpt; |
1479 | } |
1480 | |
1481 | //---------------------------match_tree---------------------------------------- |
1482 | // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part |
1483 | // of the whole-sale conversion from Ideal to Mach Nodes. Also used for |
1484 | // making GotoNodes while building the CFG and in init_spill_mask() to identify |
1485 | // a Load's result RegMask for memoization in idealreg2regmask[] |
1486 | MachNode *Matcher::match_tree( const Node *n ) { |
1487 | assert( n->Opcode() != Op_Phi, "cannot match" )do { if (!(n->Opcode() != Op_Phi)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1487, "assert(" "n->Opcode() != Op_Phi" ") failed", "cannot match" ); ::breakpoint(); } } while (0); |
1488 | assert( !n->is_block_start(), "cannot match" )do { if (!(!n->is_block_start())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1488, "assert(" "!n->is_block_start()" ") failed", "cannot match" ); ::breakpoint(); } } while (0); |
1489 | // Set the mark for all locally allocated State objects. |
1490 | // When this call returns, the _states_arena arena will be reset |
1491 | // freeing all State objects. |
1492 | ResourceMark rm( &_states_arena ); |
1493 | |
1494 | LabelRootDepth = 0; |
1495 | |
1496 | // StoreNodes require their Memory input to match any LoadNodes |
1497 | Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; |
1498 | #ifdef ASSERT1 |
1499 | Node* save_mem_node = _mem_node; |
1500 | _mem_node = n->is_Store() ? (Node*)n : NULL__null; |
1501 | #endif |
1502 | // State object for root node of match tree |
1503 | // Allocate it on _states_arena - stack allocation can cause stack overflow. |
1504 | State *s = new (&_states_arena) State; |
1505 | s->_kids[0] = NULL__null; |
1506 | s->_kids[1] = NULL__null; |
1507 | s->_leaf = (Node*)n; |
1508 | // Label the input tree, allocating labels from top-level arena |
1509 | Node* root_mem = mem; |
1510 | Label_Root(n, s, n->in(0), root_mem); |
1511 | if (C->failing()) return NULL__null; |
1512 | |
1513 | // The minimum cost match for the whole tree is found at the root State |
1514 | uint mincost = max_juint; |
1515 | uint cost = max_juint; |
1516 | uint i; |
1517 | for (i = 0; i < NUM_OPERANDS139; i++) { |
1518 | if (s->valid(i) && // valid entry and |
1519 | s->cost(i) < cost && // low cost and |
1520 | s->rule(i) >= NUM_OPERANDS139) {// not an operand |
1521 | mincost = i; |
1522 | cost = s->cost(i); |
1523 | } |
1524 | } |
1525 | if (mincost == max_juint) { |
1526 | #ifndef PRODUCT |
1527 | tty->print("No matching rule for:"); |
1528 | s->dump(); |
1529 | #endif |
1530 | Matcher::soft_match_failure(); |
1531 | return NULL__null; |
1532 | } |
1533 | // Reduce input tree based upon the state labels to machine Nodes |
1534 | MachNode *m = ReduceInst(s, s->rule(mincost), mem); |
1535 | // New-to-old mapping is done in ReduceInst, to cover complex instructions. |
1536 | NOT_PRODUCT(_old2new_map.map(n->_idx, m);)_old2new_map.map(n->_idx, m); |
1537 | |
1538 | // Add any Matcher-ignored edges |
1539 | uint cnt = n->req(); |
1540 | uint start = 1; |
1541 | if( mem != (Node*)1 ) start = MemNode::Memory+1; |
1542 | if( n->is_AddP() ) { |
1543 | assert( mem == (Node*)1, "" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1543, "assert(" "mem == (Node*)1" ") failed", ""); ::breakpoint (); } } while (0); |
1544 | start = AddPNode::Base+1; |
1545 | } |
1546 | for( i = start; i < cnt; i++ ) { |
1547 | if( !n->match_edge(i) ) { |
1548 | if( i < m->req() ) |
1549 | m->ins_req( i, n->in(i) ); |
1550 | else |
1551 | m->add_req( n->in(i) ); |
1552 | } |
1553 | } |
1554 | |
1555 | debug_only( _mem_node = save_mem_node; )_mem_node = save_mem_node; |
1556 | return m; |
1557 | } |
1558 | |
1559 | |
1560 | //------------------------------match_into_reg--------------------------------- |
1561 | // Choose to either match this Node in a register or part of the current |
1562 | // match tree. Return true for requiring a register and false for matching |
1563 | // as part of the current match tree. |
1564 | static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { |
1565 | |
1566 | const Type *t = m->bottom_type(); |
1567 | |
1568 | if (t->singleton()) { |
1569 | // Never force constants into registers. Allow them to match as |
1570 | // constants or registers. Copies of the same value will share |
1571 | // the same register. See find_shared_node. |
1572 | return false; |
1573 | } else { // Not a constant |
1574 | // Stop recursion if they have different Controls. |
1575 | Node* m_control = m->in(0); |
1576 | // Control of load's memory can post-dominates load's control. |
1577 | // So use it since load can't float above its memory. |
1578 | Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL__null; |
1579 | if (control && m_control && control != m_control && control != mem_control) { |
1580 | |
1581 | // Actually, we can live with the most conservative control we |
1582 | // find, if it post-dominates the others. This allows us to |
1583 | // pick up load/op/store trees where the load can float a little |
1584 | // above the store. |
1585 | Node *x = control; |
1586 | const uint max_scan = 6; // Arbitrary scan cutoff |
1587 | uint j; |
1588 | for (j=0; j<max_scan; j++) { |
1589 | if (x->is_Region()) // Bail out at merge points |
1590 | return true; |
1591 | x = x->in(0); |
1592 | if (x == m_control) // Does 'control' post-dominate |
1593 | break; // m->in(0)? If so, we can use it |
1594 | if (x == mem_control) // Does 'control' post-dominate |
1595 | break; // mem_control? If so, we can use it |
1596 | } |
1597 | if (j == max_scan) // No post-domination before scan end? |
1598 | return true; // Then break the match tree up |
1599 | } |
1600 | if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || |
1601 | (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { |
1602 | // These are commonly used in address expressions and can |
1603 | // efficiently fold into them on X64 in some cases. |
1604 | return false; |
1605 | } |
1606 | } |
1607 | |
1608 | // Not forceable cloning. If shared, put it into a register. |
1609 | return shared; |
1610 | } |
1611 | |
1612 | |
1613 | //------------------------------Instruction Selection-------------------------- |
1614 | // Label method walks a "tree" of nodes, using the ADLC generated DFA to match |
1615 | // ideal nodes to machine instructions. Trees are delimited by shared Nodes, |
1616 | // things the Matcher does not match (e.g., Memory), and things with different |
1617 | // Controls (hence forced into different blocks). We pass in the Control |
1618 | // selected for this entire State tree. |
1619 | |
1620 | // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the |
1621 | // Store and the Load must have identical Memories (as well as identical |
1622 | // pointers). Since the Matcher does not have anything for Memory (and |
1623 | // does not handle DAGs), I have to match the Memory input myself. If the |
1624 | // Tree root is a Store or if there are multiple Loads in the tree, I require |
1625 | // all Loads to have the identical memory. |
1626 | Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) { |
1627 | // Since Label_Root is a recursive function, its possible that we might run |
1628 | // out of stack space. See bugs 6272980 & 6227033 for more info. |
1629 | LabelRootDepth++; |
1630 | if (LabelRootDepth > MaxLabelRootDepth) { |
1631 | C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth"); |
1632 | return NULL__null; |
1633 | } |
1634 | uint care = 0; // Edges matcher cares about |
1635 | uint cnt = n->req(); |
1636 | uint i = 0; |
1637 | |
1638 | // Examine children for memory state |
1639 | // Can only subsume a child into your match-tree if that child's memory state |
1640 | // is not modified along the path to another input. |
1641 | // It is unsafe even if the other inputs are separate roots. |
1642 | Node *input_mem = NULL__null; |
1643 | for( i = 1; i < cnt; i++ ) { |
1644 | if( !n->match_edge(i) ) continue; |
1645 | Node *m = n->in(i); // Get ith input |
1646 | assert( m, "expect non-null children" )do { if (!(m)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1646, "assert(" "m" ") failed", "expect non-null children") ; ::breakpoint(); } } while (0); |
1647 | if( m->is_Load() ) { |
1648 | if( input_mem == NULL__null ) { |
1649 | input_mem = m->in(MemNode::Memory); |
1650 | if (mem == (Node*)1) { |
1651 | // Save this memory to bail out if there's another memory access |
1652 | // to a different memory location in the same tree. |
1653 | mem = input_mem; |
1654 | } |
1655 | } else if( input_mem != m->in(MemNode::Memory) ) { |
1656 | input_mem = NodeSentinel(Node*)-1; |
1657 | } |
1658 | } |
1659 | } |
1660 | |
1661 | for( i = 1; i < cnt; i++ ){// For my children |
1662 | if( !n->match_edge(i) ) continue; |
1663 | Node *m = n->in(i); // Get ith input |
1664 | // Allocate states out of a private arena |
1665 | State *s = new (&_states_arena) State; |
