Bug Summary

File:jdk/src/hotspot/share/opto/memnode.cpp
Warning:line 4978, column 12
Value stored to 'C' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name memnode.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -mthread-model posix -fno-delete-null-pointer-checks -mframe-pointer=all -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/libjvm/objs/precompiled -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D _GNU_SOURCE -D _REENTRANT -D LIBC=gnu -D LINUX -D VM_LITTLE_ENDIAN -D _LP64=1 -D ASSERT -D CHECK_UNHANDLED_OOPS -D TARGET_ARCH_x86 -D INCLUDE_SUFFIX_OS=_linux -D INCLUDE_SUFFIX_CPU=_x86 -D INCLUDE_SUFFIX_COMPILER=_gcc -D TARGET_COMPILER_gcc -D AMD64 -D HOTSPOT_LIB_ARCH="amd64" -D COMPILER1 -D COMPILER2 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -I /home/daniel/Projects/java/jdk/src/hotspot/share/precompiled -I /home/daniel/Projects/java/jdk/src/hotspot/share/include -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix/include -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base/linux -I /home/daniel/Projects/java/jdk/src/java.base/share/native/libjimage -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -D _FORTIFY_SOURCE=2 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-format-zero-length -Wno-unused-parameter -Wno-unused -Wno-parentheses -Wno-comment -Wno-unknown-pragmas -Wno-address -Wno-delete-non-virtual-dtor -Wno-char-subscripts -Wno-array-bounds -Wno-int-in-bool-context -Wno-ignored-qualifiers -Wno-missing-field-initializers -Wno-implicit-fallthrough -Wno-empty-body -Wno-strict-overflow -Wno-sequence-point -Wno-maybe-uninitialized -Wno-misleading-indentation -Wno-cast-function-type -Wno-shift-negative-value -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /home/daniel/Projects/java/jdk/make/hotspot -ferror-limit 19 -fmessage-length 0 -fvisibility hidden -stack-protector 1 -fno-rtti -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /home/daniel/Projects/java/scan/2021-12-21-193737-8510-1 -x c++ /home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp
1/*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/javaClasses.hpp"
27#include "compiler/compileLog.hpp"
28#include "gc/shared/barrierSet.hpp"
29#include "gc/shared/c2/barrierSetC2.hpp"
30#include "gc/shared/tlab_globals.hpp"
31#include "memory/allocation.inline.hpp"
32#include "memory/resourceArea.hpp"
33#include "oops/objArrayKlass.hpp"
34#include "opto/addnode.hpp"
35#include "opto/arraycopynode.hpp"
36#include "opto/cfgnode.hpp"
37#include "opto/regalloc.hpp"
38#include "opto/compile.hpp"
39#include "opto/connode.hpp"
40#include "opto/convertnode.hpp"
41#include "opto/loopnode.hpp"
42#include "opto/machnode.hpp"
43#include "opto/matcher.hpp"
44#include "opto/memnode.hpp"
45#include "opto/mulnode.hpp"
46#include "opto/narrowptrnode.hpp"
47#include "opto/phaseX.hpp"
48#include "opto/regmask.hpp"
49#include "opto/rootnode.hpp"
50#include "opto/vectornode.hpp"
51#include "utilities/align.hpp"
52#include "utilities/copy.hpp"
53#include "utilities/macros.hpp"
54#include "utilities/powerOfTwo.hpp"
55#include "utilities/vmError.hpp"
56
57// Portions of code courtesy of Clifford Click
58
59// Optimization - Graph Style
60
61static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
62
63//=============================================================================
64uint MemNode::size_of() const { return sizeof(*this); }
65
66const TypePtr *MemNode::adr_type() const {
67 Node* adr = in(Address);
68 if (adr == NULL__null) return NULL__null; // node is dead
69 const TypePtr* cross_check = NULL__null;
70 DEBUG_ONLY(cross_check = _adr_type)cross_check = _adr_type;
71 return calculate_adr_type(adr->bottom_type(), cross_check);
72}
73
74bool MemNode::check_if_adr_maybe_raw(Node* adr) {
75 if (adr != NULL__null) {
76 if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
77 return true;
78 }
79 }
80 return false;
81}
82
83#ifndef PRODUCT
84void MemNode::dump_spec(outputStream *st) const {
85 if (in(Address) == NULL__null) return; // node is dead
86#ifndef ASSERT1
87 // fake the missing field
88 const TypePtr* _adr_type = NULL__null;
89 if (in(Address) != NULL__null)
90 _adr_type = in(Address)->bottom_type()->isa_ptr();
91#endif
92 dump_adr_type(this, _adr_type, st);
93
94 Compile* C = Compile::current();
95 if (C->alias_type(_adr_type)->is_volatile()) {
96 st->print(" Volatile!");
97 }
98 if (_unaligned_access) {
99 st->print(" unaligned");
100 }
101 if (_mismatched_access) {
102 st->print(" mismatched");
103 }
104 if (_unsafe_access) {
105 st->print(" unsafe");
106 }
107}
108
109void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
110 st->print(" @");
111 if (adr_type == NULL__null) {
112 st->print("NULL");
113 } else {
114 adr_type->dump_on(st);
115 Compile* C = Compile::current();
116 Compile::AliasType* atp = NULL__null;
117 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
118 if (atp == NULL__null)
119 st->print(", idx=?\?;");
120 else if (atp->index() == Compile::AliasIdxBot)
121 st->print(", idx=Bot;");
122 else if (atp->index() == Compile::AliasIdxTop)
123 st->print(", idx=Top;");
124 else if (atp->index() == Compile::AliasIdxRaw)
125 st->print(", idx=Raw;");
126 else {
127 ciField* field = atp->field();
128 if (field) {
129 st->print(", name=");
130 field->print_name_on(st);
131 }
132 st->print(", idx=%d;", atp->index());
133 }
134 }
135}
136
137extern void print_alias_types();
138
139#endif
140
141Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
142 assert((t_oop != NULL), "sanity")do { if (!((t_oop != __null))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 142, "assert(" "(t_oop != __null)" ") failed", "sanity"); ::
breakpoint(); } } while (0)
;
143 bool is_instance = t_oop->is_known_instance_field();
144 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
145 (load != NULL__null) && load->is_Load() &&
146 (phase->is_IterGVN() != NULL__null);
147 if (!(is_instance || is_boxed_value_load))
148 return mchain; // don't try to optimize non-instance types
149 uint instance_id = t_oop->instance_id();
150 Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
151 Node *prev = NULL__null;
152 Node *result = mchain;
153 while (prev != result) {
154 prev = result;
155 if (result == start_mem)
156 break; // hit one of our sentinels
157 // skip over a call which does not affect this memory slice
158 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
159 Node *proj_in = result->in(0);
160 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
161 break; // hit one of our sentinels
162 } else if (proj_in->is_Call()) {
163 // ArrayCopyNodes processed here as well
164 CallNode *call = proj_in->as_Call();
165 if (!call->may_modify(t_oop, phase)) { // returns false for instances
166 result = call->in(TypeFunc::Memory);
167 }
168 } else if (proj_in->is_Initialize()) {
169 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
170 // Stop if this is the initialization for the object instance which
171 // contains this memory slice, otherwise skip over it.
172 if ((alloc == NULL__null) || (alloc->_idx == instance_id)) {
173 break;
174 }
175 if (is_instance) {
176 result = proj_in->in(TypeFunc::Memory);
177 } else if (is_boxed_value_load) {
178 Node* klass = alloc->in(AllocateNode::KlassNode);
179 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
180 if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
181 result = proj_in->in(TypeFunc::Memory); // not related allocation
182 }
183 }
184 } else if (proj_in->is_MemBar()) {
185 ArrayCopyNode* ac = NULL__null;
186 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
187 break;
188 }
189 result = proj_in->in(TypeFunc::Memory);
190 } else {
191 assert(false, "unexpected projection")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 191, "assert(" "false" ") failed", "unexpected projection")
; ::breakpoint(); } } while (0)
;
192 }
193 } else if (result->is_ClearArray()) {
194 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
195 // Can not bypass initialization of the instance
196 // we are looking for.
197 break;
198 }
199 // Otherwise skip it (the call updated 'result' value).
200 } else if (result->is_MergeMem()) {
201 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL__null, tty);
202 }
203 }
204 return result;
205}
206
207Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
208 const TypeOopPtr* t_oop = t_adr->isa_oopptr();
209 if (t_oop == NULL__null)
210 return mchain; // don't try to optimize non-oop types
211 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
212 bool is_instance = t_oop->is_known_instance_field();
213 PhaseIterGVN *igvn = phase->is_IterGVN();
214 if (is_instance && igvn != NULL__null && result->is_Phi()) {
215 PhiNode *mphi = result->as_Phi();
216 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required")do { if (!(mphi->bottom_type() == Type::MEMORY)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 216, "assert(" "mphi->bottom_type() == Type::MEMORY" ") failed"
, "memory phi required"); ::breakpoint(); } } while (0)
;
217 const TypePtr *t = mphi->adr_type();
218 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
219 (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
220 t->is_oopptr()->cast_to_exactness(true)
221 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
222 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
223 // clone the Phi with our address type
224 result = mphi->split_out_instance(t_adr, igvn);
225 } else {
226 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain")do { if (!(phase->C->get_alias_index(t) == phase->C->
get_alias_index(t_adr))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 226, "assert(" "phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr)"
") failed", "correct memory chain"); ::breakpoint(); } } while
(0)
;
227 }
228 }
229 return result;
230}
231
232static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
233 uint alias_idx = phase->C->get_alias_index(tp);
234 Node *mem = mmem;
235#ifdef ASSERT1
236 {
237 // Check that current type is consistent with the alias index used during graph construction
238 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx")do { if (!(alias_idx >= Compile::AliasIdxRaw)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 238, "assert(" "alias_idx >= Compile::AliasIdxRaw" ") failed"
, "must not be a bad alias_idx"); ::breakpoint(); } } while (
0)
;
239 bool consistent = adr_check == NULL__null || adr_check->empty() ||
240 phase->C->must_alias(adr_check, alias_idx );
241 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
242 if( !consistent && adr_check != NULL__null && !adr_check->empty() &&
243 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
244 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
245 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
246 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
247 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
248 // don't assert if it is dead code.
249 consistent = true;
250 }
251 if( !consistent ) {
252 st->print("alias_idx==%d, adr_check==", alias_idx);
253 if( adr_check == NULL__null ) {
254 st->print("NULL");
255 } else {
256 adr_check->dump();
257 }
258 st->cr();
259 print_alias_types();
260 assert(consistent, "adr_check must match alias idx")do { if (!(consistent)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 260, "assert(" "consistent" ") failed", "adr_check must match alias idx"
); ::breakpoint(); } } while (0)
;
261 }
262 }
263#endif
264 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
265 // means an array I have not precisely typed yet. Do not do any
266 // alias stuff with it any time soon.
267 const TypeOopPtr *toop = tp->isa_oopptr();
268 if( tp->base() != Type::AnyPtr &&
269 !(toop &&
270 toop->klass() != NULL__null &&
271 toop->klass()->is_java_lang_Object() &&
272 toop->offset() == Type::OffsetBot) ) {
273 // compress paths and change unreachable cycles to TOP
274 // If not, we can update the input infinitely along a MergeMem cycle
275 // Equivalent code in PhiNode::Ideal
276 Node* m = phase->transform(mmem);
277 // If transformed to a MergeMem, get the desired slice
278 // Otherwise the returned node represents memory for every slice
279 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
280 // Update input if it is progress over what we have now
281 }
282 return mem;
283}
284
285//--------------------------Ideal_common---------------------------------------
286// Look for degenerate control and memory inputs. Bypass MergeMem inputs.
287// Unhook non-raw memories from complete (macro-expanded) initializations.
288Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
289 // If our control input is a dead region, kill all below the region
290 Node *ctl = in(MemNode::Control);
291 if (ctl && remove_dead_region(phase, can_reshape))
292 return this;
293 ctl = in(MemNode::Control);
294 // Don't bother trying to transform a dead node
295 if (ctl && ctl->is_top()) return NodeSentinel(Node*)-1;
296
297 PhaseIterGVN *igvn = phase->is_IterGVN();
298 // Wait if control on the worklist.
299 if (ctl && can_reshape && igvn != NULL__null) {
300 Node* bol = NULL__null;
301 Node* cmp = NULL__null;
302 if (ctl->in(0)->is_If()) {
303 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity")do { if (!(ctl->is_IfTrue() || ctl->is_IfFalse())) { (*
g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 303, "assert(" "ctl->is_IfTrue() || ctl->is_IfFalse()"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
304 bol = ctl->in(0)->in(1);
305 if (bol->is_Bool())
306 cmp = ctl->in(0)->in(1)->in(1);
307 }
308 if (igvn->_worklist.member(ctl) ||
309 (bol != NULL__null && igvn->_worklist.member(bol)) ||
310 (cmp != NULL__null && igvn->_worklist.member(cmp)) ) {
311 // This control path may be dead.
312 // Delay this memory node transformation until the control is processed.
313 igvn->_worklist.push(this);
314 return NodeSentinel(Node*)-1; // caller will return NULL
315 }
316 }
317 // Ignore if memory is dead, or self-loop
318 Node *mem = in(MemNode::Memory);
319 if (phase->type( mem ) == Type::TOP) return NodeSentinel(Node*)-1; // caller will return NULL
320 assert(mem != this, "dead loop in MemNode::Ideal")do { if (!(mem != this)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 320, "assert(" "mem != this" ") failed", "dead loop in MemNode::Ideal"
); ::breakpoint(); } } while (0)
;
321
322 if (can_reshape && igvn != NULL__null && igvn->_worklist.member(mem)) {
323 // This memory slice may be dead.
324 // Delay this mem node transformation until the memory is processed.
325 igvn->_worklist.push(this);
326 return NodeSentinel(Node*)-1; // caller will return NULL
327 }
328
329 Node *address = in(MemNode::Address);
330 const Type *t_adr = phase->type(address);
331 if (t_adr == Type::TOP) return NodeSentinel(Node*)-1; // caller will return NULL
332
333 if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) {
334 // Unsafe off-heap access with zero address. Remove access and other control users
335 // to not confuse optimizations and add a HaltNode to fail if this is ever executed.
336 assert(ctl != NULL, "unsafe accesses should be control dependent")do { if (!(ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 336, "assert(" "ctl != __null" ") failed", "unsafe accesses should be control dependent"
); ::breakpoint(); } } while (0)
;
337 for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) {
338 Node* u = ctl->fast_out(i);
339 if (u != ctl) {
340 igvn->rehash_node_delayed(u);
341 int nb = u->replace_edge(ctl, phase->C->top(), igvn);
342 --i, imax -= nb;
343 }
344 }
345 Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr));
346 Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address"));
347 phase->C->root()->add_req(halt);
348 return this;
349 }
350
351 if (can_reshape && igvn != NULL__null &&
352 (igvn->_worklist.member(address) ||
353 (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
354 // The address's base and type may change when the address is processed.
355 // Delay this mem node transformation until the address is processed.
356 igvn->_worklist.push(this);
357 return NodeSentinel(Node*)-1; // caller will return NULL
358 }
359
360 // Do NOT remove or optimize the next lines: ensure a new alias index
361 // is allocated for an oop pointer type before Escape Analysis.
362 // Note: C++ will not remove it since the call has side effect.
363 if (t_adr->isa_oopptr()) {
364 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
365 }
366
367 Node* base = NULL__null;
368 if (address->is_AddP()) {
369 base = address->in(AddPNode::Base);
370 }
371 if (base != NULL__null && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
372 !t_adr->isa_rawptr()) {
373 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
374 // Skip this node optimization if its address has TOP base.
375 return NodeSentinel(Node*)-1; // caller will return NULL
376 }
377
378 // Avoid independent memory operations
379 Node* old_mem = mem;
380
381 // The code which unhooks non-raw memories from complete (macro-expanded)
382 // initializations was removed. After macro-expansion all stores catched
383 // by Initialize node became raw stores and there is no information
384 // which memory slices they modify. So it is unsafe to move any memory
385 // operation above these stores. Also in most cases hooked non-raw memories
386 // were already unhooked by using information from detect_ptr_independence()
387 // and find_previous_store().
388
389 if (mem->is_MergeMem()) {
390 MergeMemNode* mmem = mem->as_MergeMem();
391 const TypePtr *tp = t_adr->is_ptr();
392
393 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
394 }
395
396 if (mem != old_mem) {
397 set_req(MemNode::Memory, mem);
398 if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL__null) {
399 igvn->_worklist.push(old_mem);
400 }
401 if (phase->type(mem) == Type::TOP) return NodeSentinel(Node*)-1;
402 return this;
403 }
404
405 // let the subclass continue analyzing...
406 return NULL__null;
407}
408
409// Helper function for proving some simple control dominations.
410// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
411// Already assumes that 'dom' is available at 'sub', and that 'sub'
412// is not a constant (dominated by the method's StartNode).
413// Used by MemNode::find_previous_store to prove that the
414// control input of a memory operation predates (dominates)
415// an allocation it wants to look past.
416bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
417 if (dom == NULL__null || dom->is_top() || sub == NULL__null || sub->is_top())
418 return false; // Conservative answer for dead code
419
420 // Check 'dom'. Skip Proj and CatchProj nodes.
421 dom = dom->find_exact_control(dom);
422 if (dom == NULL__null || dom->is_top())
423 return false; // Conservative answer for dead code
424
425 if (dom == sub) {
426 // For the case when, for example, 'sub' is Initialize and the original
427 // 'dom' is Proj node of the 'sub'.
428 return false;
429 }
430
431 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
432 return true;
433
434 // 'dom' dominates 'sub' if its control edge and control edges
435 // of all its inputs dominate or equal to sub's control edge.
436
437 // Currently 'sub' is either Allocate, Initialize or Start nodes.
438 // Or Region for the check in LoadNode::Ideal();
439 // 'sub' should have sub->in(0) != NULL.
440 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||do { if (!(sub->is_Allocate() || sub->is_Initialize() ||
sub->is_Start() || sub->is_Region() || sub->is_Call
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 441, "assert(" "sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call()"
") failed", "expecting only these nodes"); ::breakpoint(); }
} while (0)
441 sub->is_Region() || sub->is_Call(), "expecting only these nodes")do { if (!(sub->is_Allocate() || sub->is_Initialize() ||
sub->is_Start() || sub->is_Region() || sub->is_Call
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 441, "assert(" "sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || sub->is_Region() || sub->is_Call()"
") failed", "expecting only these nodes"); ::breakpoint(); }
} while (0)
;
442
443 // Get control edge of 'sub'.
444 Node* orig_sub = sub;
445 sub = sub->find_exact_control(sub->in(0));
446 if (sub == NULL__null || sub->is_top())
447 return false; // Conservative answer for dead code
448
449 assert(sub->is_CFG(), "expecting control")do { if (!(sub->is_CFG())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 449, "assert(" "sub->is_CFG()" ") failed", "expecting control"
); ::breakpoint(); } } while (0)
;
450
451 if (sub == dom)
452 return true;
453
454 if (sub->is_Start() || sub->is_Root())
455 return false;
456
457 {
458 // Check all control edges of 'dom'.
459
460 ResourceMark rm;
461 Node_List nlist;
462 Unique_Node_List dom_list;
463
464 dom_list.push(dom);
465 bool only_dominating_controls = false;
466
467 for (uint next = 0; next < dom_list.size(); next++) {
468 Node* n = dom_list.at(next);
469 if (n == orig_sub)
470 return false; // One of dom's inputs dominated by sub.
471 if (!n->is_CFG() && n->pinned()) {
472 // Check only own control edge for pinned non-control nodes.
473 n = n->find_exact_control(n->in(0));
474 if (n == NULL__null || n->is_top())
475 return false; // Conservative answer for dead code
476 assert(n->is_CFG(), "expecting control")do { if (!(n->is_CFG())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 476, "assert(" "n->is_CFG()" ") failed", "expecting control"
); ::breakpoint(); } } while (0)
;
477 dom_list.push(n);
478 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
479 only_dominating_controls = true;
480 } else if (n->is_CFG()) {
481 if (n->dominates(sub, nlist))
482 only_dominating_controls = true;
483 else
484 return false;
485 } else {
486 // First, own control edge.
487 Node* m = n->find_exact_control(n->in(0));
488 if (m != NULL__null) {
489 if (m->is_top())
490 return false; // Conservative answer for dead code
491 dom_list.push(m);
492 }
493 // Now, the rest of edges.
494 uint cnt = n->req();
495 for (uint i = 1; i < cnt; i++) {
496 m = n->find_exact_control(n->in(i));
497 if (m == NULL__null || m->is_top())
498 continue;
499 dom_list.push(m);
500 }
501 }
502 }
503 return only_dominating_controls;
504 }
505}
506
507//---------------------detect_ptr_independence---------------------------------
508// Used by MemNode::find_previous_store to prove that two base
509// pointers are never equal.
510// The pointers are accompanied by their associated allocations,
511// if any, which have been previously discovered by the caller.
512bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
513 Node* p2, AllocateNode* a2,
514 PhaseTransform* phase) {
515 // Attempt to prove that these two pointers cannot be aliased.
516 // They may both manifestly be allocations, and they should differ.
517 // Or, if they are not both allocations, they can be distinct constants.
518 // Otherwise, one is an allocation and the other a pre-existing value.
519 if (a1 == NULL__null && a2 == NULL__null) { // neither an allocation
520 return (p1 != p2) && p1->is_Con() && p2->is_Con();
521 } else if (a1 != NULL__null && a2 != NULL__null) { // both allocations
522 return (a1 != a2);
523 } else if (a1 != NULL__null) { // one allocation a1
524 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
525 return all_controls_dominate(p2, a1);
526 } else { //(a2 != NULL) // one allocation a2
527 return all_controls_dominate(p1, a2);
528 }
529 return false;
530}
531
532
533// Find an arraycopy ac that produces the memory state represented by parameter mem.
534// Return ac if
535// (a) can_see_stored_value=true and ac must have set the value for this load or if
536// (b) can_see_stored_value=false and ac could have set the value for this load or if
537// (c) can_see_stored_value=false and ac cannot have set the value for this load.
538// In case (c) change the parameter mem to the memory input of ac to skip it
539// when searching stored value.
540// Otherwise return NULL.
541Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
542 ArrayCopyNode* ac = find_array_copy_clone(phase, ld_alloc, mem);
543 if (ac != NULL__null) {
544 Node* ld_addp = in(MemNode::Address);
545 Node* src = ac->in(ArrayCopyNode::Src);
546 const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr();
547
548 // This is a load from a cloned array. The corresponding arraycopy ac must
549 // have set the value for the load and we can return ac but only if the load
550 // is known to be within bounds. This is checked below.
551 if (ary_t != NULL__null && ld_addp->is_AddP()) {
552 Node* ld_offs = ld_addp->in(AddPNode::Offset);
553 BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type();
554 jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem);
555 jlong elemsize = type2aelembytes(ary_elem);
556
557 const TypeXTypeLong* ld_offs_t = phase->type(ld_offs)->isa_intptr_tisa_long();
558 const TypeInt* sizetype = ary_t->size();
559
560 if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) {
561 // The load is known to be within bounds. It receives its value from ac.
562 return ac;
563 }
564 // The load is known to be out-of-bounds.
565 }
566 // The load could be out-of-bounds. It must not be hoisted but must remain
567 // dependent on the runtime range check. This is achieved by returning NULL.
568 } else if (mem->is_Proj() && mem->in(0) != NULL__null && mem->in(0)->is_ArrayCopy()) {
569 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
570
571 if (ac->is_arraycopy_validated() ||
572 ac->is_copyof_validated() ||
573 ac->is_copyofrange_validated()) {
574 Node* ld_addp = in(MemNode::Address);
575 if (ld_addp->is_AddP()) {
576 Node* ld_base = ld_addp->in(AddPNode::Address);
577 Node* ld_offs = ld_addp->in(AddPNode::Offset);
578
579 Node* dest = ac->in(ArrayCopyNode::Dest);
580
581 if (dest == ld_base) {
582 const TypeXTypeLong *ld_offs_t = phase->type(ld_offs)->isa_intptr_tisa_long();
583 if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
584 return ac;
585 }
586 if (!can_see_stored_value) {
587 mem = ac->in(TypeFunc::Memory);
588 return ac;
589 }
590 }
591 }
592 }
593 }
594 return NULL__null;
595}
596
597ArrayCopyNode* MemNode::find_array_copy_clone(PhaseTransform* phase, Node* ld_alloc, Node* mem) const {
598 if (mem->is_Proj() && mem->in(0) != NULL__null && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
599 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
600 if (ld_alloc != NULL__null) {
601 // Check if there is an array copy for a clone
602 Node* mb = mem->in(0);
603 ArrayCopyNode* ac = NULL__null;
604 if (mb->in(0) != NULL__null && mb->in(0)->is_Proj() &&
605 mb->in(0)->in(0) != NULL__null && mb->in(0)->in(0)->is_ArrayCopy()) {
606 ac = mb->in(0)->in(0)->as_ArrayCopy();
607 } else {
608 // Step over GC barrier when ReduceInitialCardMarks is disabled
609 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
610 Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0));
611
612 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
613 ac = control_proj_ac->in(0)->as_ArrayCopy();
614 }
615 }
616
617 if (ac != NULL__null && ac->is_clonebasic()) {
618 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase);
619 if (alloc != NULL__null && alloc == ld_alloc) {
620 return ac;
621 }
622 }
623 }
624 }
625 return NULL__null;
626}
627
628// The logic for reordering loads and stores uses four steps:
629// (a) Walk carefully past stores and initializations which we
630// can prove are independent of this load.
631// (b) Observe that the next memory state makes an exact match
632// with self (load or store), and locate the relevant store.
633// (c) Ensure that, if we were to wire self directly to the store,
634// the optimizer would fold it up somehow.
635// (d) Do the rewiring, and return, depending on some other part of
636// the optimizer to fold up the load.
637// This routine handles steps (a) and (b). Steps (c) and (d) are
638// specific to loads and stores, so they are handled by the callers.
639// (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
640//
641Node* MemNode::find_previous_store(PhaseTransform* phase) {
642 Node* ctrl = in(MemNode::Control);
643 Node* adr = in(MemNode::Address);
644 intptr_t offset = 0;
645 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
646 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
647
648 if (offset == Type::OffsetBot)
649 return NULL__null; // cannot unalias unless there are precise offsets
650
651 const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
652 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
653
654 intptr_t size_in_bytes = memory_size();
655
656 Node* mem = in(MemNode::Memory); // start searching here...
657
658 int cnt = 50; // Cycle limiter
659 for (;;) { // While we can dance past unrelated stores...
660 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
661
662 Node* prev = mem;
663 if (mem->is_Store()) {
664 Node* st_adr = mem->in(MemNode::Address);
665 intptr_t st_offset = 0;
666 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
667 if (st_base == NULL__null)
668 break; // inscrutable pointer
669
670 // For raw accesses it's not enough to prove that constant offsets don't intersect.
671 // We need the bases to be the equal in order for the offset check to make sense.
672 if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
673 break;
674 }
675
676 if (st_offset != offset && st_offset != Type::OffsetBot) {
677 const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
678 assert(mem->as_Store()->memory_size() <= MAX_STORE, "")do { if (!(mem->as_Store()->memory_size() <= MAX_STORE
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 678, "assert(" "mem->as_Store()->memory_size() <= MAX_STORE"
") failed", ""); ::breakpoint(); } } while (0)
;
679 if (st_offset >= offset + size_in_bytes ||
680 st_offset <= offset - MAX_STORE ||
681 st_offset <= offset - mem->as_Store()->memory_size()) {
682 // Success: The offsets are provably independent.
683 // (You may ask, why not just test st_offset != offset and be done?
