File: | jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp |
Warning: | line 218, column 3 1st function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright (c) 2020, 2021, Intel Corporation. All rights reserved. | |||
3 | * | |||
4 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
5 | * | |||
6 | * This code is free software; you can redistribute it and/or modify it | |||
7 | * under the terms of the GNU General Public License version 2 only, as | |||
8 | * published by the Free Software Foundation. | |||
9 | * | |||
10 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
13 | * version 2 for more details (a copy is included in the LICENSE file that | |||
14 | * accompanied this code). | |||
15 | * | |||
16 | * You should have received a copy of the GNU General Public License version | |||
17 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
19 | * | |||
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
21 | * or visit www.oracle.com if you need additional information or have any | |||
22 | * questions. | |||
23 | * | |||
24 | */ | |||
25 | ||||
26 | #include "precompiled.hpp" | |||
27 | #include "asm/macroAssembler.hpp" | |||
28 | #include "asm/macroAssembler.inline.hpp" | |||
29 | #include "compiler/compiler_globals.hpp" | |||
30 | ||||
31 | #ifdef PRODUCT | |||
32 | #define BLOCK_COMMENT(str)block_comment(str) /* nothing */ | |||
33 | #else | |||
34 | #define BLOCK_COMMENT(str)block_comment(str) block_comment(str) | |||
35 | #endif | |||
36 | ||||
37 | #define BIND(label)bind(label); block_comment("label" ":") bind(label); BLOCK_COMMENT(#label ":")block_comment(#label ":") | |||
38 | ||||
39 | #ifdef _LP641 | |||
40 | ||||
41 | #if COMPILER2_OR_JVMCI1 | |||
42 | ||||
43 | void MacroAssembler::arraycopy_avx3_special_cases(XMMRegister xmm, KRegister mask, Register from, | |||
44 | Register to, Register count, int shift, | |||
45 | Register index, Register temp, | |||
46 | bool use64byteVector, Label& L_entry, Label& L_exit) { | |||
47 | Label L_entry_64, L_entry_96, L_entry_128; | |||
48 | Label L_entry_160, L_entry_192; | |||
49 | ||||
50 | int size_mat[][6] = { | |||
51 | /* T_BYTE */ {32 , 64, 96 , 128 , 160 , 192 }, | |||
52 | /* T_SHORT*/ {16 , 32, 48 , 64 , 80 , 96 }, | |||
53 | /* T_INT */ {8 , 16, 24 , 32 , 40 , 48 }, | |||
54 | /* T_LONG */ {4 , 8, 12 , 16 , 20 , 24 } | |||
55 | }; | |||
56 | ||||
57 | // Case A) Special case for length less than equal to 32 bytes. | |||
58 | cmpq(count, size_mat[shift][0]); | |||
59 | jccb(Assembler::greater, L_entry_64)jccb_0(Assembler::greater, L_entry_64, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 59); | |||
60 | copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift); | |||
| ||||
61 | jmp(L_exit); | |||
62 | ||||
63 | // Case B) Special case for length less than equal to 64 bytes. | |||
64 | BIND(L_entry_64)bind(L_entry_64); block_comment("L_entry_64" ":"); | |||
65 | cmpq(count, size_mat[shift][1]); | |||
66 | jccb(Assembler::greater, L_entry_96)jccb_0(Assembler::greater, L_entry_96, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 66); | |||
67 | copy64_masked_avx(to, from, xmm, mask, count, index, temp, shift, 0, use64byteVector); | |||
68 | jmp(L_exit); | |||
69 | ||||
70 | // Case C) Special case for length less than equal to 96 bytes. | |||
71 | BIND(L_entry_96)bind(L_entry_96); block_comment("L_entry_96" ":"); | |||
72 | cmpq(count, size_mat[shift][2]); | |||
73 | jccb(Assembler::greater, L_entry_128)jccb_0(Assembler::greater, L_entry_128, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 73); | |||
74 | copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector); | |||
75 | subq(count, 64 >> shift); | |||
76 | copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 64); | |||
77 | jmp(L_exit); | |||
78 | ||||
79 | // Case D) Special case for length less than equal to 128 bytes. | |||
80 | BIND(L_entry_128)bind(L_entry_128); block_comment("L_entry_128" ":"); | |||
81 | cmpq(count, size_mat[shift][3]); | |||
82 | jccb(Assembler::greater, L_entry_160)jccb_0(Assembler::greater, L_entry_160, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 82); | |||
83 | copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector); | |||
84 | copy32_avx(to, from, index, xmm, shift, 64); | |||
85 | subq(count, 96 >> shift); | |||
86 | copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 96); | |||
87 | jmp(L_exit); | |||
88 | ||||
89 | // Case E) Special case for length less than equal to 160 bytes. | |||
90 | BIND(L_entry_160)bind(L_entry_160); block_comment("L_entry_160" ":"); | |||
91 | cmpq(count, size_mat[shift][4]); | |||
92 | jccb(Assembler::greater, L_entry_192)jccb_0(Assembler::greater, L_entry_192, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 92); | |||
93 | copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector); | |||
94 | copy64_avx(to, from, index, xmm, false, shift, 64, use64byteVector); | |||
95 | subq(count, 128 >> shift); | |||
96 | copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 128); | |||
97 | jmp(L_exit); | |||
98 | ||||
99 | // Case F) Special case for length less than equal to 192 bytes. | |||
100 | BIND(L_entry_192)bind(L_entry_192); block_comment("L_entry_192" ":"); | |||
101 | cmpq(count, size_mat[shift][5]); | |||
102 | jcc(Assembler::greater, L_entry); | |||
103 | copy64_avx(to, from, index, xmm, false, shift, 0, use64byteVector); | |||
104 | copy64_avx(to, from, index, xmm, false, shift, 64, use64byteVector); | |||
105 | copy32_avx(to, from, index, xmm, shift, 128); | |||
106 | subq(count, 160 >> shift); | |||
107 | copy32_masked_avx(to, from, xmm, mask, count, index, temp, shift, 160); | |||
108 | jmp(L_exit); | |||
109 | } | |||
110 | ||||
111 | void MacroAssembler::arraycopy_avx3_special_cases_conjoint(XMMRegister xmm, KRegister mask, Register from, | |||
112 | Register to, Register start_index, Register end_index, | |||
113 | Register count, int shift, Register temp, | |||
114 | bool use64byteVector, Label& L_entry, Label& L_exit) { | |||
115 | Label L_entry_64, L_entry_96, L_entry_128; | |||
116 | Label L_entry_160, L_entry_192; | |||
117 | bool avx3 = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); | |||
118 | ||||
119 | int size_mat[][6] = { | |||
120 | /* T_BYTE */ {32 , 64, 96 , 128 , 160 , 192 }, | |||
121 | /* T_SHORT*/ {16 , 32, 48 , 64 , 80 , 96 }, | |||
122 | /* T_INT */ {8 , 16, 24 , 32 , 40 , 48 }, | |||
123 | /* T_LONG */ {4 , 8, 12 , 16 , 20 , 24 } | |||
124 | }; | |||
125 | ||||
126 | // Case A) Special case for length less than equal to 32 bytes. | |||
127 | cmpq(count, size_mat[shift][0]); | |||
128 | jccb(Assembler::greater, L_entry_64)jccb_0(Assembler::greater, L_entry_64, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 128); | |||
129 | copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift); | |||
130 | jmp(L_exit); | |||
131 | ||||
132 | // Case B) Special case for length less than equal to 64 bytes. | |||
133 | BIND(L_entry_64)bind(L_entry_64); block_comment("L_entry_64" ":"); | |||
134 | cmpq(count, size_mat[shift][1]); | |||
135 | jccb(Assembler::greater, L_entry_96)jccb_0(Assembler::greater, L_entry_96, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 135); | |||
136 | if (avx3) { | |||
137 | copy64_masked_avx(to, from, xmm, mask, count, start_index, temp, shift, 0, true); | |||
138 | } else { | |||
139 | copy32_avx(to, from, end_index, xmm, shift, -32); | |||
140 | subq(count, 32 >> shift); | |||
141 | copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift); | |||
142 | } | |||
143 | jmp(L_exit); | |||
144 | ||||
145 | // Case C) Special case for length less than equal to 96 bytes. | |||
146 | BIND(L_entry_96)bind(L_entry_96); block_comment("L_entry_96" ":"); | |||
147 | cmpq(count, size_mat[shift][2]); | |||
148 | jccb(Assembler::greater, L_entry_128)jccb_0(Assembler::greater, L_entry_128, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 148); | |||
149 | copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector); | |||
150 | subq(count, 64 >> shift); | |||
151 | copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift); | |||
152 | jmp(L_exit); | |||
153 | ||||
154 | // Case D) Special case for length less than equal to 128 bytes. | |||
155 | BIND(L_entry_128)bind(L_entry_128); block_comment("L_entry_128" ":"); | |||
156 | cmpq(count, size_mat[shift][3]); | |||
157 | jccb(Assembler::greater, L_entry_160)jccb_0(Assembler::greater, L_entry_160, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 157); | |||
158 | copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector); | |||
159 | copy32_avx(to, from, end_index, xmm, shift, -96); | |||
160 | subq(count, 96 >> shift); | |||
161 | copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift); | |||
162 | jmp(L_exit); | |||
163 | ||||
164 | // Case E) Special case for length less than equal to 160 bytes. | |||
165 | BIND(L_entry_160)bind(L_entry_160); block_comment("L_entry_160" ":"); | |||
166 | cmpq(count, size_mat[shift][4]); | |||
167 | jccb(Assembler::greater, L_entry_192)jccb_0(Assembler::greater, L_entry_192, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 167); | |||
168 | copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector); | |||
169 | copy64_avx(to, from, end_index, xmm, true, shift, -128, use64byteVector); | |||
170 | subq(count, 128 >> shift); | |||
171 | copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift); | |||
172 | jmp(L_exit); | |||
173 | ||||
174 | // Case F) Special case for length less than equal to 192 bytes. | |||
175 | BIND(L_entry_192)bind(L_entry_192); block_comment("L_entry_192" ":"); | |||
176 | cmpq(count, size_mat[shift][5]); | |||
177 | jcc(Assembler::greater, L_entry); | |||
178 | copy64_avx(to, from, end_index, xmm, true, shift, -64, use64byteVector); | |||
179 | copy64_avx(to, from, end_index, xmm, true, shift, -128, use64byteVector); | |||
180 | copy32_avx(to, from, end_index, xmm, shift, -160); | |||
181 | subq(count, 160 >> shift); | |||
182 | copy32_masked_avx(to, from, xmm, mask, count, start_index, temp, shift); | |||
183 | jmp(L_exit); | |||
184 | } | |||
185 | ||||
186 | void MacroAssembler::copy64_masked_avx(Register dst, Register src, XMMRegister xmm, | |||
187 | KRegister mask, Register length, Register index, | |||
188 | Register temp, int shift, int offset, | |||
189 | bool use64byteVector) { | |||
190 | BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; | |||
191 | assert(MaxVectorSize >= 32, "vector length should be >= 32")do { if (!(MaxVectorSize >= 32)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 191, "assert(" "MaxVectorSize >= 32" ") failed", "vector length should be >= 32" ); ::breakpoint(); } } while (0); | |||
192 | if (!use64byteVector) { | |||
193 | copy32_avx(dst, src, index, xmm, shift, offset); | |||
194 | subptr(length, 32 >> shift); | |||
195 | copy32_masked_avx(dst, src, xmm, mask, length, index, temp, shift, offset+32); | |||
196 | } else { | |||
197 | Address::ScaleFactor scale = (Address::ScaleFactor)(shift); | |||
198 | assert(MaxVectorSize == 64, "vector length != 64")do { if (!(MaxVectorSize == 64)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 198, "assert(" "MaxVectorSize == 64" ") failed", "vector length != 64" ); ::breakpoint(); } } while (0); | |||
199 | mov64(temp, -1L); | |||
200 | bzhiq(temp, temp, length); | |||
201 | kmovql(mask, temp); | |||
202 | evmovdqu(type[shift], mask, xmm, Address(src, index, scale, offset), Assembler::AVX_512bit); | |||
203 | evmovdqu(type[shift], mask, Address(dst, index, scale, offset), xmm, Assembler::AVX_512bit); | |||
204 | } | |||
205 | } | |||
206 | ||||
207 | ||||
208 | void MacroAssembler::copy32_masked_avx(Register dst, Register src, XMMRegister xmm, | |||
209 | KRegister mask, Register length, Register index, | |||
210 | Register temp, int shift, int offset) { | |||
211 | assert(MaxVectorSize >= 32, "vector length should be >= 32")do { if (!(MaxVectorSize >= 32)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 211, "assert(" "MaxVectorSize >= 32" ") failed", "vector length should be >= 32" ); ::breakpoint(); } } while (0); | |||
212 | BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; | |||
213 | Address::ScaleFactor scale = (Address::ScaleFactor)(shift); | |||
214 | mov64(temp, -1L); | |||
215 | bzhiq(temp, temp, length); | |||
216 | kmovql(mask, temp); | |||
217 | evmovdqu(type[shift], mask, xmm, Address(src, index, scale, offset), Assembler::AVX_256bit); | |||
218 | evmovdqu(type[shift], mask, Address(dst, index, scale, offset), xmm, Assembler::AVX_256bit); | |||
| ||||
219 | } | |||
220 | ||||
221 | ||||
222 | void MacroAssembler::copy32_avx(Register dst, Register src, Register index, XMMRegister xmm, | |||
223 | int shift, int offset) { | |||
224 | assert(MaxVectorSize >= 32, "vector length should be >= 32")do { if (!(MaxVectorSize >= 32)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 224, "assert(" "MaxVectorSize >= 32" ") failed", "vector length should be >= 32" ); ::breakpoint(); } } while (0); | |||
225 | Address::ScaleFactor scale = (Address::ScaleFactor)(shift); | |||
226 | vmovdqu(xmm, Address(src, index, scale, offset)); | |||
227 | vmovdqu(Address(dst, index, scale, offset), xmm); | |||
228 | } | |||
229 | ||||
230 | ||||
231 | void MacroAssembler::copy64_avx(Register dst, Register src, Register index, XMMRegister xmm, | |||
232 | bool conjoint, int shift, int offset, bool use64byteVector) { | |||
233 | assert(MaxVectorSize == 64 || MaxVectorSize == 32, "vector length mismatch")do { if (!(MaxVectorSize == 64 || MaxVectorSize == 32)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/macroAssembler_x86_arrayCopy_avx3.cpp" , 233, "assert(" "MaxVectorSize == 64 || MaxVectorSize == 32" ") failed", "vector length mismatch"); ::breakpoint(); } } while (0); | |||
234 | if (!use64byteVector) { | |||
235 | if (conjoint) { | |||
236 | copy32_avx(dst, src, index, xmm, shift, offset+32); | |||
237 | copy32_avx(dst, src, index, xmm, shift, offset); | |||
238 | } else { | |||
239 | copy32_avx(dst, src, index, xmm, shift, offset); | |||
240 | copy32_avx(dst, src, index, xmm, shift, offset+32); | |||
241 | } | |||
242 | } else { | |||
243 | Address::ScaleFactor scale = (Address::ScaleFactor)(shift); | |||
244 | evmovdquq(xmm, Address(src, index, scale, offset), Assembler::AVX_512bit); | |||
245 | evmovdquq(Address(dst, index, scale, offset), xmm, Assembler::AVX_512bit); | |||
246 | } | |||
247 | } | |||
248 | ||||
249 | #endif // COMPILER2_OR_JVMCI | |||
250 | ||||
251 | #endif |
1 | /* |
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef CPU_X86_ASSEMBLER_X86_HPP |
26 | #define CPU_X86_ASSEMBLER_X86_HPP |
27 | |
28 | #include "asm/register.hpp" |
29 | #include "utilities/powerOfTwo.hpp" |
30 | |
31 | // Contains all the definitions needed for x86 assembly code generation. |
32 | |
33 | // Calling convention |
34 | class Argument { |
35 | public: |
36 | enum { |
37 | #ifdef _LP641 |
38 | #ifdef _WIN64 |
39 | n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
40 | n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... ) |
41 | n_int_register_returns_c = 1, // rax |
42 | n_float_register_returns_c = 1, // xmm0 |
43 | #else |
44 | n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
45 | n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... ) |
46 | n_int_register_returns_c = 2, // rax, rdx |
47 | n_float_register_returns_c = 2, // xmm0, xmm1 |
48 | #endif // _WIN64 |
49 | n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ... |
50 | n_float_register_parameters_j = 8 // j_farg0, j_farg1, ... |
51 | #else |
52 | n_register_parameters = 0 // 0 registers used to pass arguments |
53 | #endif // _LP64 |
54 | }; |
55 | }; |
56 | |
57 | |
58 | #ifdef _LP641 |
59 | // Symbolically name the register arguments used by the c calling convention. |
60 | // Windows is different from linux/solaris. So much for standards... |
61 | |
62 | #ifdef _WIN64 |
63 | |
64 | REGISTER_DECLARATION(Register, c_rarg0, rcx)const Register c_rarg0 = ((Register)rcx); |
65 | REGISTER_DECLARATION(Register, c_rarg1, rdx)const Register c_rarg1 = ((Register)rdx); |
66 | REGISTER_DECLARATION(Register, c_rarg2, r8)const Register c_rarg2 = ((Register)r8); |
67 | REGISTER_DECLARATION(Register, c_rarg3, r9)const Register c_rarg3 = ((Register)r9); |
68 | |
69 | REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0)const XMMRegister c_farg0 = ((XMMRegister)xmm0); |
70 | REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1)const XMMRegister c_farg1 = ((XMMRegister)xmm1); |
71 | REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2)const XMMRegister c_farg2 = ((XMMRegister)xmm2); |