1666 | svec->_kids[care++] = s; |
1667 | assert( care <= 2, "binary only for now" )do { if (!(care <= 2)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1667, "assert(" "care <= 2" ") failed", "binary only for now" ); ::breakpoint(); } } while (0); |
1668 | |
1669 | // Recursively label the State tree. |
1670 | s->_kids[0] = NULL__null; |
1671 | s->_kids[1] = NULL__null; |
1672 | s->_leaf = m; |
1673 | |
1674 | // Check for leaves of the State Tree; things that cannot be a part of |
1675 | // the current tree. If it finds any, that value is matched as a |
1676 | // register operand. If not, then the normal matching is used. |
1677 | if( match_into_reg(n, m, control, i, is_shared(m)) || |
1678 | // Stop recursion if this is a LoadNode and there is another memory access |
1679 | // to a different memory location in the same tree (for example, a StoreNode |
1680 | // at the root of this tree or another LoadNode in one of the children). |
1681 | ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || |
1682 | // Can NOT include the match of a subtree when its memory state |
1683 | // is used by any of the other subtrees |
1684 | (input_mem == NodeSentinel(Node*)-1) ) { |
1685 | // Print when we exclude matching due to different memory states at input-loads |
1686 | if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel(Node*)-1) |
1687 | && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { |
1688 | tty->print_cr("invalid input_mem"); |
1689 | } |
1690 | // Switch to a register-only opcode; this value must be in a register |
1691 | // and cannot be subsumed as part of a larger instruction. |
1692 | s->DFA( m->ideal_reg(), m ); |
1693 | |
1694 | } else { |
1695 | // If match tree has no control and we do, adopt it for entire tree |
1696 | if( control == NULL__null && m->in(0) != NULL__null && m->req() > 1 ) |
1697 | control = m->in(0); // Pick up control |
1698 | // Else match as a normal part of the match tree. |
1699 | control = Label_Root(m, s, control, mem); |
1700 | if (C->failing()) return NULL__null; |
1701 | } |
1702 | } |
1703 | |
1704 | // Call DFA to match this node, and return |
1705 | svec->DFA( n->Opcode(), n ); |
1706 | |
1707 | #ifdef ASSERT1 |
1708 | uint x; |
1709 | for( x = 0; x < _LAST_MACH_OPER; x++ ) |
1710 | if( svec->valid(x) ) |
1711 | break; |
1712 | |
1713 | if (x >= _LAST_MACH_OPER) { |
1714 | n->dump(); |
1715 | svec->dump(); |
1716 | assert( false, "bad AD file" )do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1716, "assert(" "false" ") failed", "bad AD file"); ::breakpoint (); } } while (0); |
1717 | } |
1718 | #endif |
1719 | return control; |
1720 | } |
1721 | |
1722 | |
1723 | // Con nodes reduced using the same rule can share their MachNode |
1724 | // which reduces the number of copies of a constant in the final |
1725 | // program. The register allocator is free to split uses later to |
1726 | // split live ranges. |
1727 | MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { |
1728 | if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL__null; |
1729 | |
1730 | // See if this Con has already been reduced using this rule. |
1731 | if (_shared_nodes.Size() <= leaf->_idx) return NULL__null; |
1732 | MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); |
1733 | if (last != NULL__null && rule == last->rule()) { |
1734 | // Don't expect control change for DecodeN |
1735 | if (leaf->is_DecodeNarrowPtr()) |
1736 | return last; |
1737 | // Get the new space root. |
1738 | Node* xroot = new_node(C->root()); |
1739 | if (xroot == NULL__null) { |
1740 | // This shouldn't happen give the order of matching. |
1741 | return NULL__null; |
1742 | } |
1743 | |
1744 | // Shared constants need to have their control be root so they |
1745 | // can be scheduled properly. |
1746 | Node* control = last->in(0); |
1747 | if (control != xroot) { |
1748 | if (control == NULL__null || control == C->root()) { |
1749 | last->set_req(0, xroot); |
1750 | } else { |
1751 | assert(false, "unexpected control")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1751, "assert(" "false" ") failed", "unexpected control"); :: breakpoint(); } } while (0); |
1752 | return NULL__null; |
1753 | } |
1754 | } |
1755 | return last; |
1756 | } |
1757 | return NULL__null; |
1758 | } |
1759 | |
1760 | |
1761 | //------------------------------ReduceInst------------------------------------- |
1762 | // Reduce a State tree (with given Control) into a tree of MachNodes. |
1763 | // This routine (and it's cohort ReduceOper) convert Ideal Nodes into |
1764 | // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. |
1765 | // Each MachNode has a number of complicated MachOper operands; each |
1766 | // MachOper also covers a further tree of Ideal Nodes. |
1767 | |
1768 | // The root of the Ideal match tree is always an instruction, so we enter |
1769 | // the recursion here. After building the MachNode, we need to recurse |
1770 | // the tree checking for these cases: |
1771 | // (1) Child is an instruction - |
1772 | // Build the instruction (recursively), add it as an edge. |
1773 | // Build a simple operand (register) to hold the result of the instruction. |
1774 | // (2) Child is an interior part of an instruction - |
1775 | // Skip over it (do nothing) |
1776 | // (3) Child is the start of a operand - |
1777 | // Build the operand, place it inside the instruction |
1778 | // Call ReduceOper. |
1779 | MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { |
1780 | assert( rule >= NUM_OPERANDS, "called with operand rule" )do { if (!(rule >= 139)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1780, "assert(" "rule >= 139" ") failed", "called with operand rule" ); ::breakpoint(); } } while (0); |
1781 | |
1782 | MachNode* shared_node = find_shared_node(s->_leaf, rule); |
1783 | if (shared_node != NULL__null) { |
1784 | return shared_node; |
1785 | } |
1786 | |
1787 | // Build the object to represent this state & prepare for recursive calls |
1788 | MachNode *mach = s->MachNodeGenerator(rule); |
1789 | guarantee(mach != NULL, "Missing MachNode")do { if (!(mach != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1789, "guarantee(" "mach != NULL" ") failed", "Missing MachNode" ); ::breakpoint(); } } while (0); |
1790 | mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); |
1791 | assert( mach->_opnds[0] != NULL, "Missing result operand" )do { if (!(mach->_opnds[0] != __null)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1791, "assert(" "mach->_opnds[0] != __null" ") failed", "Missing result operand" ); ::breakpoint(); } } while (0); |
1792 | Node *leaf = s->_leaf; |
1793 | NOT_PRODUCT(record_new2old(mach, leaf);)record_new2old(mach, leaf); |
1794 | // Check for instruction or instruction chain rule |
1795 | if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { |
1796 | assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node (s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)" ") failed", "duplicating node that's already been matched"); ::breakpoint(); } } while (0) |
1797 | "duplicating node that's already been matched")do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node (s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)" ") failed", "duplicating node that's already been matched"); ::breakpoint(); } } while (0); |
1798 | // Instruction |
1799 | mach->add_req( leaf->in(0) ); // Set initial control |
1800 | // Reduce interior of complex instruction |
1801 | ReduceInst_Interior( s, rule, mem, mach, 1 ); |
1802 | } else { |
1803 | // Instruction chain rules are data-dependent on their inputs |
1804 | mach->add_req(0); // Set initial control to none |
1805 | ReduceInst_Chain_Rule( s, rule, mem, mach ); |
1806 | } |
1807 | |
1808 | // If a Memory was used, insert a Memory edge |
1809 | if( mem != (Node*)1 ) { |
1810 | mach->ins_req(MemNode::Memory,mem); |
1811 | #ifdef ASSERT1 |
1812 | // Verify adr type after matching memory operation |
1813 | const MachOper* oper = mach->memory_operand(); |
1814 | if (oper != NULL__null && oper != (MachOper*)-1) { |
1815 | // It has a unique memory operand. Find corresponding ideal mem node. |
1816 | Node* m = NULL__null; |
1817 | if (leaf->is_Mem()) { |
1818 | m = leaf; |
1819 | } else { |
1820 | m = _mem_node; |
1821 | assert(m != NULL && m->is_Mem(), "expecting memory node")do { if (!(m != __null && m->is_Mem())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1821, "assert(" "m != __null && m->is_Mem()" ") failed" , "expecting memory node"); ::breakpoint(); } } while (0); |
1822 | } |
1823 | const Type* mach_at = mach->adr_type(); |
1824 | // DecodeN node consumed by an address may have different type |
1825 | // than its input. Don't compare types for such case. |
1826 | if (m->adr_type() != mach_at && |
1827 | (m->in(MemNode::Address)->is_DecodeNarrowPtr() || |
1828 | (m->in(MemNode::Address)->is_AddP() && |
1829 | m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) || |