684 // The answer is that stores of different sizes can co-exist
685 // in the same sequence of RawMem effects. We sometimes initialize
686 // a whole 'tile' of array elements with a single jint or jlong.)
687 mem = mem->in(MemNode::Memory);
688 continue; // (a) advance through independent store memory
689 }
690 }
691 if (st_base != base &&
692 detect_ptr_independence(base, alloc,
693 st_base,
694 AllocateNode::Ideal_allocation(st_base, phase),
695 phase)) {
696 // Success: The bases are provably independent.
697 mem = mem->in(MemNode::Memory);
698 continue; // (a) advance through independent store memory
699 }
700
701 // (b) At this point, if the bases or offsets do not agree, we lose,
702 // since we have not managed to prove 'this' and 'mem' independent.
703 if (st_base == base && st_offset == offset) {
704 return mem; // let caller handle steps (c), (d)
705 }
706
707 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
708 InitializeNode* st_init = mem->in(0)->as_Initialize();
709 AllocateNode* st_alloc = st_init->allocation();
710 if (st_alloc == NULL__null)
711 break; // something degenerated
712 bool known_identical = false;
713 bool known_independent = false;
714 if (alloc == st_alloc)
715 known_identical = true;
716 else if (alloc != NULL__null)
717 known_independent = true;
718 else if (all_controls_dominate(this, st_alloc))
719 known_independent = true;
720
721 if (known_independent) {
722 // The bases are provably independent: Either they are
723 // manifestly distinct allocations, or else the control
724 // of this load dominates the store's allocation.
725 int alias_idx = phase->C->get_alias_index(adr_type());
726 if (alias_idx == Compile::AliasIdxRaw) {
727 mem = st_alloc->in(TypeFunc::Memory);
728 } else {
729 mem = st_init->memory(alias_idx);
730 }
731 continue; // (a) advance through independent store memory
732 }
733
734 // (b) at this point, if we are not looking at a store initializing
735 // the same allocation we are loading from, we lose.
736 if (known_identical) {
737 // From caller, can_see_stored_value will consult find_captured_store.
738 return mem; // let caller handle steps (c), (d)
739 }
740
741 } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL__null) {
742 if (prev != mem) {
743 // Found an arraycopy but it doesn't affect that load
744 continue;
745 }
746 // Found an arraycopy that may affect that load
747 return mem;
748 } else if (addr_t != NULL__null && addr_t->is_known_instance_field()) {
749 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
750 if (mem->is_Proj() && mem->in(0)->is_Call()) {
751 // ArrayCopyNodes processed here as well.
752 CallNode *call = mem->in(0)->as_Call();
753 if (!call->may_modify(addr_t, phase)) {
754 mem = call->in(TypeFunc::Memory);
755 continue; // (a) advance through independent call memory
756 }
757 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
758 ArrayCopyNode* ac = NULL__null;
759 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
760 break;
761 }
762 mem = mem->in(0)->in(TypeFunc::Memory);
763 continue; // (a) advance through independent MemBar memory
764 } else if (mem->is_ClearArray()) {
765 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
766 // (the call updated 'mem' value)
767 continue; // (a) advance through independent allocation memory
768 } else {
769 // Can not bypass initialization of the instance
770 // we are looking for.
771 return mem;
772 }
773 } else if (mem->is_MergeMem()) {
774 int alias_idx = phase->C->get_alias_index(adr_type());
775 mem = mem->as_MergeMem()->memory_at(alias_idx);
776 continue; // (a) advance through independent MergeMem memory
777 }
778 }
779
780 // Unless there is an explicit 'continue', we must bail out here,
781 // because 'mem' is an inscrutable memory state (e.g., a call).
782 break;
783 }
784
785 return NULL__null; // bail out
786}
787
788//----------------------calculate_adr_type-------------------------------------
789// Helper function. Notices when the given type of address hits top or bottom.
790// Also, asserts a cross-check of the type against the expected address type.
791const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
792 if (t == Type::TOP) return NULL__null; // does not touch memory any more?
793 #ifdef ASSERT1
794 if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = NULL__null;
795 #endif
796 const TypePtr* tp = t->isa_ptr();
797 if (tp == NULL__null) {
798 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide")do { if (!(cross_check == __null || cross_check == TypePtr::BOTTOM
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 798, "assert(" "cross_check == __null || cross_check == TypePtr::BOTTOM"
") failed", "expected memory type must be wide"); ::breakpoint
(); } } while (0)
;
799 return TypePtr::BOTTOM; // touches lots of memory
800 } else {
801 #ifdef ASSERT1
802 // %%%% [phh] We don't check the alias index if cross_check is
803 // TypeRawPtr::BOTTOM. Needs to be investigated.
804 if (cross_check != NULL__null &&
805 cross_check != TypePtr::BOTTOM &&
806 cross_check != TypeRawPtr::BOTTOM) {
807 // Recheck the alias index, to see if it has changed (due to a bug).
808 Compile* C = Compile::current();
809 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),do { if (!(C->get_alias_index(cross_check) == C->get_alias_index
(tp))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 810, "assert(" "C->get_alias_index(cross_check) == C->get_alias_index(tp)"
") failed", "must stay in the original alias category"); ::breakpoint
(); } } while (0)
810 "must stay in the original alias category")do { if (!(C->get_alias_index(cross_check) == C->get_alias_index
(tp))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 810, "assert(" "C->get_alias_index(cross_check) == C->get_alias_index(tp)"
") failed", "must stay in the original alias category"); ::breakpoint
(); } } while (0)
;
811 // The type of the address must be contained in the adr_type,
812 // disregarding "null"-ness.
813 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
814 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
815 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),do { if (!(cross_check->meet(tp_notnull) == cross_check->
remove_speculative())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 816, "assert(" "cross_check->meet(tp_notnull) == cross_check->remove_speculative()"
") failed", "real address must not escape from expected memory type"
); ::breakpoint(); } } while (0)
816 "real address must not escape from expected memory type")do { if (!(cross_check->meet(tp_notnull) == cross_check->
remove_speculative())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 816, "assert(" "cross_check->meet(tp_notnull) == cross_check->remove_speculative()"
") failed", "real address must not escape from expected memory type"
); ::breakpoint(); } } while (0)
;
817 }
818 #endif
819 return tp;
820 }
821}
822
823//=============================================================================
824// Should LoadNode::Ideal() attempt to remove control edges?
825bool LoadNode::can_remove_control() const {
826 return true;
827}
828uint LoadNode::size_of() const { return sizeof(*this); }
829bool LoadNode::cmp( const Node &n ) const
830{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
831const Type *LoadNode::bottom_type() const { return _type; }
832uint LoadNode::ideal_reg() const {
833 return _type->ideal_reg();
834}
835
836#ifndef PRODUCT
837void LoadNode::dump_spec(outputStream *st) const {
838 MemNode::dump_spec(st);
839 if( !Verbose && !WizardMode ) {
840 // standard dump does this in Verbose and WizardMode
841 st->print(" #"); _type->dump_on(st);
842 }
843 if (!depends_only_on_test()) {
844 st->print(" (does not depend only on test)");
845 }
846}
847#endif
848
849#ifdef ASSERT1
850//----------------------------is_immutable_value-------------------------------
851// Helper function to allow a raw load without control edge for some cases
852bool LoadNode::is_immutable_value(Node* adr) {
853 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
854 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
855 (adr->in(AddPNode::Offset)->find_intptr_t_confind_long_con(-1) ==
856 in_bytes(JavaThread::osthread_offset()) ||
857 adr->in(AddPNode::Offset)->find_intptr_t_confind_long_con(-1) ==
858 in_bytes(JavaThread::threadObj_offset())));
859}
860#endif
861
862//----------------------------LoadNode::make-----------------------------------
863// Polymorphic factory method:
864Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
865 ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
866 Compile* C = gvn.C;
867
868 // sanity check the alias category against the created node type
869 assert(!(adr_type->isa_oopptr() &&do { if (!(!(adr_type->isa_oopptr() && adr_type->
offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())"
") failed", "use LoadKlassNode instead"); ::breakpoint(); } }
while (0)
870 adr_type->offset() == oopDesc::klass_offset_in_bytes()),do { if (!(!(adr_type->isa_oopptr() && adr_type->
offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())"
") failed", "use LoadKlassNode instead"); ::breakpoint(); } }
while (0)
871 "use LoadKlassNode instead")do { if (!(!(adr_type->isa_oopptr() && adr_type->
offset() == oopDesc::klass_offset_in_bytes()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 871, "assert(" "!(adr_type->isa_oopptr() && adr_type->offset() == oopDesc::klass_offset_in_bytes())"
") failed", "use LoadKlassNode instead"); ::breakpoint(); } }
while (0)
;
872 assert(!(adr_type->isa_aryptr() &&do { if (!(!(adr_type->isa_aryptr() && adr_type->
offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())"
") failed", "use LoadRangeNode instead"); ::breakpoint(); } }
while (0)
873 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),do { if (!(!(adr_type->isa_aryptr() && adr_type->
offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())"
") failed", "use LoadRangeNode instead"); ::breakpoint(); } }
while (0)
874 "use LoadRangeNode instead")do { if (!(!(adr_type->isa_aryptr() && adr_type->
offset() == arrayOopDesc::length_offset_in_bytes()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 874, "assert(" "!(adr_type->isa_aryptr() && adr_type->offset() == arrayOopDesc::length_offset_in_bytes())"
") failed", "use LoadRangeNode instead"); ::breakpoint(); } }
while (0)
;
875 // Check control edge of raw loads
876 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||do { if (!(ctl != __null || C->get_alias_index(adr_type) !=
Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value
(adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)"
") failed", "raw memory operations should have control edge"
); ::breakpoint(); } } while (0)
877 // oop will be recorded in oop map if load crosses safepointdo { if (!(ctl != __null || C->get_alias_index(adr_type) !=
Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value
(adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)"
") failed", "raw memory operations should have control edge"
); ::breakpoint(); } } while (0)
878 rt->isa_oopptr() || is_immutable_value(adr),do { if (!(ctl != __null || C->get_alias_index(adr_type) !=
Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value
(adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)"
") failed", "raw memory operations should have control edge"
); ::breakpoint(); } } while (0)
879 "raw memory operations should have control edge")do { if (!(ctl != __null || C->get_alias_index(adr_type) !=
Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value
(adr))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 879, "assert(" "ctl != __null || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || rt->isa_oopptr() || is_immutable_value(adr)"
") failed", "raw memory operations should have control edge"
); ::breakpoint(); } } while (0)
;
880 LoadNode* load = NULL__null;
881 switch (bt) {
882 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break;
883 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break;
884 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break;
885 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break;
886 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break;
887 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
888 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break;
889 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break;
890 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break;
891 case T_OBJECT:
892#ifdef _LP641
893 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
894 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
895 } else
896#endif
897 {
898 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop")do { if (!(!adr->bottom_type()->is_ptr_to_narrowoop() &&
!adr->bottom_type()->is_ptr_to_narrowklass())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 898, "assert(" "!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass()"
") failed", "should have got back a narrow oop"); ::breakpoint
(); } } while (0)
;
899 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
900 }
901 break;
902 default:
903 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 903); ::breakpoint(); } while (0)
;
904 break;
905 }
906 assert(load != NULL, "LoadNode should have been created")do { if (!(load != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 906, "assert(" "load != __null" ") failed", "LoadNode should have been created"
); ::breakpoint(); } } while (0)
;
907 if (unaligned) {
908 load->set_unaligned_access();
909 }
910 if (mismatched) {
911 load->set_mismatched_access();
912 }
913 if (unsafe) {
914 load->set_unsafe_access();
915 }
916 load->set_barrier_data(barrier_data);
917 if (load->Opcode() == Op_LoadN) {
918 Node* ld = gvn.transform(load);
919 return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
920 }
921
922 return load;
923}
924
925LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
926 ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
927 bool require_atomic = true;
928 LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
929 if (unaligned) {
930 load->set_unaligned_access();
931 }
932 if (mismatched) {
933 load->set_mismatched_access();
934 }
935 if (unsafe) {
936 load->set_unsafe_access();
937 }
938 load->set_barrier_data(barrier_data);
939 return load;
940}
941
942LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
943 ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) {
944 bool require_atomic = true;
945 LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
946 if (unaligned) {
947 load->set_unaligned_access();
948 }
949 if (mismatched) {
950 load->set_mismatched_access();
951 }
952 if (unsafe) {
953 load->set_unsafe_access();
954 }
955 load->set_barrier_data(barrier_data);
956 return load;
957}
958
959
960
961//------------------------------hash-------------------------------------------
962uint LoadNode::hash() const {
963 // unroll addition of interesting fields
964 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
965}
966
967static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
968 if ((atp != NULL__null) && (atp->index() >= Compile::AliasIdxRaw)) {
969 bool non_volatile = (atp->field() != NULL__null) && !atp->field()->is_volatile();
970 bool is_stable_ary = FoldStableValues &&
971 (tp != NULL__null) && (tp->isa_aryptr() != NULL__null) &&
972 tp->isa_aryptr()->is_stable();
973
974 return (eliminate_boxing && non_volatile) || is_stable_ary;
975 }
976
977 return false;
978}
979
980// Is the value loaded previously stored by an arraycopy? If so return
981// a load node that reads from the source array so we may be able to
982// optimize out the ArrayCopy node later.
983Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
984 Node* ld_adr = in(MemNode::Address);
985 intptr_t ld_off = 0;
986 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
987 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
988 if (ac != NULL__null) {
989 assert(ac->is_ArrayCopy(), "what kind of node can this be?")do { if (!(ac->is_ArrayCopy())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 989, "assert(" "ac->is_ArrayCopy()" ") failed", "what kind of node can this be?"
); ::breakpoint(); } } while (0)
;
990
991 Node* mem = ac->in(TypeFunc::Memory);
992 Node* ctl = ac->in(0);
993 Node* src = ac->in(ArrayCopyNode::Src);
994
995 if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
996 return NULL__null;
997 }
998
999 LoadNode* ld = clone()->as_Load();
1000 Node* addp = in(MemNode::Address)->clone();
1001 if (ac->as_ArrayCopy()->is_clonebasic()) {
1002 assert(ld_alloc != NULL, "need an alloc")do { if (!(ld_alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1002, "assert(" "ld_alloc != __null" ") failed", "need an alloc"
); ::breakpoint(); } } while (0)
;
1003 assert(addp->is_AddP(), "address must be addp")do { if (!(addp->is_AddP())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1003, "assert(" "addp->is_AddP()" ") failed", "address must be addp"
); ::breakpoint(); } } while (0)
;
1004 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1005 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern")do { if (!(bs->step_over_gc_barrier(addp->in(AddPNode::
Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode
::Dest)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1005, "assert(" "bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest))"
") failed", "strange pattern"); ::breakpoint(); } } while (0
)
;
1006 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern")do { if (!(bs->step_over_gc_barrier(addp->in(AddPNode::
Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode
::Dest)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1006, "assert(" "bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest))"
") failed", "strange pattern"); ::breakpoint(); } } while (0
)
;
1007 addp->set_req(AddPNode::Base, src);
1008 addp->set_req(AddPNode::Address, src);
1009 } else {
1010 assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated()
|| ac->as_ArrayCopy()->is_copyof_validated() || ac->
as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()"
") failed", "only supported cases"); ::breakpoint(); } } while
(0)
1011 ac->as_ArrayCopy()->is_copyof_validated() ||do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated()
|| ac->as_ArrayCopy()->is_copyof_validated() || ac->
as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()"
") failed", "only supported cases"); ::breakpoint(); } } while
(0)
1012 ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases")do { if (!(ac->as_ArrayCopy()->is_arraycopy_validated()
|| ac->as_ArrayCopy()->is_copyof_validated() || ac->
as_ArrayCopy()->is_copyofrange_validated())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1012, "assert(" "ac->as_ArrayCopy()->is_arraycopy_validated() || ac->as_ArrayCopy()->is_copyof_validated() || ac->as_ArrayCopy()->is_copyofrange_validated()"
") failed", "only supported cases"); ::breakpoint(); } } while
(0)
;
1013 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be")do { if (!(addp->in(AddPNode::Base) == addp->in(AddPNode
::Address))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1013, "assert(" "addp->in(AddPNode::Base) == addp->in(AddPNode::Address)"
") failed", "should be"); ::breakpoint(); } } while (0)
;
1014 addp->set_req(AddPNode::Base, src);
1015 addp->set_req(AddPNode::Address, src);
1016
1017 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
1018 BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type();
1019 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
1020 uint shift = exact_log2(type2aelembytes(ary_elem));
1021
1022 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
1023#ifdef _LP641
1024 diff = phase->transform(new ConvI2LNode(diff));
1025#endif
1026 diff = phase->transform(new LShiftXNodeLShiftLNode(diff, phase->intcon(shift)));
1027
1028 Node* offset = phase->transform(new AddXNodeAddLNode(addp->in(AddPNode::Offset), diff));
1029 addp->set_req(AddPNode::Offset, offset);
1030 }
1031 addp = phase->transform(addp);
1032#ifdef ASSERT1
1033 const TypePtr* adr_type = phase->type(addp)->is_ptr();
1034 ld->_adr_type = adr_type;
1035#endif
1036 ld->set_req(MemNode::Address, addp);
1037 ld->set_req(0, ctl);
1038 ld->set_req(MemNode::Memory, mem);
1039 // load depends on the tests that validate the arraycopy
1040 ld->_control_dependency = UnknownControl;
1041 return ld;
1042 }
1043 return NULL__null;
1044}
1045
1046
1047//---------------------------can_see_stored_value------------------------------
1048// This routine exists to make sure this set of tests is done the same
1049// everywhere. We need to make a coordinated change: first LoadNode::Ideal
1050// will change the graph shape in a way which makes memory alive twice at the
1051// same time (uses the Oracle model of aliasing), then some
1052// LoadXNode::Identity will fold things back to the equivalence-class model
1053// of aliasing.
1054Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
1055 Node* ld_adr = in(MemNode::Address);
1056 intptr_t ld_off = 0;
1057 Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
1058 Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase);
1059 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
1060 Compile::AliasType* atp = (tp != NULL__null) ? phase->C->alias_type(tp) : NULL__null;
1061 // This is more general than load from boxing objects.
1062 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
1063 uint alias_idx = atp->index();
1064 Node* result = NULL__null;
1065 Node* current = st;
1066 // Skip through chains of MemBarNodes checking the MergeMems for
1067 // new states for the slice of this load. Stop once any other
1068 // kind of node is encountered. Loads from final memory can skip
1069 // through any kind of MemBar but normal loads shouldn't skip
1070 // through MemBarAcquire since the could allow them to move out of
1071 // a synchronized region. It is not safe to step over MemBarCPUOrder,
1072 // because alias info above them may be inaccurate (e.g., due to
1073 // mixed/mismatched unsafe accesses).
1074 bool is_final_mem = !atp->is_rewritable();
1075 while (current->is_Proj()) {
1076 int opc = current->in(0)->Opcode();
1077 if ((is_final_mem && (opc == Op_MemBarAcquire ||
1078 opc == Op_MemBarAcquireLock ||
1079 opc == Op_LoadFence)) ||
1080 opc == Op_MemBarRelease ||
1081 opc == Op_StoreFence ||
1082 opc == Op_MemBarReleaseLock ||
1083 opc == Op_MemBarStoreStore ||
1084 opc == Op_StoreStoreFence) {
1085 Node* mem = current->in(0)->in(TypeFunc::Memory);
1086 if (mem->is_MergeMem()) {
1087 MergeMemNode* merge = mem->as_MergeMem();
1088 Node* new_st = merge->memory_at(alias_idx);
1089 if (new_st == merge->base_memory()) {
1090 // Keep searching
1091 current = new_st;
1092 continue;
1093 }
1094 // Save the new memory state for the slice and fall through
1095 // to exit.
1096 result = new_st;
1097 }
1098 }
1099 break;
1100 }
1101 if (result != NULL__null) {
1102 st = result;
1103 }
1104 }
1105
1106 // Loop around twice in the case Load -> Initialize -> Store.
1107 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1108 for (int trip = 0; trip <= 1; trip++) {
1109
1110 if (st->is_Store()) {
1111 Node* st_adr = st->in(MemNode::Address);
1112 if (st_adr != ld_adr) {
1113 // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1114 intptr_t st_off = 0;
1115 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1116 if (ld_base == NULL__null) return NULL__null;
1117 if (st_base == NULL__null) return NULL__null;
1118 if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return NULL__null;
1119 if (ld_off != st_off) return NULL__null;
1120 if (ld_off == Type::OffsetBot) return NULL__null;
1121 // Same base, same offset.
1122 // Possible improvement for arrays: check index value instead of absolute offset.
1123
1124 // At this point we have proven something like this setup:
1125 // B = << base >>
1126 // L = LoadQ(AddP(Check/CastPP(B), #Off))
1127 // S = StoreQ(AddP( B , #Off), V)
1128 // (Actually, we haven't yet proven the Q's are the same.)
1129 // In other words, we are loading from a casted version of
1130 // the same pointer-and-offset that we stored to.
1131 // Casted version may carry a dependency and it is respected.
1132 // Thus, we are able to replace L by V.
1133 }
1134 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1135 if (store_Opcode() != st->Opcode()) {
1136 return NULL__null;
1137 }
1138 // LoadVector/StoreVector needs additional check to ensure the types match.
1139 if (st->is_StoreVector()) {
1140 const TypeVect* in_vt = st->as_StoreVector()->vect_type();
1141 const TypeVect* out_vt = as_LoadVector()->vect_type();
1142 if (in_vt != out_vt) {
1143 return NULL__null;
1144 }
1145 }
1146 return st->in(MemNode::ValueIn);
1147 }
1148
1149 // A load from a freshly-created object always returns zero.
1150 // (This can happen after LoadNode::Ideal resets the load's memory input
1151 // to find_captured_store, which returned InitializeNode::zero_memory.)
1152 if (st->is_Proj() && st->in(0)->is_Allocate() &&
1153 (st->in(0) == ld_alloc) &&
1154 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1155 // return a zero value for the load's basic type
1156 // (This is one of the few places where a generic PhaseTransform
1157 // can create new nodes. Think of it as lazily manifesting
1158 // virtually pre-existing constants.)
1159 if (memory_type() != T_VOID) {
1160 if (ReduceBulkZeroing || find_array_copy_clone(phase, ld_alloc, in(MemNode::Memory)) == NULL__null) {
1161 // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an
1162 // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done
1163 // by the ArrayCopyNode.
1164 return phase->zerocon(memory_type());
1165 }
1166 } else {
1167 // TODO: materialize all-zero vector constant
1168 assert(!isa_Load() || as_Load()->type()->isa_vect(), "")do { if (!(!isa_Load() || as_Load()->type()->isa_vect()
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1168, "assert(" "!isa_Load() || as_Load()->type()->isa_vect()"
") failed", ""); ::breakpoint(); } } while (0)
;
1169 }
1170 }
1171
1172 // A load from an initialization barrier can match a captured store.
1173 if (st->is_Proj() && st->in(0)->is_Initialize()) {
1174 InitializeNode* init = st->in(0)->as_Initialize();
1175 AllocateNode* alloc = init->allocation();
1176 if ((alloc != NULL__null) && (alloc == ld_alloc)) {
1177 // examine a captured store value
1178 st = init->find_captured_store(ld_off, memory_size(), phase);
1179 if (st != NULL__null) {
1180 continue; // take one more trip around
1181 }
1182 }
1183 }
1184
1185 // Load boxed value from result of valueOf() call is input parameter.
1186 if (this->is_Load() && ld_adr->is_AddP() &&
1187 (tp != NULL__null) && tp->is_ptr_to_boxed_value()) {
1188 intptr_t ignore = 0;
1189 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1190 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1191 base = bs->step_over_gc_barrier(base);
1192 if (base != NULL__null && base->is_Proj() &&
1193 base->as_Proj()->_con == TypeFunc::Parms &&
1194 base->in(0)->is_CallStaticJava() &&
1195 base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1196 return base->in(0)->in(TypeFunc::Parms);
1197 }
1198 }
1199
1200 break;
1201 }
1202
1203 return NULL__null;
1204}
1205
1206//----------------------is_instance_field_load_with_local_phi------------------
1207bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1208 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1209 in(Address)->is_AddP() ) {
1210 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1211 // Only instances and boxed values.
1212 if( t_oop != NULL__null &&
1213 (t_oop->is_ptr_to_boxed_value() ||
1214 t_oop->is_known_instance_field()) &&
1215 t_oop->offset() != Type::OffsetBot &&
1216 t_oop->offset() != Type::OffsetTop) {
1217 return true;
1218 }
1219 }
1220 return false;
1221}
1222
1223//------------------------------Identity---------------------------------------
1224// Loads are identity if previous store is to same address
1225Node* LoadNode::Identity(PhaseGVN* phase) {
1226 // If the previous store-maker is the right kind of Store, and the store is
1227 // to the same address, then we are equal to the value stored.
1228 Node* mem = in(Memory);
1229 Node* value = can_see_stored_value(mem, phase);
1230 if( value ) {
1231 // byte, short & char stores truncate naturally.
1232 // A load has to load the truncated value which requires
1233 // some sort of masking operation and that requires an
1234 // Ideal call instead of an Identity call.
1235 if (memory_size() < BytesPerInt) {
1236 // If the input to the store does not fit with the load's result type,
1237 // it must be truncated via an Ideal call.
1238 if (!phase->type(value)->higher_equal(phase->type(this)))
1239 return this;
1240 }
1241 // (This works even when value is a Con, but LoadNode::Value
1242 // usually runs first, producing the singleton type of the Con.)
1243 return value;
1244 }
1245
1246 // Search for an existing data phi which was generated before for the same
1247 // instance's field to avoid infinite generation of phis in a loop.
1248 Node *region = mem->in(0);
1249 if (is_instance_field_load_with_local_phi(region)) {
1250 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1251 int this_index = phase->C->get_alias_index(addr_t);
1252 int this_offset = addr_t->offset();
1253 int this_iid = addr_t->instance_id();
1254 if (!addr_t->is_known_instance() &&
1255 addr_t->is_ptr_to_boxed_value()) {
1256 // Use _idx of address base (could be Phi node) for boxed values.
1257 intptr_t ignore = 0;
1258 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1259 if (base == NULL__null) {
1260 return this;
1261 }
1262 this_iid = base->_idx;
1263 }
1264 const Type* this_type = bottom_type();
1265 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1266 Node* phi = region->fast_out(i);
1267 if (phi->is_Phi() && phi != mem &&
1268 phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1269 return phi;
1270 }
1271 }
1272 }
1273
1274 return this;
1275}
1276
1277// Construct an equivalent unsigned load.
1278Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1279 BasicType bt = T_ILLEGAL;
1280 const Type* rt = NULL__null;
1281 switch (Opcode()) {
1282 case Op_LoadUB: return this;
1283 case Op_LoadUS: return this;
1284 case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1285 case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break;
1286 default:
1287 assert(false, "no unsigned variant: %s", Name())do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1287, "assert(" "false" ") failed", "no unsigned variant: %s"
, Name()); ::breakpoint(); } } while (0)
;
1288 return NULL__null;
1289 }
1290 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1291 raw_adr_type(), rt, bt, _mo, _control_dependency,
1292 is_unaligned_access(), is_mismatched_access());
1293}
1294
1295// Construct an equivalent signed load.