72 | REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3)const XMMRegister c_farg3 = ((XMMRegister)xmm3); |
73 | |
74 | #else |
75 | |
76 | REGISTER_DECLARATION(Register, c_rarg0, rdi)const Register c_rarg0 = ((Register)rdi); |
77 | REGISTER_DECLARATION(Register, c_rarg1, rsi)const Register c_rarg1 = ((Register)rsi); |
78 | REGISTER_DECLARATION(Register, c_rarg2, rdx)const Register c_rarg2 = ((Register)rdx); |
79 | REGISTER_DECLARATION(Register, c_rarg3, rcx)const Register c_rarg3 = ((Register)rcx); |
80 | REGISTER_DECLARATION(Register, c_rarg4, r8)const Register c_rarg4 = ((Register)r8); |
81 | REGISTER_DECLARATION(Register, c_rarg5, r9)const Register c_rarg5 = ((Register)r9); |
82 | |
83 | REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0)const XMMRegister c_farg0 = ((XMMRegister)xmm0); |
84 | REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1)const XMMRegister c_farg1 = ((XMMRegister)xmm1); |
85 | REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2)const XMMRegister c_farg2 = ((XMMRegister)xmm2); |
86 | REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3)const XMMRegister c_farg3 = ((XMMRegister)xmm3); |
87 | REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4)const XMMRegister c_farg4 = ((XMMRegister)xmm4); |
88 | REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5)const XMMRegister c_farg5 = ((XMMRegister)xmm5); |
89 | REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6)const XMMRegister c_farg6 = ((XMMRegister)xmm6); |
90 | REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7)const XMMRegister c_farg7 = ((XMMRegister)xmm7); |
91 | |
92 | #endif // _WIN64 |
93 | |
94 | // Symbolically name the register arguments used by the Java calling convention. |
95 | // We have control over the convention for java so we can do what we please. |
96 | // What pleases us is to offset the java calling convention so that when |
97 | // we call a suitable jni method the arguments are lined up and we don't |
98 | // have to do little shuffling. A suitable jni method is non-static and a |
99 | // small number of arguments (two fewer args on windows) |
100 | // |
101 | // |-------------------------------------------------------| |
102 | // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 | |
103 | // |-------------------------------------------------------| |
104 | // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg) |
105 | // | rdi rsi rdx rcx r8 r9 | solaris/linux |
106 | // |-------------------------------------------------------| |
107 | // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 | |
108 | // |-------------------------------------------------------| |
109 | |
110 | REGISTER_DECLARATION(Register, j_rarg0, c_rarg1)const Register j_rarg0 = ((Register)c_rarg1); |
111 | REGISTER_DECLARATION(Register, j_rarg1, c_rarg2)const Register j_rarg1 = ((Register)c_rarg2); |
112 | REGISTER_DECLARATION(Register, j_rarg2, c_rarg3)const Register j_rarg2 = ((Register)c_rarg3); |
113 | // Windows runs out of register args here |
114 | #ifdef _WIN64 |
115 | REGISTER_DECLARATION(Register, j_rarg3, rdi)const Register j_rarg3 = ((Register)rdi); |
116 | REGISTER_DECLARATION(Register, j_rarg4, rsi)const Register j_rarg4 = ((Register)rsi); |
117 | #else |
118 | REGISTER_DECLARATION(Register, j_rarg3, c_rarg4)const Register j_rarg3 = ((Register)c_rarg4); |
119 | REGISTER_DECLARATION(Register, j_rarg4, c_rarg5)const Register j_rarg4 = ((Register)c_rarg5); |
120 | #endif /* _WIN64 */ |
121 | REGISTER_DECLARATION(Register, j_rarg5, c_rarg0)const Register j_rarg5 = ((Register)c_rarg0); |
122 | |
123 | REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0)const XMMRegister j_farg0 = ((XMMRegister)xmm0); |
124 | REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1)const XMMRegister j_farg1 = ((XMMRegister)xmm1); |
125 | REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2)const XMMRegister j_farg2 = ((XMMRegister)xmm2); |
126 | REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3)const XMMRegister j_farg3 = ((XMMRegister)xmm3); |
127 | REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4)const XMMRegister j_farg4 = ((XMMRegister)xmm4); |
128 | REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5)const XMMRegister j_farg5 = ((XMMRegister)xmm5); |
129 | REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6)const XMMRegister j_farg6 = ((XMMRegister)xmm6); |
130 | REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7)const XMMRegister j_farg7 = ((XMMRegister)xmm7); |
131 | |
132 | REGISTER_DECLARATION(Register, rscratch1, r10)const Register rscratch1 = ((Register)r10); // volatile |
133 | REGISTER_DECLARATION(Register, rscratch2, r11)const Register rscratch2 = ((Register)r11); // volatile |
134 | |
135 | REGISTER_DECLARATION(Register, r12_heapbase, r12)const Register r12_heapbase = ((Register)r12); // callee-saved |
136 | REGISTER_DECLARATION(Register, r15_thread, r15)const Register r15_thread = ((Register)r15); // callee-saved |
137 | |
138 | #else |
139 | // rscratch1 will apear in 32bit code that is dead but of course must compile |
140 | // Using noreg ensures if the dead code is incorrectly live and executed it |
141 | // will cause an assertion failure |
142 | #define rscratch1 noreg |
143 | #define rscratch2 noreg |
144 | |
145 | #endif // _LP64 |
146 | |
147 | // JSR 292 |
148 | // On x86, the SP does not have to be saved when invoking method handle intrinsics |
149 | // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg. |
150 | REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg)const Register rbp_mh_SP_save = ((Register)noreg); |
151 | |
152 | // Address is an abstraction used to represent a memory location |
153 | // using any of the amd64 addressing modes with one object. |
154 | // |
155 | // Note: A register location is represented via a Register, not |
156 | // via an address for efficiency & simplicity reasons. |
157 | |
158 | class ArrayAddress; |
159 | |
160 | class Address { |
161 | public: |
162 | enum ScaleFactor { |
163 | no_scale = -1, |
164 | times_1 = 0, |
165 | times_2 = 1, |
166 | times_4 = 2, |
167 | times_8 = 3, |
168 | times_ptr = LP64_ONLY(times_8)times_8 NOT_LP64(times_4) |
169 | }; |
170 | static ScaleFactor times(int size) { |
171 | assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size")do { if (!(size >= 1 && size <= 8 && is_power_of_2 (size))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 171, "assert(" "size >= 1 && size <= 8 && is_power_of_2(size)" ") failed", "bad scale size"); ::breakpoint(); } } while (0); |
172 | if (size == 8) return times_8; |
173 | if (size == 4) return times_4; |
174 | if (size == 2) return times_2; |
175 | return times_1; |
176 | } |
177 | static int scale_size(ScaleFactor scale) { |
178 | assert(scale != no_scale, "")do { if (!(scale != no_scale)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 178, "assert(" "scale != no_scale" ") failed", ""); ::breakpoint (); } } while (0); |
179 | assert(((1 << (int)times_1) == 1 &&do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0) |
180 | (1 << (int)times_2) == 2 &&do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0) |
181 | (1 << (int)times_4) == 4 &&do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0) |
182 | (1 << (int)times_8) == 8), "")do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0); |
183 | return (1 << (int)scale); |
184 | } |
185 | |
186 | private: |
187 | Register _base; |
188 | Register _index; |
189 | XMMRegister _xmmindex; |
190 | ScaleFactor _scale; |
191 | int _disp; |
192 | bool _isxmmindex; |
193 | RelocationHolder _rspec; |
194 | |
195 | // Easily misused constructors make them private |
196 | // %%% can we make these go away? |
197 | NOT_LP64(Address(address loc, RelocationHolder spec);) |
198 | Address(int disp, address loc, relocInfo::relocType rtype); |
199 | Address(int disp, address loc, RelocationHolder spec); |
200 | |
201 | public: |
202 | |
203 | int disp() { return _disp; } |
204 | // creation |
205 | Address() |
206 | : _base(noreg), |
207 | _index(noreg), |
208 | _xmmindex(xnoreg), |
209 | _scale(no_scale), |
210 | _disp(0), |
211 | _isxmmindex(false){ |
212 | } |
213 | |
214 | // No default displacement otherwise Register can be implicitly |
215 | // converted to 0(Register) which is quite a different animal. |
216 | |
217 | Address(Register base, int disp) |
218 | : _base(base), |
219 | _index(noreg), |
220 | _xmmindex(xnoreg), |
221 | _scale(no_scale), |
222 | _disp(disp), |
223 | _isxmmindex(false){ |
224 | } |
225 | |
226 | Address(Register base, Register index, ScaleFactor scale, int disp = 0) |
227 | : _base (base), |
228 | _index(index), |
229 | _xmmindex(xnoreg), |
230 | _scale(scale), |
231 | _disp (disp), |
232 | _isxmmindex(false) { |
233 | assert(!index->is_valid() == (scale == Address::no_scale),do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 234, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0) |
234 | "inconsistent address")do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 234, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0); |
235 | } |
236 | |
237 | Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0) |
238 | : _base (base), |
239 | _index(index.register_or_noreg()), |
240 | _xmmindex(xnoreg), |
241 | _scale(scale), |
242 | _disp (disp + (index.constant_or_zero() * scale_size(scale))), |
243 | _isxmmindex(false){ |
244 | if (!index.is_register()) scale = Address::no_scale; |
245 | assert(!_index->is_valid() == (scale == Address::no_scale),do { if (!(!_index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 246, "assert(" "!_index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0) |
246 | "inconsistent address")do { if (!(!_index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 246, "assert(" "!_index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0); |
247 | } |
248 | |
249 | Address(Register base, XMMRegister index, ScaleFactor scale, int disp = 0) |
250 | : _base (base), |
251 | _index(noreg), |
252 | _xmmindex(index), |
253 | _scale(scale), |
254 | _disp(disp), |
255 | _isxmmindex(true) { |
256 | assert(!index->is_valid() == (scale == Address::no_scale),do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 257, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0) |
257 | "inconsistent address")do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 257, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0); |
258 | } |
259 | |
260 | // The following overloads are used in connection with the |
261 | // ByteSize type (see sizes.hpp). They simplify the use of |
262 | // ByteSize'd arguments in assembly code. |
263 | |
264 | Address(Register base, ByteSize disp) |
265 | : Address(base, in_bytes(disp)) {} |
266 | |
267 | Address(Register base, Register index, ScaleFactor scale, ByteSize disp) |
268 | : Address(base, index, scale, in_bytes(disp)) {} |
269 | |
270 | Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp) |
271 | : Address(base, index, scale, in_bytes(disp)) {} |
272 | |
273 | Address plus_disp(int disp) const { |
274 | Address a = (*this); |
275 | a._disp += disp; |
276 | return a; |
277 | } |
278 | Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const { |
279 | Address a = (*this); |
280 | a._disp += disp.constant_or_zero() * scale_size(scale); |
281 | if (disp.is_register()) { |
282 | assert(!a.index()->is_valid(), "competing indexes")do { if (!(!a.index()->is_valid())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 282, "assert(" "!a.index()->is_valid()" ") failed", "competing indexes" ); ::breakpoint(); } } while (0); |
283 | a._index = disp.as_register(); |
284 | a._scale = scale; |
285 | } |
286 | return a; |
287 | } |
288 | bool is_same_address(Address a) const { |
289 | // disregard _rspec |
290 | return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale; |
291 | } |
292 | |
293 | // accessors |
294 | bool uses(Register reg) const { return _base == reg || _index == reg; } |
295 | Register base() const { return _base; } |
296 | Register index() const { return _index; } |
297 | XMMRegister xmmindex() const { return _xmmindex; } |
298 | ScaleFactor scale() const { return _scale; } |
299 | int disp() const { return _disp; } |
300 | bool isxmmindex() const { return _isxmmindex; } |
301 | |
302 | // Convert the raw encoding form into the form expected by the constructor for |
303 | // Address. An index of 4 (rsp) corresponds to having no index, so convert |
304 | // that to noreg for the Address constructor. |
305 | static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc); |
306 | |
307 | static Address make_array(ArrayAddress); |
308 | |
309 | private: |
310 | bool base_needs_rex() const { |
311 | return _base->is_valid() && _base->encoding() >= 8; |
312 | } |
313 | |
314 | bool index_needs_rex() const { |
315 | return _index->is_valid() &&_index->encoding() >= 8; |
316 | } |
317 | |
318 | bool xmmindex_needs_rex() const { |
319 | return _xmmindex->is_valid() && _xmmindex->encoding() >= 8; |
320 | } |
321 | |
322 | relocInfo::relocType reloc() const { return _rspec.type(); } |
323 | |
324 | friend class Assembler; |
325 | friend class MacroAssembler; |
326 | friend class LIR_Assembler; // base/index/scale/disp |
327 | }; |
328 | |
329 | // |
330 | // AddressLiteral has been split out from Address because operands of this type |
331 | // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out |
332 | // the few instructions that need to deal with address literals are unique and the |
333 | // MacroAssembler does not have to implement every instruction in the Assembler |
334 | // in order to search for address literals that may need special handling depending |
335 | // on the instruction and the platform. As small step on the way to merging i486/amd64 |
336 | // directories. |
337 | // |
338 | class AddressLiteral { |
339 | friend class ArrayAddress; |
340 | RelocationHolder _rspec; |
341 | // Typically we use AddressLiterals we want to use their rval |
342 | // However in some situations we want the lval (effect address) of the item. |
343 | // We provide a special factory for making those lvals. |
344 | bool _is_lval; |
345 | |
346 | // If the target is far we'll need to load the ea of this to |
347 | // a register to reach it. Otherwise if near we can do rip |
348 | // relative addressing. |
349 | |
350 | address _target; |
351 | |
352 | protected: |
353 | // creation |
354 | AddressLiteral() |
355 | : _is_lval(false), |
356 | _target(NULL__null) |
357 | {} |
358 | |
359 | public: |
360 | |
361 | |
362 | AddressLiteral(address target, relocInfo::relocType rtype); |
363 | |
364 | AddressLiteral(address target, RelocationHolder const& rspec) |
365 | : _rspec(rspec), |
366 | _is_lval(false), |
367 | _target(target) |
368 | {} |
369 | |
370 | AddressLiteral addr() { |
371 | AddressLiteral ret = *this; |
372 | ret._is_lval = true; |
373 | return ret; |
374 | } |
375 | |
376 | |
377 | private: |
378 | |
379 | address target() { return _target; } |
380 | bool is_lval() { return _is_lval; } |
381 | |
382 | relocInfo::relocType reloc() const { return _rspec.type(); } |
383 | const RelocationHolder& rspec() const { return _rspec; } |
384 | |
385 | friend class Assembler; |
386 | friend class MacroAssembler; |
387 | friend class Address; |
388 | friend class LIR_Assembler; |
389 | }; |
390 | |
391 | // Convience classes |
392 | class RuntimeAddress: public AddressLiteral { |
393 | |
394 | public: |
395 | |
396 | RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {} |
397 | |
398 | }; |
399 | |
400 | class ExternalAddress: public AddressLiteral { |
401 | private: |
402 | static relocInfo::relocType reloc_for_target(address target) { |
403 | // Sometimes ExternalAddress is used for values which aren't |
404 | // exactly addresses, like the card table base. |
405 | // external_word_type can't be used for values in the first page |
406 | // so just skip the reloc in that case. |
407 | return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; |
408 | } |
409 | |
410 | public: |
411 | |
412 | ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {} |
413 | |
414 | }; |
415 | |
416 | class InternalAddress: public AddressLiteral { |
417 | |
418 | public: |
419 | |
420 | InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} |
421 | |
422 | }; |
423 | |
424 | // x86 can do array addressing as a single operation since disp can be an absolute |
425 | // address amd64 can't. We create a class that expresses the concept but does extra |
426 | // magic on amd64 to get the final result |
427 | |
428 | class ArrayAddress { |
429 | private: |
430 | |
431 | AddressLiteral _base; |
432 | Address _index; |
433 | |
434 | public: |
435 | |
436 | ArrayAddress() {}; |