1830 | (m->in(MemNode::Address)->is_AddP() && |
1831 | m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && |
1832 | m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) { |
1833 | mach_at = m->adr_type(); |
1834 | } |
1835 | if (m->adr_type() != mach_at) { |
1836 | m->dump(); |
1837 | tty->print_cr("mach:"); |
1838 | mach->dump(1); |
1839 | } |
1840 | assert(m->adr_type() == mach_at, "matcher should not change adr type")do { if (!(m->adr_type() == mach_at)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1840, "assert(" "m->adr_type() == mach_at" ") failed", "matcher should not change adr type" ); ::breakpoint(); } } while (0); |
1841 | } |
1842 | #endif |
1843 | } |
1844 | |
1845 | // If the _leaf is an AddP, insert the base edge |
1846 | if (leaf->is_AddP()) { |
1847 | mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); |
1848 | } |
1849 | |
1850 | uint number_of_projections_prior = number_of_projections(); |
1851 | |
1852 | // Perform any 1-to-many expansions required |
1853 | MachNode *ex = mach->Expand(s, _projection_list, mem); |
1854 | if (ex != mach) { |
1855 | assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match")do { if (!(ex->ideal_reg() == mach->ideal_reg())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1855, "assert(" "ex->ideal_reg() == mach->ideal_reg()" ") failed", "ideal types should match"); ::breakpoint(); } } while (0); |
1856 | if( ex->in(1)->is_Con() ) |
1857 | ex->in(1)->set_req(0, C->root()); |
1858 | // Remove old node from the graph |
1859 | for( uint i=0; i<mach->req(); i++ ) { |
1860 | mach->set_req(i,NULL__null); |
1861 | } |
1862 | NOT_PRODUCT(record_new2old(ex, s->_leaf);)record_new2old(ex, s->_leaf); |
1863 | } |
1864 | |
1865 | // PhaseChaitin::fixup_spills will sometimes generate spill code |
1866 | // via the matcher. By the time, nodes have been wired into the CFG, |
1867 | // and any further nodes generated by expand rules will be left hanging |
1868 | // in space, and will not get emitted as output code. Catch this. |
1869 | // Also, catch any new register allocation constraints ("projections") |
1870 | // generated belatedly during spill code generation. |
1871 | if (_allocation_started) { |
1872 | guarantee(ex == mach, "no expand rules during spill generation")do { if (!(ex == mach)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1872, "guarantee(" "ex == mach" ") failed", "no expand rules during spill generation" ); ::breakpoint(); } } while (0); |
1873 | guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation")do { if (!(number_of_projections_prior == number_of_projections ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1873, "guarantee(" "number_of_projections_prior == number_of_projections()" ") failed", "no allocation during spill generation"); ::breakpoint (); } } while (0); |
1874 | } |
1875 | |
1876 | if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { |
1877 | // Record the con for sharing |
1878 | _shared_nodes.map(leaf->_idx, ex); |
1879 | } |
1880 | |
1881 | // Have mach nodes inherit GC barrier data |
1882 | if (leaf->is_LoadStore()) { |
1883 | mach->set_barrier_data(leaf->as_LoadStore()->barrier_data()); |
1884 | } else if (leaf->is_Mem()) { |
1885 | mach->set_barrier_data(leaf->as_Mem()->barrier_data()); |
1886 | } |
1887 | |
1888 | return ex; |
1889 | } |
1890 | |
1891 | void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { |
1892 | for (uint i = n->req(); i < n->len(); i++) { |
1893 | if (n->in(i) != NULL__null) { |
1894 | mach->add_prec(n->in(i)); |
1895 | } |
1896 | } |
1897 | } |
1898 | |
1899 | void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) { |
1900 | // 'op' is what I am expecting to receive |
1901 | int op = _leftOp[rule]; |
1902 | // Operand type to catch childs result |
1903 | // This is what my child will give me. |
1904 | unsigned int opnd_class_instance = s->rule(op); |
1905 | // Choose between operand class or not. |
1906 | // This is what I will receive. |
1907 | int catch_op = (FIRST_OPERAND_CLASS138 <= op && op < NUM_OPERANDS139) ? opnd_class_instance : op; |
1908 | // New rule for child. Chase operand classes to get the actual rule. |
1909 | unsigned int newrule = s->rule(catch_op); |
1910 | |
1911 | if (newrule < NUM_OPERANDS139) { |
1912 | // Chain from operand or operand class, may be output of shared node |
1913 | assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand")do { if (!(opnd_class_instance < 139)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1913, "assert(" "opnd_class_instance < 139" ") failed", "Bad AD file: Instruction chain rule must chain from operand" ); ::breakpoint(); } } while (0); |
1914 | // Insert operand into array of operands for this instruction |
1915 | mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); |
1916 | |
1917 | ReduceOper(s, newrule, mem, mach); |
1918 | } else { |
1919 | // Chain from the result of an instruction |
1920 | assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand")do { if (!(newrule >= _LAST_MACH_OPER)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1920, "assert(" "newrule >= _LAST_MACH_OPER" ") failed", "Do NOT chain from internal operand"); ::breakpoint(); } } while (0); |
1921 | mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); |
1922 | Node *mem1 = (Node*)1; |
1923 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; |
1924 | mach->add_req( ReduceInst(s, newrule, mem1) ); |
1925 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; |
1926 | } |
1927 | return; |
1928 | } |
1929 | |
1930 | |
1931 | uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { |
1932 | handle_precedence_edges(s->_leaf, mach); |
1933 | |
1934 | if( s->_leaf->is_Load() ) { |
1935 | Node *mem2 = s->_leaf->in(MemNode::Memory); |
1936 | assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1 || mem == mem2)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1936, "assert(" "mem == (Node*)1 || mem == mem2" ") failed" , "multiple Memories being matched at once?"); ::breakpoint() ; } } while (0); |
1937 | debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)if( mem == (Node*)1 ) _mem_node = s->_leaf; |
1938 | mem = mem2; |
1939 | } |
1940 | if( s->_leaf->in(0) != NULL__null && s->_leaf->req() > 1) { |
1941 | if( mach->in(0) == NULL__null ) |
1942 | mach->set_req(0, s->_leaf->in(0)); |
1943 | } |
1944 | |
1945 | // Now recursively walk the state tree & add operand list. |
1946 | for( uint i=0; i<2; i++ ) { // binary tree |
1947 | State *newstate = s->_kids[i]; |
1948 | if( newstate == NULL__null ) break; // Might only have 1 child |
1949 | // 'op' is what I am expecting to receive |
1950 | int op; |
1951 | if( i == 0 ) { |
1952 | op = _leftOp[rule]; |
1953 | } else { |
1954 | op = _rightOp[rule]; |
1955 | } |
1956 | // Operand type to catch childs result |
1957 | // This is what my child will give me. |
1958 | int opnd_class_instance = newstate->rule(op); |
1959 | // Choose between operand class or not. |
1960 | // This is what I will receive. |
1961 | int catch_op = (op >= FIRST_OPERAND_CLASS138 && op < NUM_OPERANDS139) ? opnd_class_instance : op; |
1962 | // New rule for child. Chase operand classes to get the actual rule. |
1963 | int newrule = newstate->rule(catch_op); |
1964 | |
1965 | if (newrule < NUM_OPERANDS139) { // Operand/operandClass or internalOp/instruction? |
1966 | // Operand/operandClass |
1967 | // Insert operand into array of operands for this instruction |
1968 | mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); |
1969 | ReduceOper(newstate, newrule, mem, mach); |
1970 | |
1971 | } else { // Child is internal operand or new instruction |
1972 | if (newrule < _LAST_MACH_OPER) { // internal operand or instruction? |
1973 | // internal operand --> call ReduceInst_Interior |
1974 | // Interior of complex instruction. Do nothing but recurse. |
1975 | num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds); |
1976 | } else { |
1977 | // instruction --> call build operand( ) to catch result |
1978 | // --> ReduceInst( newrule ) |
1979 | mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); |
1980 | Node *mem1 = (Node*)1; |
1981 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; |
1982 | mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); |
1983 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; |
1984 | } |
1985 | } |
1986 | assert( mach->_opnds[num_opnds-1], "" )do { if (!(mach->_opnds[num_opnds-1])) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1986, "assert(" "mach->_opnds[num_opnds-1]" ") failed", "" ); ::breakpoint(); } } while (0); |
1987 | } |
1988 | return num_opnds; |
1989 | } |
1990 | |
1991 | // This routine walks the interior of possible complex operands. |
1992 | // At each point we check our children in the match tree: |
1993 | // (1) No children - |
1994 | // We are a leaf; add _leaf field as an input to the MachNode |
1995 | // (2) Child is an internal operand - |