1296Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1297 BasicType bt = T_ILLEGAL;
1298 const Type* rt = NULL__null;
1299 switch (Opcode()) {
1300 case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break;
1301 case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1302 case Op_LoadB: // fall through
1303 case Op_LoadS: // fall through
1304 case Op_LoadI: // fall through
1305 case Op_LoadL: return this;
1306 default:
1307 assert(false, "no signed variant: %s", Name())do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1307, "assert(" "false" ") failed", "no signed variant: %s"
, Name()); ::breakpoint(); } } while (0)
;
1308 return NULL__null;
1309 }
1310 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1311 raw_adr_type(), rt, bt, _mo, _control_dependency,
1312 is_unaligned_access(), is_mismatched_access());
1313}
1314
1315bool LoadNode::has_reinterpret_variant(const Type* rt) {
1316 BasicType bt = rt->basic_type();
1317 switch (Opcode()) {
1318 case Op_LoadI: return (bt == T_FLOAT);
1319 case Op_LoadL: return (bt == T_DOUBLE);
1320 case Op_LoadF: return (bt == T_INT);
1321 case Op_LoadD: return (bt == T_LONG);
1322
1323 default: return false;
1324 }
1325}
1326
1327Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) {
1328 BasicType bt = rt->basic_type();
1329 assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt))do { if (!(has_reinterpret_variant(rt))) { (*g_assert_poison)
= 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1329, "assert(" "has_reinterpret_variant(rt)" ") failed", "no reinterpret variant: %s %s"
, Name(), type2name(bt)); ::breakpoint(); } } while (0)
;
1330 bool is_mismatched = is_mismatched_access();
1331 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1332 if (raw_type == NULL__null) {
1333 is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1334 }
1335 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1336 raw_adr_type(), rt, bt, _mo, _control_dependency,
1337 is_unaligned_access(), is_mismatched);
1338}
1339
1340bool StoreNode::has_reinterpret_variant(const Type* vt) {
1341 BasicType bt = vt->basic_type();
1342 switch (Opcode()) {
1343 case Op_StoreI: return (bt == T_FLOAT);
1344 case Op_StoreL: return (bt == T_DOUBLE);
1345 case Op_StoreF: return (bt == T_INT);
1346 case Op_StoreD: return (bt == T_LONG);
1347
1348 default: return false;
1349 }
1350}
1351
1352Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) {
1353 BasicType bt = vt->basic_type();
1354 assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt))do { if (!(has_reinterpret_variant(vt))) { (*g_assert_poison)
= 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1354, "assert(" "has_reinterpret_variant(vt)" ") failed", "no reinterpret variant: %s %s"
, Name(), type2name(bt)); ::breakpoint(); } } while (0)
;
1355 StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), raw_adr_type(), val, bt, _mo);
1356
1357 bool is_mismatched = is_mismatched_access();
1358 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr();
1359 if (raw_type == NULL__null) {
1360 is_mismatched = true; // conservatively match all non-raw accesses as mismatched
1361 }
1362 if (is_mismatched) {
1363 st->set_mismatched_access();
1364 }
1365 return st;
1366}
1367
1368// We're loading from an object which has autobox behaviour.
1369// If this object is result of a valueOf call we'll have a phi
1370// merging a newly allocated object and a load from the cache.
1371// We want to replace this load with the original incoming
1372// argument to the valueOf call.
1373Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) {
1374 assert(igvn->C->eliminate_boxing(), "sanity")do { if (!(igvn->C->eliminate_boxing())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1374, "assert(" "igvn->C->eliminate_boxing()" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
1375 intptr_t ignore = 0;
1376 Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore);
1377 if ((base == NULL__null) || base->is_Phi()) {
1378 // Push the loads from the phi that comes from valueOf up
1379 // through it to allow elimination of the loads and the recovery
1380 // of the original value. It is done in split_through_phi().
1381 return NULL__null;
1382 } else if (base->is_Load() ||
1383 (base->is_DecodeN() && base->in(1)->is_Load())) {
1384 // Eliminate the load of boxed value for integer types from the cache
1385 // array by deriving the value from the index into the array.
1386 // Capture the offset of the load and then reverse the computation.
1387
1388 // Get LoadN node which loads a boxing object from 'cache' array.
1389 if (base->is_DecodeN()) {
1390 base = base->in(1);
1391 }
1392 if (!base->in(Address)->is_AddP()) {
1393 return NULL__null; // Complex address
1394 }
1395 AddPNode* address = base->in(Address)->as_AddP();
1396 Node* cache_base = address->in(AddPNode::Base);
1397 if ((cache_base != NULL__null) && cache_base->is_DecodeN()) {
1398 // Get ConP node which is static 'cache' field.
1399 cache_base = cache_base->in(1);
1400 }
1401 if ((cache_base != NULL__null) && cache_base->is_Con()) {
1402 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1403 if ((base_type != NULL__null) && base_type->is_autobox_cache()) {
1404 Node* elements[4];
1405 int shift = exact_log2(type2aelembytes(T_OBJECT));
1406 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)sizeof(array_size_impl(elements)));
1407 if (count > 0 && elements[0]->is_Con() &&
1408 (count == 1 ||
1409 (count == 2 && elements[1]->Opcode() == Op_LShiftXOp_LShiftL &&
1410 elements[1]->in(2) == igvn->intcon(shift)))) {
1411 ciObjArray* array = base_type->const_oop()->as_obj_array();
1412 // Fetch the box object cache[0] at the base of the array and get its value
1413 ciInstance* box = array->obj_at(0)->as_instance();
1414 ciInstanceKlass* ik = box->klass()->as_instance_klass();
1415 assert(ik->is_box_klass(), "sanity")do { if (!(ik->is_box_klass())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1415, "assert(" "ik->is_box_klass()" ") failed", "sanity"
); ::breakpoint(); } } while (0)
;
1416 assert(ik->nof_nonstatic_fields() == 1, "change following code")do { if (!(ik->nof_nonstatic_fields() == 1)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1416, "assert(" "ik->nof_nonstatic_fields() == 1" ") failed"
, "change following code"); ::breakpoint(); } } while (0)
;
1417 if (ik->nof_nonstatic_fields() == 1) {
1418 // This should be true nonstatic_field_at requires calling
1419 // nof_nonstatic_fields so check it anyway
1420 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1421 BasicType bt = c.basic_type();
1422 // Only integer types have boxing cache.
1423 assert(bt == T_BOOLEAN || bt == T_CHAR ||do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE ||
bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG"
") failed", "wrong type = %s", type2name(bt)); ::breakpoint(
); } } while (0)
1424 bt == T_BYTE || bt == T_SHORT ||do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE ||
bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG"
") failed", "wrong type = %s", type2name(bt)); ::breakpoint(
); } } while (0)
1425 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt))do { if (!(bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE ||
bt == T_SHORT || bt == T_INT || bt == T_LONG)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1425, "assert(" "bt == T_BOOLEAN || bt == T_CHAR || bt == T_BYTE || bt == T_SHORT || bt == T_INT || bt == T_LONG"
") failed", "wrong type = %s", type2name(bt)); ::breakpoint(
); } } while (0)
;
1426 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1427 if (cache_low != (int)cache_low) {
1428 return NULL__null; // should not happen since cache is array indexed by value
1429 }
1430 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1431 if (offset != (int)offset) {
1432 return NULL__null; // should not happen since cache is array indexed by value
1433 }
1434 // Add up all the offsets making of the address of the load
1435 Node* result = elements[0];
1436 for (int i = 1; i < count; i++) {
1437 result = igvn->transform(new AddXNodeAddLNode(result, elements[i]));
1438 }
1439 // Remove the constant offset from the address and then
1440 result = igvn->transform(new AddXNodeAddLNode(result, igvn->MakeConXlongcon(-(int)offset)));
1441 // remove the scaling of the offset to recover the original index.
1442 if (result->Opcode() == Op_LShiftXOp_LShiftL && result->in(2) == igvn->intcon(shift)) {
1443 // Peel the shift off directly but wrap it in a dummy node
1444 // since Ideal can't return existing nodes
1445 igvn->_worklist.push(result); // remove dead node later
1446 result = new RShiftXNodeRShiftLNode(result->in(1), igvn->intcon(0));
1447 } else if (result->is_Add() && result->in(2)->is_Con() &&
1448 result->in(1)->Opcode() == Op_LShiftXOp_LShiftL &&
1449 result->in(1)->in(2) == igvn->intcon(shift)) {
1450 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1451 // but for boxing cache access we know that X<<Z will not overflow
1452 // (there is range check) so we do this optimizatrion by hand here.
1453 igvn->_worklist.push(result); // remove dead node later
1454 Node* add_con = new RShiftXNodeRShiftLNode(result->in(2), igvn->intcon(shift));
1455 result = new AddXNodeAddLNode(result->in(1)->in(1), igvn->transform(add_con));
1456 } else {
1457 result = new RShiftXNodeRShiftLNode(result, igvn->intcon(shift));
1458 }
1459#ifdef _LP641
1460 if (bt != T_LONG) {
1461 result = new ConvL2INode(igvn->transform(result));
1462 }
1463#else
1464 if (bt == T_LONG) {
1465 result = new ConvI2LNode(igvn->transform(result));
1466 }
1467#endif
1468 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1469 // Need to preserve unboxing load type if it is unsigned.
1470 switch(this->Opcode()) {
1471 case Op_LoadUB:
1472 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF));
1473 break;
1474 case Op_LoadUS:
1475 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF));
1476 break;
1477 }
1478 return result;
1479 }
1480 }
1481 }
1482 }
1483 }
1484 return NULL__null;
1485}
1486
1487static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1488 Node* region = phi->in(0);
1489 if (region == NULL__null) {
1490 return false; // Wait stable graph
1491 }
1492 uint cnt = phi->req();
1493 for (uint i = 1; i < cnt; i++) {
1494 Node* rc = region->in(i);
1495 if (rc == NULL__null || phase->type(rc) == Type::TOP)
1496 return false; // Wait stable graph
1497 Node* in = phi->in(i);
1498 if (in == NULL__null || phase->type(in) == Type::TOP)
1499 return false; // Wait stable graph
1500 }
1501 return true;
1502}
1503//------------------------------split_through_phi------------------------------
1504// Split instance or boxed field load through Phi.
1505Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1506 Node* mem = in(Memory);
1507 Node* address = in(Address);
1508 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1509
1510 assert((t_oop != NULL) &&do { if (!((t_oop != __null) && (t_oop->is_known_instance_field
() || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())"
") failed", "invalide conditions"); ::breakpoint(); } } while
(0)
1511 (t_oop->is_known_instance_field() ||do { if (!((t_oop != __null) && (t_oop->is_known_instance_field
() || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())"
") failed", "invalide conditions"); ::breakpoint(); } } while
(0)
1512 t_oop->is_ptr_to_boxed_value()), "invalide conditions")do { if (!((t_oop != __null) && (t_oop->is_known_instance_field
() || t_oop->is_ptr_to_boxed_value()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1512, "assert(" "(t_oop != __null) && (t_oop->is_known_instance_field() || t_oop->is_ptr_to_boxed_value())"
") failed", "invalide conditions"); ::breakpoint(); } } while
(0)
;
1513
1514 Compile* C = phase->C;
1515 intptr_t ignore = 0;
1516 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1517 bool base_is_phi = (base != NULL__null) && base->is_Phi();
1518 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1519 (base != NULL__null) && (base == address->in(AddPNode::Base)) &&
1520 phase->type(base)->higher_equal(TypePtr::NOTNULL);
1521
1522 if (!((mem->is_Phi() || base_is_phi) &&
1523 (load_boxed_values || t_oop->is_known_instance_field()))) {
1524 return NULL__null; // memory is not Phi
1525 }
1526
1527 if (mem->is_Phi()) {
1528 if (!stable_phi(mem->as_Phi(), phase)) {
1529 return NULL__null; // Wait stable graph
1530 }
1531 uint cnt = mem->req();
1532 // Check for loop invariant memory.
1533 if (cnt == 3) {
1534 for (uint i = 1; i < cnt; i++) {
1535 Node* in = mem->in(i);
1536 Node* m = optimize_memory_chain(in, t_oop, this, phase);
1537 if (m == mem) {
1538 if (i == 1) {
1539 // if the first edge was a loop, check second edge too.
1540 // If both are replaceable - we are in an infinite loop
1541 Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase);
1542 if (n == mem) {
1543 break;
1544 }
1545 }
1546 set_req(Memory, mem->in(cnt - i));
1547 return this; // made change
1548 }
1549 }
1550 }
1551 }
1552 if (base_is_phi) {
1553 if (!stable_phi(base->as_Phi(), phase)) {
1554 return NULL__null; // Wait stable graph
1555 }
1556 uint cnt = base->req();
1557 // Check for loop invariant memory.
1558 if (cnt == 3) {
1559 for (uint i = 1; i < cnt; i++) {
1560 if (base->in(i) == base) {
1561 return NULL__null; // Wait stable graph
1562 }
1563 }
1564 }
1565 }
1566
1567 // Split through Phi (see original code in loopopts.cpp).
1568 assert(C->have_alias_type(t_oop), "instance should have alias type")do { if (!(C->have_alias_type(t_oop))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1568, "assert(" "C->have_alias_type(t_oop)" ") failed", "instance should have alias type"
); ::breakpoint(); } } while (0)
;
1569
1570 // Do nothing here if Identity will find a value
1571 // (to avoid infinite chain of value phis generation).
1572 if (this != Identity(phase)) {
1573 return NULL__null;
1574 }
1575
1576 // Select Region to split through.
1577 Node* region;
1578 if (!base_is_phi) {
1579 assert(mem->is_Phi(), "sanity")do { if (!(mem->is_Phi())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1579, "assert(" "mem->is_Phi()" ") failed", "sanity"); ::
breakpoint(); } } while (0)
;
1580 region = mem->in(0);
1581 // Skip if the region dominates some control edge of the address.
1582 if (!MemNode::all_controls_dominate(address, region))
1583 return NULL__null;
1584 } else if (!mem->is_Phi()) {
1585 assert(base_is_phi, "sanity")do { if (!(base_is_phi)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1585, "assert(" "base_is_phi" ") failed", "sanity"); ::breakpoint
(); } } while (0)
;
1586 region = base->in(0);
1587 // Skip if the region dominates some control edge of the memory.
1588 if (!MemNode::all_controls_dominate(mem, region))
1589 return NULL__null;
1590 } else if (base->in(0) != mem->in(0)) {
1591 assert(base_is_phi && mem->is_Phi(), "sanity")do { if (!(base_is_phi && mem->is_Phi())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1591, "assert(" "base_is_phi && mem->is_Phi()" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
1592 if (MemNode::all_controls_dominate(mem, base->in(0))) {
1593 region = base->in(0);
1594 } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1595 region = mem->in(0);
1596 } else {
1597 return NULL__null; // complex graph
1598 }
1599 } else {
1600 assert(base->in(0) == mem->in(0), "sanity")do { if (!(base->in(0) == mem->in(0))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1600, "assert(" "base->in(0) == mem->in(0)" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
1601 region = mem->in(0);
1602 }
1603
1604 const Type* this_type = this->bottom_type();
1605 int this_index = C->get_alias_index(t_oop);
1606 int this_offset = t_oop->offset();
1607 int this_iid = t_oop->instance_id();
1608 if (!t_oop->is_known_instance() && load_boxed_values) {
1609 // Use _idx of address base for boxed values.
1610 this_iid = base->_idx;
1611 }
1612 PhaseIterGVN* igvn = phase->is_IterGVN();
1613 Node* phi = new PhiNode(region, this_type, NULL__null, mem->_idx, this_iid, this_index, this_offset);
1614 for (uint i = 1; i < region->req(); i++) {
1615 Node* x;
1616 Node* the_clone = NULL__null;
1617 Node* in = region->in(i);
1618 if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl &&
1619 in != NULL__null && in->is_OuterStripMinedLoop()) {
1620 // No node should go in the outer strip mined loop
1621 in = in->in(LoopNode::EntryControl);
1622 }
1623 if (in == NULL__null || in == C->top()) {
1624 x = C->top(); // Dead path? Use a dead data op
1625 } else {
1626 x = this->clone(); // Else clone up the data op
1627 the_clone = x; // Remember for possible deletion.
1628 // Alter data node to use pre-phi inputs
1629 if (this->in(0) == region) {
1630 x->set_req(0, in);
1631 } else {
1632 x->set_req(0, NULL__null);
1633 }
1634 if (mem->is_Phi() && (mem->in(0) == region)) {
1635 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1636 }
1637 if (address->is_Phi() && address->in(0) == region) {
1638 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1639 }
1640 if (base_is_phi && (base->in(0) == region)) {
1641 Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1642 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1643 x->set_req(Address, adr_x);
1644 }
1645 }
1646 // Check for a 'win' on some paths
1647 const Type *t = x->Value(igvn);
1648
1649 bool singleton = t->singleton();
1650
1651 // See comments in PhaseIdealLoop::split_thru_phi().
1652 if (singleton && t == Type::TOP) {
1653 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1654 }
1655
1656 if (singleton) {
1657 x = igvn->makecon(t);
1658 } else {
1659 // We now call Identity to try to simplify the cloned node.
1660 // Note that some Identity methods call phase->type(this).
1661 // Make sure that the type array is big enough for
1662 // our new node, even though we may throw the node away.
1663 // (This tweaking with igvn only works because x is a new node.)
1664 igvn->set_type(x, t);
1665 // If x is a TypeNode, capture any more-precise type permanently into Node
1666 // otherwise it will be not updated during igvn->transform since
1667 // igvn->type(x) is set to x->Value() already.
1668 x->raise_bottom_type(t);
1669 Node* y = x->Identity(igvn);
1670 if (y != x) {
1671 x = y;
1672 } else {
1673 y = igvn->hash_find_insert(x);
1674 if (y) {
1675 x = y;
1676 } else {
1677 // Else x is a new node we are keeping
1678 // We do not need register_new_node_with_optimizer
1679 // because set_type has already been called.
1680 igvn->_worklist.push(x);
1681 }
1682 }
1683 }
1684 if (x != the_clone && the_clone != NULL__null) {
1685 igvn->remove_dead_node(the_clone);
1686 }
1687 phi->set_req(i, x);
1688 }
1689 // Record Phi
1690 igvn->register_new_node_with_optimizer(phi);
1691 return phi;
1692}
1693
1694AllocateNode* LoadNode::is_new_object_mark_load(PhaseGVN *phase) const {
1695 if (Opcode() == Op_LoadXOp_LoadL) {
1696 Node* address = in(MemNode::Address);
1697 AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase);
1698 Node* mem = in(MemNode::Memory);
1699 if (alloc != NULL__null && mem->is_Proj() &&
1700 mem->in(0) != NULL__null &&
1701 mem->in(0) == alloc->initialization() &&
1702 alloc->initialization()->proj_out_or_null(0) != NULL__null) {
1703 return alloc;
1704 }
1705 }
1706 return NULL__null;
1707}
1708
1709
1710//------------------------------Ideal------------------------------------------
1711// If the load is from Field memory and the pointer is non-null, it might be possible to
1712// zero out the control input.
1713// If the offset is constant and the base is an object allocation,
1714// try to hook me up to the exact initializing store.
1715Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1716 Node* p = MemNode::Ideal_common(phase, can_reshape);
1717 if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p;
1718
1719 Node* ctrl = in(MemNode::Control);
1720 Node* address = in(MemNode::Address);
1721 bool progress = false;
1722
1723 bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1724 phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1725
1726 // Skip up past a SafePoint control. Cannot do this for Stores because
1727 // pointer stores & cardmarks must stay on the same side of a SafePoint.
1728 if( ctrl != NULL__null && ctrl->Opcode() == Op_SafePoint &&
1729 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw &&
1730 !addr_mark &&
1731 (depends_only_on_test() || has_unknown_control_dependency())) {
1732 ctrl = ctrl->in(0);
1733 set_req(MemNode::Control,ctrl);
1734 progress = true;
1735 }
1736
1737 intptr_t ignore = 0;
1738 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1739 if (base != NULL__null
1740 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1741 // Check for useless control edge in some common special cases
1742 if (in(MemNode::Control) != NULL__null
1743 && can_remove_control()
1744 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1745 && all_controls_dominate(base, phase->C->start())) {
1746 // A method-invariant, non-null address (constant or 'this' argument).
1747 set_req(MemNode::Control, NULL__null);
1748 progress = true;
1749 }
1750 }
1751
1752 Node* mem = in(MemNode::Memory);
1753 const TypePtr *addr_t = phase->type(address)->isa_ptr();
1754
1755 if (can_reshape && (addr_t != NULL__null)) {
1756 // try to optimize our memory input
1757 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1758 if (opt_mem != mem) {
1759 set_req_X(MemNode::Memory, opt_mem, phase);
1760 if (phase->type( opt_mem ) == Type::TOP) return NULL__null;
1761 return this;
1762 }
1763 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1764 if ((t_oop != NULL__null) &&
1765 (t_oop->is_known_instance_field() ||
1766 t_oop->is_ptr_to_boxed_value())) {
1767 PhaseIterGVN *igvn = phase->is_IterGVN();
1768 assert(igvn != NULL, "must be PhaseIterGVN when can_reshape is true")do { if (!(igvn != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1768, "assert(" "igvn != __null" ") failed", "must be PhaseIterGVN when can_reshape is true"
); ::breakpoint(); } } while (0)
;
1769 if (igvn->_worklist.member(opt_mem)) {
1770 // Delay this transformation until memory Phi is processed.
1771 igvn->_worklist.push(this);
1772 return NULL__null;
1773 }
1774 // Split instance field load through Phi.
1775 Node* result = split_through_phi(phase);
1776 if (result != NULL__null) return result;
1777
1778 if (t_oop->is_ptr_to_boxed_value()) {
1779 Node* result = eliminate_autobox(igvn);
1780 if (result != NULL__null) return result;
1781 }
1782 }
1783 }
1784
1785 // Is there a dominating load that loads the same value? Leave
1786 // anything that is not a load of a field/array element (like
1787 // barriers etc.) alone
1788 if (in(0) != NULL__null && !adr_type()->isa_rawptr() && can_reshape) {
1789 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1790 Node *use = mem->fast_out(i);
1791 if (use != this &&
1792 use->Opcode() == Opcode() &&
1793 use->in(0) != NULL__null &&
1794 use->in(0) != in(0) &&
1795 use->in(Address) == in(Address)) {
1796 Node* ctl = in(0);
1797 for (int i = 0; i < 10 && ctl != NULL__null; i++) {
1798 ctl = IfNode::up_one_dom(ctl);
1799 if (ctl == use->in(0)) {
1800 set_req(0, use->in(0));
1801 return this;
1802 }
1803 }
1804 }
1805 }
1806 }
1807
1808 // Check for prior store with a different base or offset; make Load
1809 // independent. Skip through any number of them. Bail out if the stores
1810 // are in an endless dead cycle and report no progress. This is a key
1811 // transform for Reflection. However, if after skipping through the Stores
1812 // we can't then fold up against a prior store do NOT do the transform as
1813 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
1814 // array memory alive twice: once for the hoisted Load and again after the
1815 // bypassed Store. This situation only works if EVERYBODY who does
1816 // anti-dependence work knows how to bypass. I.e. we need all
1817 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
1818 // the alias index stuff. So instead, peek through Stores and IFF we can
1819 // fold up, do so.
1820 Node* prev_mem = find_previous_store(phase);
1821 if (prev_mem != NULL__null) {
1822 Node* value = can_see_arraycopy_value(prev_mem, phase);
1823 if (value != NULL__null) {
1824 return value;
1825 }
1826 }
1827 // Steps (a), (b): Walk past independent stores to find an exact match.
1828 if (prev_mem != NULL__null && prev_mem != in(MemNode::Memory)) {
1829 // (c) See if we can fold up on the spot, but don't fold up here.
1830 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1831 // just return a prior value, which is done by Identity calls.
1832 if (can_see_stored_value(prev_mem, phase)) {
1833 // Make ready for step (d):
1834 set_req_X(MemNode::Memory, prev_mem, phase);
1835 return this;
1836 }
1837 }
1838
1839 return progress ? this : NULL__null;
1840}
1841
1842// Helper to recognize certain Klass fields which are invariant across
1843// some group of array types (e.g., int[] or all T[] where T < Object).
1844const Type*
1845LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1846 ciKlass* klass) const {
1847 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1848 // The field is Klass::_modifier_flags. Return its (constant) value.
1849 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1850 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1850, "assert(" "this->Opcode() == Op_LoadI" ") failed",
"must load an int from _modifier_flags"); ::breakpoint(); } }
while (0)
;
1851 return TypeInt::make(klass->modifier_flags());
1852 }
1853 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1854 // The field is Klass::_access_flags. Return its (constant) value.
1855 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1856 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1856, "assert(" "this->Opcode() == Op_LoadI" ") failed",
"must load an int from _access_flags"); ::breakpoint(); } } while
(0)
;
1857 return TypeInt::make(klass->access_flags());
1858 }
1859 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1860 // The field is Klass::_layout_helper. Return its constant value if known.
1861 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper")do { if (!(this->Opcode() == Op_LoadI)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1861, "assert(" "this->Opcode() == Op_LoadI" ") failed",
"must load an int from _layout_helper"); ::breakpoint(); } }
while (0)
;
1862 return TypeInt::make(klass->layout_helper());
1863 }
1864
1865 // No match.
1866 return NULL__null;
1867}
1868
1869//------------------------------Value-----------------------------------------
1870const Type* LoadNode::Value(PhaseGVN* phase) const {
1871 // Either input is TOP ==> the result is TOP
1872 Node* mem = in(MemNode::Memory);
1873 const Type *t1 = phase->type(mem);
1874 if (t1 == Type::TOP) return Type::TOP;
1875 Node* adr = in(MemNode::Address);
1876 const TypePtr* tp = phase->type(adr)->isa_ptr();
1877 if (tp == NULL__null || tp->empty()) return Type::TOP;
1878 int off = tp->offset();
1879 assert(off != Type::OffsetTop, "case covered by TypePtr::empty")do { if (!(off != Type::OffsetTop)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1879, "assert(" "off != Type::OffsetTop" ") failed", "case covered by TypePtr::empty"
); ::breakpoint(); } } while (0)
;
1880 Compile* C = phase->C;
1881
1882 // Try to guess loaded type from pointer type
1883 if (tp->isa_aryptr()) {
1884 const TypeAryPtr* ary = tp->is_aryptr();
1885 const Type* t = ary->elem();
1886
1887 // Determine whether the reference is beyond the header or not, by comparing
1888 // the offset against the offset of the start of the array's data.
1889 // Different array types begin at slightly different offsets (12 vs. 16).
1890 // We choose T_BYTE as an example base type that is least restrictive
1891 // as to alignment, which will therefore produce the smallest
1892 // possible base offset.
1893 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1894 const bool off_beyond_header = (off >= min_base_off);
1895
1896 // Try to constant-fold a stable array element.
1897 if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1898 // Make sure the reference is not into the header and the offset is constant
1899 ciObject* aobj = ary->const_oop();
1900 if (aobj != NULL__null && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1901 int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1902 const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1903 stable_dimension,
1904 memory_type(), is_unsigned());
1905 if (con_type != NULL__null) {
1906 return con_type;
1907 }
1908 }
1909 }
1910
1911 // Don't do this for integer types. There is only potential profit if
1912 // the element type t is lower than _type; that is, for int types, if _type is
1913 // more restrictive than t. This only happens here if one is short and the other
1914 // char (both 16 bits), and in those cases we've made an intentional decision
1915 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1916 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1917 //
1918 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1919 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
1920 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1921 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
1922 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1923 // In fact, that could have been the original type of p1, and p1 could have
1924 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1925 // expression (LShiftL quux 3) independently optimized to the constant 8.
1926 if ((t->isa_int() == NULL__null) && (t->isa_long() == NULL__null)
1927 && (_type->isa_vect() == NULL__null)
1928 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1929 // t might actually be lower than _type, if _type is a unique
1930 // concrete subclass of abstract class t.
1931 if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header?
1932 const Type* jt = t->join_speculative(_type);
1933 // In any case, do not allow the join, per se, to empty out the type.