437 | ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {}; |
438 | AddressLiteral base() { return _base; } |
439 | Address index() { return _index; } |
440 | |
441 | }; |
442 | |
443 | class InstructionAttr; |
444 | |
445 | // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes |
446 | // See fxsave and xsave(EVEX enabled) documentation for layout |
447 | const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize)2688 / wordSize; |
448 | |
449 | // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction |
450 | // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write |
451 | // is what you get. The Assembler is generating code into a CodeBuffer. |
452 | |
453 | class Assembler : public AbstractAssembler { |
454 | friend class AbstractAssembler; // for the non-virtual hack |
455 | friend class LIR_Assembler; // as_Address() |
456 | friend class StubGenerator; |
457 | |
458 | public: |
459 | enum Condition { // The x86 condition codes used for conditional jumps/moves. |
460 | zero = 0x4, |
461 | notZero = 0x5, |
462 | equal = 0x4, |
463 | notEqual = 0x5, |
464 | less = 0xc, |
465 | lessEqual = 0xe, |
466 | greater = 0xf, |
467 | greaterEqual = 0xd, |
468 | below = 0x2, |
469 | belowEqual = 0x6, |
470 | above = 0x7, |
471 | aboveEqual = 0x3, |
472 | overflow = 0x0, |
473 | noOverflow = 0x1, |
474 | carrySet = 0x2, |
475 | carryClear = 0x3, |
476 | negative = 0x8, |
477 | positive = 0x9, |
478 | parity = 0xa, |
479 | noParity = 0xb |
480 | }; |
481 | |
482 | enum Prefix { |
483 | // segment overrides |
484 | CS_segment = 0x2e, |
485 | SS_segment = 0x36, |
486 | DS_segment = 0x3e, |
487 | ES_segment = 0x26, |
488 | FS_segment = 0x64, |
489 | GS_segment = 0x65, |
490 | |
491 | REX = 0x40, |
492 | |
493 | REX_B = 0x41, |
494 | REX_X = 0x42, |
495 | REX_XB = 0x43, |
496 | REX_R = 0x44, |
497 | REX_RB = 0x45, |
498 | REX_RX = 0x46, |
499 | REX_RXB = 0x47, |
500 | |
501 | REX_W = 0x48, |
502 | |
503 | REX_WB = 0x49, |
504 | REX_WX = 0x4A, |
505 | REX_WXB = 0x4B, |
506 | REX_WR = 0x4C, |
507 | REX_WRB = 0x4D, |
508 | REX_WRX = 0x4E, |
509 | REX_WRXB = 0x4F, |
510 | |
511 | VEX_3bytes = 0xC4, |
512 | VEX_2bytes = 0xC5, |
513 | EVEX_4bytes = 0x62, |
514 | Prefix_EMPTY = 0x0 |
515 | }; |
516 | |
517 | enum VexPrefix { |
518 | VEX_B = 0x20, |
519 | VEX_X = 0x40, |
520 | VEX_R = 0x80, |
521 | VEX_W = 0x80 |
522 | }; |
523 | |
524 | enum ExexPrefix { |
525 | EVEX_F = 0x04, |
526 | EVEX_V = 0x08, |
527 | EVEX_Rb = 0x10, |
528 | EVEX_X = 0x40, |
529 | EVEX_Z = 0x80 |
530 | }; |
531 | |
532 | enum VexSimdPrefix { |
533 | VEX_SIMD_NONE = 0x0, |
534 | VEX_SIMD_66 = 0x1, |
535 | VEX_SIMD_F3 = 0x2, |
536 | VEX_SIMD_F2 = 0x3 |
537 | }; |
538 | |
539 | enum VexOpcode { |
540 | VEX_OPCODE_NONE = 0x0, |
541 | VEX_OPCODE_0F = 0x1, |
542 | VEX_OPCODE_0F_38 = 0x2, |
543 | VEX_OPCODE_0F_3A = 0x3, |
544 | VEX_OPCODE_MASK = 0x1F |
545 | }; |
546 | |
547 | enum AvxVectorLen { |
548 | AVX_128bit = 0x0, |
549 | AVX_256bit = 0x1, |
550 | AVX_512bit = 0x2, |
551 | AVX_NoVec = 0x4 |
552 | }; |
553 | |
554 | enum EvexTupleType { |
555 | EVEX_FV = 0, |
556 | EVEX_HV = 4, |
557 | EVEX_FVM = 6, |
558 | EVEX_T1S = 7, |
559 | EVEX_T1F = 11, |
560 | EVEX_T2 = 13, |
561 | EVEX_T4 = 15, |
562 | EVEX_T8 = 17, |
563 | EVEX_HVM = 18, |
564 | EVEX_QVM = 19, |
565 | EVEX_OVM = 20, |
566 | EVEX_M128 = 21, |
567 | EVEX_DUP = 22, |
568 | EVEX_ETUP = 23 |
569 | }; |
570 | |
571 | enum EvexInputSizeInBits { |
572 | EVEX_8bit = 0, |
573 | EVEX_16bit = 1, |
574 | EVEX_32bit = 2, |
575 | EVEX_64bit = 3, |
576 | EVEX_NObit = 4 |
577 | }; |
578 | |
579 | enum WhichOperand { |
580 | // input to locate_operand, and format code for relocations |
581 | imm_operand = 0, // embedded 32-bit|64-bit immediate operand |
582 | disp32_operand = 1, // embedded 32-bit displacement or address |
583 | call32_operand = 2, // embedded 32-bit self-relative displacement |
584 | #ifndef _LP641 |
585 | _WhichOperand_limit = 3 |
586 | #else |
587 | narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop |
588 | _WhichOperand_limit = 4 |
589 | #endif |
590 | }; |
591 | |
592 | // Comparison predicates for integral types & FP types when using SSE |
593 | enum ComparisonPredicate { |
594 | eq = 0, |
595 | lt = 1, |
596 | le = 2, |
597 | _false = 3, |
598 | neq = 4, |
599 | nlt = 5, |
600 | nle = 6, |
601 | _true = 7 |
602 | }; |
603 | |
604 | // Comparison predicates for FP types when using AVX |
605 | // O means ordered. U is unordered. When using ordered, any NaN comparison is false. Otherwise, it is true. |
606 | // S means signaling. Q means non-signaling. When signaling is true, instruction signals #IA on NaN. |
607 | enum ComparisonPredicateFP { |
608 | EQ_OQ = 0, |
609 | LT_OS = 1, |
610 | LE_OS = 2, |
611 | UNORD_Q = 3, |
612 | NEQ_UQ = 4, |
613 | NLT_US = 5, |
614 | NLE_US = 6, |
615 | ORD_Q = 7, |
616 | EQ_UQ = 8, |
617 | NGE_US = 9, |
618 | NGT_US = 0xA, |
619 | FALSE_OQ = 0XB, |
620 | NEQ_OQ = 0xC, |
621 | GE_OS = 0xD, |
622 | GT_OS = 0xE, |
623 | TRUE_UQ = 0xF, |
624 | EQ_OS = 0x10, |
625 | LT_OQ = 0x11, |
626 | LE_OQ = 0x12, |
627 | UNORD_S = 0x13, |
628 | NEQ_US = 0x14, |
629 | NLT_UQ = 0x15, |
630 | NLE_UQ = 0x16, |
631 | ORD_S = 0x17, |
632 | EQ_US = 0x18, |
633 | NGE_UQ = 0x19, |
634 | NGT_UQ = 0x1A, |
635 | FALSE_OS = 0x1B, |
636 | NEQ_OS = 0x1C, |
637 | GE_OQ = 0x1D, |
638 | GT_OQ = 0x1E, |
639 | TRUE_US =0x1F |
640 | }; |
641 | |
642 | enum Width { |
643 | B = 0, |
644 | W = 1, |
645 | D = 2, |
646 | Q = 3 |
647 | }; |
648 | |
649 | //---< calculate length of instruction >--- |
650 | // As instruction size can't be found out easily on x86/x64, |
651 | // we just use '4' for len and maxlen. |
652 | // instruction must start at passed address |
653 | static unsigned int instr_len(unsigned char *instr) { return 4; } |
654 | |
655 | //---< longest instructions >--- |
656 | // Max instruction length is not specified in architecture documentation. |
657 | // We could use a "safe enough" estimate (15), but just default to |
658 | // instruction length guess from above. |
659 | static unsigned int instr_maxlen() { return 4; } |
660 | |
661 | // NOTE: The general philopsophy of the declarations here is that 64bit versions |
662 | // of instructions are freely declared without the need for wrapping them an ifdef. |
663 | // (Some dangerous instructions are ifdef's out of inappropriate jvm's.) |
664 | // In the .cpp file the implementations are wrapped so that they are dropped out |
665 | // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL |
666 | // to the size it was prior to merging up the 32bit and 64bit assemblers. |
667 | // |
668 | // This does mean you'll get a linker/runtime error if you use a 64bit only instruction |
669 | // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down. |
670 | |
671 | private: |
672 | |
673 | bool _legacy_mode_bw; |
674 | bool _legacy_mode_dq; |
675 | bool _legacy_mode_vl; |
676 | bool _legacy_mode_vlbw; |
677 | NOT_LP64(bool _is_managed;) |
678 | |
679 | class InstructionAttr *_attributes; |
680 | |
681 | // 64bit prefixes |
682 | void prefix(Register reg); |
683 | void prefix(Register dst, Register src, Prefix p); |
684 | void prefix(Register dst, Address adr, Prefix p); |
685 | |
686 | void prefix(Address adr); |
687 | void prefix(Address adr, Register reg, bool byteinst = false); |
688 | void prefix(Address adr, XMMRegister reg); |
689 | |
690 | int prefix_and_encode(int reg_enc, bool byteinst = false); |
691 | int prefix_and_encode(int dst_enc, int src_enc) { |
692 | return prefix_and_encode(dst_enc, false, src_enc, false); |
693 | } |
694 | int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte); |
695 | |
696 | // Some prefixq variants always emit exactly one prefix byte, so besides a |
697 | // prefix-emitting method we provide a method to get the prefix byte to emit, |
698 | // which can then be folded into a byte stream. |
699 | int8_t get_prefixq(Address adr); |
700 | int8_t get_prefixq(Address adr, Register reg); |
701 | |
702 | void prefixq(Address adr); |
703 | void prefixq(Address adr, Register reg); |
704 | void prefixq(Address adr, XMMRegister reg); |
705 | |
706 | int prefixq_and_encode(int reg_enc); |
707 | int prefixq_and_encode(int dst_enc, int src_enc); |
708 | |
709 | void rex_prefix(Address adr, XMMRegister xreg, |
710 | VexSimdPrefix pre, VexOpcode opc, bool rex_w); |
711 | int rex_prefix_and_encode(int dst_enc, int src_enc, |
712 | VexSimdPrefix pre, VexOpcode opc, bool rex_w); |
713 | |
714 | void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc); |
715 | |
716 | void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, |
717 | int nds_enc, VexSimdPrefix pre, VexOpcode opc); |
718 | |
719 | void vex_prefix(Address adr, int nds_enc, int xreg_enc, |
720 | VexSimdPrefix pre, VexOpcode opc, |
721 | InstructionAttr *attributes); |
722 | |
723 | int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, |
724 | VexSimdPrefix pre, VexOpcode opc, |
725 | InstructionAttr *attributes); |
726 | |
727 | void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, |
728 | VexOpcode opc, InstructionAttr *attributes); |
729 | |
730 | int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, |
731 | VexOpcode opc, InstructionAttr *attributes); |
732 | |
733 | // Helper functions for groups of instructions |
734 | void emit_arith_b(int op1, int op2, Register dst, int imm8); |
735 | |
736 | void emit_arith(int op1, int op2, Register dst, int32_t imm32); |
737 | // Force generation of a 4 byte immediate value even if it fits into 8bit |
738 | void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32); |
739 | void emit_arith(int op1, int op2, Register dst, Register src); |
740 | |
741 | bool emit_compressed_disp_byte(int &disp); |
742 | |
743 | void emit_modrm(int mod, int dst_enc, int src_enc); |
744 | void emit_modrm_disp8(int mod, int dst_enc, int src_enc, |
745 | int disp); |
746 | void emit_modrm_sib(int mod, int dst_enc, int src_enc, |
747 | Address::ScaleFactor scale, int index_enc, int base_enc); |
748 | void emit_modrm_sib_disp8(int mod, int dst_enc, int src_enc, |
749 | Address::ScaleFactor scale, int index_enc, int base_enc, |
750 | int disp); |
751 | |
752 | void emit_operand_helper(int reg_enc, |
753 | int base_enc, int index_enc, Address::ScaleFactor scale, |
754 | int disp, |
755 | RelocationHolder const& rspec, |
756 | int rip_relative_correction = 0); |
757 | |
758 | void emit_operand(Register reg, |
759 | Register base, Register index, Address::ScaleFactor scale, |
760 | int disp, |
761 | RelocationHolder const& rspec, |
762 | int rip_relative_correction = 0); |
763 | |
764 | void emit_operand(Register reg, |
765 | Register base, XMMRegister index, Address::ScaleFactor scale, |
766 | int disp, |
767 | RelocationHolder const& rspec); |
768 | |
769 | void emit_operand(XMMRegister xreg, |
770 | Register base, XMMRegister xindex, Address::ScaleFactor scale, |
771 | int disp, |
772 | RelocationHolder const& rspec); |
773 | |
774 | void emit_operand(Register reg, Address adr, |
775 | int rip_relative_correction = 0); |
776 | |
777 | void emit_operand(XMMRegister reg, |
778 | Register base, Register index, Address::ScaleFactor scale, |
779 | int disp, |
780 | RelocationHolder const& rspec); |
781 | |
782 | void emit_operand(XMMRegister reg, Address adr); |
783 | |
784 | // Immediate-to-memory forms |
785 | void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32); |
786 | |
787 | protected: |
788 | #ifdef ASSERT1 |
789 | void check_relocation(RelocationHolder const& rspec, int format); |
790 | #endif |
791 | |
792 | void emit_data(jint data, relocInfo::relocType rtype, int format); |
793 | void emit_data(jint data, RelocationHolder const& rspec, int format); |
794 | void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); |
795 | void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); |
796 | |
797 | bool reachable(AddressLiteral adr) NOT_LP64({ return true;}); |
798 | |
799 | // These are all easily abused and hence protected |
800 | |
801 | // 32BIT ONLY SECTION |
802 | #ifndef _LP641 |
803 | // Make these disappear in 64bit mode since they would never be correct |
804 | void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
805 | void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
806 | |
807 | void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
808 | void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
809 | |
810 | void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
811 | #else |
812 | // 64BIT ONLY SECTION |
813 | void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY |
814 | |
815 | void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec); |
816 | void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec); |
817 | |
818 | void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec); |
819 | void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec); |
820 | #endif // _LP64 |
821 | |
822 | // These are unique in that we are ensured by the caller that the 32bit |
823 | // relative in these instructions will always be able to reach the potentially |
824 | // 64bit address described by entry. Since they can take a 64bit address they |
825 | // don't have the 32 suffix like the other instructions in this class. |
826 | |
827 | void call_literal(address entry, RelocationHolder const& rspec); |
828 | void jmp_literal(address entry, RelocationHolder const& rspec); |
829 | |
830 | // Avoid using directly section |
831 | // Instructions in this section are actually usable by anyone without danger |
832 | // of failure but have performance issues that are addressed my enhanced |
833 | // instructions which will do the proper thing base on the particular cpu. |
834 | // We protect them because we don't trust you... |
835 | |
836 | // Don't use next inc() and dec() methods directly. INC & DEC instructions |
837 | // could cause a partial flag stall since they don't set CF flag. |
838 | // Use MacroAssembler::decrement() & MacroAssembler::increment() methods |
839 | // which call inc() & dec() or add() & sub() in accordance with |
840 | // the product flag UseIncDec value. |
841 | |
842 | void decl(Register dst); |
843 | void decl(Address dst); |
844 | void decq(Address dst); |
845 | |
846 | void incl(Register dst); |
847 | void incl(Address dst); |
848 | void incq(Register dst); |
849 | void incq(Address dst); |
850 | |
851 | // New cpus require use of movsd and movss to avoid partial register stall |
852 | // when loading from memory. But for old Opteron use movlpd instead of movsd. |
853 | // The selection is done in MacroAssembler::movdbl() and movflt(). |
854 | |
855 | // Move Scalar Single-Precision Floating-Point Values |
856 | void movss(XMMRegister dst, Address src); |
857 | void movss(XMMRegister dst, XMMRegister src); |
858 | void movss(Address dst, XMMRegister src); |
859 | |
860 | // Move Scalar Double-Precision Floating-Point Values |
861 | void movsd(XMMRegister dst, Address src); |
862 | void movsd(XMMRegister dst, XMMRegister src); |
863 | void movsd(Address dst, XMMRegister src); |
864 | void movlpd(XMMRegister dst, Address src); |
865 | |
866 | // New cpus require use of movaps and movapd to avoid partial register stall |
867 | // when moving between registers. |
868 | void movaps(XMMRegister dst, XMMRegister src); |
869 | void movapd(XMMRegister dst, XMMRegister src); |
870 | |
871 | // End avoid using directly |
872 | |
873 | |
874 | // Instruction prefixes |
875 | void prefix(Prefix p); |
876 | |
877 | public: |
878 | |
879 | // Creation |
880 | Assembler(CodeBuffer* code) : AbstractAssembler(code) { |
881 | init_attributes(); |
882 | } |
883 | |
884 | // Decoding |
885 | static address locate_operand(address inst, WhichOperand which); |
886 | static address locate_next_instruction(address inst); |
887 | |
888 | // Utilities |
889 | static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len, |
890 | int cur_tuple_type, int in_size_in_bits, int cur_encoding); |
891 | |
892 | // Generic instructions |
893 | // Does 32bit or 64bit as needed for the platform. In some sense these |
894 | // belong in macro assembler but there is no need for both varieties to exist |
895 | |
896 | void init_attributes(void); |
897 | |
898 | void set_attributes(InstructionAttr *attributes) { _attributes = attributes; } |
899 | void clear_attributes(void) { _attributes = NULL__null; } |
900 | |
901 | void set_managed(void) { NOT_LP64(_is_managed = true;) } |
902 | void clear_managed(void) { NOT_LP64(_is_managed = false;) } |
903 | bool is_managed(void) { |
904 | NOT_LP64(return _is_managed;) |
905 | LP64_ONLY(return false;)return false; } |
906 | |
907 | void lea(Register dst, Address src); |