1996 | // Skip over it ( do nothing ) |
1997 | // (3) Child is an instruction - |
1998 | // Call ReduceInst recursively and |
1999 | // and instruction as an input to the MachNode |
2000 | void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { |
2001 | assert( rule < _LAST_MACH_OPER, "called with operand rule" )do { if (!(rule < _LAST_MACH_OPER)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2001, "assert(" "rule < _LAST_MACH_OPER" ") failed", "called with operand rule" ); ::breakpoint(); } } while (0); |
2002 | State *kid = s->_kids[0]; |
2003 | assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" )do { if (!(kid == __null || s->_leaf->in(0) == __null)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2003, "assert(" "kid == __null || s->_leaf->in(0) == __null" ") failed", "internal operands have no control"); ::breakpoint (); } } while (0); |
2004 | |
2005 | // Leaf? And not subsumed? |
2006 | if( kid == NULL__null && !_swallowed[rule] ) { |
2007 | mach->add_req( s->_leaf ); // Add leaf pointer |
2008 | return; // Bail out |
2009 | } |
2010 | |
2011 | if( s->_leaf->is_Load() ) { |
2012 | assert( mem == (Node*)1, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2012, "assert(" "mem == (Node*)1" ") failed", "multiple Memories being matched at once?" ); ::breakpoint(); } } while (0); |
2013 | mem = s->_leaf->in(MemNode::Memory); |
2014 | debug_only(_mem_node = s->_leaf;)_mem_node = s->_leaf; |
2015 | } |
2016 | |
2017 | handle_precedence_edges(s->_leaf, mach); |
2018 | |
2019 | if( s->_leaf->in(0) && s->_leaf->req() > 1) { |
2020 | if( !mach->in(0) ) |
2021 | mach->set_req(0,s->_leaf->in(0)); |
2022 | else { |
2023 | assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" )do { if (!(s->_leaf->in(0) == mach->in(0))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2023, "assert(" "s->_leaf->in(0) == mach->in(0)" ") failed" , "same instruction, differing controls?"); ::breakpoint(); } } while (0); |
2024 | } |
2025 | } |
2026 | |
2027 | for (uint i = 0; kid != NULL__null && i < 2; kid = s->_kids[1], i++) { // binary tree |
2028 | int newrule; |
2029 | if( i == 0) { |
2030 | newrule = kid->rule(_leftOp[rule]); |
2031 | } else { |
2032 | newrule = kid->rule(_rightOp[rule]); |
2033 | } |
2034 | |
2035 | if (newrule < _LAST_MACH_OPER) { // Operand or instruction? |
2036 | // Internal operand; recurse but do nothing else |
2037 | ReduceOper(kid, newrule, mem, mach); |
2038 | |
2039 | } else { // Child is a new instruction |
2040 | // Reduce the instruction, and add a direct pointer from this |
2041 | // machine instruction to the newly reduced one. |
2042 | Node *mem1 = (Node*)1; |
2043 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; |
2044 | mach->add_req( ReduceInst( kid, newrule, mem1 ) ); |
2045 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; |
2046 | } |
2047 | } |
2048 | } |
2049 | |
2050 | |
2051 | // ------------------------------------------------------------------------- |
2052 | // Java-Java calling convention |
2053 | // (what you use when Java calls Java) |
2054 | |
2055 | //------------------------------find_receiver---------------------------------- |
2056 | // For a given signature, return the OptoReg for parameter 0. |
2057 | OptoReg::Name Matcher::find_receiver() { |
2058 | VMRegPair regs; |
2059 | BasicType sig_bt = T_OBJECT; |
2060 | SharedRuntime::java_calling_convention(&sig_bt, ®s, 1); |
2061 | // Return argument 0 register. In the LP64 build pointers |
2062 | // take 2 registers, but the VM wants only the 'main' name. |
2063 | return OptoReg::as_OptoReg(regs.first()); |
2064 | } |
2065 | |
2066 | bool Matcher::is_vshift_con_pattern(Node* n, Node* m) { |
2067 | if (n != NULL__null && m != NULL__null) { |
2068 | return VectorNode::is_vector_shift(n) && |
2069 | VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con(); |
2070 | } |
2071 | return false; |
2072 | } |
2073 | |
2074 | bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) { |
2075 | // Must clone all producers of flags, or we will not match correctly. |
2076 | // Suppose a compare setting int-flags is shared (e.g., a switch-tree) |
2077 | // then it will match into an ideal Op_RegFlags. Alas, the fp-flags |
2078 | // are also there, so we may match a float-branch to int-flags and |
2079 | // expect the allocator to haul the flags from the int-side to the |
2080 | // fp-side. No can do. |
2081 | if (_must_clone[m->Opcode()]) { |
2082 | mstack.push(m, Visit); |
2083 | return true; |
2084 | } |
2085 | return pd_clone_node(n, m, mstack); |
2086 | } |
2087 | |
2088 | bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { |
2089 | Node *off = m->in(AddPNode::Offset); |
2090 | if (off->is_Con()) { |
2091 | address_visited.test_set(m->_idx); // Flag as address_visited |
2092 | mstack.push(m->in(AddPNode::Address), Pre_Visit); |
2093 | // Clone X+offset as it also folds into most addressing expressions |
2094 | mstack.push(off, Visit); |
2095 | mstack.push(m->in(AddPNode::Base), Pre_Visit); |
2096 | return true; |
2097 | } |
2098 | return false; |
2099 | } |
2100 | |
2101 | // A method-klass-holder may be passed in the inline_cache_reg |
2102 | // and then expanded into the inline_cache_reg and a method_ptr register |
2103 | // defined in ad_<arch>.cpp |
2104 | |
2105 | //------------------------------find_shared------------------------------------ |
2106 | // Set bits if Node is shared or otherwise a root |
2107 | void Matcher::find_shared(Node* n) { |
2108 | // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc |
2109 | MStack mstack(C->live_nodes() * 2); |
2110 | // Mark nodes as address_visited if they are inputs to an address expression |
2111 | VectorSet address_visited; |
2112 | mstack.push(n, Visit); // Don't need to pre-visit root node |
2113 | while (mstack.is_nonempty()) { |
2114 | n = mstack.node(); // Leave node on stack |
2115 | Node_State nstate = mstack.state(); |
2116 | uint nop = n->Opcode(); |
2117 | if (nstate == Pre_Visit) { |
2118 | if (address_visited.test(n->_idx)) { // Visited in address already? |
2119 | // Flag as visited and shared now. |
2120 | set_visited(n); |
2121 | } |
2122 | if (is_visited(n)) { // Visited already? |
2123 | // Node is shared and has no reason to clone. Flag it as shared. |
2124 | // This causes it to match into a register for the sharing. |
2125 | set_shared(n); // Flag as shared and |
2126 | if (n->is_DecodeNarrowPtr()) { |
2127 | // Oop field/array element loads must be shared but since |
2128 | // they are shared through a DecodeN they may appear to have |
2129 | // a single use so force sharing here. |
2130 | set_shared(n->in(1)); |
2131 | } |
2132 | mstack.pop(); // remove node from stack |
2133 | continue; |
2134 | } |
2135 | nstate = Visit; // Not already visited; so visit now |
2136 | } |
2137 | if (nstate == Visit) { |
2138 | mstack.set_state(Post_Visit); |
2139 | set_visited(n); // Flag as visited now |
2140 | bool mem_op = false; |
2141 | int mem_addr_idx = MemNode::Address; |
2142 | if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) { |
2143 | continue; |
2144 | } |
2145 | for (int i = n->req() - 1; i >= 0; --i) { // For my children |
2146 | Node* m = n->in(i); // Get ith input |
2147 | if (m == NULL__null) { |
2148 | continue; // Ignore NULLs |
2149 | } |
2150 | if (clone_node(n, m, mstack)) { |
2151 | continue; |
2152 | } |
2153 | |
2154 | // Clone addressing expressions as they are "free" in memory access instructions |
2155 | if (mem_op && i == mem_addr_idx && m->is_AddP() && |
2156 | // When there are other uses besides address expressions |
2157 | // put it on stack and mark as shared. |
2158 | !is_visited(m)) { |
2159 | // Some inputs for address expression are not put on stack |
2160 | // to avoid marking them as shared and forcing them into register |
2161 | // if they are used only in address expressions. |
2162 | // But they should be marked as shared if there are other uses |
2163 | // besides address expressions. |
2164 | |
2165 | if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) { |
2166 | continue; |
2167 | } |
2168 | } // if( mem_op && |
2169 | mstack.push(m, Pre_Visit); |
2170 | } // for(int i = ...) |
2171 | } |
2172 | else if (nstate == Alt_Post_Visit) { |
2173 | mstack.pop(); // Remove node from stack |
2174 | // We cannot remove the Cmp input from the Bool here, as the Bool may be |
2175 | // shared and all users of the Bool need to move the Cmp in parallel. |
2176 | // This leaves both the Bool and the If pointing at the Cmp. To |
2177 | // prevent the Matcher from trying to Match the Cmp along both paths |
2178 | // BoolNode::match_edge always returns a zero. |
2179 | |
2180 | // We reorder the Op_If in a pre-order manner, so we can visit without |
2181 | // accidentally sharing the Cmp (the Bool and the If make 2 users). |
2182 | n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool |
2183 | } |
2184 | else if (nstate == Post_Visit) { |
2185 | mstack.pop(); // Remove node from stack |