1934 if (jt->empty() && !t->empty()) {
1935 // This can happen if a interface-typed array narrows to a class type.
1936 jt = _type;
1937 }
1938#ifdef ASSERT1
1939 if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1940 // The pointers in the autobox arrays are always non-null
1941 Node* base = adr->in(AddPNode::Base);
1942 if ((base != NULL__null) && base->is_DecodeN()) {
1943 // Get LoadN node which loads IntegerCache.cache field
1944 base = base->in(1);
1945 }
1946 if ((base != NULL__null) && base->is_Con()) {
1947 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1948 if ((base_type != NULL__null) && base_type->is_autobox_cache()) {
1949 // It could be narrow oop
1950 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity")do { if (!(jt->make_ptr()->ptr() == TypePtr::NotNull)) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1950, "assert(" "jt->make_ptr()->ptr() == TypePtr::NotNull"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
1951 }
1952 }
1953 }
1954#endif
1955 return jt;
1956 }
1957 }
1958 } else if (tp->base() == Type::InstPtr) {
1959 assert( off != Type::OffsetBot ||do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass
()->is_java_lang_Object() || C->has_unsafe_access())) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1960 // arrays can be cast to Objectsdo { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass
()->is_java_lang_Object() || C->has_unsafe_access())) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1961 tp->is_oopptr()->klass()->is_java_lang_Object() ||do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass
()->is_java_lang_Object() || C->has_unsafe_access())) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1962 // unsafe field access may not have a constant offsetdo { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass
()->is_java_lang_Object() || C->has_unsafe_access())) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1963 C->has_unsafe_access(),do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass
()->is_java_lang_Object() || C->has_unsafe_access())) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1964 "Field accesses must be precise" )do { if (!(off != Type::OffsetBot || tp->is_oopptr()->klass
()->is_java_lang_Object() || C->has_unsafe_access())) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1964, "assert(" "off != Type::OffsetBot || tp->is_oopptr()->klass()->is_java_lang_Object() || C->has_unsafe_access()"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
;
1965 // For oop loads, we expect the _type to be precise.
1966
1967 // Optimize loads from constant fields.
1968 const TypeInstPtr* tinst = tp->is_instptr();
1969 ciObject* const_oop = tinst->const_oop();
1970 if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL__null && const_oop->is_instance()) {
1971 const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1972 if (con_type != NULL__null) {
1973 return con_type;
1974 }
1975 }
1976 } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) {
1977 assert( off != Type::OffsetBot ||do { if (!(off != Type::OffsetBot || tp->is_klassptr()->
klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1978 // arrays can be cast to Objectsdo { if (!(off != Type::OffsetBot || tp->is_klassptr()->
klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1979 tp->is_klassptr()->klass()->is_java_lang_Object() ||do { if (!(off != Type::OffsetBot || tp->is_klassptr()->
klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1980 // also allow array-loading from the primary supertypedo { if (!(off != Type::OffsetBot || tp->is_klassptr()->
klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1981 // array during subtype checksdo { if (!(off != Type::OffsetBot || tp->is_klassptr()->
klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1982 Opcode() == Op_LoadKlass,do { if (!(off != Type::OffsetBot || tp->is_klassptr()->
klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
1983 "Field accesses must be precise" )do { if (!(off != Type::OffsetBot || tp->is_klassptr()->
klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1983, "assert(" "off != Type::OffsetBot || tp->is_klassptr()->klass()->is_java_lang_Object() || Opcode() == Op_LoadKlass"
") failed", "Field accesses must be precise"); ::breakpoint(
); } } while (0)
;
1984 // For klass/static loads, we expect the _type to be precise
1985 } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
1986 /* With mirrors being an indirect in the Klass*
1987 * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1988 * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1989 *
1990 * So check the type and klass of the node before the LoadP.
1991 */
1992 Node* adr2 = adr->in(MemNode::Address);
1993 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1994 if (tkls != NULL__null && !StressReflectiveCode) {
1995 ciKlass* klass = tkls->klass();
1996 if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1997 assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror")do { if (!(adr->Opcode() == Op_LoadP)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1997, "assert(" "adr->Opcode() == Op_LoadP" ") failed", "must load an oop from _java_mirror"
); ::breakpoint(); } } while (0)
;
1998 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror")do { if (!(Opcode() == Op_LoadP)) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 1998, "assert(" "Opcode() == Op_LoadP" ") failed", "must load an oop from _java_mirror"
); ::breakpoint(); } } while (0)
;
1999 return TypeInstPtr::make(klass->java_mirror());
2000 }
2001 }
2002 }
2003
2004 const TypeKlassPtr *tkls = tp->isa_klassptr();
2005 if (tkls != NULL__null && !StressReflectiveCode) {
2006 ciKlass* klass = tkls->klass();
2007 if (klass->is_loaded() && tkls->klass_is_exact()) {
2008 // We are loading a field from a Klass metaobject whose identity
2009 // is known at compile time (the type is "exact" or "precise").
2010 // Check for fields we know are maintained as constants by the VM.
2011 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
2012 // The field is Klass::_super_check_offset. Return its (constant) value.
2013 // (Folds up type checking code.)
2014 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset")do { if (!(Opcode() == Op_LoadI)) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2014, "assert(" "Opcode() == Op_LoadI" ") failed", "must load an int from _super_check_offset"
); ::breakpoint(); } } while (0)
;
2015 return TypeInt::make(klass->super_check_offset());
2016 }
2017 // Compute index into primary_supers array
2018 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2019 // Check for overflowing; use unsigned compare to handle the negative case.
2020 if( depth < ciKlass::primary_super_limit() ) {
2021 // The field is an element of Klass::_primary_supers. Return its (constant) value.
2022 // (Folds up type checking code.)
2023 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers")do { if (!(Opcode() == Op_LoadKlass)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2023, "assert(" "Opcode() == Op_LoadKlass" ") failed", "must load a klass from _primary_supers"
); ::breakpoint(); } } while (0)
;
2024 ciKlass *ss = klass->super_of_depth(depth);
2025 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
2026 }
2027 const Type* aift = load_array_final_field(tkls, klass);
2028 if (aift != NULL__null) return aift;
2029 }
2030
2031 // We can still check if we are loading from the primary_supers array at a
2032 // shallow enough depth. Even though the klass is not exact, entries less
2033 // than or equal to its super depth are correct.
2034 if (klass->is_loaded() ) {
2035 ciType *inner = klass;
2036 while( inner->is_obj_array_klass() )
2037 inner = inner->as_obj_array_klass()->base_element_type();
2038 if( inner->is_instance_klass() &&
2039 !inner->as_instance_klass()->flags().is_interface() ) {
2040 // Compute index into primary_supers array
2041 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
2042 // Check for overflowing; use unsigned compare to handle the negative case.
2043 if( depth < ciKlass::primary_super_limit() &&
2044 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
2045 // The field is an element of Klass::_primary_supers. Return its (constant) value.
2046 // (Folds up type checking code.)
2047 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers")do { if (!(Opcode() == Op_LoadKlass)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2047, "assert(" "Opcode() == Op_LoadKlass" ") failed", "must load a klass from _primary_supers"
); ::breakpoint(); } } while (0)
;
2048 ciKlass *ss = klass->super_of_depth(depth);
2049 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
2050 }
2051 }
2052 }
2053
2054 // If the type is enough to determine that the thing is not an array,
2055 // we can give the layout_helper a positive interval type.
2056 // This will help short-circuit some reflective code.
2057 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
2058 && !klass->is_array_klass() // not directly typed as an array
2059 && !klass->is_interface() // specifically not Serializable & Cloneable
2060 && !klass->is_java_lang_Object() // not the supertype of all T[]
2061 ) {
2062 // Note: When interfaces are reliable, we can narrow the interface
2063 // test to (klass != Serializable && klass != Cloneable).
2064 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper")do { if (!(Opcode() == Op_LoadI)) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2064, "assert(" "Opcode() == Op_LoadI" ") failed", "must load an int from _layout_helper"
); ::breakpoint(); } } while (0)
;
2065 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
2066 // The key property of this type is that it folds up tests
2067 // for array-ness, since it proves that the layout_helper is positive.
2068 // Thus, a generic value like the basic object layout helper works fine.
2069 return TypeInt::make(min_size, max_jint, Type::WidenMin);
2070 }
2071 }
2072
2073 // If we are loading from a freshly-allocated object, produce a zero,
2074 // if the load is provably beyond the header of the object.
2075 // (Also allow a variable load from a fresh array to produce zero.)
2076 const TypeOopPtr *tinst = tp->isa_oopptr();
2077 bool is_instance = (tinst != NULL__null) && tinst->is_known_instance_field();
2078 bool is_boxed_value = (tinst != NULL__null) && tinst->is_ptr_to_boxed_value();
2079 if (ReduceFieldZeroing || is_instance || is_boxed_value) {
2080 Node* value = can_see_stored_value(mem,phase);
2081 if (value != NULL__null && value->is_Con()) {
2082 assert(value->bottom_type()->higher_equal(_type),"sanity")do { if (!(value->bottom_type()->higher_equal(_type))) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2082, "assert(" "value->bottom_type()->higher_equal(_type)"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
2083 return value->bottom_type();
2084 }
2085 }
2086
2087 bool is_vect = (_type->isa_vect() != NULL__null);
2088 if (is_instance && !is_vect) {
2089 // If we have an instance type and our memory input is the
2090 // programs's initial memory state, there is no matching store,
2091 // so just return a zero of the appropriate type -
2092 // except if it is vectorized - then we have no zero constant.
2093 Node *mem = in(MemNode::Memory);
2094 if (mem->is_Parm() && mem->in(0)->is_Start()) {
2095 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm")do { if (!(mem->as_Parm()->_con == TypeFunc::Memory)) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2095, "assert(" "mem->as_Parm()->_con == TypeFunc::Memory"
") failed", "must be memory Parm"); ::breakpoint(); } } while
(0)
;
2096 return Type::get_zero_type(_type->basic_type());
2097 }
2098 }
2099
2100 Node* alloc = is_new_object_mark_load(phase);
2101 if (alloc != NULL__null) {
2102 return TypeXTypeLong::make(markWord::prototype().value());
2103 }
2104
2105 return _type;
2106}
2107
2108//------------------------------match_edge-------------------------------------
2109// Do we Match on this edge index or not? Match only the address.
2110uint LoadNode::match_edge(uint idx) const {
2111 return idx == MemNode::Address;
2112}
2113
2114//--------------------------LoadBNode::Ideal--------------------------------------
2115//
2116// If the previous store is to the same address as this load,
2117// and the value stored was larger than a byte, replace this load
2118// with the value stored truncated to a byte. If no truncation is
2119// needed, the replacement is done in LoadNode::Identity().
2120//
2121Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2122 Node* mem = in(MemNode::Memory);
2123 Node* value = can_see_stored_value(mem,phase);
2124 if (value != NULL__null) {
2125 Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false);
2126 if (narrow != value) {
2127 return narrow;
2128 }
2129 }
2130 // Identity call will handle the case where truncation is not needed.
2131 return LoadNode::Ideal(phase, can_reshape);
2132}
2133
2134const Type* LoadBNode::Value(PhaseGVN* phase) const {
2135 Node* mem = in(MemNode::Memory);
2136 Node* value = can_see_stored_value(mem,phase);
2137 if (value != NULL__null && value->is_Con() &&
2138 !value->bottom_type()->higher_equal(_type)) {
2139 // If the input to the store does not fit with the load's result type,
2140 // it must be truncated. We can't delay until Ideal call since
2141 // a singleton Value is needed for split_thru_phi optimization.
2142 int con = value->get_int();
2143 return TypeInt::make((con << 24) >> 24);
2144 }
2145 return LoadNode::Value(phase);
2146}
2147
2148//--------------------------LoadUBNode::Ideal-------------------------------------
2149//
2150// If the previous store is to the same address as this load,
2151// and the value stored was larger than a byte, replace this load
2152// with the value stored truncated to a byte. If no truncation is
2153// needed, the replacement is done in LoadNode::Identity().
2154//
2155Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2156 Node* mem = in(MemNode::Memory);
2157 Node* value = can_see_stored_value(mem, phase);
2158 if (value != NULL__null) {
2159 Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false);
2160 if (narrow != value) {
2161 return narrow;
2162 }
2163 }
2164 // Identity call will handle the case where truncation is not needed.
2165 return LoadNode::Ideal(phase, can_reshape);
2166}
2167
2168const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2169 Node* mem = in(MemNode::Memory);
2170 Node* value = can_see_stored_value(mem,phase);
2171 if (value != NULL__null && value->is_Con() &&
2172 !value->bottom_type()->higher_equal(_type)) {
2173 // If the input to the store does not fit with the load's result type,
2174 // it must be truncated. We can't delay until Ideal call since
2175 // a singleton Value is needed for split_thru_phi optimization.
2176 int con = value->get_int();
2177 return TypeInt::make(con & 0xFF);
2178 }
2179 return LoadNode::Value(phase);
2180}
2181
2182//--------------------------LoadUSNode::Ideal-------------------------------------
2183//
2184// If the previous store is to the same address as this load,
2185// and the value stored was larger than a char, replace this load
2186// with the value stored truncated to a char. If no truncation is
2187// needed, the replacement is done in LoadNode::Identity().
2188//
2189Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2190 Node* mem = in(MemNode::Memory);
2191 Node* value = can_see_stored_value(mem,phase);
2192 if (value != NULL__null) {
2193 Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false);
2194 if (narrow != value) {
2195 return narrow;
2196 }
2197 }
2198 // Identity call will handle the case where truncation is not needed.
2199 return LoadNode::Ideal(phase, can_reshape);
2200}
2201
2202const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2203 Node* mem = in(MemNode::Memory);
2204 Node* value = can_see_stored_value(mem,phase);
2205 if (value != NULL__null && value->is_Con() &&
2206 !value->bottom_type()->higher_equal(_type)) {
2207 // If the input to the store does not fit with the load's result type,
2208 // it must be truncated. We can't delay until Ideal call since
2209 // a singleton Value is needed for split_thru_phi optimization.
2210 int con = value->get_int();
2211 return TypeInt::make(con & 0xFFFF);
2212 }
2213 return LoadNode::Value(phase);
2214}
2215
2216//--------------------------LoadSNode::Ideal--------------------------------------
2217//
2218// If the previous store is to the same address as this load,
2219// and the value stored was larger than a short, replace this load
2220// with the value stored truncated to a short. If no truncation is
2221// needed, the replacement is done in LoadNode::Identity().
2222//
2223Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2224 Node* mem = in(MemNode::Memory);
2225 Node* value = can_see_stored_value(mem,phase);
2226 if (value != NULL__null) {
2227 Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false);
2228 if (narrow != value) {
2229 return narrow;
2230 }
2231 }
2232 // Identity call will handle the case where truncation is not needed.
2233 return LoadNode::Ideal(phase, can_reshape);
2234}
2235
2236const Type* LoadSNode::Value(PhaseGVN* phase) const {
2237 Node* mem = in(MemNode::Memory);
2238 Node* value = can_see_stored_value(mem,phase);
2239 if (value != NULL__null && value->is_Con() &&
2240 !value->bottom_type()->higher_equal(_type)) {
2241 // If the input to the store does not fit with the load's result type,
2242 // it must be truncated. We can't delay until Ideal call since
2243 // a singleton Value is needed for split_thru_phi optimization.
2244 int con = value->get_int();
2245 return TypeInt::make((con << 16) >> 16);
2246 }
2247 return LoadNode::Value(phase);
2248}
2249
2250//=============================================================================
2251//----------------------------LoadKlassNode::make------------------------------
2252// Polymorphic factory method:
2253Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2254 // sanity check the alias category against the created node type
2255 const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2256 assert(adr_type != NULL, "expecting TypeKlassPtr")do { if (!(adr_type != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2256, "assert(" "adr_type != __null" ") failed", "expecting TypeKlassPtr"
); ::breakpoint(); } } while (0)
;
2257#ifdef _LP641
2258 if (adr_type->is_ptr_to_narrowklass()) {
2259 assert(UseCompressedClassPointers, "no compressed klasses")do { if (!(UseCompressedClassPointers)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2259, "assert(" "UseCompressedClassPointers" ") failed", "no compressed klasses"
); ::breakpoint(); } } while (0)
;
2260 Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2261 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2262 }
2263#endif
2264 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop")do { if (!(!adr_type->is_ptr_to_narrowklass() && !
adr_type->is_ptr_to_narrowoop())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2264, "assert(" "!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop()"
") failed", "should have got back a narrow oop"); ::breakpoint
(); } } while (0)
;
2265 return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2266}
2267
2268//------------------------------Value------------------------------------------
2269const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2270 return klass_value_common(phase);
2271}
2272
2273// In most cases, LoadKlassNode does not have the control input set. If the control
2274// input is set, it must not be removed (by LoadNode::Ideal()).
2275bool LoadKlassNode::can_remove_control() const {
2276 return false;
2277}
2278
2279const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2280 // Either input is TOP ==> the result is TOP
2281 const Type *t1 = phase->type( in(MemNode::Memory) );
2282 if (t1 == Type::TOP) return Type::TOP;
2283 Node *adr = in(MemNode::Address);
2284 const Type *t2 = phase->type( adr );
2285 if (t2 == Type::TOP) return Type::TOP;
2286 const TypePtr *tp = t2->is_ptr();
2287 if (TypePtr::above_centerline(tp->ptr()) ||
2288 tp->ptr() == TypePtr::Null) return Type::TOP;
2289
2290 // Return a more precise klass, if possible
2291 const TypeInstPtr *tinst = tp->isa_instptr();
2292 if (tinst != NULL__null) {
2293 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2294 int offset = tinst->offset();
2295 if (ik == phase->C->env()->Class_klass()
2296 && (offset == java_lang_Class::klass_offset() ||
2297 offset == java_lang_Class::array_klass_offset())) {
2298 // We are loading a special hidden field from a Class mirror object,
2299 // the field which points to the VM's Klass metaobject.
2300 ciType* t = tinst->java_mirror_type();
2301 // java_mirror_type returns non-null for compile-time Class constants.
2302 if (t != NULL__null) {
2303 // constant oop => constant klass
2304 if (offset == java_lang_Class::array_klass_offset()) {
2305 if (t->is_void()) {
2306 // We cannot create a void array. Since void is a primitive type return null
2307 // klass. Users of this result need to do a null check on the returned klass.
2308 return TypePtr::NULL_PTR;
2309 }
2310 return TypeKlassPtr::make(ciArrayKlass::make(t));
2311 }
2312 if (!t->is_klass()) {
2313 // a primitive Class (e.g., int.class) has NULL for a klass field
2314 return TypePtr::NULL_PTR;
2315 }
2316 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2317 return TypeKlassPtr::make(t->as_klass());
2318 }
2319 // non-constant mirror, so we can't tell what's going on
2320 }
2321 if( !ik->is_loaded() )
2322 return _type; // Bail out if not loaded
2323 if (offset == oopDesc::klass_offset_in_bytes()) {
2324 if (tinst->klass_is_exact()) {
2325 return TypeKlassPtr::make(ik);
2326 }
2327 // See if we can become precise: no subklasses and no interface
2328 // (Note: We need to support verified interfaces.)
2329 if (!ik->is_interface() && !ik->has_subklass()) {
2330 // Add a dependence; if any subclass added we need to recompile
2331 if (!ik->is_final()) {
2332 // %%% should use stronger assert_unique_concrete_subtype instead
2333 phase->C->dependencies()->assert_leaf_type(ik);
2334 }
2335 // Return precise klass
2336 return TypeKlassPtr::make(ik);
2337 }
2338
2339 // Return root of possible klass
2340 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2341 }
2342 }
2343
2344 // Check for loading klass from an array
2345 const TypeAryPtr *tary = tp->isa_aryptr();
2346 if( tary != NULL__null ) {
2347 ciKlass *tary_klass = tary->klass();
2348 if (tary_klass != NULL__null // can be NULL when at BOTTOM or TOP
2349 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2350 if (tary->klass_is_exact()) {
2351 return TypeKlassPtr::make(tary_klass);
2352 }
2353 ciArrayKlass *ak = tary->klass()->as_array_klass();
2354 // If the klass is an object array, we defer the question to the
2355 // array component klass.
2356 if( ak->is_obj_array_klass() ) {
2357 assert( ak->is_loaded(), "" )do { if (!(ak->is_loaded())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2357, "assert(" "ak->is_loaded()" ") failed", ""); ::breakpoint
(); } } while (0)
;
2358 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2359 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2360 ciInstanceKlass* ik = base_k->as_instance_klass();
2361 // See if we can become precise: no subklasses and no interface
2362 if (!ik->is_interface() && !ik->has_subklass()) {
2363 // Add a dependence; if any subclass added we need to recompile
2364 if (!ik->is_final()) {
2365 phase->C->dependencies()->assert_leaf_type(ik);
2366 }
2367 // Return precise array klass
2368 return TypeKlassPtr::make(ak);
2369 }
2370 }
2371 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2372 } else { // Found a type-array?
2373 assert( ak->is_type_array_klass(), "" )do { if (!(ak->is_type_array_klass())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2373, "assert(" "ak->is_type_array_klass()" ") failed", ""
); ::breakpoint(); } } while (0)
;
2374 return TypeKlassPtr::make(ak); // These are always precise
2375 }
2376 }
2377 }
2378
2379 // Check for loading klass from an array klass
2380 const TypeKlassPtr *tkls = tp->isa_klassptr();
2381 if (tkls != NULL__null && !StressReflectiveCode) {
2382 ciKlass* klass = tkls->klass();
2383 if( !klass->is_loaded() )
2384 return _type; // Bail out if not loaded
2385 if( klass->is_obj_array_klass() &&
2386 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2387 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2388 // // Always returning precise element type is incorrect,
2389 // // e.g., element type could be object and array may contain strings
2390 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2391
2392 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2393 // according to the element type's subclassing.
2394 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2395 }
2396 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2397 tkls->offset() == in_bytes(Klass::super_offset())) {
2398 ciKlass* sup = klass->as_instance_klass()->super();
2399 // The field is Klass::_super. Return its (constant) value.
2400 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2401 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2402 }
2403 }
2404
2405 // Bailout case
2406 return LoadNode::Value(phase);
2407}
2408
2409//------------------------------Identity---------------------------------------
2410// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2411// Also feed through the klass in Allocate(...klass...)._klass.
2412Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2413 return klass_identity_common(phase);
2414}
2415
2416Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2417 Node* x = LoadNode::Identity(phase);
2418 if (x != this) return x;
2419
2420 // Take apart the address into an oop and and offset.
2421 // Return 'this' if we cannot.
2422 Node* adr = in(MemNode::Address);
2423 intptr_t offset = 0;
2424 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2425 if (base == NULL__null) return this;
2426 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2427 if (toop == NULL__null) return this;
2428
2429 // Step over potential GC barrier for OopHandle resolve
2430 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2431 if (bs->is_gc_barrier_node(base)) {
2432 base = bs->step_over_gc_barrier(base);
2433 }
2434
2435 // We can fetch the klass directly through an AllocateNode.
2436 // This works even if the klass is not constant (clone or newArray).
2437 if (offset == oopDesc::klass_offset_in_bytes()) {
2438 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2439 if (allocated_klass != NULL__null) {
2440 return allocated_klass;
2441 }
2442 }
2443
2444 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2445 // See inline_native_Class_query for occurrences of these patterns.
2446 // Java Example: x.getClass().isAssignableFrom(y)
2447 //
2448 // This improves reflective code, often making the Class
2449 // mirror go completely dead. (Current exception: Class
2450 // mirrors may appear in debug info, but we could clean them out by
2451 // introducing a new debug info operator for Klass.java_mirror).
2452
2453 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2454 && offset == java_lang_Class::klass_offset()) {
2455 if (base->is_Load()) {
2456 Node* base2 = base->in(MemNode::Address);
2457 if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2458 Node* adr2 = base2->in(MemNode::Address);
2459 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2460 if (tkls != NULL__null && !tkls->empty()
2461 && (tkls->klass()->is_instance_klass() ||
2462 tkls->klass()->is_array_klass())
2463 && adr2->is_AddP()
2464 ) {
2465 int mirror_field = in_bytes(Klass::java_mirror_offset());
2466 if (tkls->offset() == mirror_field) {
2467 return adr2->in(AddPNode::Base);
2468 }
2469 }
2470 }
2471 }
2472 }
2473
2474 return this;
2475}
2476
2477
2478//------------------------------Value------------------------------------------
2479const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2480 const Type *t = klass_value_common(phase);
2481 if (t == Type::TOP)
2482 return t;
2483
2484 return t->make_narrowklass();
2485}
2486
2487//------------------------------Identity---------------------------------------
2488// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2489// Also feed through the klass in Allocate(...klass...)._klass.
2490Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2491 Node *x = klass_identity_common(phase);
2492
2493 const Type *t = phase->type( x );
2494 if( t == Type::TOP ) return x;
2495 if( t->isa_narrowklass()) return x;
2496 assert (!t->isa_narrowoop(), "no narrow oop here")do { if (!(!t->isa_narrowoop())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2496, "assert(" "!t->isa_narrowoop()" ") failed", "no narrow oop here"
); ::breakpoint(); } } while (0)
;
2497
2498 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2499}
2500
2501//------------------------------Value-----------------------------------------
2502const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2503 // Either input is TOP ==> the result is TOP
2504 const Type *t1 = phase->type( in(MemNode::Memory) );
2505 if( t1 == Type::TOP ) return Type::TOP;
2506 Node *adr = in(MemNode::Address);
2507 const Type *t2 = phase->type( adr );
2508 if( t2 == Type::TOP ) return Type::TOP;
2509 const TypePtr *tp = t2->is_ptr();
2510 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
2511 const TypeAryPtr *tap = tp->isa_aryptr();
2512 if( !tap ) return _type;
2513 return tap->size();
2514}
2515
2516//-------------------------------Ideal---------------------------------------
2517// Feed through the length in AllocateArray(...length...)._length.
2518Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2519 Node* p = MemNode::Ideal_common(phase, can_reshape);
2520 if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p;
2521
2522 // Take apart the address into an oop and and offset.
2523 // Return 'this' if we cannot.
2524 Node* adr = in(MemNode::Address);
2525 intptr_t offset = 0;
2526 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2527 if (base == NULL__null) return NULL__null;
2528 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2529 if (tary == NULL__null) return NULL__null;
2530
2531 // We can fetch the length directly through an AllocateArrayNode.
2532 // This works even if the length is not constant (clone or newArray).
2533 if (offset == arrayOopDesc::length_offset_in_bytes()) {
2534 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2535 if (alloc != NULL__null) {
2536 Node* allocated_length = alloc->Ideal_length();
2537 Node* len = alloc->make_ideal_length(tary, phase);
2538 if (allocated_length != len) {
2539 // New CastII improves on this.
2540 return len;
2541 }
2542 }
2543 }
2544
2545 return NULL__null;
2546}
2547
2548//------------------------------Identity---------------------------------------
2549// Feed through the length in AllocateArray(...length...)._length.
2550Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2551 Node* x = LoadINode::Identity(phase);
2552 if (x != this) return x;
2553
2554 // Take apart the address into an oop and and offset.
2555 // Return 'this' if we cannot.
2556 Node* adr = in(MemNode::Address);
2557 intptr_t offset = 0;
2558 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2559 if (base == NULL__null) return this;
2560 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2561 if (tary == NULL__null) return this;
2562
2563 // We can fetch the length directly through an AllocateArrayNode.
2564 // This works even if the length is not constant (clone or newArray).
2565 if (offset == arrayOopDesc::length_offset_in_bytes()) {
2566 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2567 if (alloc != NULL__null) {
2568 Node* allocated_length = alloc->Ideal_length();
2569 // Do not allow make_ideal_length to allocate a CastII node.