908 | |
909 | void mov(Register dst, Register src); |
910 | |
911 | #ifdef _LP641 |
912 | // support caching the result of some routines |
913 | |
914 | // must be called before pusha(), popa(), vzeroupper() - checked with asserts |
915 | static void precompute_instructions(); |
916 | |
917 | void pusha_uncached(); |
918 | void popa_uncached(); |
919 | #endif |
920 | void vzeroupper_uncached(); |
921 | void decq(Register dst); |
922 | |
923 | void pusha(); |
924 | void popa(); |
925 | |
926 | void pushf(); |
927 | void popf(); |
928 | |
929 | void push(int32_t imm32); |
930 | |
931 | void push(Register src); |
932 | |
933 | void pop(Register dst); |
934 | |
935 | // These are dummies to prevent surprise implicit conversions to Register |
936 | void push(void* v); |
937 | void pop(void* v); |
938 | |
939 | // These do register sized moves/scans |
940 | void rep_mov(); |
941 | void rep_stos(); |
942 | void rep_stosb(); |
943 | void repne_scan(); |
944 | #ifdef _LP641 |
945 | void repne_scanl(); |
946 | #endif |
947 | |
948 | // Vanilla instructions in lexical order |
949 | |
950 | void adcl(Address dst, int32_t imm32); |
951 | void adcl(Address dst, Register src); |
952 | void adcl(Register dst, int32_t imm32); |
953 | void adcl(Register dst, Address src); |
954 | void adcl(Register dst, Register src); |
955 | |
956 | void adcq(Register dst, int32_t imm32); |
957 | void adcq(Register dst, Address src); |
958 | void adcq(Register dst, Register src); |
959 | |
960 | void addb(Address dst, int imm8); |
961 | void addw(Register dst, Register src); |
962 | void addw(Address dst, int imm16); |
963 | |
964 | void addl(Address dst, int32_t imm32); |
965 | void addl(Address dst, Register src); |
966 | void addl(Register dst, int32_t imm32); |
967 | void addl(Register dst, Address src); |
968 | void addl(Register dst, Register src); |
969 | |
970 | void addq(Address dst, int32_t imm32); |
971 | void addq(Address dst, Register src); |
972 | void addq(Register dst, int32_t imm32); |
973 | void addq(Register dst, Address src); |
974 | void addq(Register dst, Register src); |
975 | |
976 | #ifdef _LP641 |
977 | //Add Unsigned Integers with Carry Flag |
978 | void adcxq(Register dst, Register src); |
979 | |
980 | //Add Unsigned Integers with Overflow Flag |
981 | void adoxq(Register dst, Register src); |
982 | #endif |
983 | |
984 | void addr_nop_4(); |
985 | void addr_nop_5(); |
986 | void addr_nop_7(); |
987 | void addr_nop_8(); |
988 | |
989 | // Add Scalar Double-Precision Floating-Point Values |
990 | void addsd(XMMRegister dst, Address src); |
991 | void addsd(XMMRegister dst, XMMRegister src); |
992 | |
993 | // Add Scalar Single-Precision Floating-Point Values |
994 | void addss(XMMRegister dst, Address src); |
995 | void addss(XMMRegister dst, XMMRegister src); |
996 | |
997 | // AES instructions |
998 | void aesdec(XMMRegister dst, Address src); |
999 | void aesdec(XMMRegister dst, XMMRegister src); |
1000 | void aesdeclast(XMMRegister dst, Address src); |
1001 | void aesdeclast(XMMRegister dst, XMMRegister src); |
1002 | void aesenc(XMMRegister dst, Address src); |
1003 | void aesenc(XMMRegister dst, XMMRegister src); |
1004 | void aesenclast(XMMRegister dst, Address src); |
1005 | void aesenclast(XMMRegister dst, XMMRegister src); |
1006 | // Vector AES instructions |
1007 | void vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1008 | void vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1009 | void vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1010 | void vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1011 | |
1012 | void andw(Register dst, Register src); |
1013 | void andb(Address dst, Register src); |
1014 | |
1015 | void andl(Address dst, int32_t imm32); |
1016 | void andl(Register dst, int32_t imm32); |
1017 | void andl(Register dst, Address src); |
1018 | void andl(Register dst, Register src); |
1019 | void andl(Address dst, Register src); |
1020 | |
1021 | void andq(Address dst, int32_t imm32); |
1022 | void andq(Register dst, int32_t imm32); |
1023 | void andq(Register dst, Address src); |
1024 | void andq(Register dst, Register src); |
1025 | void andq(Address dst, Register src); |
1026 | |
1027 | // BMI instructions |
1028 | void andnl(Register dst, Register src1, Register src2); |
1029 | void andnl(Register dst, Register src1, Address src2); |
1030 | void andnq(Register dst, Register src1, Register src2); |
1031 | void andnq(Register dst, Register src1, Address src2); |
1032 | |
1033 | void blsil(Register dst, Register src); |
1034 | void blsil(Register dst, Address src); |
1035 | void blsiq(Register dst, Register src); |
1036 | void blsiq(Register dst, Address src); |
1037 | |
1038 | void blsmskl(Register dst, Register src); |
1039 | void blsmskl(Register dst, Address src); |
1040 | void blsmskq(Register dst, Register src); |
1041 | void blsmskq(Register dst, Address src); |
1042 | |
1043 | void blsrl(Register dst, Register src); |
1044 | void blsrl(Register dst, Address src); |
1045 | void blsrq(Register dst, Register src); |
1046 | void blsrq(Register dst, Address src); |
1047 | |
1048 | void bsfl(Register dst, Register src); |
1049 | void bsrl(Register dst, Register src); |
1050 | |
1051 | #ifdef _LP641 |
1052 | void bsfq(Register dst, Register src); |
1053 | void bsrq(Register dst, Register src); |
1054 | #endif |
1055 | |
1056 | void bswapl(Register reg); |
1057 | |
1058 | void bswapq(Register reg); |
1059 | |
1060 | void call(Label& L, relocInfo::relocType rtype); |
1061 | void call(Register reg); // push pc; pc <- reg |
1062 | void call(Address adr); // push pc; pc <- adr |
1063 | |
1064 | void cdql(); |
1065 | |
1066 | void cdqq(); |
1067 | |
1068 | void cld(); |
1069 | |
1070 | void clflush(Address adr); |
1071 | void clflushopt(Address adr); |
1072 | void clwb(Address adr); |
1073 | |
1074 | void cmovl(Condition cc, Register dst, Register src); |
1075 | void cmovl(Condition cc, Register dst, Address src); |
1076 | |
1077 | void cmovq(Condition cc, Register dst, Register src); |
1078 | void cmovq(Condition cc, Register dst, Address src); |
1079 | |
1080 | |
1081 | void cmpb(Address dst, int imm8); |
1082 | |
1083 | void cmpl(Address dst, int32_t imm32); |
1084 | |
1085 | void cmp(Register dst, int32_t imm32); |
1086 | void cmpl(Register dst, int32_t imm32); |
1087 | void cmpl(Register dst, Register src); |
1088 | void cmpl(Register dst, Address src); |
1089 | |
1090 | void cmpq(Address dst, int32_t imm32); |
1091 | void cmpq(Address dst, Register src); |
1092 | |
1093 | void cmpq(Register dst, int32_t imm32); |
1094 | void cmpq(Register dst, Register src); |
1095 | void cmpq(Register dst, Address src); |
1096 | |
1097 | // these are dummies used to catch attempting to convert NULL to Register |
1098 | void cmpl(Register dst, void* junk); // dummy |
1099 | void cmpq(Register dst, void* junk); // dummy |
1100 | |
1101 | void cmpw(Address dst, int imm16); |
1102 | |
1103 | void cmpxchg8 (Address adr); |
1104 | |
1105 | void cmpxchgb(Register reg, Address adr); |
1106 | void cmpxchgl(Register reg, Address adr); |
1107 | |
1108 | void cmpxchgq(Register reg, Address adr); |
1109 | void cmpxchgw(Register reg, Address adr); |
1110 | |
1111 | // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS |
1112 | void comisd(XMMRegister dst, Address src); |
1113 | void comisd(XMMRegister dst, XMMRegister src); |
1114 | |
1115 | // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS |
1116 | void comiss(XMMRegister dst, Address src); |
1117 | void comiss(XMMRegister dst, XMMRegister src); |
1118 | |
1119 | // Identify processor type and features |
1120 | void cpuid(); |
1121 | |
1122 | // CRC32C |
1123 | void crc32(Register crc, Register v, int8_t sizeInBytes); |
1124 | void crc32(Register crc, Address adr, int8_t sizeInBytes); |
1125 | |
1126 | // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value |
1127 | void cvtsd2ss(XMMRegister dst, XMMRegister src); |
1128 | void cvtsd2ss(XMMRegister dst, Address src); |
1129 | |
1130 | // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value |
1131 | void cvtsi2sdl(XMMRegister dst, Register src); |
1132 | void cvtsi2sdl(XMMRegister dst, Address src); |
1133 | void cvtsi2sdq(XMMRegister dst, Register src); |
1134 | void cvtsi2sdq(XMMRegister dst, Address src); |
1135 | |
1136 | // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value |
1137 | void cvtsi2ssl(XMMRegister dst, Register src); |
1138 | void cvtsi2ssl(XMMRegister dst, Address src); |
1139 | void cvtsi2ssq(XMMRegister dst, Register src); |
1140 | void cvtsi2ssq(XMMRegister dst, Address src); |
1141 | |
1142 | // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value |
1143 | void cvtdq2pd(XMMRegister dst, XMMRegister src); |
1144 | void vcvtdq2pd(XMMRegister dst, XMMRegister src, int vector_len); |
1145 | |
1146 | // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value |
1147 | void cvtdq2ps(XMMRegister dst, XMMRegister src); |
1148 | void vcvtdq2ps(XMMRegister dst, XMMRegister src, int vector_len); |
1149 | |
1150 | // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value |
1151 | void cvtss2sd(XMMRegister dst, XMMRegister src); |
1152 | void cvtss2sd(XMMRegister dst, Address src); |
1153 | |
1154 | // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer |
1155 | void cvttsd2sil(Register dst, Address src); |
1156 | void cvttsd2sil(Register dst, XMMRegister src); |
1157 | void cvttsd2siq(Register dst, Address src); |
1158 | void cvttsd2siq(Register dst, XMMRegister src); |
1159 | |
1160 | // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer |
1161 | void cvttss2sil(Register dst, XMMRegister src); |
1162 | void cvttss2siq(Register dst, XMMRegister src); |
1163 | |
1164 | // Convert vector double to int |
1165 | void cvttpd2dq(XMMRegister dst, XMMRegister src); |
1166 | |
1167 | // Convert vector float and double |
1168 | void vcvtps2pd(XMMRegister dst, XMMRegister src, int vector_len); |
1169 | void vcvtpd2ps(XMMRegister dst, XMMRegister src, int vector_len); |
1170 | |
1171 | // Convert vector float and int |
1172 | void vcvttps2dq(XMMRegister dst, XMMRegister src, int vector_len); |
1173 | |
1174 | // Convert vector long to vector FP |
1175 | void evcvtqq2ps(XMMRegister dst, XMMRegister src, int vector_len); |
1176 | void evcvtqq2pd(XMMRegister dst, XMMRegister src, int vector_len); |
1177 | |
1178 | // Convert vector double to long |
1179 | void evcvttpd2qq(XMMRegister dst, XMMRegister src, int vector_len); |
1180 | |
1181 | // Evex casts with truncation |
1182 | void evpmovwb(XMMRegister dst, XMMRegister src, int vector_len); |
1183 | void evpmovdw(XMMRegister dst, XMMRegister src, int vector_len); |
1184 | void evpmovdb(XMMRegister dst, XMMRegister src, int vector_len); |
1185 | void evpmovqd(XMMRegister dst, XMMRegister src, int vector_len); |
1186 | void evpmovqb(XMMRegister dst, XMMRegister src, int vector_len); |
1187 | void evpmovqw(XMMRegister dst, XMMRegister src, int vector_len); |
1188 | |
1189 | //Abs of packed Integer values |
1190 | void pabsb(XMMRegister dst, XMMRegister src); |
1191 | void pabsw(XMMRegister dst, XMMRegister src); |
1192 | void pabsd(XMMRegister dst, XMMRegister src); |
1193 | void vpabsb(XMMRegister dst, XMMRegister src, int vector_len); |
1194 | void vpabsw(XMMRegister dst, XMMRegister src, int vector_len); |
1195 | void vpabsd(XMMRegister dst, XMMRegister src, int vector_len); |
1196 | void evpabsq(XMMRegister dst, XMMRegister src, int vector_len); |
1197 | |
1198 | // Divide Scalar Double-Precision Floating-Point Values |
1199 | void divsd(XMMRegister dst, Address src); |
1200 | void divsd(XMMRegister dst, XMMRegister src); |
1201 | |
1202 | // Divide Scalar Single-Precision Floating-Point Values |
1203 | void divss(XMMRegister dst, Address src); |
1204 | void divss(XMMRegister dst, XMMRegister src); |
1205 | |
1206 | |
1207 | #ifndef _LP641 |
1208 | private: |
1209 | |
1210 | void emit_farith(int b1, int b2, int i); |
1211 | |
1212 | public: |
1213 | void emms(); |
1214 | |
1215 | void fabs(); |
1216 | |
1217 | void fadd(int i); |
1218 | |
1219 | void fadd_d(Address src); |
1220 | void fadd_s(Address src); |
1221 | |
1222 | // "Alternate" versions of x87 instructions place result down in FPU |
1223 | // stack instead of on TOS |
1224 | |
1225 | void fadda(int i); // "alternate" fadd |
1226 | void faddp(int i = 1); |
1227 | |
1228 | void fchs(); |
1229 | |
1230 | void fcom(int i); |
1231 | |
1232 | void fcomp(int i = 1); |
1233 | void fcomp_d(Address src); |
1234 | void fcomp_s(Address src); |
1235 | |
1236 | void fcompp(); |
1237 | |
1238 | void fcos(); |
1239 | |
1240 | void fdecstp(); |
1241 | |
1242 | void fdiv(int i); |
1243 | void fdiv_d(Address src); |
1244 | void fdivr_s(Address src); |
1245 | void fdiva(int i); // "alternate" fdiv |
1246 | void fdivp(int i = 1); |
1247 | |
1248 | void fdivr(int i); |
1249 | void fdivr_d(Address src); |
1250 | void fdiv_s(Address src); |
1251 | |
1252 | void fdivra(int i); // "alternate" reversed fdiv |
1253 | |
1254 | void fdivrp(int i = 1); |
1255 | |
1256 | void ffree(int i = 0); |
1257 | |
1258 | void fild_d(Address adr); |
1259 | void fild_s(Address adr); |
1260 | |
1261 | void fincstp(); |
1262 | |
1263 | void finit(); |
1264 | |
1265 | void fist_s (Address adr); |
1266 | void fistp_d(Address adr); |
1267 | void fistp_s(Address adr); |
1268 | |
1269 | void fld1(); |
1270 | |
1271 | void fld_d(Address adr); |
1272 | void fld_s(Address adr); |
1273 | void fld_s(int index); |
1274 | |
1275 | void fldcw(Address src); |
1276 | |
1277 | void fldenv(Address src); |
1278 | |
1279 | void fldlg2(); |
1280 | |
1281 | void fldln2(); |
1282 | |
1283 | void fldz(); |
1284 | |
1285 | void flog(); |
1286 | void flog10(); |
1287 | |
1288 | void fmul(int i); |
1289 | |
1290 | void fmul_d(Address src); |
1291 | void fmul_s(Address src); |
1292 | |
1293 | void fmula(int i); // "alternate" fmul |
1294 | |
1295 | void fmulp(int i = 1); |
1296 | |
1297 | void fnsave(Address dst); |
1298 | |
1299 | void fnstcw(Address src); |
1300 | |
1301 | void fnstsw_ax(); |
1302 | |
1303 | void fprem(); |
1304 | void fprem1(); |
1305 | |
1306 | void frstor(Address src); |
1307 | |
1308 | void fsin(); |
1309 | |
1310 | void fsqrt(); |
1311 | |
1312 | void fst_d(Address adr); |
1313 | void fst_s(Address adr); |
1314 | |
1315 | void fstp_d(Address adr); |
1316 | void fstp_d(int index); |
1317 | void fstp_s(Address adr); |
1318 | |
1319 | void fsub(int i); |
1320 | void fsub_d(Address src); |
1321 | void fsub_s(Address src); |
1322 | |
1323 | void fsuba(int i); // "alternate" fsub |
1324 | |
1325 | void fsubp(int i = 1); |
1326 | |
1327 | void fsubr(int i); |
1328 | void fsubr_d(Address src); |
1329 | void fsubr_s(Address src); |
1330 | |
1331 | void fsubra(int i); // "alternate" reversed fsub |
1332 | |
1333 | void fsubrp(int i = 1); |
1334 | |
1335 | void ftan(); |
1336 | |
1337 | void ftst(); |
1338 | |
1339 | void fucomi(int i = 1); |
1340 | void fucomip(int i = 1); |
1341 | |
1342 | void fwait(); |
1343 | |
1344 | void fxch(int i = 1); |
1345 | |
1346 | void fyl2x(); |
1347 | void frndint(); |
1348 | void f2xm1(); |
1349 | void fldl2e(); |
1350 | #endif // !_LP64 |
1351 | |
1352 | // operands that only take the original 32bit registers |
1353 | void emit_operand32(Register reg, Address adr); |
1354 | |
1355 | void fld_x(Address adr); // extended-precision (80-bit) format |
1356 | void fstp_x(Address adr); // extended-precision (80-bit) format |
1357 | void fxrstor(Address src); |
1358 | void xrstor(Address src); |
1359 | |
1360 | void fxsave(Address dst); |
1361 | void xsave(Address dst); |
1362 | |
1363 | void hlt(); |
1364 | |
1365 | void idivl(Register src); |
1366 | void divl(Register src); // Unsigned division |
1367 | |
1368 | #ifdef _LP641 |
1369 | void idivq(Register src); |
1370 | #endif |
1371 | |
1372 | void imull(Register src); |
1373 | void imull(Register dst, Register src); |
1374 | void imull(Register dst, Register src, int value); |
1375 | void imull(Register dst, Address src, int value); |
1376 | void imull(Register dst, Address src); |
1377 | |
1378 | #ifdef _LP641 |
1379 | void imulq(Register dst, Register src); |
1380 | void imulq(Register dst, Register src, int value); |
1381 | void imulq(Register dst, Address src, int value); |
1382 | void imulq(Register dst, Address src); |
1383 | void imulq(Register dst); |
1384 | #endif |
1385 | |
1386 | // jcc is the generic conditional branch generator to run- |
1387 | // time routines, jcc is used for branches to labels. jcc |
1388 | // takes a branch opcode (cc) and a label (L) and generates |
1389 | // either a backward branch or a forward branch and links it |