2186 | |
2187 | // Now hack a few special opcodes |
2188 | uint opcode = n->Opcode(); |
2189 | bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode); |
2190 | if (!gc_handled) { |
2191 | find_shared_post_visit(n, opcode); |
2192 | } |
2193 | } |
2194 | else { |
2195 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2195); ::breakpoint(); } while (0); |
2196 | } |
2197 | } // end of while (mstack.is_nonempty()) |
2198 | } |
2199 | |
2200 | bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) { |
2201 | switch(opcode) { // Handle some opcodes special |
2202 | case Op_Phi: // Treat Phis as shared roots |
2203 | case Op_Parm: |
2204 | case Op_Proj: // All handled specially during matching |
2205 | case Op_SafePointScalarObject: |
2206 | set_shared(n); |
2207 | set_dontcare(n); |
2208 | break; |
2209 | case Op_If: |
2210 | case Op_CountedLoopEnd: |
2211 | mstack.set_state(Alt_Post_Visit); // Alternative way |
2212 | // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps |
2213 | // with matching cmp/branch in 1 instruction. The Matcher needs the |
2214 | // Bool and CmpX side-by-side, because it can only get at constants |
2215 | // that are at the leaves of Match trees, and the Bool's condition acts |
2216 | // as a constant here. |
2217 | mstack.push(n->in(1), Visit); // Clone the Bool |
2218 | mstack.push(n->in(0), Pre_Visit); // Visit control input |
2219 | return true; // while (mstack.is_nonempty()) |
2220 | case Op_ConvI2D: // These forms efficiently match with a prior |
2221 | case Op_ConvI2F: // Load but not a following Store |
2222 | if( n->in(1)->is_Load() && // Prior load |
2223 | n->outcnt() == 1 && // Not already shared |
2224 | n->unique_out()->is_Store() ) // Following store |
2225 | set_shared(n); // Force it to be a root |
2226 | break; |
2227 | case Op_ReverseBytesI: |
2228 | case Op_ReverseBytesL: |
2229 | if( n->in(1)->is_Load() && // Prior load |
2230 | n->outcnt() == 1 ) // Not already shared |
2231 | set_shared(n); // Force it to be a root |
2232 | break; |
2233 | case Op_BoxLock: // Cant match until we get stack-regs in ADLC |
2234 | case Op_IfFalse: |
2235 | case Op_IfTrue: |
2236 | case Op_MachProj: |
2237 | case Op_MergeMem: |
2238 | case Op_Catch: |
2239 | case Op_CatchProj: |
2240 | case Op_CProj: |
2241 | case Op_JumpProj: |
2242 | case Op_JProj: |
2243 | case Op_NeverBranch: |
2244 | set_dontcare(n); |
2245 | break; |
2246 | case Op_Jump: |
2247 | mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) |
2248 | mstack.push(n->in(0), Pre_Visit); // Visit Control input |
2249 | return true; // while (mstack.is_nonempty()) |
2250 | case Op_StrComp: |
2251 | case Op_StrEquals: |
2252 | case Op_StrIndexOf: |
2253 | case Op_StrIndexOfChar: |
2254 | case Op_AryEq: |
2255 | case Op_HasNegatives: |
2256 | case Op_StrInflatedCopy: |
2257 | case Op_StrCompressedCopy: |
2258 | case Op_EncodeISOArray: |
2259 | case Op_FmaD: |
2260 | case Op_FmaF: |
2261 | case Op_FmaVD: |
2262 | case Op_FmaVF: |
2263 | case Op_MacroLogicV: |
2264 | case Op_LoadVectorMasked: |
2265 | case Op_VectorCmpMasked: |
2266 | case Op_VectorLoadMask: |
2267 | set_shared(n); // Force result into register (it will be anyways) |
2268 | break; |
2269 | case Op_ConP: { // Convert pointers above the centerline to NUL |
2270 | TypeNode *tn = n->as_Type(); // Constants derive from type nodes |
2271 | const TypePtr* tp = tn->type()->is_ptr(); |
2272 | if (tp->_ptr == TypePtr::AnyNull) { |
2273 | tn->set_type(TypePtr::NULL_PTR); |
2274 | } |
2275 | break; |
2276 | } |
2277 | case Op_ConN: { // Convert narrow pointers above the centerline to NUL |
2278 | TypeNode *tn = n->as_Type(); // Constants derive from type nodes |
2279 | const TypePtr* tp = tn->type()->make_ptr(); |
2280 | if (tp && tp->_ptr == TypePtr::AnyNull) { |
2281 | tn->set_type(TypeNarrowOop::NULL_PTR); |
2282 | } |
2283 | break; |
2284 | } |
2285 | case Op_Binary: // These are introduced in the Post_Visit state. |
2286 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2286); ::breakpoint(); } while (0); |
2287 | break; |
2288 | case Op_ClearArray: |
2289 | case Op_SafePoint: |
2290 | mem_op = true; |
2291 | break; |
2292 | default: |
2293 | if( n->is_Store() ) { |
2294 | // Do match stores, despite no ideal reg |
2295 | mem_op = true; |
2296 | break; |
2297 | } |
2298 | if( n->is_Mem() ) { // Loads and LoadStores |
2299 | mem_op = true; |
2300 | // Loads must be root of match tree due to prior load conflict |
2301 | if( C->subsume_loads() == false ) |
2302 | set_shared(n); |
2303 | } |
2304 | // Fall into default case |
2305 | if( !n->ideal_reg() ) |
2306 | set_dontcare(n); // Unmatchable Nodes |
2307 | } // end_switch |
2308 | return false; |
2309 | } |
2310 | |
2311 | void Matcher::find_shared_post_visit(Node* n, uint opcode) { |
2312 | if (n->is_predicated_vector()) { |
2313 | // Restructure into binary trees for Matching. |
2314 | if (n->req() == 4) { |
2315 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); |
2316 | n->set_req(2, n->in(3)); |
2317 | n->del_req(3); |
2318 | } else if (n->req() == 5) { |
2319 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); |
2320 | n->set_req(2, new BinaryNode(n->in(3), n->in(4))); |
2321 | n->del_req(4); |
2322 | n->del_req(3); |
2323 | } |
2324 | return; |
2325 | } |
2326 | |
2327 | switch(opcode) { // Handle some opcodes special |
2328 | case Op_StorePConditional: |
2329 | case Op_StoreIConditional: |
2330 | case Op_StoreLConditional: |
2331 | case Op_CompareAndExchangeB: |
2332 | case Op_CompareAndExchangeS: |
2333 | case Op_CompareAndExchangeI: |
2334 | case Op_CompareAndExchangeL: |
2335 | case Op_CompareAndExchangeP: |
2336 | case Op_CompareAndExchangeN: |
2337 | case Op_WeakCompareAndSwapB: |
2338 | case Op_WeakCompareAndSwapS: |
2339 | case Op_WeakCompareAndSwapI: |
2340 | case Op_WeakCompareAndSwapL: |
2341 | case Op_WeakCompareAndSwapP: |
2342 | case Op_WeakCompareAndSwapN: |
2343 | case Op_CompareAndSwapB: |
2344 | case Op_CompareAndSwapS: |
2345 | case Op_CompareAndSwapI: |
2346 | case Op_CompareAndSwapL: |
2347 | case Op_CompareAndSwapP: |
2348 | case Op_CompareAndSwapN: { // Convert trinary to binary-tree |
2349 | Node* newval = n->in(MemNode::ValueIn); |
2350 | Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); |
2351 | Node* pair = new BinaryNode(oldval, newval); |
2352 | n->set_req(MemNode::ValueIn, pair); |
2353 | n->del_req(LoadStoreConditionalNode::ExpectedIn); |
2354 | break; |
2355 | } |
2356 | case Op_CMoveD: // Convert trinary to binary-tree |
2357 | case Op_CMoveF: |
2358 | case Op_CMoveI: |
2359 | case Op_CMoveL: |
2360 | case Op_CMoveN: |
2361 | case Op_CMoveP: |
2362 | case Op_CMoveVF: |
2363 | case Op_CMoveVD: { |
2364 | // Restructure into a binary tree for Matching. It's possible that |
2365 | // we could move this code up next to the graph reshaping for IfNodes |
2366 | // or vice-versa, but I do not want to debug this for Ladybird. |
2367 | // 10/2/2000 CNC. |
2368 | Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1)); |
2369 | n->set_req(1, pair1); |
2370 | Node* pair2 = new BinaryNode(n->in(2), n->in(3)); |
2371 | n->set_req(2, pair2); |
2372 | n->del_req(3); |
2373 | break; |
2374 | } |
2375 | case Op_VectorCmpMasked: { |
2376 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); |
2377 | n->set_req(2, pair1); |
2378 | n->del_req(3); |
2379 | break; |
2380 | } |
2381 | case Op_MacroLogicV: { |
2382 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); |
2383 | Node* pair2 = new BinaryNode(n->in(3), n->in(4)); |
2384 | n->set_req(1, pair1); |
2385 | n->set_req(2, pair2); |
2386 | n->del_req(4); |
2387 | n->del_req(3); |
2388 | break; |
2389 | } |
2390 | case Op_StoreVectorMasked: { |
2391 | Node* pair = new BinaryNode(n->in(3), n->in(4)); |
2392 | n->set_req(3, pair); |
2393 | n->del_req(4); |
2394 | break; |
2395 | } |
2396 | case Op_LoopLimit: { |
2397 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); |
2398 | n->set_req(1, pair1); |
2399 | n->set_req(2, n->in(3)); |
2400 | n->del_req(3); |
2401 | break; |
2402 | } |
2403 | case Op_StrEquals: |
2404 | case Op_StrIndexOfChar: { |
2405 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); |
2406 | n->set_req(2, pair1); |
2407 | n->set_req(3, n->in(4)); |
2408 | n->del_req(4); |
2409 | break; |
2410 | } |
2411 | case Op_StrComp: |
2412 | case Op_StrIndexOf: { |
2413 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); |
2414 | n->set_req(2, pair1); |
2415 | Node* pair2 = new BinaryNode(n->in(4),n->in(5)); |
2416 | n->set_req(3, pair2); |
2417 | n->del_req(5); |
2418 | n->del_req(4); |
2419 | break; |
2420 | } |
2421 | case Op_StrCompressedCopy: |
2422 | case Op_StrInflatedCopy: |
2423 | case Op_EncodeISOArray: { |
2424 | // Restructure into a binary tree for Matching. |
2425 | Node* pair = new BinaryNode(n->in(3), n->in(4)); |
2426 | n->set_req(3, pair); |
2427 | n->del_req(4); |
2428 | break; |
2429 | } |
2430 | case Op_FmaD: |