2570 Node* len = alloc->make_ideal_length(tary, phase, false);
2571 if (allocated_length == len) {
2572 // Return allocated_length only if it would not be improved by a CastII.
2573 return allocated_length;
2574 }
2575 }
2576 }
2577
2578 return this;
2579
2580}
2581
2582//=============================================================================
2583//---------------------------StoreNode::make-----------------------------------
2584// Polymorphic factory method:
2585StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2586 assert((mo == unordered || mo == release), "unexpected")do { if (!((mo == unordered || mo == release))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2586, "assert(" "(mo == unordered || mo == release)" ") failed"
, "unexpected"); ::breakpoint(); } } while (0)
;
2587 Compile* C = gvn.C;
2588 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||do { if (!(C->get_alias_index(adr_type) != Compile::AliasIdxRaw
|| ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2589, "assert(" "C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null"
") failed", "raw memory operations should have control edge"
); ::breakpoint(); } } while (0)
2589 ctl != NULL, "raw memory operations should have control edge")do { if (!(C->get_alias_index(adr_type) != Compile::AliasIdxRaw
|| ctl != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2589, "assert(" "C->get_alias_index(adr_type) != Compile::AliasIdxRaw || ctl != __null"
") failed", "raw memory operations should have control edge"
); ::breakpoint(); } } while (0)
;
2590
2591 switch (bt) {
2592 case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2593 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2594 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2595 case T_CHAR:
2596 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2597 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2598 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2599 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2600 case T_METADATA:
2601 case T_ADDRESS:
2602 case T_OBJECT:
2603#ifdef _LP641
2604 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2605 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2606 return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2607 } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2608 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2609 adr->bottom_type()->isa_rawptr())) {
2610 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2611 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2612 }
2613#endif
2614 {
2615 return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2616 }
2617 default:
2618 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2618); ::breakpoint(); } while (0)
;
2619 return (StoreNode*)NULL__null;
2620 }
2621}
2622
2623StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2624 bool require_atomic = true;
2625 return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2626}
2627
2628StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2629 bool require_atomic = true;
2630 return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2631}
2632
2633
2634//--------------------------bottom_type----------------------------------------
2635const Type *StoreNode::bottom_type() const {
2636 return Type::MEMORY;
2637}
2638
2639//------------------------------hash-------------------------------------------
2640uint StoreNode::hash() const {
2641 // unroll addition of interesting fields
2642 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2643
2644 // Since they are not commoned, do not hash them:
2645 return NO_HASH;
2646}
2647
2648//------------------------------Ideal------------------------------------------
2649// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2650// When a store immediately follows a relevant allocation/initialization,
2651// try to capture it into the initialization, or hoist it above.
2652Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2653 Node* p = MemNode::Ideal_common(phase, can_reshape);
2654 if (p) return (p == NodeSentinel(Node*)-1) ? NULL__null : p;
2655
2656 Node* mem = in(MemNode::Memory);
2657 Node* address = in(MemNode::Address);
2658 Node* value = in(MemNode::ValueIn);
2659 // Back-to-back stores to same address? Fold em up. Generally
2660 // unsafe if I have intervening uses... Also disallowed for StoreCM
2661 // since they must follow each StoreP operation. Redundant StoreCMs
2662 // are eliminated just before matching in final_graph_reshape.
2663 {
2664 Node* st = mem;
2665 // If Store 'st' has more than one use, we cannot fold 'st' away.
2666 // For example, 'st' might be the final state at a conditional
2667 // return. Or, 'st' might be used by some node which is live at
2668 // the same time 'st' is live, which might be unschedulable. So,
2669 // require exactly ONE user until such time as we clone 'mem' for
2670 // each of 'mem's uses (thus making the exactly-1-user-rule hold
2671 // true).
2672 while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2673 // Looking at a dead closed cycle of memory?
2674 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal")do { if (!(st != st->in(MemNode::Memory))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2674, "assert(" "st != st->in(MemNode::Memory)" ") failed"
, "dead loop in StoreNode::Ideal"); ::breakpoint(); } } while
(0)
;
2675 assert(Opcode() == st->Opcode() ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2676 st->Opcode() == Op_StoreVector ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2677 Opcode() == Op_StoreVector ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2678 st->Opcode() == Op_StoreVectorScatter ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2679 Opcode() == Op_StoreVectorScatter ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2680 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2681 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNodedo { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2682 (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopydo { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2683 (is_mismatched_access() || st->as_Store()->is_mismatched_access()),do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
2684 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()])do { if (!(Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector
|| Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter
|| Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index
(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL
&& st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI
&& st->Opcode() == Op_StoreL) || (is_mismatched_access
() || st->as_Store()->is_mismatched_access()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2684, "assert(" "Opcode() == st->Opcode() || st->Opcode() == Op_StoreVector || Opcode() == Op_StoreVector || st->Opcode() == Op_StoreVectorScatter || Opcode() == Op_StoreVectorScatter || phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || (is_mismatched_access() || st->as_Store()->is_mismatched_access())"
") failed", "no mismatched stores, except on raw memory: %s %s"
, NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
::breakpoint(); } } while (0)
;
2685
2686 if (st->in(MemNode::Address)->eqv_uncast(address) &&
2687 st->as_Store()->memory_size() <= this->memory_size()) {
2688 Node* use = st->raw_out(0);
2689 if (phase->is_IterGVN()) {
2690 phase->is_IterGVN()->rehash_node_delayed(use);
2691 }
2692 // It's OK to do this in the parser, since DU info is always accurate,
2693 // and the parser always refers to nodes via SafePointNode maps.
2694 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase);
2695 return this;
2696 }
2697 st = st->in(MemNode::Memory);
2698 }
2699 }
2700
2701
2702 // Capture an unaliased, unconditional, simple store into an initializer.
2703 // Or, if it is independent of the allocation, hoist it above the allocation.
2704 if (ReduceFieldZeroing && /*can_reshape &&*/
2705 mem->is_Proj() && mem->in(0)->is_Initialize()) {
2706 InitializeNode* init = mem->in(0)->as_Initialize();
2707 intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2708 if (offset > 0) {
2709 Node* moved = init->capture_store(this, offset, phase, can_reshape);
2710 // If the InitializeNode captured me, it made a raw copy of me,
2711 // and I need to disappear.
2712 if (moved != NULL__null) {
2713 // %%% hack to ensure that Ideal returns a new node:
2714 mem = MergeMemNode::make(mem);
2715 return mem; // fold me away
2716 }
2717 }
2718 }
2719
2720 // Fold reinterpret cast into memory operation:
2721 // StoreX mem (MoveY2X v) => StoreY mem v
2722 if (value->is_Move()) {
2723 const Type* vt = value->in(1)->bottom_type();
2724 if (has_reinterpret_variant(vt)) {
2725 if (phase->C->post_loop_opts_phase()) {
2726 return convert_to_reinterpret_store(*phase, value->in(1), vt);
2727 } else {
2728 phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over
2729 }
2730 }
2731 }
2732
2733 return NULL__null; // No further progress
2734}
2735
2736//------------------------------Value-----------------------------------------
2737const Type* StoreNode::Value(PhaseGVN* phase) const {
2738 // Either input is TOP ==> the result is TOP
2739 const Type *t1 = phase->type( in(MemNode::Memory) );
2740 if( t1 == Type::TOP ) return Type::TOP;
2741 const Type *t2 = phase->type( in(MemNode::Address) );
2742 if( t2 == Type::TOP ) return Type::TOP;
2743 const Type *t3 = phase->type( in(MemNode::ValueIn) );
2744 if( t3 == Type::TOP ) return Type::TOP;
2745 return Type::MEMORY;
2746}
2747
2748//------------------------------Identity---------------------------------------
2749// Remove redundant stores:
2750// Store(m, p, Load(m, p)) changes to m.
2751// Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2752Node* StoreNode::Identity(PhaseGVN* phase) {
2753 Node* mem = in(MemNode::Memory);
2754 Node* adr = in(MemNode::Address);
2755 Node* val = in(MemNode::ValueIn);
2756
2757 Node* result = this;
2758
2759 // Load then Store? Then the Store is useless
2760 if (val->is_Load() &&
2761 val->in(MemNode::Address)->eqv_uncast(adr) &&
2762 val->in(MemNode::Memory )->eqv_uncast(mem) &&
2763 val->as_Load()->store_Opcode() == Opcode()) {
2764 result = mem;
2765 }
2766
2767 // Two stores in a row of the same value?
2768 if (result == this &&
2769 mem->is_Store() &&
2770 mem->in(MemNode::Address)->eqv_uncast(adr) &&
2771 mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2772 mem->Opcode() == Opcode()) {
2773 result = mem;
2774 }
2775
2776 // Store of zero anywhere into a freshly-allocated object?
2777 // Then the store is useless.
2778 // (It must already have been captured by the InitializeNode.)
2779 if (result == this &&
2780 ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2781 // a newly allocated object is already all-zeroes everywhere
2782 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2783 result = mem;
2784 }
2785
2786 if (result == this) {
2787 // the store may also apply to zero-bits in an earlier object
2788 Node* prev_mem = find_previous_store(phase);
2789 // Steps (a), (b): Walk past independent stores to find an exact match.
2790 if (prev_mem != NULL__null) {
2791 Node* prev_val = can_see_stored_value(prev_mem, phase);
2792 if (prev_val != NULL__null && prev_val == val) {
2793 // prev_val and val might differ by a cast; it would be good
2794 // to keep the more informative of the two.
2795 result = mem;
2796 }
2797 }
2798 }
2799 }
2800
2801 PhaseIterGVN* igvn = phase->is_IterGVN();
2802 if (result != this && igvn != NULL__null) {
2803 MemBarNode* trailing = trailing_membar();
2804 if (trailing != NULL__null) {
2805#ifdef ASSERT1
2806 const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2807 assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects")do { if (!(t_oop == __null || t_oop->is_known_instance_field
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2807, "assert(" "t_oop == __null || t_oop->is_known_instance_field()"
") failed", "only for non escaping objects"); ::breakpoint()
; } } while (0)
;
2808#endif
2809 trailing->remove(igvn);
2810 }
2811 }
2812
2813 return result;
2814}
2815
2816//------------------------------match_edge-------------------------------------
2817// Do we Match on this edge index or not? Match only memory & value
2818uint StoreNode::match_edge(uint idx) const {
2819 return idx == MemNode::Address || idx == MemNode::ValueIn;
2820}
2821
2822//------------------------------cmp--------------------------------------------
2823// Do not common stores up together. They generally have to be split
2824// back up anyways, so do not bother.
2825bool StoreNode::cmp( const Node &n ) const {
2826 return (&n == this); // Always fail except on self
2827}
2828
2829//------------------------------Ideal_masked_input-----------------------------
2830// Check for a useless mask before a partial-word store
2831// (StoreB ... (AndI valIn conIa) )
2832// If (conIa & mask == mask) this simplifies to
2833// (StoreB ... (valIn) )
2834Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2835 Node *val = in(MemNode::ValueIn);
2836 if( val->Opcode() == Op_AndI ) {
2837 const TypeInt *t = phase->type( val->in(2) )->isa_int();
2838 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2839 set_req_X(MemNode::ValueIn, val->in(1), phase);
2840 return this;
2841 }
2842 }
2843 return NULL__null;
2844}
2845
2846
2847//------------------------------Ideal_sign_extended_input----------------------
2848// Check for useless sign-extension before a partial-word store
2849// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2850// If (conIL == conIR && conIR <= num_bits) this simplifies to
2851// (StoreB ... (valIn) )
2852Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2853 Node *val = in(MemNode::ValueIn);
2854 if( val->Opcode() == Op_RShiftI ) {
2855 const TypeInt *t = phase->type( val->in(2) )->isa_int();
2856 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2857 Node *shl = val->in(1);
2858 if( shl->Opcode() == Op_LShiftI ) {
2859 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2860 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2861 set_req_X(MemNode::ValueIn, shl->in(1), phase);
2862 return this;
2863 }
2864 }
2865 }
2866 }
2867 return NULL__null;
2868}
2869
2870//------------------------------value_never_loaded-----------------------------------
2871// Determine whether there are any possible loads of the value stored.
2872// For simplicity, we actually check if there are any loads from the
2873// address stored to, not just for loads of the value stored by this node.
2874//
2875bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2876 Node *adr = in(Address);
2877 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2878 if (adr_oop == NULL__null)
2879 return false;
2880 if (!adr_oop->is_known_instance_field())
2881 return false; // if not a distinct instance, there may be aliases of the address
2882 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2883 Node *use = adr->fast_out(i);
2884 if (use->is_Load() || use->is_LoadStore()) {
2885 return false;
2886 }
2887 }
2888 return true;
2889}
2890
2891MemBarNode* StoreNode::trailing_membar() const {
2892 if (is_release()) {
2893 MemBarNode* trailing_mb = NULL__null;
2894 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2895 Node* u = fast_out(i);
2896 if (u->is_MemBar()) {
2897 if (u->as_MemBar()->trailing_store()) {
2898 assert(u->Opcode() == Op_MemBarVolatile, "")do { if (!(u->Opcode() == Op_MemBarVolatile)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2898, "assert(" "u->Opcode() == Op_MemBarVolatile" ") failed"
, ""); ::breakpoint(); } } while (0)
;
2899 assert(trailing_mb == NULL, "only one")do { if (!(trailing_mb == __null)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2899, "assert(" "trailing_mb == __null" ") failed", "only one"
); ::breakpoint(); } } while (0)
;
2900 trailing_mb = u->as_MemBar();
2901#ifdef ASSERT1
2902 Node* leading = u->as_MemBar()->leading_membar();
2903 assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar")do { if (!(leading->Opcode() == Op_MemBarRelease)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2903, "assert(" "leading->Opcode() == Op_MemBarRelease" ") failed"
, "incorrect membar"); ::breakpoint(); } } while (0)
;
2904 assert(leading->as_MemBar()->leading_store(), "incorrect membar pair")do { if (!(leading->as_MemBar()->leading_store())) { (*
g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2904, "assert(" "leading->as_MemBar()->leading_store()"
") failed", "incorrect membar pair"); ::breakpoint(); } } while
(0)
;
2905 assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair")do { if (!(leading->as_MemBar()->trailing_membar() == u
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2905, "assert(" "leading->as_MemBar()->trailing_membar() == u"
") failed", "incorrect membar pair"); ::breakpoint(); } } while
(0)
;
2906#endif
2907 } else {
2908 assert(u->as_MemBar()->standalone(), "")do { if (!(u->as_MemBar()->standalone())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 2908, "assert(" "u->as_MemBar()->standalone()" ") failed"
, ""); ::breakpoint(); } } while (0)
;
2909 }
2910 }
2911 }
2912 return trailing_mb;
2913 }
2914 return NULL__null;
2915}
2916
2917
2918//=============================================================================
2919//------------------------------Ideal------------------------------------------
2920// If the store is from an AND mask that leaves the low bits untouched, then
2921// we can skip the AND operation. If the store is from a sign-extension
2922// (a left shift, then right shift) we can skip both.
2923Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2924 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2925 if( progress != NULL__null ) return progress;
2926
2927 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2928 if( progress != NULL__null ) return progress;
2929
2930 // Finally check the default case
2931 return StoreNode::Ideal(phase, can_reshape);
2932}
2933
2934//=============================================================================
2935//------------------------------Ideal------------------------------------------
2936// If the store is from an AND mask that leaves the low bits untouched, then
2937// we can skip the AND operation
2938Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2939 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2940 if( progress != NULL__null ) return progress;
2941
2942 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2943 if( progress != NULL__null ) return progress;
2944
2945 // Finally check the default case
2946 return StoreNode::Ideal(phase, can_reshape);
2947}
2948
2949//=============================================================================
2950//------------------------------Identity---------------------------------------
2951Node* StoreCMNode::Identity(PhaseGVN* phase) {
2952 // No need to card mark when storing a null ptr
2953 Node* my_store = in(MemNode::OopStore);
2954 if (my_store->is_Store()) {
2955 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2956 if( t1 == TypePtr::NULL_PTR ) {
2957 return in(MemNode::Memory);
2958 }
2959 }
2960 return this;
2961}
2962
2963//=============================================================================
2964//------------------------------Ideal---------------------------------------
2965Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2966 Node* progress = StoreNode::Ideal(phase, can_reshape);
2967 if (progress != NULL__null) return progress;
2968
2969 Node* my_store = in(MemNode::OopStore);
2970 if (my_store->is_MergeMem()) {
2971 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2972 set_req_X(MemNode::OopStore, mem, phase);
2973 return this;
2974 }
2975
2976 return NULL__null;
2977}
2978
2979//------------------------------Value-----------------------------------------
2980const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2981 // Either input is TOP ==> the result is TOP (checked in StoreNode::Value).
2982 // If extra input is TOP ==> the result is TOP
2983 const Type* t = phase->type(in(MemNode::OopStore));
2984 if (t == Type::TOP) {
2985 return Type::TOP;
2986 }
2987 return StoreNode::Value(phase);
2988}
2989
2990
2991//=============================================================================
2992//----------------------------------SCMemProjNode------------------------------
2993const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2994{
2995 if (in(0) == NULL__null || phase->type(in(0)) == Type::TOP) {
2996 return Type::TOP;
2997 }
2998 return bottom_type();
2999}
3000
3001//=============================================================================
3002//----------------------------------LoadStoreNode------------------------------
3003LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
3004 : Node(required),
3005 _type(rt),
3006 _adr_type(at),
3007 _barrier_data(0)
3008{
3009 init_req(MemNode::Control, c );
3010 init_req(MemNode::Memory , mem);
3011 init_req(MemNode::Address, adr);
3012 init_req(MemNode::ValueIn, val);
3013 init_class_id(Class_LoadStore);
3014}
3015
3016//------------------------------Value-----------------------------------------
3017const Type* LoadStoreNode::Value(PhaseGVN* phase) const {
3018 // Either input is TOP ==> the result is TOP
3019 if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) {
3020 return Type::TOP;
3021 }
3022 const Type* t = phase->type(in(MemNode::Memory));
3023 if (t == Type::TOP) {
3024 return Type::TOP;
3025 }
3026 t = phase->type(in(MemNode::Address));
3027 if (t == Type::TOP) {
3028 return Type::TOP;
3029 }
3030 t = phase->type(in(MemNode::ValueIn));
3031 if (t == Type::TOP) {
3032 return Type::TOP;
3033 }
3034 return bottom_type();
3035}
3036
3037uint LoadStoreNode::ideal_reg() const {
3038 return _type->ideal_reg();
3039}
3040
3041bool LoadStoreNode::result_not_used() const {
3042 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
3043 Node *x = fast_out(i);
3044 if (x->Opcode() == Op_SCMemProj) continue;
3045 return false;
3046 }
3047 return true;
3048}
3049
3050MemBarNode* LoadStoreNode::trailing_membar() const {
3051 MemBarNode* trailing = NULL__null;
3052 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
3053 Node* u = fast_out(i);
3054 if (u->is_MemBar()) {
3055 if (u->as_MemBar()->trailing_load_store()) {
3056 assert(u->Opcode() == Op_MemBarAcquire, "")do { if (!(u->Opcode() == Op_MemBarAcquire)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3056, "assert(" "u->Opcode() == Op_MemBarAcquire" ") failed"
, ""); ::breakpoint(); } } while (0)
;
3057 assert(trailing == NULL, "only one")do { if (!(trailing == __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3057, "assert(" "trailing == __null" ") failed", "only one"
); ::breakpoint(); } } while (0)
;
3058 trailing = u->as_MemBar();
3059#ifdef ASSERT1
3060 Node* leading = trailing->leading_membar();
3061 assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar")do { if (!(support_IRIW_for_not_multiple_copy_atomic_cpu || leading
->Opcode() == Op_MemBarRelease)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3061, "assert(" "support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease"
") failed", "incorrect membar"); ::breakpoint(); } } while (
0)
;
3062 assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair")do { if (!(leading->as_MemBar()->leading_load_store()))
{ (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3062, "assert(" "leading->as_MemBar()->leading_load_store()"
") failed", "incorrect membar pair"); ::breakpoint(); } } while
(0)
;
3063 assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair")do { if (!(leading->as_MemBar()->trailing_membar() == trailing
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3063, "assert(" "leading->as_MemBar()->trailing_membar() == trailing"
") failed", "incorrect membar pair"); ::breakpoint(); } } while
(0)
;
3064#endif
3065 } else {
3066 assert(u->as_MemBar()->standalone(), "wrong barrier kind")do { if (!(u->as_MemBar()->standalone())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3066, "assert(" "u->as_MemBar()->standalone()" ") failed"
, "wrong barrier kind"); ::breakpoint(); } } while (0)
;
3067 }
3068 }
3069 }
3070
3071 return trailing;
3072}
3073
3074uint LoadStoreNode::size_of() const { return sizeof(*this); }
3075
3076//=============================================================================
3077//----------------------------------LoadStoreConditionalNode--------------------
3078LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL__null, TypeInt::BOOL, 5) {
3079 init_req(ExpectedIn, ex );
3080}
3081
3082const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const {
3083 // Either input is TOP ==> the result is TOP
3084 const Type* t = phase->type(in(ExpectedIn));
3085 if (t == Type::TOP) {
3086 return Type::TOP;
3087 }
3088 return LoadStoreNode::Value(phase);
3089}
3090
3091//=============================================================================
3092//-------------------------------adr_type--------------------------------------
3093const TypePtr* ClearArrayNode::adr_type() const {
3094 Node *adr = in(3);
3095 if (adr == NULL__null) return NULL__null; // node is dead
3096 return MemNode::calculate_adr_type(adr->bottom_type());
3097}
3098
3099//------------------------------match_edge-------------------------------------
3100// Do we Match on this edge index or not? Do not match memory
3101uint ClearArrayNode::match_edge(uint idx) const {
3102 return idx > 1;
3103}
3104
3105//------------------------------Identity---------------------------------------
3106// Clearing a zero length array does nothing
3107Node* ClearArrayNode::Identity(PhaseGVN* phase) {
3108 return phase->type(in(2))->higher_equal(TypeXTypeLong::ZERO) ? in(1) : this;
3109}
3110
3111//------------------------------Idealize---------------------------------------
3112// Clearing a short array is faster with stores
3113Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3114 // Already know this is a large node, do not try to ideal it
3115 if (!IdealizeClearArrayNode || _is_large) return NULL__null;
3116
3117 const int unit = BytesPerLong;
3118 const TypeXTypeLong* t = phase->type(in(2))->isa_intptr_tisa_long();
3119 if (!t) return NULL__null;
3120 if (!t->is_con()) return NULL__null;
3121 intptr_t raw_count = t->get_con();
3122 intptr_t size = raw_count;
3123 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
3124 // Clearing nothing uses the Identity call.
3125 // Negative clears are possible on dead ClearArrays
3126 // (see jck test stmt114.stmt11402.val).
3127 if (size <= 0 || size % unit != 0) return NULL__null;
3128 intptr_t count = size / unit;
3129 // Length too long; communicate this to matchers and assemblers.
3130 // Assemblers are responsible to produce fast hardware clears for it.
3131 if (size > InitArrayShortSize) {
3132 return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
3133 } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) {
3134 return NULL__null;
3135 }
3136 Node *mem = in(1);
3137 if( phase->type(mem)==Type::TOP ) return NULL__null;
3138 Node *adr = in(3);
3139 const Type* at = phase->type(adr);
3140 if( at==Type::TOP ) return NULL__null;
3141 const TypePtr* atp = at->isa_ptr();
3142 // adjust atp to be the correct array element address type
3143 if (atp == NULL__null) atp = TypePtr::BOTTOM;
3144 else atp = atp->add_offset(Type::OffsetBot);
3145 // Get base for derived pointer purposes
3146 if( adr->Opcode() != Op_AddP ) Unimplemented()do { (*g_assert_poison) = 'X';; report_unimplemented("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3146); ::breakpoint(); } while (0)
;
3147 Node *base = adr->in(1);
3148
3149 Node *zero = phase->makecon(TypeLong::ZERO);
3150 Node *off = phase->MakeConXlongcon(BytesPerLong);
3151 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
3152 count--;
3153 while( count-- ) {
3154 mem = phase->transform(mem);
3155 adr = phase->transform(new AddPNode(base,adr,off));
3156 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
3157 }
3158 return mem;
3159}
3160
3161//----------------------------step_through----------------------------------
3162// Return allocation input memory edge if it is different instance
3163// or itself if it is the one we are looking for.
3164bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
3165 Node* n = *np;
3166 assert(n->is_ClearArray(), "sanity")do { if (!(n->is_ClearArray())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3166, "assert(" "n->is_ClearArray()" ") failed", "sanity"
); ::breakpoint(); } } while (0)
;
3167 intptr_t offset;
3168 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
3169 // This method is called only before Allocate nodes are expanded
3170 // during macro nodes expansion. Before that ClearArray nodes are
3171 // only generated in PhaseMacroExpand::generate_arraycopy() (before
3172 // Allocate nodes are expanded) which follows allocations.
3173 assert(alloc != NULL, "should have allocation")do { if (!(alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3173, "assert(" "alloc != __null" ") failed", "should have allocation"
); ::breakpoint(); } } while (0)
;
3174 if (alloc->_idx == instance_id) {
3175 // Can not bypass initialization of the instance we are looking for.
3176 return false;
3177 }
3178 // Otherwise skip it.
3179 InitializeNode* init = alloc->initialization();
3180 if (init != NULL__null)
3181 *np = init->in(TypeFunc::Memory);
3182 else
3183 *np = alloc->in(TypeFunc::Memory);
3184 return true;
3185}
3186
3187//----------------------------clear_memory-------------------------------------
3188// Generate code to initialize object storage to zero.
3189Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3190 intptr_t start_offset,
3191 Node* end_offset,
3192 PhaseGVN* phase) {
3193 intptr_t offset = start_offset;
3194
3195 int unit = BytesPerLong;
3196 if ((offset % unit) != 0) {
3197 Node* adr = new AddPNode(dest, dest, phase->MakeConXlongcon(offset));
3198 adr = phase->transform(adr);
3199 const TypePtr* atp = TypeRawPtr::BOTTOM;
3200 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3201 mem = phase->transform(mem);
3202 offset += BytesPerInt;
3203 }
3204 assert((offset % unit) == 0, "")do { if (!((offset % unit) == 0)) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3204, "assert(" "(offset % unit) == 0" ") failed", ""); ::breakpoint
(); } } while (0)
;
3205
3206 // Initialize the remaining stuff, if any, with a ClearArray.