1390 | // to the label fixup chain. Usage: |
1391 | // |
1392 | // Label L; // unbound label |
1393 | // jcc(cc, L); // forward branch to unbound label |
1394 | // bind(L); // bind label to the current pc |
1395 | // jcc(cc, L); // backward branch to bound label |
1396 | // bind(L); // illegal: a label may be bound only once |
1397 | // |
1398 | // Note: The same Label can be used for forward and backward branches |
1399 | // but it may be bound only once. |
1400 | |
1401 | void jcc(Condition cc, Label& L, bool maybe_short = true); |
1402 | |
1403 | // Conditional jump to a 8-bit offset to L. |
1404 | // WARNING: be very careful using this for forward jumps. If the label is |
1405 | // not bound within an 8-bit offset of this instruction, a run-time error |
1406 | // will occur. |
1407 | |
1408 | // Use macro to record file and line number. |
1409 | #define jccb(cc, L)jccb_0(cc, L, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 1409) jccb_0(cc, L, __FILE__"/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp", __LINE__1409) |
1410 | |
1411 | void jccb_0(Condition cc, Label& L, const char* file, int line); |
1412 | |
1413 | void jmp(Address entry); // pc <- entry |
1414 | |
1415 | // Label operations & relative jumps (PPUM Appendix D) |
1416 | void jmp(Label& L, bool maybe_short = true); // unconditional jump to L |
1417 | |
1418 | void jmp(Register entry); // pc <- entry |
1419 | |
1420 | // Unconditional 8-bit offset jump to L. |
1421 | // WARNING: be very careful using this for forward jumps. If the label is |
1422 | // not bound within an 8-bit offset of this instruction, a run-time error |
1423 | // will occur. |
1424 | |
1425 | // Use macro to record file and line number. |
1426 | #define jmpb(L)jmpb_0(L, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 1426) jmpb_0(L, __FILE__"/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp", __LINE__1426) |
1427 | |
1428 | void jmpb_0(Label& L, const char* file, int line); |
1429 | |
1430 | void ldmxcsr( Address src ); |
1431 | |
1432 | void leal(Register dst, Address src); |
1433 | |
1434 | void leaq(Register dst, Address src); |
1435 | |
1436 | void lfence(); |
1437 | |
1438 | void lock(); |
1439 | void size_prefix(); |
1440 | |
1441 | void lzcntl(Register dst, Register src); |
1442 | |
1443 | #ifdef _LP641 |
1444 | void lzcntq(Register dst, Register src); |
1445 | #endif |
1446 | |
1447 | enum Membar_mask_bits { |
1448 | StoreStore = 1 << 3, |
1449 | LoadStore = 1 << 2, |
1450 | StoreLoad = 1 << 1, |
1451 | LoadLoad = 1 << 0 |
1452 | }; |
1453 | |
1454 | // Serializes memory and blows flags |
1455 | void membar(Membar_mask_bits order_constraint); |
1456 | |
1457 | void mfence(); |
1458 | void sfence(); |
1459 | |
1460 | // Moves |
1461 | |
1462 | void mov64(Register dst, int64_t imm64); |
1463 | void mov64(Register dst, int64_t imm64, relocInfo::relocType rtype, int format); |
1464 | |
1465 | void movb(Address dst, Register src); |
1466 | void movb(Address dst, int imm8); |
1467 | void movb(Register dst, Address src); |
1468 | |
1469 | void movddup(XMMRegister dst, XMMRegister src); |
1470 | |
1471 | void kandbl(KRegister dst, KRegister src1, KRegister src2); |
1472 | void kandwl(KRegister dst, KRegister src1, KRegister src2); |
1473 | void kanddl(KRegister dst, KRegister src1, KRegister src2); |
1474 | void kandql(KRegister dst, KRegister src1, KRegister src2); |
1475 | |
1476 | void korbl(KRegister dst, KRegister src1, KRegister src2); |
1477 | void korwl(KRegister dst, KRegister src1, KRegister src2); |
1478 | void kordl(KRegister dst, KRegister src1, KRegister src2); |
1479 | void korql(KRegister dst, KRegister src1, KRegister src2); |
1480 | |
1481 | void kxorbl(KRegister dst, KRegister src1, KRegister src2); |
1482 | void kxorwl(KRegister dst, KRegister src1, KRegister src2); |
1483 | void kxordl(KRegister dst, KRegister src1, KRegister src2); |
1484 | void kxorql(KRegister dst, KRegister src1, KRegister src2); |
1485 | void kmovbl(KRegister dst, Register src); |
1486 | void kmovbl(Register dst, KRegister src); |
1487 | void kmovbl(KRegister dst, KRegister src); |
1488 | void kmovwl(KRegister dst, Register src); |
1489 | void kmovwl(KRegister dst, Address src); |
1490 | void kmovwl(Register dst, KRegister src); |
1491 | void kmovwl(Address dst, KRegister src); |
1492 | void kmovwl(KRegister dst, KRegister src); |
1493 | void kmovdl(KRegister dst, Register src); |
1494 | void kmovdl(Register dst, KRegister src); |
1495 | void kmovql(KRegister dst, KRegister src); |
1496 | void kmovql(Address dst, KRegister src); |
1497 | void kmovql(KRegister dst, Address src); |
1498 | void kmovql(KRegister dst, Register src); |
1499 | void kmovql(Register dst, KRegister src); |
1500 | |
1501 | void knotbl(KRegister dst, KRegister src); |
1502 | void knotwl(KRegister dst, KRegister src); |
1503 | void knotdl(KRegister dst, KRegister src); |
1504 | void knotql(KRegister dst, KRegister src); |
1505 | |
1506 | void kortestbl(KRegister dst, KRegister src); |
1507 | void kortestwl(KRegister dst, KRegister src); |
1508 | void kortestdl(KRegister dst, KRegister src); |
1509 | void kortestql(KRegister dst, KRegister src); |
1510 | |
1511 | void kxnorbl(KRegister dst, KRegister src1, KRegister src2); |
1512 | void kshiftlbl(KRegister dst, KRegister src, int imm8); |
1513 | void kshiftrbl(KRegister dst, KRegister src, int imm8); |
1514 | void kshiftrwl(KRegister dst, KRegister src, int imm8); |
1515 | void kshiftrdl(KRegister dst, KRegister src, int imm8); |
1516 | void kshiftrql(KRegister dst, KRegister src, int imm8); |
1517 | void ktestq(KRegister src1, KRegister src2); |
1518 | void ktestd(KRegister src1, KRegister src2); |
1519 | |
1520 | void ktestql(KRegister dst, KRegister src); |
1521 | void ktestdl(KRegister dst, KRegister src); |
1522 | void ktestwl(KRegister dst, KRegister src); |
1523 | void ktestbl(KRegister dst, KRegister src); |
1524 | |
1525 | void movdl(XMMRegister dst, Register src); |
1526 | void movdl(Register dst, XMMRegister src); |
1527 | void movdl(XMMRegister dst, Address src); |
1528 | void movdl(Address dst, XMMRegister src); |
1529 | |
1530 | // Move Double Quadword |
1531 | void movdq(XMMRegister dst, Register src); |
1532 | void movdq(Register dst, XMMRegister src); |
1533 | |
1534 | // Move Aligned Double Quadword |
1535 | void movdqa(XMMRegister dst, XMMRegister src); |
1536 | void movdqa(XMMRegister dst, Address src); |
1537 | |
1538 | // Move Unaligned Double Quadword |
1539 | void movdqu(Address dst, XMMRegister src); |
1540 | void movdqu(XMMRegister dst, Address src); |
1541 | void movdqu(XMMRegister dst, XMMRegister src); |
1542 | |
1543 | // Move Unaligned 256bit Vector |
1544 | void vmovdqu(Address dst, XMMRegister src); |
1545 | void vmovdqu(XMMRegister dst, Address src); |
1546 | void vmovdqu(XMMRegister dst, XMMRegister src); |
1547 | |
1548 | // Move Unaligned 512bit Vector |
1549 | void evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len); |
1550 | void evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len); |
1551 | void evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len); |
1552 | void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
1553 | void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
1554 | void evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len); |
1555 | void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
1556 | void evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len); |
1557 | void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
1558 | void evmovdqul(Address dst, XMMRegister src, int vector_len); |
1559 | void evmovdqul(XMMRegister dst, Address src, int vector_len); |
1560 | void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len); |
1561 | void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
1562 | void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
1563 | void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
1564 | void evmovdquq(Address dst, XMMRegister src, int vector_len); |
1565 | void evmovdquq(XMMRegister dst, Address src, int vector_len); |
1566 | void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len); |
1567 | void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
1568 | void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
1569 | void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
1570 | |
1571 | // Move lower 64bit to high 64bit in 128bit register |
1572 | void movlhps(XMMRegister dst, XMMRegister src); |
1573 | |
1574 | void movl(Register dst, int32_t imm32); |
1575 | void movl(Address dst, int32_t imm32); |
1576 | void movl(Register dst, Register src); |
1577 | void movl(Register dst, Address src); |
1578 | void movl(Address dst, Register src); |
1579 | |
1580 | // These dummies prevent using movl from converting a zero (like NULL) into Register |
1581 | // by giving the compiler two choices it can't resolve |
1582 | |
1583 | void movl(Address dst, void* junk); |
1584 | void movl(Register dst, void* junk); |
1585 | |
1586 | #ifdef _LP641 |
1587 | void movq(Register dst, Register src); |
1588 | void movq(Register dst, Address src); |
1589 | void movq(Address dst, Register src); |
1590 | void movq(Address dst, int32_t imm32); |
1591 | void movq(Register dst, int32_t imm32); |
1592 | |
1593 | // These dummies prevent using movq from converting a zero (like NULL) into Register |
1594 | // by giving the compiler two choices it can't resolve |
1595 | |
1596 | void movq(Address dst, void* dummy); |
1597 | void movq(Register dst, void* dummy); |
1598 | #endif |
1599 | |
1600 | // Move Quadword |
1601 | void movq(Address dst, XMMRegister src); |
1602 | void movq(XMMRegister dst, Address src); |
1603 | void movq(XMMRegister dst, XMMRegister src); |
1604 | void movq(Register dst, XMMRegister src); |
1605 | void movq(XMMRegister dst, Register src); |
1606 | |
1607 | void movsbl(Register dst, Address src); |
1608 | void movsbl(Register dst, Register src); |
1609 | |
1610 | #ifdef _LP641 |
1611 | void movsbq(Register dst, Address src); |
1612 | void movsbq(Register dst, Register src); |
1613 | |
1614 | // Move signed 32bit immediate to 64bit extending sign |
1615 | void movslq(Address dst, int32_t imm64); |
1616 | void movslq(Register dst, int32_t imm64); |
1617 | |
1618 | void movslq(Register dst, Address src); |
1619 | void movslq(Register dst, Register src); |
1620 | void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous |
1621 | #endif |
1622 | |
1623 | void movswl(Register dst, Address src); |
1624 | void movswl(Register dst, Register src); |
1625 | |
1626 | #ifdef _LP641 |
1627 | void movswq(Register dst, Address src); |
1628 | void movswq(Register dst, Register src); |
1629 | #endif |
1630 | |
1631 | void movw(Address dst, int imm16); |
1632 | void movw(Register dst, Address src); |
1633 | void movw(Address dst, Register src); |
1634 | |
1635 | void movzbl(Register dst, Address src); |
1636 | void movzbl(Register dst, Register src); |
1637 | |
1638 | #ifdef _LP641 |
1639 | void movzbq(Register dst, Address src); |
1640 | void movzbq(Register dst, Register src); |
1641 | #endif |
1642 | |
1643 | void movzwl(Register dst, Address src); |
1644 | void movzwl(Register dst, Register src); |
1645 | |
1646 | #ifdef _LP641 |
1647 | void movzwq(Register dst, Address src); |
1648 | void movzwq(Register dst, Register src); |
1649 | #endif |
1650 | |
1651 | // Unsigned multiply with RAX destination register |
1652 | void mull(Address src); |
1653 | void mull(Register src); |
1654 | |
1655 | #ifdef _LP641 |
1656 | void mulq(Address src); |
1657 | void mulq(Register src); |
1658 | void mulxq(Register dst1, Register dst2, Register src); |
1659 | #endif |
1660 | |
1661 | // Multiply Scalar Double-Precision Floating-Point Values |
1662 | void mulsd(XMMRegister dst, Address src); |
1663 | void mulsd(XMMRegister dst, XMMRegister src); |
1664 | |
1665 | // Multiply Scalar Single-Precision Floating-Point Values |
1666 | void mulss(XMMRegister dst, Address src); |
1667 | void mulss(XMMRegister dst, XMMRegister src); |
1668 | |
1669 | void negl(Register dst); |
1670 | void negl(Address dst); |
1671 | |
1672 | #ifdef _LP641 |
1673 | void negq(Register dst); |
1674 | void negq(Address dst); |
1675 | #endif |
1676 | |
1677 | void nop(int i = 1); |
1678 | |
1679 | void notl(Register dst); |
1680 | |
1681 | #ifdef _LP641 |
1682 | void notq(Register dst); |
1683 | |
1684 | void btsq(Address dst, int imm8); |
1685 | void btrq(Address dst, int imm8); |
1686 | #endif |
1687 | |
1688 | void orw(Register dst, Register src); |
1689 | |
1690 | void orl(Address dst, int32_t imm32); |
1691 | void orl(Register dst, int32_t imm32); |
1692 | void orl(Register dst, Address src); |
1693 | void orl(Register dst, Register src); |
1694 | void orl(Address dst, Register src); |
1695 | |
1696 | void orb(Address dst, int imm8); |
1697 | void orb(Address dst, Register src); |
1698 | |
1699 | void orq(Address dst, int32_t imm32); |
1700 | void orq(Address dst, Register src); |
1701 | void orq(Register dst, int32_t imm32); |
1702 | void orq(Register dst, Address src); |
1703 | void orq(Register dst, Register src); |
1704 | |
1705 | // Pack with signed saturation |
1706 | void packsswb(XMMRegister dst, XMMRegister src); |
1707 | void vpacksswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1708 | void packssdw(XMMRegister dst, XMMRegister src); |
1709 | void vpackssdw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1710 | |
1711 | // Pack with unsigned saturation |
1712 | void packuswb(XMMRegister dst, XMMRegister src); |
1713 | void packuswb(XMMRegister dst, Address src); |
1714 | void packusdw(XMMRegister dst, XMMRegister src); |
1715 | void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1716 | void vpackusdw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1717 | |
1718 | // Permutations |
1719 | void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len); |
1720 | void vpermq(XMMRegister dst, XMMRegister src, int imm8); |
1721 | void vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1722 | void vpermb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1723 | void vpermb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1724 | void vpermw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1725 | void vpermd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1726 | void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1727 | void vperm2i128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); |
1728 | void vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); |
1729 | void vpermilps(XMMRegister dst, XMMRegister src, int imm8, int vector_len); |
1730 | void vpermilpd(XMMRegister dst, XMMRegister src, int imm8, int vector_len); |
1731 | void vpermpd(XMMRegister dst, XMMRegister src, int imm8, int vector_len); |
1732 | void evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1733 | void evpermt2b(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1734 | void evpmultishiftqb(XMMRegister dst, XMMRegister ctl, XMMRegister src, int vector_len); |
1735 | |
1736 | void pause(); |
1737 | |
1738 | // Undefined Instruction |
1739 | void ud2(); |
1740 | |
1741 | // SSE4.2 string instructions |
1742 | void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8); |
1743 | void pcmpestri(XMMRegister xmm1, Address src, int imm8); |
1744 | |
1745 | void pcmpeqb(XMMRegister dst, XMMRegister src); |
1746 | void vpcmpCCbwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, int vector_len); |
1747 | |
1748 | void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1749 | void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); |
1750 | void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1751 | void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); |
1752 | |
1753 | void vpcmpgtb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1754 | void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1755 | void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); |
1756 | |
1757 | void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len); |
1758 | void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len); |
1759 | |
1760 | void pcmpeqw(XMMRegister dst, XMMRegister src); |
1761 | void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1762 | void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); |
1763 | void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1764 | |
1765 | void vpcmpgtw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1766 | |
1767 | void pcmpeqd(XMMRegister dst, XMMRegister src); |
1768 | void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1769 | void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int vector_len); |