2431 | case Op_FmaF: |
2432 | case Op_FmaVD: |
2433 | case Op_FmaVF: { |
2434 | // Restructure into a binary tree for Matching. |
2435 | Node* pair = new BinaryNode(n->in(1), n->in(2)); |
2436 | n->set_req(2, pair); |
2437 | n->set_req(1, n->in(3)); |
2438 | n->del_req(3); |
2439 | break; |
2440 | } |
2441 | case Op_MulAddS2I: { |
2442 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); |
2443 | Node* pair2 = new BinaryNode(n->in(3), n->in(4)); |
2444 | n->set_req(1, pair1); |
2445 | n->set_req(2, pair2); |
2446 | n->del_req(4); |
2447 | n->del_req(3); |
2448 | break; |
2449 | } |
2450 | case Op_CopySignD: |
2451 | case Op_SignumF: |
2452 | case Op_SignumD: { |
2453 | Node* pair = new BinaryNode(n->in(2), n->in(3)); |
2454 | n->set_req(2, pair); |
2455 | n->del_req(3); |
2456 | break; |
2457 | } |
2458 | case Op_VectorBlend: |
2459 | case Op_VectorInsert: { |
2460 | Node* pair = new BinaryNode(n->in(1), n->in(2)); |
2461 | n->set_req(1, pair); |
2462 | n->set_req(2, n->in(3)); |
2463 | n->del_req(3); |
2464 | break; |
2465 | } |
2466 | case Op_LoadVectorGatherMasked: |
2467 | case Op_StoreVectorScatter: { |
2468 | Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); |
2469 | n->set_req(MemNode::ValueIn, pair); |
2470 | n->del_req(MemNode::ValueIn+1); |
2471 | break; |
2472 | } |
2473 | case Op_StoreVectorScatterMasked: { |
2474 | Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2)); |
2475 | n->set_req(MemNode::ValueIn+1, pair); |
2476 | n->del_req(MemNode::ValueIn+2); |
2477 | pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); |
2478 | n->set_req(MemNode::ValueIn, pair); |
2479 | n->del_req(MemNode::ValueIn+1); |
2480 | break; |
2481 | } |
2482 | case Op_VectorMaskCmp: { |
2483 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); |
2484 | n->set_req(2, n->in(3)); |
2485 | n->del_req(3); |
2486 | break; |
2487 | } |
2488 | default: |
2489 | break; |
2490 | } |
2491 | } |
2492 | |
2493 | #ifndef PRODUCT |
2494 | void Matcher::record_new2old(Node* newn, Node* old) { |
2495 | _new2old_map.map(newn->_idx, old); |
2496 | if (!_reused.test_set(old->_igv_idx)) { |
2497 | // Reuse the Ideal-level IGV identifier so that the node can be tracked |
2498 | // across matching. If there are multiple machine nodes expanded from the |
2499 | // same Ideal node, only one will reuse its IGV identifier. |
2500 | newn->_igv_idx = old->_igv_idx; |
2501 | } |
2502 | } |
2503 | |
2504 | // machine-independent root to machine-dependent root |
2505 | void Matcher::dump_old2new_map() { |
2506 | _old2new_map.dump(); |
2507 | } |
2508 | #endif // !PRODUCT |
2509 | |
2510 | //---------------------------collect_null_checks------------------------------- |
2511 | // Find null checks in the ideal graph; write a machine-specific node for |
2512 | // it. Used by later implicit-null-check handling. Actually collects |
2513 | // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal |
2514 | // value being tested. |
2515 | void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { |
2516 | Node *iff = proj->in(0); |
2517 | if( iff->Opcode() == Op_If ) { |
2518 | // During matching If's have Bool & Cmp side-by-side |
2519 | BoolNode *b = iff->in(1)->as_Bool(); |
2520 | Node *cmp = iff->in(2); |
2521 | int opc = cmp->Opcode(); |
2522 | if (opc != Op_CmpP && opc != Op_CmpN) return; |
2523 | |
2524 | const Type* ct = cmp->in(2)->bottom_type(); |
2525 | if (ct == TypePtr::NULL_PTR || |
2526 | (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { |
2527 | |
2528 | bool push_it = false; |
2529 | if( proj->Opcode() == Op_IfTrue ) { |
2530 | #ifndef PRODUCT |
2531 | extern int all_null_checks_found; |
2532 | all_null_checks_found++; |
2533 | #endif |
2534 | if( b->_test._test == BoolTest::ne ) { |
2535 | push_it = true; |
2536 | } |
2537 | } else { |
2538 | assert( proj->Opcode() == Op_IfFalse, "" )do { if (!(proj->Opcode() == Op_IfFalse)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2538, "assert(" "proj->Opcode() == Op_IfFalse" ") failed" , ""); ::breakpoint(); } } while (0); |
2539 | if( b->_test._test == BoolTest::eq ) { |
2540 | push_it = true; |
2541 | } |
2542 | } |
2543 | if( push_it ) { |
2544 | _null_check_tests.push(proj); |
2545 | Node* val = cmp->in(1); |
2546 | #ifdef _LP641 |
2547 | if (val->bottom_type()->isa_narrowoop() && |
2548 | !Matcher::narrow_oop_use_complex_address()) { |
2549 | // |
2550 | // Look for DecodeN node which should be pinned to orig_proj. |
2551 | // On platforms (Sparc) which can not handle 2 adds |
2552 | // in addressing mode we have to keep a DecodeN node and |
2553 | // use it to do implicit NULL check in address. |
2554 | // |
2555 | // DecodeN node was pinned to non-null path (orig_proj) during |
2556 | // CastPP transformation in final_graph_reshaping_impl(). |
2557 | // |
2558 | uint cnt = orig_proj->outcnt(); |
2559 | for (uint i = 0; i < orig_proj->outcnt(); i++) { |
2560 | Node* d = orig_proj->raw_out(i); |
2561 | if (d->is_DecodeN() && d->in(1) == val) { |
2562 | val = d; |
2563 | val->set_req(0, NULL__null); // Unpin now. |
2564 | // Mark this as special case to distinguish from |
2565 | // a regular case: CmpP(DecodeN, NULL). |
2566 | val = (Node*)(((intptr_t)val) | 1); |
2567 | break; |
2568 | } |
2569 | } |
2570 | } |
2571 | #endif |
2572 | _null_check_tests.push(val); |
2573 | } |
2574 | } |
2575 | } |
2576 | } |
2577 | |
2578 | //---------------------------validate_null_checks------------------------------ |
2579 | // Its possible that the value being NULL checked is not the root of a match |
2580 | // tree. If so, I cannot use the value in an implicit null check. |
2581 | void Matcher::validate_null_checks( ) { |
2582 | uint cnt = _null_check_tests.size(); |
2583 | for( uint i=0; i < cnt; i+=2 ) { |
2584 | Node *test = _null_check_tests[i]; |
2585 | Node *val = _null_check_tests[i+1]; |
2586 | bool is_decoden = ((intptr_t)val) & 1; |
2587 | val = (Node*)(((intptr_t)val) & ~1); |
2588 | if (has_new_node(val)) { |
2589 | Node* new_val = new_node(val); |
2590 | if (is_decoden) { |
2591 | assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity")do { if (!(val->is_DecodeNarrowPtr() && val->in (0) == __null)) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2591, "assert(" "val->is_DecodeNarrowPtr() && val->in(0) == __null" ") failed", "sanity"); ::breakpoint(); } } while (0); |
2592 | // Note: new_val may have a control edge if |
2593 | // the original ideal node DecodeN was matched before |
2594 | // it was unpinned in Matcher::collect_null_checks(). |
2595 | // Unpin the mach node and mark it. |
2596 | new_val->set_req(0, NULL__null); |
2597 | new_val = (Node*)(((intptr_t)new_val) | 1); |
2598 | } |
2599 | // Is a match-tree root, so replace with the matched value |
2600 | _null_check_tests.map(i+1, new_val); |
2601 | } else { |
2602 | // Yank from candidate list |
2603 | _null_check_tests.map(i+1,_null_check_tests[--cnt]); |
2604 | _null_check_tests.map(i,_null_check_tests[--cnt]); |
2605 | _null_check_tests.pop(); |
2606 | _null_check_tests.pop(); |
2607 | i-=2; |
2608 | } |
2609 | } |
2610 | } |
2611 | |
2612 | bool Matcher::gen_narrow_oop_implicit_null_checks() { |
2613 | // Advice matcher to perform null checks on the narrow oop side. |
2614 | // Implicit checks are not possible on the uncompressed oop side anyway |
2615 | // (at least not for read accesses). |
2616 | // Performs significantly better (especially on Power 6). |
2617 | if (!os::zero_page_read_protected()) { |
2618 | return true; |
2619 | } |
2620 | return CompressedOops::use_implicit_null_checks() && |
2621 | (narrow_oop_use_complex_address() || |
2622 | CompressedOops::base() != NULL__null); |
2623 | } |
2624 | |
2625 | // Compute RegMask for an ideal register. |
2626 | const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) { |
2627 | const Type* t = Type::mreg2type[ideal_reg]; |
2628 | if (t == NULL__null) { |
2629 | assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg)do { if (!(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2629, "assert(" "ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ" ") failed", "not a vector: %d", ideal_reg); ::breakpoint(); } } while (0); |
2630 | return NULL__null; // not supported |
2631 | } |
2632 | Node* fp = ret->in(TypeFunc::FramePtr); |
2633 | Node* mem = ret->in(TypeFunc::Memory); |
2634 | const TypePtr* atp = TypePtr::BOTTOM; |
2635 | MemNode::MemOrd mo = MemNode::unordered; |
2636 | |
2637 | Node* spill; |
2638 | switch (ideal_reg) { |
2639 | case Op_RegN: spill = new LoadNNode(NULL__null, mem, fp, atp, t->is_narrowoop(), mo); break; |
2640 | case Op_RegI: spill = new LoadINode(NULL__null, mem, fp, atp, t->is_int(), mo); break; |
2641 | case Op_RegP: spill = new LoadPNode(NULL__null, mem, fp, atp, t->is_ptr(), mo); break; |
2642 | case Op_RegF: spill = new LoadFNode(NULL__null, mem, fp, atp, t, mo); break; |
2643 | case Op_RegD: spill = new LoadDNode(NULL__null, mem, fp, atp, t, mo); break; |