3207 return clear_memory(ctl, mem, dest, phase->MakeConXlongcon(offset), end_offset, phase);
3208}
3209
3210Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3211 Node* start_offset,
3212 Node* end_offset,
3213 PhaseGVN* phase) {
3214 if (start_offset == end_offset) {
3215 // nothing to do
3216 return mem;
3217 }
3218
3219 int unit = BytesPerLong;
3220 Node* zbase = start_offset;
3221 Node* zend = end_offset;
3222
3223 // Scale to the unit required by the CPU:
3224 if (!Matcher::init_array_count_is_in_bytes) {
3225 Node* shift = phase->intcon(exact_log2(unit));
3226 zbase = phase->transform(new URShiftXNodeURShiftLNode(zbase, shift) );
3227 zend = phase->transform(new URShiftXNodeURShiftLNode(zend, shift) );
3228 }
3229
3230 // Bulk clear double-words
3231 Node* zsize = phase->transform(new SubXNodeSubLNode(zend, zbase) );
3232 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3233 mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
3234 return phase->transform(mem);
3235}
3236
3237Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3238 intptr_t start_offset,
3239 intptr_t end_offset,
3240 PhaseGVN* phase) {
3241 if (start_offset == end_offset) {
3242 // nothing to do
3243 return mem;
3244 }
3245
3246 assert((end_offset % BytesPerInt) == 0, "odd end offset")do { if (!((end_offset % BytesPerInt) == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3246, "assert(" "(end_offset % BytesPerInt) == 0" ") failed"
, "odd end offset"); ::breakpoint(); } } while (0)
;
3247 intptr_t done_offset = end_offset;
3248 if ((done_offset % BytesPerLong) != 0) {
3249 done_offset -= BytesPerInt;
3250 }
3251 if (done_offset > start_offset) {
3252 mem = clear_memory(ctl, mem, dest,
3253 start_offset, phase->MakeConXlongcon(done_offset), phase);
3254 }
3255 if (done_offset < end_offset) { // emit the final 32-bit store
3256 Node* adr = new AddPNode(dest, dest, phase->MakeConXlongcon(done_offset));
3257 adr = phase->transform(adr);
3258 const TypePtr* atp = TypeRawPtr::BOTTOM;
3259 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3260 mem = phase->transform(mem);
3261 done_offset += BytesPerInt;
3262 }
3263 assert(done_offset == end_offset, "")do { if (!(done_offset == end_offset)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3263, "assert(" "done_offset == end_offset" ") failed", "")
; ::breakpoint(); } } while (0)
;
3264 return mem;
3265}
3266
3267//=============================================================================
3268MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3269 : MultiNode(TypeFunc::Parms + (precedent == NULL__null? 0: 1)),
3270 _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3271#ifdef ASSERT1
3272 , _pair_idx(0)
3273#endif
3274{
3275 init_class_id(Class_MemBar);
3276 Node* top = C->top();
3277 init_req(TypeFunc::I_O,top);
3278 init_req(TypeFunc::FramePtr,top);
3279 init_req(TypeFunc::ReturnAdr,top);
3280 if (precedent != NULL__null)
3281 init_req(TypeFunc::Parms, precedent);
3282}
3283
3284//------------------------------cmp--------------------------------------------
3285uint MemBarNode::hash() const { return NO_HASH; }
3286bool MemBarNode::cmp( const Node &n ) const {
3287 return (&n == this); // Always fail except on self
3288}
3289
3290//------------------------------make-------------------------------------------
3291MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3292 switch (opcode) {
3293 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn);
3294 case Op_LoadFence: return new LoadFenceNode(C, atp, pn);
3295 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn);
3296 case Op_StoreFence: return new StoreFenceNode(C, atp, pn);
3297 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn);
3298 case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn);
3299 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3300 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3301 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn);
3302 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn);
3303 case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn);
3304 case Op_Initialize: return new InitializeNode(C, atp, pn);
3305 case Op_Blackhole: return new BlackholeNode(C, atp, pn);
3306 default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3306); ::breakpoint(); } while (0)
; return NULL__null;
3307 }
3308}
3309
3310void MemBarNode::remove(PhaseIterGVN *igvn) {
3311 if (outcnt() != 2) {
3312 assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory")do { if (!(Opcode() == Op_Initialize)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3312, "assert(" "Opcode() == Op_Initialize" ") failed", "Only seen when there are no use of init memory"
); ::breakpoint(); } } while (0)
;
3313 assert(outcnt() == 1, "Only control then")do { if (!(outcnt() == 1)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3313, "assert(" "outcnt() == 1" ") failed", "Only control then"
); ::breakpoint(); } } while (0)
;
3314 }
3315 if (trailing_store() || trailing_load_store()) {
3316 MemBarNode* leading = leading_membar();
3317 if (leading != NULL__null) {
3318 assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars")do { if (!(leading->trailing_membar() == this)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3318, "assert(" "leading->trailing_membar() == this" ") failed"
, "inconsistent leading/trailing membars"); ::breakpoint(); }
} while (0)
;
3319 leading->remove(igvn);
3320 }
3321 }
3322 if (proj_out_or_null(TypeFunc::Memory) != NULL__null) {
3323 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3324 }
3325 if (proj_out_or_null(TypeFunc::Control) != NULL__null) {
3326 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3327 }
3328}
3329
3330//------------------------------Ideal------------------------------------------
3331// Return a node which is more "ideal" than the current node. Strip out
3332// control copies
3333Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3334 if (remove_dead_region(phase, can_reshape)) return this;
3335 // Don't bother trying to transform a dead node
3336 if (in(0) && in(0)->is_top()) {
3337 return NULL__null;
3338 }
3339
3340 bool progress = false;
3341 // Eliminate volatile MemBars for scalar replaced objects.
3342 if (can_reshape && req() == (Precedent+1)) {
3343 bool eliminate = false;
3344 int opc = Opcode();
3345 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3346 // Volatile field loads and stores.
3347 Node* my_mem = in(MemBarNode::Precedent);
3348 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3349 if ((my_mem != NULL__null) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3350 // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3351 // replace this Precedent (decodeN) with the Load instead.
3352 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) {
3353 Node* load_node = my_mem->in(1);
3354 set_req(MemBarNode::Precedent, load_node);
3355 phase->is_IterGVN()->_worklist.push(my_mem);
3356 my_mem = load_node;
3357 } else {
3358 assert(my_mem->unique_out() == this, "sanity")do { if (!(my_mem->unique_out() == this)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3358, "assert(" "my_mem->unique_out() == this" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
3359 del_req(Precedent);
3360 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3361 my_mem = NULL__null;
3362 }
3363 progress = true;
3364 }
3365 if (my_mem != NULL__null && my_mem->is_Mem()) {
3366 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3367 // Check for scalar replaced object reference.
3368 if( t_oop != NULL__null && t_oop->is_known_instance_field() &&
3369 t_oop->offset() != Type::OffsetBot &&
3370 t_oop->offset() != Type::OffsetTop) {
3371 eliminate = true;
3372 }
3373 }
3374 } else if (opc == Op_MemBarRelease) {
3375 // Final field stores.
3376 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3377 if ((alloc != NULL__null) && alloc->is_Allocate() &&
3378 alloc->as_Allocate()->does_not_escape_thread()) {
3379 // The allocated object does not escape.
3380 eliminate = true;
3381 }
3382 }
3383 if (eliminate) {
3384 // Replace MemBar projections by its inputs.
3385 PhaseIterGVN* igvn = phase->is_IterGVN();
3386 remove(igvn);
3387 // Must return either the original node (now dead) or a new node
3388 // (Do not return a top here, since that would break the uniqueness of top.)
3389 return new ConINode(TypeInt::ZERO);
3390 }
3391 }
3392 return progress ? this : NULL__null;
3393}
3394
3395//------------------------------Value------------------------------------------
3396const Type* MemBarNode::Value(PhaseGVN* phase) const {
3397 if( !in(0) ) return Type::TOP;
3398 if( phase->type(in(0)) == Type::TOP )
3399 return Type::TOP;
3400 return TypeTuple::MEMBAR;
3401}
3402
3403//------------------------------match------------------------------------------
3404// Construct projections for memory.
3405Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3406 switch (proj->_con) {
3407 case TypeFunc::Control:
3408 case TypeFunc::Memory:
3409 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3410 }
3411 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3411); ::breakpoint(); } while (0)
;
3412 return NULL__null;
3413}
3414
3415void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3416 trailing->_kind = TrailingStore;
3417 leading->_kind = LeadingStore;
3418#ifdef ASSERT1
3419 trailing->_pair_idx = leading->_idx;
3420 leading->_pair_idx = leading->_idx;
3421#endif
3422}
3423
3424void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3425 trailing->_kind = TrailingLoadStore;
3426 leading->_kind = LeadingLoadStore;
3427#ifdef ASSERT1
3428 trailing->_pair_idx = leading->_idx;
3429 leading->_pair_idx = leading->_idx;
3430#endif
3431}
3432
3433MemBarNode* MemBarNode::trailing_membar() const {
3434 ResourceMark rm;
3435 Node* trailing = (Node*)this;
3436 VectorSet seen;
3437 Node_Stack multis(0);
3438 do {
3439 Node* c = trailing;
3440 uint i = 0;
3441 do {
3442 trailing = NULL__null;
3443 for (; i < c->outcnt(); i++) {
3444 Node* next = c->raw_out(i);
3445 if (next != c && next->is_CFG()) {
3446 if (c->is_MultiBranch()) {
3447 if (multis.node() == c) {
3448 multis.set_index(i+1);
3449 } else {
3450 multis.push(c, i+1);
3451 }
3452 }
3453 trailing = next;
3454 break;
3455 }
3456 }
3457 if (trailing != NULL__null && !seen.test_set(trailing->_idx)) {
3458 break;
3459 }
3460 while (multis.size() > 0) {
3461 c = multis.node();
3462 i = multis.index();
3463 if (i < c->req()) {
3464 break;
3465 }
3466 multis.pop();
3467 }
3468 } while (multis.size() > 0);
3469 } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3470
3471 MemBarNode* mb = trailing->as_MemBar();
3472 assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||do { if (!((mb->_kind == TrailingStore && _kind ==
LeadingStore) || (mb->_kind == TrailingLoadStore &&
_kind == LeadingLoadStore))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3473, "assert(" "(mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore)"
") failed", "bad trailing membar"); ::breakpoint(); } } while
(0)
3473 (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar")do { if (!((mb->_kind == TrailingStore && _kind ==
LeadingStore) || (mb->_kind == TrailingLoadStore &&
_kind == LeadingLoadStore))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3473, "assert(" "(mb->_kind == TrailingStore && _kind == LeadingStore) || (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore)"
") failed", "bad trailing membar"); ::breakpoint(); } } while
(0)
;
3474 assert(mb->_pair_idx == _pair_idx, "bad trailing membar")do { if (!(mb->_pair_idx == _pair_idx)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3474, "assert(" "mb->_pair_idx == _pair_idx" ") failed",
"bad trailing membar"); ::breakpoint(); } } while (0)
;
3475 return mb;
3476}
3477
3478MemBarNode* MemBarNode::leading_membar() const {
3479 ResourceMark rm;
3480 VectorSet seen;
3481 Node_Stack regions(0);
3482 Node* leading = in(0);
3483 while (leading != NULL__null && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3484 while (leading == NULL__null || leading->is_top() || seen.test_set(leading->_idx)) {
3485 leading = NULL__null;
3486 while (regions.size() > 0 && leading == NULL__null) {
3487 Node* r = regions.node();
3488 uint i = regions.index();
3489 if (i < r->req()) {
3490 leading = r->in(i);
3491 regions.set_index(i+1);
3492 } else {
3493 regions.pop();
3494 }
3495 }
3496 if (leading == NULL__null) {
3497 assert(regions.size() == 0, "all paths should have been tried")do { if (!(regions.size() == 0)) { (*g_assert_poison) = 'X';;
report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3497, "assert(" "regions.size() == 0" ") failed", "all paths should have been tried"
); ::breakpoint(); } } while (0)
;
3498 return NULL__null;
3499 }
3500 }
3501 if (leading->is_Region()) {
3502 regions.push(leading, 2);
3503 leading = leading->in(1);
3504 } else {
3505 leading = leading->in(0);
3506 }
3507 }
3508#ifdef ASSERT1
3509 Unique_Node_List wq;
3510 wq.push((Node*)this);
3511 uint found = 0;
3512 for (uint i = 0; i < wq.size(); i++) {
3513 Node* n = wq.at(i);
3514 if (n->is_Region()) {
3515 for (uint j = 1; j < n->req(); j++) {
3516 Node* in = n->in(j);
3517 if (in != NULL__null && !in->is_top()) {
3518 wq.push(in);
3519 }
3520 }
3521 } else {
3522 if (n->is_MemBar() && n->as_MemBar()->leading()) {
3523 assert(n == leading, "consistency check failed")do { if (!(n == leading)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3523, "assert(" "n == leading" ") failed", "consistency check failed"
); ::breakpoint(); } } while (0)
;
3524 found++;
3525 } else {
3526 Node* in = n->in(0);
3527 if (in != NULL__null && !in->is_top()) {
3528 wq.push(in);
3529 }
3530 }
3531 }
3532 }
3533 assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed")do { if (!(found == 1 || (found == 0 && leading == __null
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3533, "assert(" "found == 1 || (found == 0 && leading == __null)"
") failed", "consistency check failed"); ::breakpoint(); } }
while (0)
;
3534#endif
3535 if (leading == NULL__null) {
3536 return NULL__null;
3537 }
3538 MemBarNode* mb = leading->as_MemBar();
3539 assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||do { if (!((mb->_kind == LeadingStore && _kind == TrailingStore
) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3540, "assert(" "(mb->_kind == LeadingStore && _kind == TrailingStore) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore)"
") failed", "bad leading membar"); ::breakpoint(); } } while
(0)
3540 (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar")do { if (!((mb->_kind == LeadingStore && _kind == TrailingStore
) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3540, "assert(" "(mb->_kind == LeadingStore && _kind == TrailingStore) || (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore)"
") failed", "bad leading membar"); ::breakpoint(); } } while
(0)
;
3541 assert(mb->_pair_idx == _pair_idx, "bad leading membar")do { if (!(mb->_pair_idx == _pair_idx)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3541, "assert(" "mb->_pair_idx == _pair_idx" ") failed",
"bad leading membar"); ::breakpoint(); } } while (0)
;
3542 return mb;
3543}
3544
3545#ifndef PRODUCT
3546void BlackholeNode::format(PhaseRegAlloc* ra, outputStream* st) const {
3547 st->print("blackhole ");
3548 bool first = true;
3549 for (uint i = 0; i < req(); i++) {
3550 Node* n = in(i);
3551 if (n != NULL__null && OptoReg::is_valid(ra->get_reg_first(n))) {
3552 if (first) {
3553 first = false;
3554 } else {
3555 st->print(", ");
3556 }
3557 char buf[128];
3558 ra->dump_register(n, buf);
3559 st->print("%s", buf);
3560 }
3561 }
3562 st->cr();
3563}
3564#endif
3565
3566//===========================InitializeNode====================================
3567// SUMMARY:
3568// This node acts as a memory barrier on raw memory, after some raw stores.
3569// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3570// The Initialize can 'capture' suitably constrained stores as raw inits.
3571// It can coalesce related raw stores into larger units (called 'tiles').
3572// It can avoid zeroing new storage for memory units which have raw inits.
3573// At macro-expansion, it is marked 'complete', and does not optimize further.
3574//
3575// EXAMPLE:
3576// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3577// ctl = incoming control; mem* = incoming memory
3578// (Note: A star * on a memory edge denotes I/O and other standard edges.)
3579// First allocate uninitialized memory and fill in the header:
3580// alloc = (Allocate ctl mem* 16 #short[].klass ...)
3581// ctl := alloc.Control; mem* := alloc.Memory*
3582// rawmem = alloc.Memory; rawoop = alloc.RawAddress
3583// Then initialize to zero the non-header parts of the raw memory block:
3584// init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3585// ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3586// After the initialize node executes, the object is ready for service:
3587// oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3588// Suppose its body is immediately initialized as {1,2}:
3589// store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3590// store2 = (StoreC init.Control store1 (+ oop 14) 2)
3591// mem.SLICE(#short[*]) := store2
3592//
3593// DETAILS:
3594// An InitializeNode collects and isolates object initialization after
3595// an AllocateNode and before the next possible safepoint. As a
3596// memory barrier (MemBarNode), it keeps critical stores from drifting
3597// down past any safepoint or any publication of the allocation.
3598// Before this barrier, a newly-allocated object may have uninitialized bits.
3599// After this barrier, it may be treated as a real oop, and GC is allowed.
3600//
3601// The semantics of the InitializeNode include an implicit zeroing of
3602// the new object from object header to the end of the object.
3603// (The object header and end are determined by the AllocateNode.)
3604//
3605// Certain stores may be added as direct inputs to the InitializeNode.
3606// These stores must update raw memory, and they must be to addresses
3607// derived from the raw address produced by AllocateNode, and with
3608// a constant offset. They must be ordered by increasing offset.
3609// The first one is at in(RawStores), the last at in(req()-1).
3610// Unlike most memory operations, they are not linked in a chain,
3611// but are displayed in parallel as users of the rawmem output of
3612// the allocation.
3613//
3614// (See comments in InitializeNode::capture_store, which continue
3615// the example given above.)
3616//
3617// When the associated Allocate is macro-expanded, the InitializeNode
3618// may be rewritten to optimize collected stores. A ClearArrayNode
3619// may also be created at that point to represent any required zeroing.
3620// The InitializeNode is then marked 'complete', prohibiting further
3621// capturing of nearby memory operations.
3622//
3623// During macro-expansion, all captured initializations which store
3624// constant values of 32 bits or smaller are coalesced (if advantageous)
3625// into larger 'tiles' 32 or 64 bits. This allows an object to be
3626// initialized in fewer memory operations. Memory words which are
3627// covered by neither tiles nor non-constant stores are pre-zeroed
3628// by explicit stores of zero. (The code shape happens to do all
3629// zeroing first, then all other stores, with both sequences occurring
3630// in order of ascending offsets.)
3631//
3632// Alternatively, code may be inserted between an AllocateNode and its
3633// InitializeNode, to perform arbitrary initialization of the new object.
3634// E.g., the object copying intrinsics insert complex data transfers here.
3635// The initialization must then be marked as 'complete' disable the
3636// built-in zeroing semantics and the collection of initializing stores.
3637//
3638// While an InitializeNode is incomplete, reads from the memory state
3639// produced by it are optimizable if they match the control edge and
3640// new oop address associated with the allocation/initialization.
3641// They return a stored value (if the offset matches) or else zero.
3642// A write to the memory state, if it matches control and address,
3643// and if it is to a constant offset, may be 'captured' by the
3644// InitializeNode. It is cloned as a raw memory operation and rewired
3645// inside the initialization, to the raw oop produced by the allocation.
3646// Operations on addresses which are provably distinct (e.g., to
3647// other AllocateNodes) are allowed to bypass the initialization.
3648//
3649// The effect of all this is to consolidate object initialization
3650// (both arrays and non-arrays, both piecewise and bulk) into a
3651// single location, where it can be optimized as a unit.
3652//
3653// Only stores with an offset less than TrackedInitializationLimit words
3654// will be considered for capture by an InitializeNode. This puts a
3655// reasonable limit on the complexity of optimized initializations.
3656
3657//---------------------------InitializeNode------------------------------------
3658InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3659 : MemBarNode(C, adr_type, rawoop),
3660 _is_complete(Incomplete), _does_not_escape(false)
3661{
3662 init_class_id(Class_Initialize);
3663
3664 assert(adr_type == Compile::AliasIdxRaw, "only valid atp")do { if (!(adr_type == Compile::AliasIdxRaw)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3664, "assert(" "adr_type == Compile::AliasIdxRaw" ") failed"
, "only valid atp"); ::breakpoint(); } } while (0)
;
3665 assert(in(RawAddress) == rawoop, "proper init")do { if (!(in(RawAddress) == rawoop)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3665, "assert(" "in(RawAddress) == rawoop" ") failed", "proper init"
); ::breakpoint(); } } while (0)
;
3666 // Note: allocation() can be NULL, for secondary initialization barriers
3667}
3668
3669// Since this node is not matched, it will be processed by the
3670// register allocator. Declare that there are no constraints
3671// on the allocation of the RawAddress edge.
3672const RegMask &InitializeNode::in_RegMask(uint idx) const {
3673 // This edge should be set to top, by the set_complete. But be conservative.
3674 if (idx == InitializeNode::RawAddress)
3675 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3676 return RegMask::Empty;
3677}
3678
3679Node* InitializeNode::memory(uint alias_idx) {
3680 Node* mem = in(Memory);
3681 if (mem->is_MergeMem()) {
3682 return mem->as_MergeMem()->memory_at(alias_idx);
3683 } else {
3684 // incoming raw memory is not split
3685 return mem;
3686 }
3687}
3688
3689bool InitializeNode::is_non_zero() {
3690 if (is_complete()) return false;
3691 remove_extra_zeroes();
3692 return (req() > RawStores);
3693}
3694
3695void InitializeNode::set_complete(PhaseGVN* phase) {
3696 assert(!is_complete(), "caller responsibility")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3696, "assert(" "!is_complete()" ") failed", "caller responsibility"
); ::breakpoint(); } } while (0)
;
3697 _is_complete = Complete;
3698
3699 // After this node is complete, it contains a bunch of
3700 // raw-memory initializations. There is no need for
3701 // it to have anything to do with non-raw memory effects.
3702 // Therefore, tell all non-raw users to re-optimize themselves,
3703 // after skipping the memory effects of this initialization.
3704 PhaseIterGVN* igvn = phase->is_IterGVN();
3705 if (igvn) igvn->add_users_to_worklist(this);
3706}
3707
3708// convenience function
3709// return false if the init contains any stores already
3710bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3711 InitializeNode* init = initialization();
3712 if (init == NULL__null || init->is_complete()) return false;
3713 init->remove_extra_zeroes();
3714 // for now, if this allocation has already collected any inits, bail:
3715 if (init->is_non_zero()) return false;
3716 init->set_complete(phase);
3717 return true;
3718}
3719
3720void InitializeNode::remove_extra_zeroes() {
3721 if (req() == RawStores) return;
3722 Node* zmem = zero_memory();
3723 uint fill = RawStores;
3724 for (uint i = fill; i < req(); i++) {
3725 Node* n = in(i);
3726 if (n->is_top() || n == zmem) continue; // skip
3727 if (fill < i) set_req(fill, n); // compact
3728 ++fill;
3729 }
3730 // delete any empty spaces created:
3731 while (fill < req()) {
3732 del_req(fill);
3733 }
3734}
3735
3736// Helper for remembering which stores go with which offsets.
3737intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3738 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
3739 intptr_t offset = -1;
3740 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3741 phase, offset);
3742 if (base == NULL__null) return -1; // something is dead,
3743 if (offset < 0) return -1; // dead, dead
3744 return offset;
3745}
3746
3747// Helper for proving that an initialization expression is
3748// "simple enough" to be folded into an object initialization.
3749// Attempts to prove that a store's initial value 'n' can be captured
3750// within the initialization without creating a vicious cycle, such as:
3751// { Foo p = new Foo(); p.next = p; }
3752// True for constants and parameters and small combinations thereof.
3753bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) {
3754 ResourceMark rm;
3755 Unique_Node_List worklist;
3756 worklist.push(value);
3757
3758 uint complexity_limit = 20;
3759 for (uint j = 0; j < worklist.size(); j++) {
3760 if (j >= complexity_limit) {
3761 return false; // Bail out if processed too many nodes
3762 }
3763
3764 Node* n = worklist.at(j);
3765 if (n == NULL__null) continue; // (can this really happen?)
3766 if (n->is_Proj()) n = n->in(0);
3767 if (n == this) return false; // found a cycle
3768 if (n->is_Con()) continue;
3769 if (n->is_Start()) continue; // params, etc., are OK
3770 if (n->is_Root()) continue; // even better
3771
3772 // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation
3773 if (n->is_CFG() && phase->is_dominator(n, allocation())) {
3774 continue;
3775 }
3776
3777 Node* ctl = n->in(0);
3778 if (ctl != NULL__null && !ctl->is_top()) {
3779 if (ctl->is_Proj()) ctl = ctl->in(0);
3780 if (ctl == this) return false;
3781
3782 // If we already know that the enclosing memory op is pinned right after
3783 // the init, then any control flow that the store has picked up
3784 // must have preceded the init, or else be equal to the init.
3785 // Even after loop optimizations (which might change control edges)
3786 // a store is never pinned *before* the availability of its inputs.
3787 if (!MemNode::all_controls_dominate(n, this))
3788 return false; // failed to prove a good control
3789 }
3790
3791 // Check data edges for possible dependencies on 'this'.
3792 for (uint i = 1; i < n->req(); i++) {
3793 Node* m = n->in(i);
3794 if (m == NULL__null || m == n || m->is_top()) continue;
3795
3796 // Only process data inputs once
3797 worklist.push(m);
3798 }
3799 }
3800
3801 return true;
3802}
3803
3804// Here are all the checks a Store must pass before it can be moved into
3805// an initialization. Returns zero if a check fails.
3806// On success, returns the (constant) offset to which the store applies,
3807// within the initialized memory.
3808intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) {
3809 const int FAIL = 0;
3810 if (st->req() != MemNode::ValueIn + 1)
3811 return FAIL; // an inscrutable StoreNode (card mark?)
3812 Node* ctl = st->in(MemNode::Control);
3813 if (!(ctl != NULL__null && ctl->is_Proj() && ctl->in(0) == this))
3814 return FAIL; // must be unconditional after the initialization
3815 Node* mem = st->in(MemNode::Memory);
3816 if (!(mem->is_Proj() && mem->in(0) == this))
3817 return FAIL; // must not be preceded by other stores
3818 Node* adr = st->in(MemNode::Address);
3819 intptr_t offset;
3820 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3821 if (alloc == NULL__null)
3822 return FAIL; // inscrutable address
3823 if (alloc != allocation())
3824 return FAIL; // wrong allocation! (store needs to float up)
3825 int size_in_bytes = st->memory_size();
3826 if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) {
3827 return FAIL; // mismatched access
3828 }
3829 Node* val = st->in(MemNode::ValueIn);
3830
3831 if (!detect_init_independence(val, phase))
3832 return FAIL; // stored value must be 'simple enough'
3833
3834 // The Store can be captured only if nothing after the allocation
3835 // and before the Store is using the memory location that the store
3836 // overwrites.
3837 bool failed = false;
3838 // If is_complete_with_arraycopy() is true the shape of the graph is
3839 // well defined and is safe so no need for extra checks.
3840 if (!is_complete_with_arraycopy()) {
3841 // We are going to look at each use of the memory state following
3842 // the allocation to make sure nothing reads the memory that the
3843 // Store writes.
3844 const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3845 int alias_idx = phase->C->get_alias_index(t_adr);
3846 ResourceMark rm;
3847 Unique_Node_List mems;
3848 mems.push(mem);
3849 Node* unique_merge = NULL__null;
3850 for (uint next = 0; next < mems.size(); ++next) {
3851 Node *m = mems.at(next);
3852 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3853 Node *n = m->fast_out(j);
3854 if (n->outcnt() == 0) {
3855 continue;
3856 }
3857 if (n == st) {
3858 continue;
3859 } else if (n->in(0) != NULL__null && n->in(0) != ctl) {
3860 // If the control of this use is different from the control
3861 // of the Store which is right after the InitializeNode then
3862 // this node cannot be between the InitializeNode and the
3863 // Store.
3864 continue;
3865 } else if (n->is_MergeMem()) {
3866 if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3867 // We can hit a MergeMemNode (that will likely go away
3868 // later) that is a direct use of the memory state
3869 // following the InitializeNode on the same slice as the
3870 // store node that we'd like to capture. We need to check
3871 // the uses of the MergeMemNode.
3872 mems.push(n);
3873 }
3874 } else if (n->is_Mem()) {
3875 Node* other_adr = n->in(MemNode::Address);
3876 if (other_adr == adr) {
3877 failed = true;
3878 break;
3879 } else {
3880 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3881 if (other_t_adr != NULL__null) {
3882 int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3883 if (other_alias_idx == alias_idx) {
3884 // A load from the same memory slice as the store right
3885 // after the InitializeNode. We check the control of the
3886 // object/array that is loaded from. If it's the same as
3887 // the store control then we cannot capture the store.
3888 assert(!n->is_Store(), "2 stores to same slice on same control?")do { if (!(!n->is_Store())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3888, "assert(" "!n->is_Store()" ") failed", "2 stores to same slice on same control?"