1770 | void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); |
1771 | |
1772 | void pcmpeqq(XMMRegister dst, XMMRegister src); |
1773 | void vpcmpCCq(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, int vector_len); |
1774 | void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1775 | void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); |
1776 | void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1777 | |
1778 | void pcmpgtq(XMMRegister dst, XMMRegister src); |
1779 | void vpcmpgtq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1780 | |
1781 | void pmovmskb(Register dst, XMMRegister src); |
1782 | void vpmovmskb(Register dst, XMMRegister src, int vec_enc); |
1783 | void vmovmskps(Register dst, XMMRegister src, int vec_enc); |
1784 | void vmovmskpd(Register dst, XMMRegister src, int vec_enc); |
1785 | void vpmaskmovd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1786 | |
1787 | // SSE 4.1 extract |
1788 | void pextrd(Register dst, XMMRegister src, int imm8); |
1789 | void pextrq(Register dst, XMMRegister src, int imm8); |
1790 | void pextrd(Address dst, XMMRegister src, int imm8); |
1791 | void pextrq(Address dst, XMMRegister src, int imm8); |
1792 | void pextrb(Register dst, XMMRegister src, int imm8); |
1793 | void pextrb(Address dst, XMMRegister src, int imm8); |
1794 | // SSE 2 extract |
1795 | void pextrw(Register dst, XMMRegister src, int imm8); |
1796 | void pextrw(Address dst, XMMRegister src, int imm8); |
1797 | |
1798 | // SSE 4.1 insert |
1799 | void pinsrd(XMMRegister dst, Register src, int imm8); |
1800 | void pinsrq(XMMRegister dst, Register src, int imm8); |
1801 | void pinsrb(XMMRegister dst, Register src, int imm8); |
1802 | void pinsrd(XMMRegister dst, Address src, int imm8); |
1803 | void pinsrq(XMMRegister dst, Address src, int imm8); |
1804 | void pinsrb(XMMRegister dst, Address src, int imm8); |
1805 | void insertps(XMMRegister dst, XMMRegister src, int imm8); |
1806 | // SSE 2 insert |
1807 | void pinsrw(XMMRegister dst, Register src, int imm8); |
1808 | void pinsrw(XMMRegister dst, Address src, int imm8); |
1809 | |
1810 | // AVX insert |
1811 | void vpinsrd(XMMRegister dst, XMMRegister nds, Register src, int imm8); |
1812 | void vpinsrb(XMMRegister dst, XMMRegister nds, Register src, int imm8); |
1813 | void vpinsrq(XMMRegister dst, XMMRegister nds, Register src, int imm8); |
1814 | void vpinsrw(XMMRegister dst, XMMRegister nds, Register src, int imm8); |
1815 | void vinsertps(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); |
1816 | |
1817 | // Zero extend moves |
1818 | void pmovzxbw(XMMRegister dst, XMMRegister src); |
1819 | void pmovzxbw(XMMRegister dst, Address src); |
1820 | void pmovzxbd(XMMRegister dst, XMMRegister src); |
1821 | void vpmovzxbw( XMMRegister dst, Address src, int vector_len); |
1822 | void pmovzxdq(XMMRegister dst, XMMRegister src); |
1823 | void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len); |
1824 | void vpmovzxdq(XMMRegister dst, XMMRegister src, int vector_len); |
1825 | void vpmovzxbd(XMMRegister dst, XMMRegister src, int vector_len); |
1826 | void vpmovzxbq(XMMRegister dst, XMMRegister src, int vector_len); |
1827 | void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len); |
1828 | |
1829 | // Sign extend moves |
1830 | void pmovsxbd(XMMRegister dst, XMMRegister src); |
1831 | void pmovsxbq(XMMRegister dst, XMMRegister src); |
1832 | void pmovsxbw(XMMRegister dst, XMMRegister src); |
1833 | void pmovsxwd(XMMRegister dst, XMMRegister src); |
1834 | void vpmovsxbd(XMMRegister dst, XMMRegister src, int vector_len); |
1835 | void vpmovsxbq(XMMRegister dst, XMMRegister src, int vector_len); |
1836 | void vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len); |
1837 | void vpmovsxwd(XMMRegister dst, XMMRegister src, int vector_len); |
1838 | void vpmovsxwq(XMMRegister dst, XMMRegister src, int vector_len); |
1839 | void vpmovsxdq(XMMRegister dst, XMMRegister src, int vector_len); |
1840 | |
1841 | void evpmovwb(Address dst, XMMRegister src, int vector_len); |
1842 | void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len); |
1843 | |
1844 | void vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len); |
1845 | |
1846 | void evpmovdb(Address dst, XMMRegister src, int vector_len); |
1847 | |
1848 | // Multiply add |
1849 | void pmaddwd(XMMRegister dst, XMMRegister src); |
1850 | void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1851 | void vpmaddubsw(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
1852 | |
1853 | // Multiply add accumulate |
1854 | void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1855 | |
1856 | #ifndef _LP641 // no 32bit push/pop on amd64 |
1857 | void popl(Address dst); |
1858 | #endif |
1859 | |
1860 | #ifdef _LP641 |
1861 | void popq(Address dst); |
1862 | void popq(Register dst); |
1863 | #endif |
1864 | |
1865 | void popcntl(Register dst, Address src); |
1866 | void popcntl(Register dst, Register src); |
1867 | |
1868 | void vpopcntd(XMMRegister dst, XMMRegister src, int vector_len); |
1869 | |
1870 | #ifdef _LP641 |
1871 | void popcntq(Register dst, Address src); |
1872 | void popcntq(Register dst, Register src); |
1873 | #endif |
1874 | |
1875 | // Prefetches (SSE, SSE2, 3DNOW only) |
1876 | |
1877 | void prefetchnta(Address src); |
1878 | void prefetchr(Address src); |
1879 | void prefetcht0(Address src); |
1880 | void prefetcht1(Address src); |
1881 | void prefetcht2(Address src); |
1882 | void prefetchw(Address src); |
1883 | |
1884 | // Shuffle Bytes |
1885 | void pshufb(XMMRegister dst, XMMRegister src); |
1886 | void pshufb(XMMRegister dst, Address src); |
1887 | void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1888 | |
1889 | // Shuffle Packed Doublewords |
1890 | void pshufd(XMMRegister dst, XMMRegister src, int mode); |
1891 | void pshufd(XMMRegister dst, Address src, int mode); |
1892 | void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len); |
1893 | |
1894 | // Shuffle Packed High/Low Words |
1895 | void pshufhw(XMMRegister dst, XMMRegister src, int mode); |
1896 | void pshuflw(XMMRegister dst, XMMRegister src, int mode); |
1897 | void pshuflw(XMMRegister dst, Address src, int mode); |
1898 | |
1899 | //shuffle floats and doubles |
1900 | void pshufps(XMMRegister, XMMRegister, int); |
1901 | void pshufpd(XMMRegister, XMMRegister, int); |
1902 | void vpshufps(XMMRegister, XMMRegister, XMMRegister, int, int); |
1903 | void vpshufpd(XMMRegister, XMMRegister, XMMRegister, int, int); |
1904 | |
1905 | // Shuffle packed values at 128 bit granularity |
1906 | void evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); |
1907 | |
1908 | // Shift Right by bytes Logical DoubleQuadword Immediate |
1909 | void psrldq(XMMRegister dst, int shift); |
1910 | // Shift Left by bytes Logical DoubleQuadword Immediate |
1911 | void pslldq(XMMRegister dst, int shift); |
1912 | |
1913 | // Logical Compare 128bit |
1914 | void ptest(XMMRegister dst, XMMRegister src); |
1915 | void ptest(XMMRegister dst, Address src); |
1916 | // Logical Compare 256bit |
1917 | void vptest(XMMRegister dst, XMMRegister src); |
1918 | void vptest(XMMRegister dst, Address src); |
1919 | |
1920 | void evptestmb(KRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1921 | |
1922 | // Vector compare |
1923 | void vptest(XMMRegister dst, XMMRegister src, int vector_len); |
1924 | |
1925 | // Interleave Low Bytes |
1926 | void punpcklbw(XMMRegister dst, XMMRegister src); |
1927 | void punpcklbw(XMMRegister dst, Address src); |
1928 | |
1929 | // Interleave Low Doublewords |
1930 | void punpckldq(XMMRegister dst, XMMRegister src); |
1931 | void punpckldq(XMMRegister dst, Address src); |
1932 | |
1933 | // Interleave Low Quadwords |
1934 | void punpcklqdq(XMMRegister dst, XMMRegister src); |
1935 | |
1936 | #ifndef _LP641 // no 32bit push/pop on amd64 |
1937 | void pushl(Address src); |
1938 | #endif |
1939 | |
1940 | void pushq(Address src); |
1941 | |
1942 | void rcll(Register dst, int imm8); |
1943 | |
1944 | void rclq(Register dst, int imm8); |
1945 | |
1946 | void rcrq(Register dst, int imm8); |
1947 | |
1948 | void rcpps(XMMRegister dst, XMMRegister src); |
1949 | |
1950 | void rcpss(XMMRegister dst, XMMRegister src); |
1951 | |
1952 | void rdtsc(); |
1953 | |
1954 | void ret(int imm16); |
1955 | |
1956 | void roll(Register dst); |
1957 | |
1958 | void roll(Register dst, int imm8); |
1959 | |
1960 | void rorl(Register dst); |
1961 | |
1962 | void rorl(Register dst, int imm8); |
1963 | |
1964 | #ifdef _LP641 |
1965 | void rolq(Register dst); |
1966 | void rolq(Register dst, int imm8); |
1967 | void rorq(Register dst); |
1968 | void rorq(Register dst, int imm8); |
1969 | void rorxq(Register dst, Register src, int imm8); |
1970 | void rorxd(Register dst, Register src, int imm8); |
1971 | #endif |
1972 | |
1973 | void sahf(); |
1974 | |
1975 | void sall(Register dst, int imm8); |
1976 | void sall(Register dst); |
1977 | void sall(Address dst, int imm8); |
1978 | void sall(Address dst); |
1979 | |
1980 | void sarl(Address dst, int imm8); |
1981 | void sarl(Address dst); |
1982 | void sarl(Register dst, int imm8); |
1983 | void sarl(Register dst); |
1984 | |
1985 | #ifdef _LP641 |
1986 | void salq(Register dst, int imm8); |
1987 | void salq(Register dst); |
1988 | void salq(Address dst, int imm8); |
1989 | void salq(Address dst); |
1990 | |
1991 | void sarq(Address dst, int imm8); |
1992 | void sarq(Address dst); |
1993 | void sarq(Register dst, int imm8); |
1994 | void sarq(Register dst); |
1995 | #endif |
1996 | |
1997 | void sbbl(Address dst, int32_t imm32); |
1998 | void sbbl(Register dst, int32_t imm32); |
1999 | void sbbl(Register dst, Address src); |
2000 | void sbbl(Register dst, Register src); |
2001 | |
2002 | void sbbq(Address dst, int32_t imm32); |
2003 | void sbbq(Register dst, int32_t imm32); |
2004 | void sbbq(Register dst, Address src); |
2005 | void sbbq(Register dst, Register src); |
2006 | |
2007 | void setb(Condition cc, Register dst); |
2008 | |
2009 | void sete(Register dst); |
2010 | void setl(Register dst); |
2011 | void setne(Register dst); |
2012 | |
2013 | void palignr(XMMRegister dst, XMMRegister src, int imm8); |
2014 | void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len); |
2015 | void evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2016 | |
2017 | void pblendw(XMMRegister dst, XMMRegister src, int imm8); |
2018 | void vblendps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len); |
2019 | |
2020 | void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8); |
2021 | void sha1nexte(XMMRegister dst, XMMRegister src); |
2022 | void sha1msg1(XMMRegister dst, XMMRegister src); |
2023 | void sha1msg2(XMMRegister dst, XMMRegister src); |
2024 | // xmm0 is implicit additional source to the following instruction. |
2025 | void sha256rnds2(XMMRegister dst, XMMRegister src); |
2026 | void sha256msg1(XMMRegister dst, XMMRegister src); |
2027 | void sha256msg2(XMMRegister dst, XMMRegister src); |
2028 | |
2029 | void shldl(Register dst, Register src); |
2030 | void shldl(Register dst, Register src, int8_t imm8); |
2031 | void shrdl(Register dst, Register src); |
2032 | void shrdl(Register dst, Register src, int8_t imm8); |
2033 | |
2034 | void shll(Register dst, int imm8); |
2035 | void shll(Register dst); |
2036 | |
2037 | void shlq(Register dst, int imm8); |
2038 | void shlq(Register dst); |
2039 | |
2040 | void shrl(Register dst, int imm8); |
2041 | void shrl(Register dst); |
2042 | void shrl(Address dst); |
2043 | void shrl(Address dst, int imm8); |
2044 | |
2045 | void shrq(Register dst, int imm8); |
2046 | void shrq(Register dst); |
2047 | void shrq(Address dst); |
2048 | void shrq(Address dst, int imm8); |
2049 | |
2050 | void smovl(); // QQQ generic? |
2051 | |
2052 | // Compute Square Root of Scalar Double-Precision Floating-Point Value |
2053 | void sqrtsd(XMMRegister dst, Address src); |
2054 | void sqrtsd(XMMRegister dst, XMMRegister src); |
2055 | |
2056 | void roundsd(XMMRegister dst, Address src, int32_t rmode); |
2057 | void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode); |
2058 | |
2059 | // Compute Square Root of Scalar Single-Precision Floating-Point Value |
2060 | void sqrtss(XMMRegister dst, Address src); |
2061 | void sqrtss(XMMRegister dst, XMMRegister src); |
2062 | |
2063 | void std(); |
2064 | |
2065 | void stmxcsr( Address dst ); |
2066 | |
2067 | void subl(Address dst, int32_t imm32); |
2068 | void subl(Address dst, Register src); |
2069 | void subl(Register dst, int32_t imm32); |
2070 | void subl(Register dst, Address src); |
2071 | void subl(Register dst, Register src); |
2072 | |
2073 | void subq(Address dst, int32_t imm32); |
2074 | void subq(Address dst, Register src); |
2075 | void subq(Register dst, int32_t imm32); |
2076 | void subq(Register dst, Address src); |
2077 | void subq(Register dst, Register src); |
2078 | |
2079 | // Force generation of a 4 byte immediate value even if it fits into 8bit |
2080 | void subl_imm32(Register dst, int32_t imm32); |
2081 | void subq_imm32(Register dst, int32_t imm32); |
2082 | |
2083 | // Subtract Scalar Double-Precision Floating-Point Values |
2084 | void subsd(XMMRegister dst, Address src); |
2085 | void subsd(XMMRegister dst, XMMRegister src); |
2086 | |
2087 | // Subtract Scalar Single-Precision Floating-Point Values |
2088 | void subss(XMMRegister dst, Address src); |
2089 | void subss(XMMRegister dst, XMMRegister src); |
2090 | |
2091 | void testb(Register dst, int imm8); |
2092 | void testb(Address dst, int imm8); |
2093 | |
2094 | void testl(Register dst, int32_t imm32); |
2095 | void testl(Register dst, Register src); |
2096 | void testl(Register dst, Address src); |
2097 | |
2098 | void testq(Address dst, int32_t imm32); |
2099 | void testq(Register dst, int32_t imm32); |
2100 | void testq(Register dst, Register src); |
2101 | void testq(Register dst, Address src); |
2102 | |
2103 | // BMI - count trailing zeros |
2104 | void tzcntl(Register dst, Register src); |
2105 | void tzcntq(Register dst, Register src); |
2106 | |
2107 | // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS |
2108 | void ucomisd(XMMRegister dst, Address src); |
2109 | void ucomisd(XMMRegister dst, XMMRegister src); |
2110 | |
2111 | // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS |
2112 | void ucomiss(XMMRegister dst, Address src); |
2113 | void ucomiss(XMMRegister dst, XMMRegister src); |
2114 | |
2115 | void xabort(int8_t imm8); |
2116 | |
2117 | void xaddb(Address dst, Register src); |
2118 | void xaddw(Address dst, Register src); |
2119 | void xaddl(Address dst, Register src); |
2120 | void xaddq(Address dst, Register src); |
2121 | |
2122 | void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none); |
2123 | |
2124 | void xchgb(Register reg, Address adr); |
2125 | void xchgw(Register reg, Address adr); |
2126 | void xchgl(Register reg, Address adr); |
2127 | void xchgl(Register dst, Register src); |
2128 | |
2129 | void xchgq(Register reg, Address adr); |
2130 | void xchgq(Register dst, Register src); |
2131 | |
2132 | void xend(); |
2133 | |
2134 | // Get Value of Extended Control Register |
2135 | void xgetbv(); |
2136 | |
2137 | void xorl(Register dst, int32_t imm32); |
2138 | void xorl(Address dst, int32_t imm32); |
2139 | void xorl(Register dst, Address src); |
2140 | void xorl(Register dst, Register src); |
2141 | void xorl(Address dst, Register src); |
2142 | |
2143 | void xorb(Address dst, Register src); |
2144 | void xorb(Register dst, Address src); |
2145 | void xorw(Register dst, Register src); |
2146 | |
2147 | void xorq(Register dst, Address src); |
2148 | void xorq(Address dst, int32_t imm32); |
2149 | void xorq(Register dst, Register src); |
2150 | void xorq(Register dst, int32_t imm32); |
2151 | void xorq(Address dst, Register src); |
2152 | |
2153 | void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0 |
2154 | |
2155 | // AVX 3-operands scalar instructions (encoded with VEX prefix) |
2156 | |
2157 | void vaddsd(XMMRegister dst, XMMRegister nds, Address src); |
2158 | void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2159 | void vaddss(XMMRegister dst, XMMRegister nds, Address src); |
2160 | void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2161 | void vdivsd(XMMRegister dst, XMMRegister nds, Address src); |
2162 | void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2163 | void vdivss(XMMRegister dst, XMMRegister nds, Address src); |
2164 | void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2165 | void vfmadd231sd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2166 | void vfmadd231ss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2167 | void vmulsd(XMMRegister dst, XMMRegister nds, Address src); |