2644 | case Op_RegL: spill = new LoadLNode(NULL__null, mem, fp, atp, t->is_long(), mo); break; |
2645 | |
2646 | case Op_VecA: // fall-through |
2647 | case Op_VecS: // fall-through |
2648 | case Op_VecD: // fall-through |
2649 | case Op_VecX: // fall-through |
2650 | case Op_VecY: // fall-through |
2651 | case Op_VecZ: spill = new LoadVectorNode(NULL__null, mem, fp, atp, t->is_vect()); break; |
2652 | case Op_RegVectMask: return Matcher::predicate_reg_mask(); |
2653 | |
2654 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2654); ::breakpoint(); } while (0); |
2655 | } |
2656 | MachNode* mspill = match_tree(spill); |
2657 | assert(mspill != NULL, "matching failed: %d", ideal_reg)do { if (!(mspill != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2657, "assert(" "mspill != __null" ") failed", "matching failed: %d" , ideal_reg); ::breakpoint(); } } while (0); |
2658 | // Handle generic vector operand case |
2659 | if (Matcher::supports_generic_vector_operands && t->isa_vect()) { |
2660 | specialize_mach_node(mspill); |
2661 | } |
2662 | return &mspill->out_RegMask(); |
2663 | } |
2664 | |
2665 | // Process Mach IR right after selection phase is over. |
2666 | void Matcher::do_postselect_cleanup() { |
2667 | if (supports_generic_vector_operands) { |
2668 | specialize_generic_vector_operands(); |
2669 | if (C->failing()) return; |
2670 | } |
2671 | } |
2672 | |
2673 | //---------------------------------------------------------------------- |
2674 | // Generic machine operands elision. |
2675 | //---------------------------------------------------------------------- |
2676 | |
2677 | // Compute concrete vector operand for a generic TEMP vector mach node based on its user info. |
2678 | void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) { |
2679 | assert(use->in(idx) == tmp, "not a user")do { if (!(use->in(idx) == tmp)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2679, "assert(" "use->in(idx) == tmp" ") failed", "not a user" ); ::breakpoint(); } } while (0); |
2680 | assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet")do { if (!(!Matcher::is_generic_vector(use->_opnds[0]))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2680, "assert(" "!Matcher::is_generic_vector(use->_opnds[0])" ") failed", "use not processed yet"); ::breakpoint(); } } while (0); |
2681 | |
2682 | if ((uint)idx == use->two_adr()) { // DEF_TEMP case |
2683 | tmp->_opnds[0] = use->_opnds[0]->clone(); |
2684 | } else { |
2685 | uint ideal_vreg = vector_ideal_reg(C->max_vector_size()); |
2686 | tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/); |
2687 | } |
2688 | } |
2689 | |
2690 | // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx). |
2691 | MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) { |
2692 | assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates")do { if (!(Matcher::is_generic_vector(m->_opnds[opnd_idx]) )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2692, "assert(" "Matcher::is_generic_vector(m->_opnds[opnd_idx])" ") failed", "repeated updates"); ::breakpoint(); } } while ( 0); |
2693 | Node* def = NULL__null; |
2694 | if (opnd_idx == 0) { // DEF |
2695 | def = m; // use mach node itself to compute vector operand type |
2696 | } else { |
2697 | int base_idx = m->operand_index(opnd_idx); |
2698 | def = m->in(base_idx); |
2699 | if (def->is_Mach()) { |
2700 | if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) { |
2701 | specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site |
2702 | } else if (is_reg2reg_move(def->as_Mach())) { |
2703 | def = def->in(1); // skip over generic reg-to-reg moves |
2704 | } |
2705 | } |
2706 | } |
2707 | assert(def->bottom_type()->isa_vect(), "not a vector")do { if (!(def->bottom_type()->isa_vect())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2707, "assert(" "def->bottom_type()->isa_vect()" ") failed" , "not a vector"); ::breakpoint(); } } while (0); |
2708 | uint ideal_vreg = def->bottom_type()->ideal_reg(); |
2709 | return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/); |
2710 | } |
2711 | |
2712 | void Matcher::specialize_mach_node(MachNode* m) { |
2713 | assert(!m->is_MachTemp(), "processed along with its user")do { if (!(!m->is_MachTemp())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2713, "assert(" "!m->is_MachTemp()" ") failed", "processed along with its user" ); ::breakpoint(); } } while (0); |
2714 | // For generic use operands pull specific register class operands from |
2715 | // its def instruction's output operand (def operand). |
2716 | for (uint i = 0; i < m->num_opnds(); i++) { |
2717 | if (Matcher::is_generic_vector(m->_opnds[i])) { |
2718 | m->_opnds[i] = specialize_vector_operand(m, i); |
2719 | } |
2720 | } |
2721 | } |
2722 | |
2723 | // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph. |
2724 | void Matcher::specialize_generic_vector_operands() { |
2725 | assert(supports_generic_vector_operands, "sanity")do { if (!(supports_generic_vector_operands)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2725, "assert(" "supports_generic_vector_operands" ") failed" , "sanity"); ::breakpoint(); } } while (0); |
2726 | ResourceMark rm; |
2727 | |
2728 | // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ]) |
2729 | // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec). |
2730 | Unique_Node_List live_nodes; |
2731 | C->identify_useful_nodes(live_nodes); |
2732 | |
2733 | while (live_nodes.size() > 0) { |
2734 | MachNode* m = live_nodes.pop()->isa_Mach(); |
2735 | if (m != NULL__null) { |
2736 | if (Matcher::is_reg2reg_move(m)) { |
2737 | // Register allocator properly handles vec <=> leg moves using register masks. |
2738 | int opnd_idx = m->operand_index(1); |
2739 | Node* def = m->in(opnd_idx); |
2740 | m->subsume_by(def, C); |
2741 | } else if (m->is_MachTemp()) { |
2742 | // process MachTemp nodes at use site (see Matcher::specialize_vector_operand) |
2743 | } else { |
2744 | specialize_mach_node(m); |
2745 | } |
2746 | } |
2747 | } |
2748 | } |
2749 | |
2750 | uint Matcher::vector_length(const Node* n) { |
2751 | const TypeVect* vt = n->bottom_type()->is_vect(); |
2752 | return vt->length(); |
2753 | } |
2754 | |
2755 | uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) { |
2756 | int def_idx = use->operand_index(opnd); |
2757 | Node* def = use->in(def_idx); |
2758 | return def->bottom_type()->is_vect()->length(); |
2759 | } |
2760 | |
2761 | uint Matcher::vector_length_in_bytes(const Node* n) { |
2762 | const TypeVect* vt = n->bottom_type()->is_vect(); |
2763 | return vt->length_in_bytes(); |
2764 | } |
2765 | |
2766 | uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) { |
2767 | uint def_idx = use->operand_index(opnd); |
2768 | Node* def = use->in(def_idx); |
2769 | return def->bottom_type()->is_vect()->length_in_bytes(); |
2770 | } |
2771 | |
2772 | BasicType Matcher::vector_element_basic_type(const Node* n) { |
2773 | const TypeVect* vt = n->bottom_type()->is_vect(); |
2774 | return vt->element_basic_type(); |
2775 | } |
2776 | |
2777 | BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) { |
2778 | int def_idx = use->operand_index(opnd); |
2779 | Node* def = use->in(def_idx); |
2780 | return def->bottom_type()->is_vect()->element_basic_type(); |
2781 | } |
2782 | |
2783 | #ifdef ASSERT1 |
2784 | bool Matcher::verify_after_postselect_cleanup() { |
2785 | assert(!C->failing(), "sanity")do { if (!(!C->failing())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2785, "assert(" "!C->failing()" ") failed", "sanity"); :: breakpoint(); } } while (0); |
2786 | if (supports_generic_vector_operands) { |
2787 | Unique_Node_List useful; |
2788 | C->identify_useful_nodes(useful); |
2789 | for (uint i = 0; i < useful.size(); i++) { |
2790 | MachNode* m = useful.at(i)->isa_Mach(); |
2791 | if (m != NULL__null) { |
2792 | assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed")do { if (!(!Matcher::is_reg2reg_move(m))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2792, "assert(" "!Matcher::is_reg2reg_move(m)" ") failed", "no MoveVec nodes allowed" ); ::breakpoint(); } } while (0); |
2793 | for (uint j = 0; j < m->num_opnds(); j++) { |
2794 | assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed")do { if (!(!Matcher::is_generic_vector(m->_opnds[j]))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2794, "assert(" "!Matcher::is_generic_vector(m->_opnds[j])" ") failed", "no generic vector operands allowed"); ::breakpoint (); } } while (0); |
2795 | } |
2796 | } |
2797 | } |
2798 | } |
2799 | return true; |
2800 | } |
2801 | #endif // ASSERT |
2802 | |
2803 | // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or |
2804 | // atomic instruction acting as a store_load barrier without any |
2805 | // intervening volatile load, and thus we don't need a barrier here. |
2806 | // We retain the Node to act as a compiler ordering barrier. |
2807 | bool Matcher::post_store_load_barrier(const Node* vmb) { |