); ::breakpoint(); } } while (0)
;
3889 Node* base = other_adr;
3890 assert(base->is_AddP(), "should be addp but is %s", base->Name())do { if (!(base->is_AddP())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3890, "assert(" "base->is_AddP()" ") failed", "should be addp but is %s"
, base->Name()); ::breakpoint(); } } while (0)
;
3891 base = base->in(AddPNode::Base);
3892 if (base != NULL__null) {
3893 base = base->uncast();
3894 if (base->is_Proj() && base->in(0) == alloc) {
3895 failed = true;
3896 break;
3897 }
3898 }
3899 }
3900 }
3901 }
3902 } else {
3903 failed = true;
3904 break;
3905 }
3906 }
3907 }
3908 }
3909 if (failed) {
3910 if (!can_reshape) {
3911 // We decided we couldn't capture the store during parsing. We
3912 // should try again during the next IGVN once the graph is
3913 // cleaner.
3914 phase->C->record_for_igvn(st);
3915 }
3916 return FAIL;
3917 }
3918
3919 return offset; // success
3920}
3921
3922// Find the captured store in(i) which corresponds to the range
3923// [start..start+size) in the initialized object.
3924// If there is one, return its index i. If there isn't, return the
3925// negative of the index where it should be inserted.
3926// Return 0 if the queried range overlaps an initialization boundary
3927// or if dead code is encountered.
3928// If size_in_bytes is zero, do not bother with overlap checks.
3929int InitializeNode::captured_store_insertion_point(intptr_t start,
3930 int size_in_bytes,
3931 PhaseTransform* phase) {
3932 const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize);
3933
3934 if (is_complete())
3935 return FAIL; // arraycopy got here first; punt
3936
3937 assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3937, "assert(" "allocation() != __null" ") failed", "must be present"
); ::breakpoint(); } } while (0)
;
3938
3939 // no negatives, no header fields:
3940 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
3941
3942 // after a certain size, we bail out on tracking all the stores:
3943 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3944 if (start >= ti_limit) return FAIL;
3945
3946 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3947 if (i >= limit) return -(int)i; // not found; here is where to put it
3948
3949 Node* st = in(i);
3950 intptr_t st_off = get_store_offset(st, phase);
3951 if (st_off < 0) {
3952 if (st != zero_memory()) {
3953 return FAIL; // bail out if there is dead garbage
3954 }
3955 } else if (st_off > start) {
3956 // ...we are done, since stores are ordered
3957 if (st_off < start + size_in_bytes) {
3958 return FAIL; // the next store overlaps
3959 }
3960 return -(int)i; // not found; here is where to put it
3961 } else if (st_off < start) {
3962 assert(st->as_Store()->memory_size() <= MAX_STORE, "")do { if (!(st->as_Store()->memory_size() <= MAX_STORE
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3962, "assert(" "st->as_Store()->memory_size() <= MAX_STORE"
") failed", ""); ::breakpoint(); } } while (0)
;
3963 if (size_in_bytes != 0 &&
3964 start < st_off + MAX_STORE &&
3965 start < st_off + st->as_Store()->memory_size()) {
3966 return FAIL; // the previous store overlaps
3967 }
3968 } else {
3969 if (size_in_bytes != 0 &&
3970 st->as_Store()->memory_size() != size_in_bytes) {
3971 return FAIL; // mismatched store size
3972 }
3973 return i;
3974 }
3975
3976 ++i;
3977 }
3978}
3979
3980// Look for a captured store which initializes at the offset 'start'
3981// with the given size. If there is no such store, and no other
3982// initialization interferes, then return zero_memory (the memory
3983// projection of the AllocateNode).
3984Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3985 PhaseTransform* phase) {
3986 assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3986, "assert(" "stores_are_sane(phase)" ") failed", ""); ::
breakpoint(); } } while (0)
;
3987 int i = captured_store_insertion_point(start, size_in_bytes, phase);
3988 if (i == 0) {
3989 return NULL__null; // something is dead
3990 } else if (i < 0) {
3991 return zero_memory(); // just primordial zero bits here
3992 } else {
3993 Node* st = in(i); // here is the store at this position
3994 assert(get_store_offset(st->as_Store(), phase) == start, "sanity")do { if (!(get_store_offset(st->as_Store(), phase) == start
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 3994, "assert(" "get_store_offset(st->as_Store(), phase) == start"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
3995 return st;
3996 }
3997}
3998
3999// Create, as a raw pointer, an address within my new object at 'offset'.
4000Node* InitializeNode::make_raw_address(intptr_t offset,
4001 PhaseTransform* phase) {
4002 Node* addr = in(RawAddress);
4003 if (offset != 0) {
4004 Compile* C = phase->C;
4005 addr = phase->transform( new AddPNode(C->top(), addr,
4006 phase->MakeConXlongcon(offset)) );
4007 }
4008 return addr;
4009}
4010
4011// Clone the given store, converting it into a raw store
4012// initializing a field or element of my new object.
4013// Caller is responsible for retiring the original store,
4014// with subsume_node or the like.
4015//
4016// From the example above InitializeNode::InitializeNode,
4017// here are the old stores to be captured:
4018// store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
4019// store2 = (StoreC init.Control store1 (+ oop 14) 2)
4020//
4021// Here is the changed code; note the extra edges on init:
4022// alloc = (Allocate ...)
4023// rawoop = alloc.RawAddress
4024// rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
4025// rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
4026// init = (Initialize alloc.Control alloc.Memory rawoop
4027// rawstore1 rawstore2)
4028//
4029Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
4030 PhaseGVN* phase, bool can_reshape) {
4031 assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4031, "assert(" "stores_are_sane(phase)" ") failed", ""); ::
breakpoint(); } } while (0)
;
4032
4033 if (start < 0) return NULL__null;
4034 assert(can_capture_store(st, phase, can_reshape) == start, "sanity")do { if (!(can_capture_store(st, phase, can_reshape) == start
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4034, "assert(" "can_capture_store(st, phase, can_reshape) == start"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
4035
4036 Compile* C = phase->C;
4037 int size_in_bytes = st->memory_size();
4038 int i = captured_store_insertion_point(start, size_in_bytes, phase);
4039 if (i == 0) return NULL__null; // bail out
4040 Node* prev_mem = NULL__null; // raw memory for the captured store
4041 if (i > 0) {
4042 prev_mem = in(i); // there is a pre-existing store under this one
4043 set_req(i, C->top()); // temporarily disconnect it
4044 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
4045 } else {
4046 i = -i; // no pre-existing store
4047 prev_mem = zero_memory(); // a slice of the newly allocated object
4048 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
4049 set_req(--i, C->top()); // reuse this edge; it has been folded away
4050 else
4051 ins_req(i, C->top()); // build a new edge
4052 }
4053 Node* new_st = st->clone();
4054 new_st->set_req(MemNode::Control, in(Control));
4055 new_st->set_req(MemNode::Memory, prev_mem);
4056 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
4057 new_st = phase->transform(new_st);
4058
4059 // At this point, new_st might have swallowed a pre-existing store
4060 // at the same offset, or perhaps new_st might have disappeared,
4061 // if it redundantly stored the same value (or zero to fresh memory).
4062
4063 // In any case, wire it in:
4064 PhaseIterGVN* igvn = phase->is_IterGVN();
4065 if (igvn) {
4066 igvn->rehash_node_delayed(this);
4067 }
4068 set_req(i, new_st);
4069
4070 // The caller may now kill the old guy.
4071 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase))Node* check_st = find_captured_store(start, size_in_bytes, phase
)
;
4072 assert(check_st == new_st || check_st == NULL, "must be findable")do { if (!(check_st == new_st || check_st == __null)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4072, "assert(" "check_st == new_st || check_st == __null" ") failed"
, "must be findable"); ::breakpoint(); } } while (0)
;
4073 assert(!is_complete(), "")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4073, "assert(" "!is_complete()" ") failed", ""); ::breakpoint
(); } } while (0)
;
4074 return new_st;
4075}
4076
4077static bool store_constant(jlong* tiles, int num_tiles,
4078 intptr_t st_off, int st_size,
4079 jlong con) {
4080 if ((st_off & (st_size-1)) != 0)
4081 return false; // strange store offset (assume size==2**N)
4082 address addr = (address)tiles + st_off;
4083 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob")do { if (!(st_off >= 0 && addr+st_size <= (address
)&tiles[num_tiles])) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4083, "assert(" "st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles]"
") failed", "oob"); ::breakpoint(); } } while (0)
;
4084 switch (st_size) {
4085 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
4086 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
4087 case sizeof(jint): *(jint*) addr = (jint) con; break;
4088 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
4089 default: return false; // strange store size (detect size!=2**N here)
4090 }
4091 return true; // return success to caller
4092}
4093
4094// Coalesce subword constants into int constants and possibly
4095// into long constants. The goal, if the CPU permits,
4096// is to initialize the object with a small number of 64-bit tiles.
4097// Also, convert floating-point constants to bit patterns.
4098// Non-constants are not relevant to this pass.
4099//
4100// In terms of the running example on InitializeNode::InitializeNode
4101// and InitializeNode::capture_store, here is the transformation
4102// of rawstore1 and rawstore2 into rawstore12:
4103// alloc = (Allocate ...)
4104// rawoop = alloc.RawAddress
4105// tile12 = 0x00010002
4106// rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
4107// init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
4108//
4109void
4110InitializeNode::coalesce_subword_stores(intptr_t header_size,
4111 Node* size_in_bytes,
4112 PhaseGVN* phase) {
4113 Compile* C = phase->C;
4114
4115 assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4115, "assert(" "stores_are_sane(phase)" ") failed", ""); ::
breakpoint(); } } while (0)
;
4116 // Note: After this pass, they are not completely sane,
4117 // since there may be some overlaps.
4118
4119 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
4120
4121 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
4122 intptr_t size_limit = phase->find_intptr_t_confind_long_con(size_in_bytes, ti_limit);
4123 size_limit = MIN2(size_limit, ti_limit);
4124 size_limit = align_up(size_limit, BytesPerLong);
4125 int num_tiles = size_limit / BytesPerLong;
4126
4127 // allocate space for the tile map:
4128 const int small_len = DEBUG_ONLY(true ? 3 :)true ? 3 : 30; // keep stack frames small
4129 jlong tiles_buf[small_len];
4130 Node* nodes_buf[small_len];
4131 jlong inits_buf[small_len];
4132 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
4133 : NEW_RESOURCE_ARRAY(jlong, num_tiles)(jlong*) resource_allocate_bytes((num_tiles) * sizeof(jlong)));
4134 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
4135 : NEW_RESOURCE_ARRAY(Node*, num_tiles)(Node**) resource_allocate_bytes((num_tiles) * sizeof(Node*)));
4136 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
4137 : NEW_RESOURCE_ARRAY(jlong, num_tiles)(jlong*) resource_allocate_bytes((num_tiles) * sizeof(jlong)));
4138 // tiles: exact bitwise model of all primitive constants
4139 // nodes: last constant-storing node subsumed into the tiles model
4140 // inits: which bytes (in each tile) are touched by any initializations
4141
4142 //// Pass A: Fill in the tile model with any relevant stores.
4143
4144 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
4145 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
4146 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
4147 Node* zmem = zero_memory(); // initially zero memory state
4148 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4149 Node* st = in(i);
4150 intptr_t st_off = get_store_offset(st, phase);
4151
4152 // Figure out the store's offset and constant value:
4153 if (st_off < header_size) continue; //skip (ignore header)
4154 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
4155 int st_size = st->as_Store()->memory_size();
4156 if (st_off + st_size > size_limit) break;
4157
4158 // Record which bytes are touched, whether by constant or not.
4159 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
4160 continue; // skip (strange store size)
4161
4162 const Type* val = phase->type(st->in(MemNode::ValueIn));
4163 if (!val->singleton()) continue; //skip (non-con store)
4164 BasicType type = val->basic_type();
4165
4166 jlong con = 0;
4167 switch (type) {
4168 case T_INT: con = val->is_int()->get_con(); break;
4169 case T_LONG: con = val->is_long()->get_con(); break;
4170 case T_FLOAT: con = jint_cast(val->getf()); break;
4171 case T_DOUBLE: con = jlong_cast(val->getd()); break;
4172 default: continue; //skip (odd store type)
4173 }
4174
4175 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
4176 st->Opcode() == Op_StoreL) {
4177 continue; // This StoreL is already optimal.
4178 }
4179
4180 // Store down the constant.
4181 store_constant(tiles, num_tiles, st_off, st_size, con);
4182
4183 intptr_t j = st_off >> LogBytesPerLong;
4184
4185 if (type == T_INT && st_size == BytesPerInt
4186 && (st_off & BytesPerInt) == BytesPerInt) {
4187 jlong lcon = tiles[j];
4188 if (!Matcher::isSimpleConstant64(lcon) &&
4189 st->Opcode() == Op_StoreI) {
4190 // This StoreI is already optimal by itself.
4191 jint* intcon = (jint*) &tiles[j];
4192 intcon[1] = 0; // undo the store_constant()
4193
4194 // If the previous store is also optimal by itself, back up and
4195 // undo the action of the previous loop iteration... if we can.
4196 // But if we can't, just let the previous half take care of itself.
4197 st = nodes[j];
4198 st_off -= BytesPerInt;
4199 con = intcon[0];
4200 if (con != 0 && st != NULL__null && st->Opcode() == Op_StoreI) {
4201 assert(st_off >= header_size, "still ignoring header")do { if (!(st_off >= header_size)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4201, "assert(" "st_off >= header_size" ") failed", "still ignoring header"
); ::breakpoint(); } } while (0)
;
4202 assert(get_store_offset(st, phase) == st_off, "must be")do { if (!(get_store_offset(st, phase) == st_off)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4202, "assert(" "get_store_offset(st, phase) == st_off" ") failed"
, "must be"); ::breakpoint(); } } while (0)
;
4203 assert(in(i-1) == zmem, "must be")do { if (!(in(i-1) == zmem)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4203, "assert(" "in(i-1) == zmem" ") failed", "must be"); ::
breakpoint(); } } while (0)
;
4204 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)))const Type* tcon = phase->type(st->in(MemNode::ValueIn)
)
;
4205 assert(con == tcon->is_int()->get_con(), "must be")do { if (!(con == tcon->is_int()->get_con())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4205, "assert(" "con == tcon->is_int()->get_con()" ") failed"
, "must be"); ::breakpoint(); } } while (0)
;
4206 // Undo the effects of the previous loop trip, which swallowed st:
4207 intcon[0] = 0; // undo store_constant()
4208 set_req(i-1, st); // undo set_req(i, zmem)
4209 nodes[j] = NULL__null; // undo nodes[j] = st
4210 --old_subword; // undo ++old_subword
4211 }
4212 continue; // This StoreI is already optimal.
4213 }
4214 }
4215
4216 // This store is not needed.
4217 set_req(i, zmem);
4218 nodes[j] = st; // record for the moment
4219 if (st_size < BytesPerLong) // something has changed
4220 ++old_subword; // includes int/float, but who's counting...
4221 else ++old_long;
4222 }
4223
4224 if ((old_subword + old_long) == 0)
4225 return; // nothing more to do
4226
4227 //// Pass B: Convert any non-zero tiles into optimal constant stores.
4228 // Be sure to insert them before overlapping non-constant stores.
4229 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
4230 for (int j = 0; j < num_tiles; j++) {
4231 jlong con = tiles[j];
4232 jlong init = inits[j];
4233 if (con == 0) continue;
4234 jint con0, con1; // split the constant, address-wise
4235 jint init0, init1; // split the init map, address-wise
4236 { union { jlong con; jint intcon[2]; } u;
4237 u.con = con;
4238 con0 = u.intcon[0];
4239 con1 = u.intcon[1];
4240 u.con = init;
4241 init0 = u.intcon[0];
4242 init1 = u.intcon[1];
4243 }
4244
4245 Node* old = nodes[j];
4246 assert(old != NULL, "need the prior store")do { if (!(old != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4246, "assert(" "old != __null" ") failed", "need the prior store"
); ::breakpoint(); } } while (0)
;
4247 intptr_t offset = (j * BytesPerLong);
4248
4249 bool split = !Matcher::isSimpleConstant64(con);
4250
4251 if (offset < header_size) {
4252 assert(offset + BytesPerInt >= header_size, "second int counts")do { if (!(offset + BytesPerInt >= header_size)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4252, "assert(" "offset + BytesPerInt >= header_size" ") failed"
, "second int counts"); ::breakpoint(); } } while (0)
;
4253 assert(*(jint*)&tiles[j] == 0, "junk in header")do { if (!(*(jint*)&tiles[j] == 0)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4253, "assert(" "*(jint*)&tiles[j] == 0" ") failed", "junk in header"
); ::breakpoint(); } } while (0)
;
4254 split = true; // only the second word counts
4255 // Example: int a[] = { 42 ... }
4256 } else if (con0 == 0 && init0 == -1) {
4257 split = true; // first word is covered by full inits
4258 // Example: int a[] = { ... foo(), 42 ... }
4259 } else if (con1 == 0 && init1 == -1) {
4260 split = true; // second word is covered by full inits
4261 // Example: int a[] = { ... 42, foo() ... }
4262 }
4263
4264 // Here's a case where init0 is neither 0 nor -1:
4265 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
4266 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4267 // In this case the tile is not split; it is (jlong)42.
4268 // The big tile is stored down, and then the foo() value is inserted.
4269 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4270
4271 Node* ctl = old->in(MemNode::Control);
4272 Node* adr = make_raw_address(offset, phase);
4273 const TypePtr* atp = TypeRawPtr::BOTTOM;
4274
4275 // One or two coalesced stores to plop down.
4276 Node* st[2];
4277 intptr_t off[2];
4278 int nst = 0;
4279 if (!split) {
4280 ++new_long;
4281 off[nst] = offset;
4282 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4283 phase->longcon(con), T_LONG, MemNode::unordered);
4284 } else {
4285 // Omit either if it is a zero.
4286 if (con0 != 0) {
4287 ++new_int;
4288 off[nst] = offset;
4289 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4290 phase->intcon(con0), T_INT, MemNode::unordered);
4291 }
4292 if (con1 != 0) {
4293 ++new_int;
4294 offset += BytesPerInt;
4295 adr = make_raw_address(offset, phase);
4296 off[nst] = offset;
4297 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4298 phase->intcon(con1), T_INT, MemNode::unordered);
4299 }
4300 }
4301
4302 // Insert second store first, then the first before the second.
4303 // Insert each one just before any overlapping non-constant stores.
4304 while (nst > 0) {
4305 Node* st1 = st[--nst];
4306 C->copy_node_notes_to(st1, old);
4307 st1 = phase->transform(st1);
4308 offset = off[nst];
4309 assert(offset >= header_size, "do not smash header")do { if (!(offset >= header_size)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4309, "assert(" "offset >= header_size" ") failed", "do not smash header"
); ::breakpoint(); } } while (0)
;
4310 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4311 guarantee(ins_idx != 0, "must re-insert constant store")do { if (!(ins_idx != 0)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4311, "guarantee(" "ins_idx != 0" ") failed", "must re-insert constant store"
); ::breakpoint(); } } while (0)
;
4312 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
4313 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4314 set_req(--ins_idx, st1);
4315 else
4316 ins_req(ins_idx, st1);
4317 }
4318 }
4319
4320 if (PrintCompilation && WizardMode)
4321 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4322 old_subword, old_long, new_int, new_long);
4323 if (C->log() != NULL__null)
4324 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4325 old_subword, old_long, new_int, new_long);
4326
4327 // Clean up any remaining occurrences of zmem:
4328 remove_extra_zeroes();
4329}
4330
4331// Explore forward from in(start) to find the first fully initialized
4332// word, and return its offset. Skip groups of subword stores which
4333// together initialize full words. If in(start) is itself part of a
4334// fully initialized word, return the offset of in(start). If there
4335// are no following full-word stores, or if something is fishy, return
4336// a negative value.
4337intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4338 int int_map = 0;
4339 intptr_t int_map_off = 0;
4340 const int FULL_MAP = right_n_bits(BytesPerInt)((((BytesPerInt) >= BitsPerWord) ? 0 : (OneBit << (BytesPerInt
))) - 1)
; // the int_map we hope for
4341
4342 for (uint i = start, limit = req(); i < limit; i++) {
4343 Node* st = in(i);
4344
4345 intptr_t st_off = get_store_offset(st, phase);
4346 if (st_off < 0) break; // return conservative answer
4347
4348 int st_size = st->as_Store()->memory_size();
4349 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4350 return st_off; // we found a complete word init
4351 }
4352
4353 // update the map:
4354
4355 intptr_t this_int_off = align_down(st_off, BytesPerInt);
4356 if (this_int_off != int_map_off) {
4357 // reset the map:
4358 int_map = 0;
4359 int_map_off = this_int_off;
4360 }
4361
4362 int subword_off = st_off - this_int_off;
4363 int_map |= right_n_bits(st_size)((((st_size) >= BitsPerWord) ? 0 : (OneBit << (st_size
))) - 1)
<< subword_off;
4364 if ((int_map & FULL_MAP) == FULL_MAP) {
4365 return this_int_off; // we found a complete word init
4366 }
4367
4368 // Did this store hit or cross the word boundary?
4369 intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4370 if (next_int_off == this_int_off + BytesPerInt) {
4371 // We passed the current int, without fully initializing it.
4372 int_map_off = next_int_off;
4373 int_map >>= BytesPerInt;
4374 } else if (next_int_off > this_int_off + BytesPerInt) {
4375 // We passed the current and next int.
4376 return this_int_off + BytesPerInt;
4377 }
4378 }
4379
4380 return -1;
4381}
4382
4383
4384// Called when the associated AllocateNode is expanded into CFG.
4385// At this point, we may perform additional optimizations.
4386// Linearize the stores by ascending offset, to make memory
4387// activity as coherent as possible.
4388Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4389 intptr_t header_size,
4390 Node* size_in_bytes,
4391 PhaseIterGVN* phase) {
4392 assert(!is_complete(), "not already complete")do { if (!(!is_complete())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4392, "assert(" "!is_complete()" ") failed", "not already complete"
); ::breakpoint(); } } while (0)
;
4393 assert(stores_are_sane(phase), "")do { if (!(stores_are_sane(phase))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4393, "assert(" "stores_are_sane(phase)" ") failed", ""); ::
breakpoint(); } } while (0)
;
4394 assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4394, "assert(" "allocation() != __null" ") failed", "must be present"
); ::breakpoint(); } } while (0)
;
4395
4396 remove_extra_zeroes();
4397
4398 if (ReduceFieldZeroing || ReduceBulkZeroing)
4399 // reduce instruction count for common initialization patterns
4400 coalesce_subword_stores(header_size, size_in_bytes, phase);
4401
4402 Node* zmem = zero_memory(); // initially zero memory state
4403 Node* inits = zmem; // accumulating a linearized chain of inits
4404 #ifdef ASSERT1
4405 intptr_t first_offset = allocation()->minimum_header_size();
4406 intptr_t last_init_off = first_offset; // previous init offset
4407 intptr_t last_init_end = first_offset; // previous init offset+size
4408 intptr_t last_tile_end = first_offset; // previous tile offset+size
4409 #endif
4410 intptr_t zeroes_done = header_size;
4411
4412 bool do_zeroing = true; // we might give up if inits are very sparse
4413 int big_init_gaps = 0; // how many large gaps have we seen?
4414
4415 if (UseTLAB && ZeroTLAB) do_zeroing = false;
4416 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
4417
4418 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4419 Node* st = in(i);
4420 intptr_t st_off = get_store_offset(st, phase);
4421 if (st_off < 0)
4422 break; // unknown junk in the inits
4423 if (st->in(MemNode::Memory) != zmem)
4424 break; // complicated store chains somehow in list
4425
4426 int st_size = st->as_Store()->memory_size();
4427 intptr_t next_init_off = st_off + st_size;
4428
4429 if (do_zeroing && zeroes_done < next_init_off) {
4430 // See if this store needs a zero before it or under it.
4431 intptr_t zeroes_needed = st_off;
4432
4433 if (st_size < BytesPerInt) {
4434 // Look for subword stores which only partially initialize words.
4435 // If we find some, we must lay down some word-level zeroes first,
4436 // underneath the subword stores.
4437 //
4438 // Examples:
4439 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
4440 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
4441 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
4442 //
4443 // Note: coalesce_subword_stores may have already done this,
4444 // if it was prompted by constant non-zero subword initializers.
4445 // But this case can still arise with non-constant stores.
4446
4447 intptr_t next_full_store = find_next_fullword_store(i, phase);
4448
4449 // In the examples above:
4450 // in(i) p q r s x y z
4451 // st_off 12 13 14 15 12 13 14
4452 // st_size 1 1 1 1 1 1 1
4453 // next_full_s. 12 16 16 16 16 16 16
4454 // z's_done 12 16 16 16 12 16 12
4455 // z's_needed 12 16 16 16 16 16 16
4456 // zsize 0 0 0 0 4 0 4
4457 if (next_full_store < 0) {
4458 // Conservative tack: Zero to end of current word.
4459 zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4460 } else {
4461 // Zero to beginning of next fully initialized word.
4462 // Or, don't zero at all, if we are already in that word.
4463 assert(next_full_store >= zeroes_needed, "must go forward")do { if (!(next_full_store >= zeroes_needed)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4463, "assert(" "next_full_store >= zeroes_needed" ") failed"
, "must go forward"); ::breakpoint(); } } while (0)
;
4464 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary")do { if (!((next_full_store & (BytesPerInt-1)) == 0)) { (
*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4464, "assert(" "(next_full_store & (BytesPerInt-1)) == 0"
") failed", "even boundary"); ::breakpoint(); } } while (0)
;
4465 zeroes_needed = next_full_store;
4466 }
4467 }
4468
4469 if (zeroes_needed > zeroes_done) {
4470 intptr_t zsize = zeroes_needed - zeroes_done;
4471 // Do some incremental zeroing on rawmem, in parallel with inits.
4472 zeroes_done = align_down(zeroes_done, BytesPerInt);
4473 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4474 zeroes_done, zeroes_needed,
4475 phase);
4476 zeroes_done = zeroes_needed;
4477 if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4478 do_zeroing = false; // leave the hole, next time
4479 }
4480 }
4481
4482 // Collect the store and move on:
4483 phase->replace_input_of(st, MemNode::Memory, inits);
4484 inits = st; // put it on the linearized chain
4485 set_req(i, zmem); // unhook from previous position
4486
4487 if (zeroes_done == st_off)
4488 zeroes_done = next_init_off;
4489
4490 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any")do { if (!(!do_zeroing || zeroes_done >= next_init_off)) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4490, "assert(" "!do_zeroing || zeroes_done >= next_init_off"
") failed", "don't miss any"); ::breakpoint(); } } while (0)
;
4491
4492 #ifdef ASSERT1
4493 // Various order invariants. Weaker than stores_are_sane because
4494 // a large constant tile can be filled in by smaller non-constant stores.
4495 assert(st_off >= last_init_off, "inits do not reverse")do { if (!(st_off >= last_init_off)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4495, "assert(" "st_off >= last_init_off" ") failed", "inits do not reverse"
); ::breakpoint(); } } while (0)
;
4496 last_init_off = st_off;
4497 const Type* val = NULL__null;
4498 if (st_size >= BytesPerInt &&
4499 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4500 (int)val->basic_type() < (int)T_OBJECT) {
4501 assert(st_off >= last_tile_end, "tiles do not overlap")do { if (!(st_off >= last_tile_end)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4501, "assert(" "st_off >= last_tile_end" ") failed", "tiles do not overlap"
); ::breakpoint(); } } while (0)
;
4502 assert(st_off >= last_init_end, "tiles do not overwrite inits")do { if (!(st_off >= last_init_end)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4502, "assert(" "st_off >= last_init_end" ") failed", "tiles do not overwrite inits"
); ::breakpoint(); } } while (0)
;
4503 last_tile_end = MAX2(last_tile_end, next_init_off);
4504 } else {
4505 intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4506 assert(st_tile_end >= last_tile_end, "inits stay with tiles")do { if (!(st_tile_end >= last_tile_end)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4506, "assert(" "st_tile_end >= last_tile_end" ") failed"
, "inits stay with tiles"); ::breakpoint(); } } while (0)
;
4507 assert(st_off >= last_init_end, "inits do not overlap")do { if (!(st_off >= last_init_end)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4507, "assert(" "st_off >= last_init_end" ") failed", "inits do not overlap"
); ::breakpoint(); } } while (0)
;
4508 last_init_end = next_init_off; // it's a non-tile
4509 }
4510 #endif //ASSERT
4511 }
4512
4513 remove_extra_zeroes(); // clear out all the zmems left over
4514 add_req(inits);
4515
4516 if (!(UseTLAB && ZeroTLAB)) {
4517 // If anything remains to be zeroed, zero it all now.