2168 | void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2169 | void vmulss(XMMRegister dst, XMMRegister nds, Address src); |
2170 | void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2171 | void vsubsd(XMMRegister dst, XMMRegister nds, Address src); |
2172 | void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2173 | void vsubss(XMMRegister dst, XMMRegister nds, Address src); |
2174 | void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2175 | |
2176 | void vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2177 | void vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2178 | void vminss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2179 | void vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
2180 | |
2181 | void shlxl(Register dst, Register src1, Register src2); |
2182 | void shlxq(Register dst, Register src1, Register src2); |
2183 | void shrxl(Register dst, Register src1, Register src2); |
2184 | void shrxq(Register dst, Register src1, Register src2); |
2185 | |
2186 | void bzhiq(Register dst, Register src1, Register src2); |
2187 | void pdep(Register dst, Register src1, Register src2); |
2188 | void pext(Register dst, Register src1, Register src2); |
2189 | |
2190 | |
2191 | //====================VECTOR ARITHMETIC===================================== |
2192 | // Add Packed Floating-Point Values |
2193 | void addpd(XMMRegister dst, XMMRegister src); |
2194 | void addpd(XMMRegister dst, Address src); |
2195 | void addps(XMMRegister dst, XMMRegister src); |
2196 | void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2197 | void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2198 | void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2199 | void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2200 | |
2201 | // Subtract Packed Floating-Point Values |
2202 | void subpd(XMMRegister dst, XMMRegister src); |
2203 | void subps(XMMRegister dst, XMMRegister src); |
2204 | void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2205 | void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2206 | void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2207 | void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2208 | |
2209 | // Multiply Packed Floating-Point Values |
2210 | void mulpd(XMMRegister dst, XMMRegister src); |
2211 | void mulpd(XMMRegister dst, Address src); |
2212 | void mulps(XMMRegister dst, XMMRegister src); |
2213 | void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2214 | void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2215 | void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2216 | void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2217 | |
2218 | void vfmadd231pd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2219 | void vfmadd231ps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2220 | void vfmadd231pd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2221 | void vfmadd231ps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2222 | |
2223 | // Divide Packed Floating-Point Values |
2224 | void divpd(XMMRegister dst, XMMRegister src); |
2225 | void divps(XMMRegister dst, XMMRegister src); |
2226 | void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2227 | void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2228 | void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2229 | void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2230 | |
2231 | // Sqrt Packed Floating-Point Values |
2232 | void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len); |
2233 | void vsqrtpd(XMMRegister dst, Address src, int vector_len); |
2234 | void vsqrtps(XMMRegister dst, XMMRegister src, int vector_len); |
2235 | void vsqrtps(XMMRegister dst, Address src, int vector_len); |
2236 | |
2237 | // Round Packed Double precision value. |
2238 | void vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len); |
2239 | void vroundpd(XMMRegister dst, Address src, int32_t rmode, int vector_len); |
2240 | void vrndscalepd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len); |
2241 | void vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len); |
2242 | |
2243 | // Bitwise Logical AND of Packed Floating-Point Values |
2244 | void andpd(XMMRegister dst, XMMRegister src); |
2245 | void andps(XMMRegister dst, XMMRegister src); |
2246 | void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2247 | void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2248 | void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2249 | void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2250 | |
2251 | void unpckhpd(XMMRegister dst, XMMRegister src); |
2252 | void unpcklpd(XMMRegister dst, XMMRegister src); |
2253 | |
2254 | // Bitwise Logical XOR of Packed Floating-Point Values |
2255 | void xorpd(XMMRegister dst, XMMRegister src); |
2256 | void xorps(XMMRegister dst, XMMRegister src); |
2257 | void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2258 | void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2259 | void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2260 | void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2261 | |
2262 | // Add horizontal packed integers |
2263 | void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2264 | void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2265 | void phaddw(XMMRegister dst, XMMRegister src); |
2266 | void phaddd(XMMRegister dst, XMMRegister src); |
2267 | |
2268 | // Add packed integers |
2269 | void paddb(XMMRegister dst, XMMRegister src); |
2270 | void paddw(XMMRegister dst, XMMRegister src); |
2271 | void paddd(XMMRegister dst, XMMRegister src); |
2272 | void paddd(XMMRegister dst, Address src); |
2273 | void paddq(XMMRegister dst, XMMRegister src); |
2274 | void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2275 | void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2276 | void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2277 | void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2278 | void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2279 | void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2280 | void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2281 | void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2282 | |
2283 | // Leaf level assembler routines for masked operations. |
2284 | void evpaddb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2285 | void evpaddb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2286 | void evpaddw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2287 | void evpaddw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2288 | void evpaddd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2289 | void evpaddd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2290 | void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2291 | void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2292 | void evaddps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2293 | void evaddps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2294 | void evaddpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2295 | void evaddpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2296 | void evpsubb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2297 | void evpsubb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2298 | void evpsubw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2299 | void evpsubw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2300 | void evpsubd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2301 | void evpsubd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2302 | void evpsubq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2303 | void evpsubq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2304 | void evsubps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2305 | void evsubps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2306 | void evsubpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2307 | void evsubpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2308 | void evpmullw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2309 | void evpmullw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2310 | void evpmulld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2311 | void evpmulld(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2312 | void evpmullq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2313 | void evpmullq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2314 | void evmulps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2315 | void evmulps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2316 | void evmulpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2317 | void evmulpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2318 | void evdivps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2319 | void evdivps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2320 | void evdivpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2321 | void evdivpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2322 | void evpabsb(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
2323 | void evpabsb(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
2324 | void evpabsw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
2325 | void evpabsw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
2326 | void evpabsd(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
2327 | void evpabsd(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
2328 | void evpabsq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); |
2329 | void evpabsq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); |
2330 | void evpfma213ps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2331 | void evpfma213ps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2332 | void evpfma213pd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2333 | void evpfma213pd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2334 | void evpermb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2335 | void evpermb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2336 | void evpermw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2337 | void evpermw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2338 | void evpermd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2339 | void evpermd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2340 | void evpermq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2341 | void evpermq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2342 | void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2343 | void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2344 | void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2345 | void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2346 | void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2347 | void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2348 | void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2349 | void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2350 | void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2351 | void evsqrtps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2352 | void evsqrtps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2353 | void evsqrtpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2354 | void evsqrtpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2355 | |
2356 | void evpsllw(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2357 | void evpslld(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2358 | void evpsllq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2359 | void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2360 | void evpsrld(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2361 | void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2362 | void evpsraw(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2363 | void evpsrad(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2364 | void evpsraq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2365 | |
2366 | void evpsllvw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2367 | void evpsllvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2368 | void evpsllvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2369 | void evpsrlvw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2370 | void evpsrlvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2371 | void evpsrlvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2372 | void evpsravw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2373 | void evpsravd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2374 | void evpsravq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2375 | void evpmaxsb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2376 | void evpmaxsw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2377 | void evpmaxsd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2378 | void evpmaxsq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2379 | void evpminsb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2380 | void evpminsw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2381 | void evpminsd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2382 | void evpminsq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2383 | void evpmaxsb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2384 | void evpmaxsw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2385 | void evpmaxsd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2386 | void evpmaxsq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2387 | void evpminsb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2388 | void evpminsw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2389 | void evpminsd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2390 | void evpminsq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2391 | void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2392 | void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2393 | void evporq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2394 | void evporq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2395 | void evpandd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2396 | void evpandd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2397 | void evpandq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2398 | void evpandq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2399 | void evpxord(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2400 | void evpxord(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2401 | void evpxorq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2402 | void evpxorq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); |
2403 | |
2404 | void evprold(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2405 | void evprolq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2406 | void evprolvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2407 | void evprolvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2408 | void evprord(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2409 | void evprorq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); |
2410 | void evprorvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2411 | void evprorvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2412 | |
2413 | // Sub packed integers |
2414 | void psubb(XMMRegister dst, XMMRegister src); |
2415 | void psubw(XMMRegister dst, XMMRegister src); |
2416 | void psubd(XMMRegister dst, XMMRegister src); |
2417 | void psubq(XMMRegister dst, XMMRegister src); |
2418 | void vpsubusb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2419 | void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2420 | void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2421 | void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2422 | void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2423 | void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2424 | void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2425 | void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2426 | void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2427 | |
2428 | // Multiply packed integers (only shorts and ints) |
2429 | void pmullw(XMMRegister dst, XMMRegister src); |
2430 | void pmulld(XMMRegister dst, XMMRegister src); |
2431 | void pmuludq(XMMRegister dst, XMMRegister src); |