2808 | Compile* C = Compile::current(); |
2809 | assert(vmb->is_MemBar(), "")do { if (!(vmb->is_MemBar())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2809, "assert(" "vmb->is_MemBar()" ") failed", ""); ::breakpoint (); } } while (0); |
2810 | assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "")do { if (!(vmb->Opcode() != Op_MemBarAcquire && vmb ->Opcode() != Op_LoadFence)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2810, "assert(" "vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence" ") failed", ""); ::breakpoint(); } } while (0); |
2811 | const MemBarNode* membar = vmb->as_MemBar(); |
2812 | |
2813 | // Get the Ideal Proj node, ctrl, that can be used to iterate forward |
2814 | Node* ctrl = NULL__null; |
2815 | for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { |
2816 | Node* p = membar->fast_out(i); |
2817 | assert(p->is_Proj(), "only projections here")do { if (!(p->is_Proj())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2817, "assert(" "p->is_Proj()" ") failed", "only projections here" ); ::breakpoint(); } } while (0); |
2818 | if ((p->as_Proj()->_con == TypeFunc::Control) && |
2819 | !C->node_arena()->contains(p)) { // Unmatched old-space only |
2820 | ctrl = p; |
2821 | break; |
2822 | } |
2823 | } |
2824 | assert((ctrl != NULL), "missing control projection")do { if (!((ctrl != __null))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2824, "assert(" "(ctrl != __null)" ") failed", "missing control projection" ); ::breakpoint(); } } while (0); |
2825 | |
2826 | for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { |
2827 | Node *x = ctrl->fast_out(j); |
2828 | int xop = x->Opcode(); |
2829 | |
2830 | // We don't need current barrier if we see another or a lock |
2831 | // before seeing volatile load. |
2832 | // |
2833 | // Op_Fastunlock previously appeared in the Op_* list below. |
2834 | // With the advent of 1-0 lock operations we're no longer guaranteed |
2835 | // that a monitor exit operation contains a serializing instruction. |
2836 | |
2837 | if (xop == Op_MemBarVolatile || |
2838 | xop == Op_CompareAndExchangeB || |
2839 | xop == Op_CompareAndExchangeS || |
2840 | xop == Op_CompareAndExchangeI || |
2841 | xop == Op_CompareAndExchangeL || |
2842 | xop == Op_CompareAndExchangeP || |
2843 | xop == Op_CompareAndExchangeN || |
2844 | xop == Op_WeakCompareAndSwapB || |
2845 | xop == Op_WeakCompareAndSwapS || |
2846 | xop == Op_WeakCompareAndSwapL || |
2847 | xop == Op_WeakCompareAndSwapP || |
2848 | xop == Op_WeakCompareAndSwapN || |
2849 | xop == Op_WeakCompareAndSwapI || |
2850 | xop == Op_CompareAndSwapB || |
2851 | xop == Op_CompareAndSwapS || |
2852 | xop == Op_CompareAndSwapL || |
2853 | xop == Op_CompareAndSwapP || |
2854 | xop == Op_CompareAndSwapN || |
2855 | xop == Op_CompareAndSwapI || |
2856 | BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) { |
2857 | return true; |
2858 | } |
2859 | |
2860 | // Op_FastLock previously appeared in the Op_* list above. |
2861 | if (xop == Op_FastLock) { |
2862 | return true; |
2863 | } |
2864 | |
2865 | if (x->is_MemBar()) { |
2866 | // We must retain this membar if there is an upcoming volatile |
2867 | // load, which will be followed by acquire membar. |
2868 | if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { |
2869 | return false; |
2870 | } else { |
2871 | // For other kinds of barriers, check by pretending we |
2872 | // are them, and seeing if we can be removed. |
2873 | return post_store_load_barrier(x->as_MemBar()); |
2874 | } |
2875 | } |
2876 | |
2877 | // probably not necessary to check for these |
2878 | if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { |
2879 | return false; |
2880 | } |
2881 | } |
2882 | return false; |
2883 | } |
2884 | |
2885 | // Check whether node n is a branch to an uncommon trap that we could |
2886 | // optimize as test with very high branch costs in case of going to |
2887 | // the uncommon trap. The code must be able to be recompiled to use |
2888 | // a cheaper test. |
2889 | bool Matcher::branches_to_uncommon_trap(const Node *n) { |
2890 | // Don't do it for natives, adapters, or runtime stubs |
2891 | Compile *C = Compile::current(); |
2892 | if (!C->is_method_compilation()) return false; |
2893 | |
2894 | assert(n->is_If(), "You should only call this on if nodes.")do { if (!(n->is_If())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2894, "assert(" "n->is_If()" ") failed", "You should only call this on if nodes." ); ::breakpoint(); } } while (0); |
2895 | IfNode *ifn = n->as_If(); |
2896 | |
2897 | Node *ifFalse = NULL__null; |
2898 | for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { |
2899 | if (ifn->fast_out(i)->is_IfFalse()) { |
2900 | ifFalse = ifn->fast_out(i); |
2901 | break; |
2902 | } |
2903 | } |
2904 | assert(ifFalse, "An If should have an ifFalse. Graph is broken.")do { if (!(ifFalse)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2904, "assert(" "ifFalse" ") failed", "An If should have an ifFalse. Graph is broken." ); ::breakpoint(); } } while (0); |
2905 | |
2906 | Node *reg = ifFalse; |
2907 | int cnt = 4; // We must protect against cycles. Limit to 4 iterations. |
2908 | // Alternatively use visited set? Seems too expensive. |
2909 | while (reg != NULL__null && cnt > 0) { |
2910 | CallNode *call = NULL__null; |
2911 | RegionNode *nxt_reg = NULL__null; |
2912 | for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { |
2913 | Node *o = reg->fast_out(i); |
2914 | if (o->is_Call()) { |
2915 | call = o->as_Call(); |
2916 | } |
2917 | if (o->is_Region()) { |
2918 | nxt_reg = o->as_Region(); |
2919 | } |
2920 | } |
2921 | |
2922 | if (call && |
2923 | call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { |
2924 | const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); |
2925 | if (trtype->isa_int() && trtype->is_int()->is_con()) { |
2926 | jint tr_con = trtype->is_int()->get_con(); |
2927 | Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); |
2928 | Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); |
2929 | assert((int)reason < (int)BitsPerInt, "recode bit map")do { if (!((int)reason < (int)BitsPerInt)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2929, "assert(" "(int)reason < (int)BitsPerInt" ") failed" , "recode bit map"); ::breakpoint(); } } while (0); |
2930 | |
2931 | if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) |
2932 | && action != Deoptimization::Action_none) { |
2933 | // This uncommon trap is sure to recompile, eventually. |
2934 | // When that happens, C->too_many_traps will prevent |
2935 | // this transformation from happening again. |
2936 | return true; |
2937 | } |
2938 | } |
2939 | } |
2940 | |
2941 | reg = nxt_reg; |
2942 | cnt--; |
2943 | } |
2944 | |
2945 | return false; |
2946 | } |
2947 | |
2948 | //============================================================================= |
2949 | //---------------------------State--------------------------------------------- |
2950 | State::State(void) : _rule() { |
2951 | #ifdef ASSERT1 |
2952 | _id = 0; |
2953 | _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL); |
2954 | _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL); |
2955 | #endif |
2956 | } |
2957 | |
2958 | #ifdef ASSERT1 |
2959 | State::~State() { |
2960 | _id = 99; |
2961 | _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL); |
2962 | _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL); |
2963 | memset(_cost, -3, sizeof(_cost)); |
2964 | memset(_rule, -3, sizeof(_rule)); |
2965 | } |
2966 | #endif |
2967 | |
2968 | #ifndef PRODUCT |
2969 | //---------------------------dump---------------------------------------------- |
2970 | void State::dump() { |
2971 | tty->print("\n"); |
2972 | dump(0); |
2973 | } |
2974 | |
2975 | void State::dump(int depth) { |
2976 | for (int j = 0; j < depth; j++) { |
2977 | tty->print(" "); |
2978 | } |
2979 | tty->print("--N: "); |
2980 | _leaf->dump(); |
2981 | uint i; |
2982 | for (i = 0; i < _LAST_MACH_OPER; i++) { |
2983 | // Check for valid entry |
2984 | if (valid(i)) { |
2985 | for (int j = 0; j < depth; j++) { |
2986 | tty->print(" "); |
2987 | } |
2988 | assert(cost(i) != max_juint, "cost must be a valid value")do { if (!(cost(i) != max_juint)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2988, "assert(" "cost(i) != max_juint" ") failed", "cost must be a valid value" ); ::breakpoint(); } } while (0); |
2989 | assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule")do { if (!(rule(i) < _last_Mach_Node)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2989, "assert(" "rule(i) < _last_Mach_Node" ") failed", "rule[i] must be valid rule" ); ::breakpoint(); } } while (0); |
2990 | tty->print_cr("%s %d %s", |
2991 | ruleName[i], cost(i), ruleName[rule(i)] ); |
2992 | } |
2993 | } |
2994 | tty->cr(); |
2995 | |
2996 | for (i = 0; i < 2; i++) { |
2997 | if (_kids[i]) { |
2998 | _kids[i]->dump(depth + 1); |
2999 | } |
3000 | } |
3001 | } |
3002 | #endif |