4518 zeroes_done = align_down(zeroes_done, BytesPerInt);
4519 // if it is the last unused 4 bytes of an instance, forget about it
4520 intptr_t size_limit = phase->find_intptr_t_confind_long_con(size_in_bytes, max_jint);
4521 if (zeroes_done + BytesPerLong >= size_limit) {
4522 AllocateNode* alloc = allocation();
4523 assert(alloc != NULL, "must be present")do { if (!(alloc != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4523, "assert(" "alloc != __null" ") failed", "must be present"
); ::breakpoint(); } } while (0)
;
4524 if (alloc != NULL__null && alloc->Opcode() == Op_Allocate) {
4525 Node* klass_node = alloc->in(AllocateNode::KlassNode);
4526 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4527 if (zeroes_done == k->layout_helper())
4528 zeroes_done = size_limit;
4529 }
4530 }
4531 if (zeroes_done < size_limit) {
4532 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4533 zeroes_done, size_in_bytes, phase);
4534 }
4535 }
4536
4537 set_complete(phase);
4538 return rawmem;
4539}
4540
4541
4542#ifdef ASSERT1
4543bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4544 if (is_complete())
4545 return true; // stores could be anything at this point
4546 assert(allocation() != NULL, "must be present")do { if (!(allocation() != __null)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4546, "assert(" "allocation() != __null" ") failed", "must be present"
); ::breakpoint(); } } while (0)
;
4547 intptr_t last_off = allocation()->minimum_header_size();
4548 for (uint i = InitializeNode::RawStores; i < req(); i++) {
4549 Node* st = in(i);
4550 intptr_t st_off = get_store_offset(st, phase);
4551 if (st_off < 0) continue; // ignore dead garbage
4552 if (last_off > st_off) {
4553 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT"%" "l" "d" " > " INTX_FORMAT"%" "l" "d", i, last_off, st_off);
4554 this->dump(2);
4555 assert(false, "ascending store offsets")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4555, "assert(" "false" ") failed", "ascending store offsets"
); ::breakpoint(); } } while (0)
;
4556 return false;
4557 }
4558 last_off = st_off + st->as_Store()->memory_size();
4559 }
4560 return true;
4561}
4562#endif //ASSERT
4563
4564
4565
4566
4567//============================MergeMemNode=====================================
4568//
4569// SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
4570// contributing store or call operations. Each contributor provides the memory
4571// state for a particular "alias type" (see Compile::alias_type). For example,
4572// if a MergeMem has an input X for alias category #6, then any memory reference
4573// to alias category #6 may use X as its memory state input, as an exact equivalent
4574// to using the MergeMem as a whole.
4575// Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4576//
4577// (Here, the <N> notation gives the index of the relevant adr_type.)
4578//
4579// In one special case (and more cases in the future), alias categories overlap.
4580// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4581// states. Therefore, if a MergeMem has only one contributing input W for Bot,
4582// it is exactly equivalent to that state W:
4583// MergeMem(<Bot>: W) <==> W
4584//
4585// Usually, the merge has more than one input. In that case, where inputs
4586// overlap (i.e., one is Bot), the narrower alias type determines the memory
4587// state for that type, and the wider alias type (Bot) fills in everywhere else:
4588// Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4589// Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4590//
4591// A merge can take a "wide" memory state as one of its narrow inputs.
4592// This simply means that the merge observes out only the relevant parts of
4593// the wide input. That is, wide memory states arriving at narrow merge inputs
4594// are implicitly "filtered" or "sliced" as necessary. (This is rare.)
4595//
4596// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4597// and that memory slices "leak through":
4598// MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4599//
4600// But, in such a cascade, repeated memory slices can "block the leak":
4601// MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4602//
4603// In the last example, Y is not part of the combined memory state of the
4604// outermost MergeMem. The system must, of course, prevent unschedulable
4605// memory states from arising, so you can be sure that the state Y is somehow
4606// a precursor to state Y'.
4607//
4608//
4609// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4610// of each MergeMemNode array are exactly the numerical alias indexes, including
4611// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
4612// Compile::alias_type (and kin) produce and manage these indexes.
4613//
4614// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4615// (Note that this provides quick access to the top node inside MergeMem methods,
4616// without the need to reach out via TLS to Compile::current.)
4617//
4618// As a consequence of what was just described, a MergeMem that represents a full
4619// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4620// containing all alias categories.
4621//
4622// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4623//
4624// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4625// a memory state for the alias type <N>, or else the top node, meaning that
4626// there is no particular input for that alias type. Note that the length of
4627// a MergeMem is variable, and may be extended at any time to accommodate new
4628// memory states at larger alias indexes. When merges grow, they are of course
4629// filled with "top" in the unused in() positions.
4630//
4631// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4632// (Top was chosen because it works smoothly with passes like GCM.)
4633//
4634// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
4635// the type of random VM bits like TLS references.) Since it is always the
4636// first non-Bot memory slice, some low-level loops use it to initialize an
4637// index variable: for (i = AliasIdxRaw; i < req(); i++).
4638//
4639//
4640// ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
4641// the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
4642// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4643// it returns the base memory. To prevent bugs, memory_at does not accept <Top>
4644// or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
4645// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4646//
4647// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4648// really that different from the other memory inputs. An abbreviation called
4649// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4650//
4651//
4652// PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
4653// partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
4654// that "emerges though" the base memory will be marked as excluding the alias types
4655// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4656//
4657// Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4658// ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4659//
4660// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4661// (It is currently unimplemented.) As you can see, the resulting merge is
4662// actually a disjoint union of memory states, rather than an overlay.
4663//
4664
4665//------------------------------MergeMemNode-----------------------------------
4666Node* MergeMemNode::make_empty_memory() {
4667 Node* empty_memory = (Node*) Compile::current()->top();
4668 assert(empty_memory->is_top(), "correct sentinel identity")do { if (!(empty_memory->is_top())) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4668, "assert(" "empty_memory->is_top()" ") failed", "correct sentinel identity"
); ::breakpoint(); } } while (0)
;
4669 return empty_memory;
4670}
4671
4672MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4673 init_class_id(Class_MergeMem);
4674 // all inputs are nullified in Node::Node(int)
4675 // set_input(0, NULL); // no control input
4676
4677 // Initialize the edges uniformly to top, for starters.
4678 Node* empty_mem = make_empty_memory();
4679 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4680 init_req(i,empty_mem);
4681 }
4682 assert(empty_memory() == empty_mem, "")do { if (!(empty_memory() == empty_mem)) { (*g_assert_poison)
= 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4682, "assert(" "empty_memory() == empty_mem" ") failed", ""
); ::breakpoint(); } } while (0)
;
4683
4684 if( new_base != NULL__null && new_base->is_MergeMem() ) {
4685 MergeMemNode* mdef = new_base->as_MergeMem();
4686 assert(mdef->empty_memory() == empty_mem, "consistent sentinels")do { if (!(mdef->empty_memory() == empty_mem)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4686, "assert(" "mdef->empty_memory() == empty_mem" ") failed"
, "consistent sentinels"); ::breakpoint(); } } while (0)
;
4687 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4688 mms.set_memory(mms.memory2());
4689 }
4690 assert(base_memory() == mdef->base_memory(), "")do { if (!(base_memory() == mdef->base_memory())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4690, "assert(" "base_memory() == mdef->base_memory()" ") failed"
, ""); ::breakpoint(); } } while (0)
;
4691 } else {
4692 set_base_memory(new_base);
4693 }
4694}
4695
4696// Make a new, untransformed MergeMem with the same base as 'mem'.
4697// If mem is itself a MergeMem, populate the result with the same edges.
4698MergeMemNode* MergeMemNode::make(Node* mem) {
4699 return new MergeMemNode(mem);
4700}
4701
4702//------------------------------cmp--------------------------------------------
4703uint MergeMemNode::hash() const { return NO_HASH; }
4704bool MergeMemNode::cmp( const Node &n ) const {
4705 return (&n == this); // Always fail except on self
4706}
4707
4708//------------------------------Identity---------------------------------------
4709Node* MergeMemNode::Identity(PhaseGVN* phase) {
4710 // Identity if this merge point does not record any interesting memory
4711 // disambiguations.
4712 Node* base_mem = base_memory();
4713 Node* empty_mem = empty_memory();
4714 if (base_mem != empty_mem) { // Memory path is not dead?
4715 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4716 Node* mem = in(i);
4717 if (mem != empty_mem && mem != base_mem) {
4718 return this; // Many memory splits; no change
4719 }
4720 }
4721 }
4722 return base_mem; // No memory splits; ID on the one true input
4723}
4724
4725//------------------------------Ideal------------------------------------------
4726// This method is invoked recursively on chains of MergeMem nodes
4727Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4728 // Remove chain'd MergeMems
4729 //
4730 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4731 // relative to the "in(Bot)". Since we are patching both at the same time,
4732 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4733 // but rewrite each "in(i)" relative to the new "in(Bot)".
4734 Node *progress = NULL__null;
4735
4736
4737 Node* old_base = base_memory();
4738 Node* empty_mem = empty_memory();
4739 if (old_base == empty_mem)
4740 return NULL__null; // Dead memory path.
4741
4742 MergeMemNode* old_mbase;
4743 if (old_base != NULL__null && old_base->is_MergeMem())
4744 old_mbase = old_base->as_MergeMem();
4745 else
4746 old_mbase = NULL__null;
4747 Node* new_base = old_base;
4748
4749 // simplify stacked MergeMems in base memory
4750 if (old_mbase) new_base = old_mbase->base_memory();
4751
4752 // the base memory might contribute new slices beyond my req()
4753 if (old_mbase) grow_to_match(old_mbase);
4754
4755 // Look carefully at the base node if it is a phi.
4756 PhiNode* phi_base;
4757 if (new_base != NULL__null && new_base->is_Phi())
4758 phi_base = new_base->as_Phi();
4759 else
4760 phi_base = NULL__null;
4761
4762 Node* phi_reg = NULL__null;
4763 uint phi_len = (uint)-1;
4764 if (phi_base != NULL__null) {
4765 phi_reg = phi_base->region();
4766 phi_len = phi_base->req();
4767 // see if the phi is unfinished
4768 for (uint i = 1; i < phi_len; i++) {
4769 if (phi_base->in(i) == NULL__null) {
4770 // incomplete phi; do not look at it yet!
4771 phi_reg = NULL__null;
4772 phi_len = (uint)-1;
4773 break;
4774 }
4775 }
4776 }
4777
4778 // Note: We do not call verify_sparse on entry, because inputs
4779 // can normalize to the base_memory via subsume_node or similar
4780 // mechanisms. This method repairs that damage.
4781
4782 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels")do { if (!(!old_mbase || old_mbase->is_empty_memory(empty_mem
))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4782, "assert(" "!old_mbase || old_mbase->is_empty_memory(empty_mem)"
") failed", "consistent sentinels"); ::breakpoint(); } } while
(0)
;
4783
4784 // Look at each slice.
4785 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4786 Node* old_in = in(i);
4787 // calculate the old memory value
4788 Node* old_mem = old_in;
4789 if (old_mem == empty_mem) old_mem = old_base;
4790 assert(old_mem == memory_at(i), "")do { if (!(old_mem == memory_at(i))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4790, "assert(" "old_mem == memory_at(i)" ") failed", ""); ::
breakpoint(); } } while (0)
;
4791
4792 // maybe update (reslice) the old memory value
4793
4794 // simplify stacked MergeMems
4795 Node* new_mem = old_mem;
4796 MergeMemNode* old_mmem;
4797 if (old_mem != NULL__null && old_mem->is_MergeMem())
4798 old_mmem = old_mem->as_MergeMem();
4799 else
4800 old_mmem = NULL__null;
4801 if (old_mmem == this) {
4802 // This can happen if loops break up and safepoints disappear.
4803 // A merge of BotPtr (default) with a RawPtr memory derived from a
4804 // safepoint can be rewritten to a merge of the same BotPtr with
4805 // the BotPtr phi coming into the loop. If that phi disappears
4806 // also, we can end up with a self-loop of the mergemem.
4807 // In general, if loops degenerate and memory effects disappear,
4808 // a mergemem can be left looking at itself. This simply means
4809 // that the mergemem's default should be used, since there is
4810 // no longer any apparent effect on this slice.
4811 // Note: If a memory slice is a MergeMem cycle, it is unreachable
4812 // from start. Update the input to TOP.
4813 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4814 }
4815 else if (old_mmem != NULL__null) {
4816 new_mem = old_mmem->memory_at(i);
4817 }
4818 // else preceding memory was not a MergeMem
4819
4820 // maybe store down a new value
4821 Node* new_in = new_mem;
4822 if (new_in == new_base) new_in = empty_mem;
4823
4824 if (new_in != old_in) {
4825 // Warning: Do not combine this "if" with the previous "if"
4826 // A memory slice might have be be rewritten even if it is semantically
4827 // unchanged, if the base_memory value has changed.
4828 set_req_X(i, new_in, phase);
4829 progress = this; // Report progress
4830 }
4831 }
4832
4833 if (new_base != old_base) {
4834 set_req_X(Compile::AliasIdxBot, new_base, phase);
4835 // Don't use set_base_memory(new_base), because we need to update du.
4836 assert(base_memory() == new_base, "")do { if (!(base_memory() == new_base)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4836, "assert(" "base_memory() == new_base" ") failed", "")
; ::breakpoint(); } } while (0)
;
4837 progress = this;
4838 }
4839
4840 if( base_memory() == this ) {
4841 // a self cycle indicates this memory path is dead
4842 set_req(Compile::AliasIdxBot, empty_mem);
4843 }
4844
4845 // Resolve external cycles by calling Ideal on a MergeMem base_memory
4846 // Recursion must occur after the self cycle check above
4847 if( base_memory()->is_MergeMem() ) {
4848 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4849 Node *m = phase->transform(new_mbase); // Rollup any cycles
4850 if( m != NULL__null &&
4851 (m->is_top() ||
4852 (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4853 // propagate rollup of dead cycle to self
4854 set_req(Compile::AliasIdxBot, empty_mem);
4855 }
4856 }
4857
4858 if( base_memory() == empty_mem ) {
4859 progress = this;
4860 // Cut inputs during Parse phase only.
4861 // During Optimize phase a dead MergeMem node will be subsumed by Top.
4862 if( !can_reshape ) {
4863 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4864 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4865 }
4866 }
4867 }
4868
4869 if( !progress && base_memory()->is_Phi() && can_reshape ) {
4870 // Check if PhiNode::Ideal's "Split phis through memory merges"
4871 // transform should be attempted. Look for this->phi->this cycle.
4872 uint merge_width = req();
4873 if (merge_width > Compile::AliasIdxRaw) {
4874 PhiNode* phi = base_memory()->as_Phi();
4875 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4876 if (phi->in(i) == this) {
4877 phase->is_IterGVN()->_worklist.push(phi);
4878 break;
4879 }
4880 }
4881 }
4882 }
4883
4884 assert(progress || verify_sparse(), "please, no dups of base")do { if (!(progress || verify_sparse())) { (*g_assert_poison)
= 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4884, "assert(" "progress || verify_sparse()" ") failed", "please, no dups of base"
); ::breakpoint(); } } while (0)
;
4885 return progress;
4886}
4887
4888//-------------------------set_base_memory-------------------------------------
4889void MergeMemNode::set_base_memory(Node *new_base) {
4890 Node* empty_mem = empty_memory();
4891 set_req(Compile::AliasIdxBot, new_base);
4892 assert(memory_at(req()) == new_base, "must set default memory")do { if (!(memory_at(req()) == new_base)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4892, "assert(" "memory_at(req()) == new_base" ") failed", "must set default memory"
); ::breakpoint(); } } while (0)
;
4893 // Clear out other occurrences of new_base:
4894 if (new_base != empty_mem) {
4895 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4896 if (in(i) == new_base) set_req(i, empty_mem);
4897 }
4898 }
4899}
4900
4901//------------------------------out_RegMask------------------------------------
4902const RegMask &MergeMemNode::out_RegMask() const {
4903 return RegMask::Empty;
4904}
4905
4906//------------------------------dump_spec--------------------------------------
4907#ifndef PRODUCT
4908void MergeMemNode::dump_spec(outputStream *st) const {
4909 st->print(" {");
4910 Node* base_mem = base_memory();
4911 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4912 Node* mem = (in(i) != NULL__null) ? memory_at(i) : base_mem;
4913 if (mem == base_mem) { st->print(" -"); continue; }
4914 st->print( " N%d:", mem->_idx );
4915 Compile::current()->get_adr_type(i)->dump_on(st);
4916 }
4917 st->print(" }");
4918}
4919#endif // !PRODUCT
4920
4921
4922#ifdef ASSERT1
4923static bool might_be_same(Node* a, Node* b) {
4924 if (a == b) return true;
4925 if (!(a->is_Phi() || b->is_Phi())) return false;
4926 // phis shift around during optimization
4927 return true; // pretty stupid...
4928}
4929
4930// verify a narrow slice (either incoming or outgoing)
4931static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4932 if (!VerifyAliases) return; // don't bother to verify unless requested
4933 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error
4934 if (Node::in_dump()) return; // muzzle asserts when printing
4935 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel")do { if (!(alias_idx >= Compile::AliasIdxRaw)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4935, "assert(" "alias_idx >= Compile::AliasIdxRaw" ") failed"
, "must not disturb base_memory or sentinel"); ::breakpoint()
; } } while (0)
;
4936 assert(n != NULL, "")do { if (!(n != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4936, "assert(" "n != __null" ") failed", ""); ::breakpoint
(); } } while (0)
;
4937 // Elide intervening MergeMem's
4938 while (n->is_MergeMem()) {
4939 n = n->as_MergeMem()->memory_at(alias_idx);
4940 }
4941 Compile* C = Compile::current();
4942 const TypePtr* n_adr_type = n->adr_type();
4943 if (n == m->empty_memory()) {
4944 // Implicit copy of base_memory()
4945 } else if (n_adr_type != TypePtr::BOTTOM) {
4946 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type")do { if (!(n_adr_type != __null)) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4946, "assert(" "n_adr_type != __null" ") failed", "new memory must have a well-defined adr_type"
); ::breakpoint(); } } while (0)
;
4947 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice")do { if (!(C->must_alias(n_adr_type, alias_idx))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4947, "assert(" "C->must_alias(n_adr_type, alias_idx)" ") failed"
, "new memory must match selected slice"); ::breakpoint(); } }
while (0)
;
4948 } else {
4949 // A few places like make_runtime_call "know" that VM calls are narrow,
4950 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4951 bool expected_wide_mem = false;
4952 if (n == m->base_memory()) {
4953 expected_wide_mem = true;
4954 } else if (alias_idx == Compile::AliasIdxRaw ||
4955 n == m->memory_at(Compile::AliasIdxRaw)) {
4956 expected_wide_mem = true;
4957 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4958 // memory can "leak through" calls on channels that
4959 // are write-once. Allow this also.
4960 expected_wide_mem = true;
4961 }
4962 assert(expected_wide_mem, "expected narrow slice replacement")do { if (!(expected_wide_mem)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4962, "assert(" "expected_wide_mem" ") failed", "expected narrow slice replacement"
); ::breakpoint(); } } while (0)
;
4963 }
4964}
4965#else // !ASSERT
4966#define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op
4967#endif
4968
4969
4970//-----------------------------memory_at---------------------------------------
4971Node* MergeMemNode::memory_at(uint alias_idx) const {
4972 assert(alias_idx >= Compile::AliasIdxRaw ||do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx ==
Compile::AliasIdxBot && Compile::current()->AliasLevel
() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0"
") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint
(); } } while (0)
4973 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx ==
Compile::AliasIdxBot && Compile::current()->AliasLevel
() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0"
") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint
(); } } while (0)
4974 "must avoid base_memory and AliasIdxTop")do { if (!(alias_idx >= Compile::AliasIdxRaw || alias_idx ==
Compile::AliasIdxBot && Compile::current()->AliasLevel
() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4974, "assert(" "alias_idx >= Compile::AliasIdxRaw || alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0"
") failed", "must avoid base_memory and AliasIdxTop"); ::breakpoint
(); } } while (0)
;
4975
4976 // Otherwise, it is a narrow slice.
4977 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4978 Compile *C = Compile::current();
Value stored to 'C' during its initialization is never read
4979 if (is_empty_memory(n)) {
4980 // the array is sparse; empty slots are the "top" node
4981 n = base_memory();
4982 assert(Node::in_dump()do { if (!(Node::in_dump() || n == __null || n->bottom_type
() == Type::TOP || n->adr_type() == __null || n->adr_type
() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM
|| Compile::current()->AliasLevel() == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0"
") failed", "must be a wide memory"); ::breakpoint(); } } while
(0)
4983 || n == NULL || n->bottom_type() == Type::TOPdo { if (!(Node::in_dump() || n == __null || n->bottom_type
() == Type::TOP || n->adr_type() == __null || n->adr_type
() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM
|| Compile::current()->AliasLevel() == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0"
") failed", "must be a wide memory"); ::breakpoint(); } } while
(0)
4984 || n->adr_type() == NULL // address is TOPdo { if (!(Node::in_dump() || n == __null || n->bottom_type
() == Type::TOP || n->adr_type() == __null || n->adr_type
() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM
|| Compile::current()->AliasLevel() == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0"
") failed", "must be a wide memory"); ::breakpoint(); } } while
(0)
4985 || n->adr_type() == TypePtr::BOTTOMdo { if (!(Node::in_dump() || n == __null || n->bottom_type
() == Type::TOP || n->adr_type() == __null || n->adr_type
() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM
|| Compile::current()->AliasLevel() == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0"
") failed", "must be a wide memory"); ::breakpoint(); } } while
(0)
4986 || n->adr_type() == TypeRawPtr::BOTTOMdo { if (!(Node::in_dump() || n == __null || n->bottom_type
() == Type::TOP || n->adr_type() == __null || n->adr_type
() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM
|| Compile::current()->AliasLevel() == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0"
") failed", "must be a wide memory"); ::breakpoint(); } } while
(0)
4987 || Compile::current()->AliasLevel() == 0,do { if (!(Node::in_dump() || n == __null || n->bottom_type
() == Type::TOP || n->adr_type() == __null || n->adr_type
() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM
|| Compile::current()->AliasLevel() == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0"
") failed", "must be a wide memory"); ::breakpoint(); } } while
(0)
4988 "must be a wide memory")do { if (!(Node::in_dump() || n == __null || n->bottom_type
() == Type::TOP || n->adr_type() == __null || n->adr_type
() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM
|| Compile::current()->AliasLevel() == 0)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 4988, "assert(" "Node::in_dump() || n == __null || n->bottom_type() == Type::TOP || n->adr_type() == __null || n->adr_type() == TypePtr::BOTTOM || n->adr_type() == TypeRawPtr::BOTTOM || Compile::current()->AliasLevel() == 0"
") failed", "must be a wide memory"); ::breakpoint(); } } while
(0)
;
4989 // AliasLevel == 0 if we are organizing the memory states manually.
4990 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4991 } else {
4992 // make sure the stored slice is sane
4993 #ifdef ASSERT1
4994 if (VMError::is_error_reported() || Node::in_dump()) {
4995 } else if (might_be_same(n, base_memory())) {
4996 // Give it a pass: It is a mostly harmless repetition of the base.
4997 // This can arise normally from node subsumption during optimization.
4998 } else {
4999 verify_memory_slice(this, alias_idx, n);
5000 }
5001 #endif
5002 }
5003 return n;
5004}
5005
5006//---------------------------set_memory_at-------------------------------------
5007void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
5008 verify_memory_slice(this, alias_idx, n);
5009 Node* empty_mem = empty_memory();
5010 if (n == base_memory()) n = empty_mem; // collapse default
5011 uint need_req = alias_idx+1;
5012 if (req() < need_req) {
5013 if (n == empty_mem) return; // already the default, so do not grow me
5014 // grow the sparse array
5015 do {
5016 add_req(empty_mem);
5017 } while (req() < need_req);
5018 }
5019 set_req( alias_idx, n );
5020}
5021
5022
5023
5024//--------------------------iteration_setup------------------------------------
5025void MergeMemNode::iteration_setup(const MergeMemNode* other) {
5026 if (other != NULL__null) {
5027 grow_to_match(other);
5028 // invariant: the finite support of mm2 is within mm->req()
5029 #ifdef ASSERT1
5030 for (uint i = req(); i < other->req(); i++) {
5031 assert(other->is_empty_memory(other->in(i)), "slice left uncovered")do { if (!(other->is_empty_memory(other->in(i)))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 5031, "assert(" "other->is_empty_memory(other->in(i))"
") failed", "slice left uncovered"); ::breakpoint(); } } while
(0)
;
5032 }
5033 #endif
5034 }
5035 // Replace spurious copies of base_memory by top.
5036 Node* base_mem = base_memory();
5037 if (base_mem != NULL__null && !base_mem->is_top()) {
5038 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
5039 if (in(i) == base_mem)
5040 set_req(i, empty_memory());
5041 }
5042 }
5043}
5044
5045//---------------------------grow_to_match-------------------------------------
5046void MergeMemNode::grow_to_match(const MergeMemNode* other) {
5047 Node* empty_mem = empty_memory();
5048 assert(other->is_empty_memory(empty_mem), "consistent sentinels")do { if (!(other->is_empty_memory(empty_mem))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 5048, "assert(" "other->is_empty_memory(empty_mem)" ") failed"
, "consistent sentinels"); ::breakpoint(); } } while (0)
;
5049 // look for the finite support of the other memory
5050 for (uint i = other->req(); --i >= req(); ) {
5051 if (other->in(i) != empty_mem) {
5052 uint new_len = i+1;
5053 while (req() < new_len) add_req(empty_mem);
5054 break;
5055 }
5056 }
5057}
5058
5059//---------------------------verify_sparse-------------------------------------
5060#ifndef PRODUCT
5061bool MergeMemNode::verify_sparse() const {
5062 assert(is_empty_memory(make_empty_memory()), "sane sentinel")do { if (!(is_empty_memory(make_empty_memory()))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 5062, "assert(" "is_empty_memory(make_empty_memory())" ") failed"
, "sane sentinel"); ::breakpoint(); } } while (0)
;
5063 Node* base_mem = base_memory();
5064 // The following can happen in degenerate cases, since empty==top.
5065 if (is_empty_memory(base_mem)) return true;
5066 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
5067 assert(in(i) != NULL, "sane slice")do { if (!(in(i) != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/memnode.cpp"
, 5067, "assert(" "in(i) != __null" ") failed", "sane slice")
; ::breakpoint(); } } while (0)
;
5068 if (in(i) == base_mem) return false; // should have been the sentinel value!
5069 }
5070 return true;
5071}
5072
5073bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
5074 Node* n;
5075 n = mm->in(idx);
5076 if (mem == n) return true; // might be empty_memory()
5077 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
5078 if (mem == n) return true;
5079 return false;
5080}
5081#endif // !PRODUCT