2432 | void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2433 | void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2434 | void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2435 | void vpmuludq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2436 | void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2437 | void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2438 | void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2439 | void vpmulhuw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2440 | |
2441 | // Minimum of packed integers |
2442 | void pminsb(XMMRegister dst, XMMRegister src); |
2443 | void vpminsb(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2444 | void pminsw(XMMRegister dst, XMMRegister src); |
2445 | void vpminsw(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2446 | void pminsd(XMMRegister dst, XMMRegister src); |
2447 | void vpminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2448 | void vpminsq(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2449 | void minps(XMMRegister dst, XMMRegister src); |
2450 | void vminps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2451 | void minpd(XMMRegister dst, XMMRegister src); |
2452 | void vminpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2453 | |
2454 | // Maximum of packed integers |
2455 | void pmaxsb(XMMRegister dst, XMMRegister src); |
2456 | void vpmaxsb(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2457 | void pmaxsw(XMMRegister dst, XMMRegister src); |
2458 | void vpmaxsw(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2459 | void pmaxsd(XMMRegister dst, XMMRegister src); |
2460 | void vpmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2461 | void vpmaxsq(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2462 | void maxps(XMMRegister dst, XMMRegister src); |
2463 | void vmaxps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2464 | void maxpd(XMMRegister dst, XMMRegister src); |
2465 | void vmaxpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); |
2466 | |
2467 | // Shift left packed integers |
2468 | void psllw(XMMRegister dst, int shift); |
2469 | void pslld(XMMRegister dst, int shift); |
2470 | void psllq(XMMRegister dst, int shift); |
2471 | void psllw(XMMRegister dst, XMMRegister shift); |
2472 | void pslld(XMMRegister dst, XMMRegister shift); |
2473 | void psllq(XMMRegister dst, XMMRegister shift); |
2474 | void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2475 | void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2476 | void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2477 | void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2478 | void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2479 | void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2480 | void vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2481 | |
2482 | // Logical shift right packed integers |
2483 | void psrlw(XMMRegister dst, int shift); |
2484 | void psrld(XMMRegister dst, int shift); |
2485 | void psrlq(XMMRegister dst, int shift); |
2486 | void psrlw(XMMRegister dst, XMMRegister shift); |
2487 | void psrld(XMMRegister dst, XMMRegister shift); |
2488 | void psrlq(XMMRegister dst, XMMRegister shift); |
2489 | void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2490 | void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2491 | void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2492 | void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2493 | void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2494 | void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2495 | void vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2496 | void evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2497 | void evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2498 | |
2499 | // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs) |
2500 | void psraw(XMMRegister dst, int shift); |
2501 | void psrad(XMMRegister dst, int shift); |
2502 | void psraw(XMMRegister dst, XMMRegister shift); |
2503 | void psrad(XMMRegister dst, XMMRegister shift); |
2504 | void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2505 | void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2506 | void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2507 | void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2508 | void evpsravw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2509 | void evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2510 | void evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2511 | |
2512 | // Variable shift left packed integers |
2513 | void vpsllvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2514 | void vpsllvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2515 | |
2516 | // Variable shift right packed integers |
2517 | void vpsrlvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2518 | void vpsrlvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2519 | |
2520 | // Variable shift right arithmetic packed integers |
2521 | void vpsravd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2522 | void evpsravq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2523 | |
2524 | void vpshldvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2525 | void vpshrdvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2526 | |
2527 | // And packed integers |
2528 | void pand(XMMRegister dst, XMMRegister src); |
2529 | void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2530 | void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2531 | void vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2532 | |
2533 | // Andn packed integers |
2534 | void pandn(XMMRegister dst, XMMRegister src); |
2535 | void vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2536 | |
2537 | // Or packed integers |
2538 | void por(XMMRegister dst, XMMRegister src); |
2539 | void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2540 | void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2541 | void vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2542 | |
2543 | // Xor packed integers |
2544 | void pxor(XMMRegister dst, XMMRegister src); |
2545 | void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2546 | void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2547 | void vpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2548 | void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2549 | void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2550 | |
2551 | // Ternary logic instruction. |
2552 | void vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len); |
2553 | void vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, Address src3, int vector_len); |
2554 | void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len); |
2555 | |
2556 | // Vector Rotate Left/Right instruction. |
2557 | void evprolvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2558 | void evprolvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2559 | void evprorvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2560 | void evprorvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2561 | void evprold(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2562 | void evprolq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2563 | void evprord(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2564 | void evprorq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2565 | |
2566 | // vinserti forms |
2567 | void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2568 | void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2569 | void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2570 | void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2571 | void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2572 | |
2573 | // vinsertf forms |
2574 | void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2575 | void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2576 | void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2577 | void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2578 | void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2579 | void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2580 | |
2581 | // vextracti forms |
2582 | void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2583 | void vextracti128(Address dst, XMMRegister src, uint8_t imm8); |
2584 | void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2585 | void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8); |
2586 | void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2587 | void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2588 | void vextracti64x4(Address dst, XMMRegister src, uint8_t imm8); |
2589 | |
2590 | // vextractf forms |
2591 | void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2592 | void vextractf128(Address dst, XMMRegister src, uint8_t imm8); |
2593 | void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2594 | void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8); |
2595 | void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2596 | void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8); |
2597 | void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8); |
2598 | |
2599 | // xmm/mem sourced byte/word/dword/qword replicate |
2600 | void vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len); |
2601 | void vpbroadcastb(XMMRegister dst, Address src, int vector_len); |
2602 | void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len); |
2603 | void vpbroadcastw(XMMRegister dst, Address src, int vector_len); |
2604 | void vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len); |
2605 | void vpbroadcastd(XMMRegister dst, Address src, int vector_len); |
2606 | void vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len); |
2607 | void vpbroadcastq(XMMRegister dst, Address src, int vector_len); |
2608 | |
2609 | void evbroadcasti32x4(XMMRegister dst, Address src, int vector_len); |
2610 | void evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len); |
2611 | void evbroadcasti64x2(XMMRegister dst, Address src, int vector_len); |
2612 | |
2613 | // scalar single/double/128bit precision replicate |
2614 | void vbroadcastss(XMMRegister dst, XMMRegister src, int vector_len); |
2615 | void vbroadcastss(XMMRegister dst, Address src, int vector_len); |
2616 | void vbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len); |
2617 | void vbroadcastsd(XMMRegister dst, Address src, int vector_len); |
2618 | void vbroadcastf128(XMMRegister dst, Address src, int vector_len); |
2619 | |
2620 | // gpr sourced byte/word/dword/qword replicate |
2621 | void evpbroadcastb(XMMRegister dst, Register src, int vector_len); |
2622 | void evpbroadcastw(XMMRegister dst, Register src, int vector_len); |
2623 | void evpbroadcastd(XMMRegister dst, Register src, int vector_len); |
2624 | void evpbroadcastq(XMMRegister dst, Register src, int vector_len); |
2625 | |
2626 | // Gather AVX2 and AVX3 |
2627 | void vpgatherdd(XMMRegister dst, Address src, XMMRegister mask, int vector_len); |
2628 | void vpgatherdq(XMMRegister dst, Address src, XMMRegister mask, int vector_len); |
2629 | void vgatherdpd(XMMRegister dst, Address src, XMMRegister mask, int vector_len); |
2630 | void vgatherdps(XMMRegister dst, Address src, XMMRegister mask, int vector_len); |
2631 | void evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len); |
2632 | void evpgatherdq(XMMRegister dst, KRegister mask, Address src, int vector_len); |
2633 | void evgatherdpd(XMMRegister dst, KRegister mask, Address src, int vector_len); |
2634 | void evgatherdps(XMMRegister dst, KRegister mask, Address src, int vector_len); |
2635 | |
2636 | //Scatter AVX3 only |
2637 | void evpscatterdd(Address dst, KRegister mask, XMMRegister src, int vector_len); |
2638 | void evpscatterdq(Address dst, KRegister mask, XMMRegister src, int vector_len); |
2639 | void evscatterdps(Address dst, KRegister mask, XMMRegister src, int vector_len); |
2640 | void evscatterdpd(Address dst, KRegister mask, XMMRegister src, int vector_len); |
2641 | |
2642 | // Carry-Less Multiplication Quadword |
2643 | void pclmulqdq(XMMRegister dst, XMMRegister src, int mask); |
2644 | void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask); |
2645 | void evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len); |
2646 | // AVX instruction which is used to clear upper 128 bits of YMM registers and |
2647 | // to avoid transaction penalty between AVX and SSE states. There is no |
2648 | // penalty if legacy SSE instructions are encoded using VEX prefix because |
2649 | // they always clear upper 128 bits. It should be used before calling |
2650 | // runtime code and native libraries. |
2651 | void vzeroupper(); |
2652 | |
2653 | // Vector double compares |
2654 | void vcmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len); |
2655 | void evcmppd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, |
2656 | ComparisonPredicateFP comparison, int vector_len); |
2657 | |
2658 | // Vector float compares |
2659 | void vcmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int comparison, int vector_len); |
2660 | void evcmpps(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, |
2661 | ComparisonPredicateFP comparison, int vector_len); |
2662 | |
2663 | // Vector integer compares |
2664 | void vpcmpgtd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2665 | void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, |
2666 | int comparison, bool is_signed, int vector_len); |
2667 | void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, Address src, |
2668 | int comparison, bool is_signed, int vector_len); |
2669 | |
2670 | // Vector long compares |
2671 | void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, |
2672 | int comparison, bool is_signed, int vector_len); |
2673 | void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, Address src, |
2674 | int comparison, bool is_signed, int vector_len); |
2675 | |
2676 | // Vector byte compares |
2677 | void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, |
2678 | int comparison, bool is_signed, int vector_len); |
2679 | void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, |
2680 | int comparison, bool is_signed, int vector_len); |
2681 | |
2682 | // Vector short compares |
2683 | void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, |
2684 | int comparison, bool is_signed, int vector_len); |
2685 | void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, Address src, |
2686 | int comparison, bool is_signed, int vector_len); |
2687 | |
2688 | void evpmovb2m(KRegister dst, XMMRegister src, int vector_len); |
2689 | void evpmovw2m(KRegister dst, XMMRegister src, int vector_len); |
2690 | void evpmovd2m(KRegister dst, XMMRegister src, int vector_len); |
2691 | void evpmovq2m(KRegister dst, XMMRegister src, int vector_len); |
2692 | void evpmovm2b(XMMRegister dst, KRegister src, int vector_len); |
2693 | void evpmovm2w(XMMRegister dst, KRegister src, int vector_len); |
2694 | void evpmovm2d(XMMRegister dst, KRegister src, int vector_len); |
2695 | void evpmovm2q(XMMRegister dst, KRegister src, int vector_len); |
2696 | |
2697 | // Vector blends |
2698 | void blendvps(XMMRegister dst, XMMRegister src); |
2699 | void blendvpd(XMMRegister dst, XMMRegister src); |
2700 | void pblendvb(XMMRegister dst, XMMRegister src); |
2701 | void blendvpb(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); |
2702 | void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len); |
2703 | void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); |
2704 | void vpblendvb(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len); |
2705 | void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); |
2706 | void evblendmpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2707 | void evblendmps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2708 | void evpblendmb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2709 | void evpblendmw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2710 | void evpblendmd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2711 | void evpblendmq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); |
2712 | protected: |
2713 | // Next instructions require address alignment 16 bytes SSE mode. |
2714 | // They should be called only from corresponding MacroAssembler instructions. |
2715 | void andpd(XMMRegister dst, Address src); |
2716 | void andps(XMMRegister dst, Address src); |
2717 | void xorpd(XMMRegister dst, Address src); |
2718 | void xorps(XMMRegister dst, Address src); |
2719 | |
2720 | }; |
2721 | |
2722 | // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions. |
2723 | // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction |
2724 | // are applied. |
2725 | class InstructionAttr { |
2726 | public: |
2727 | InstructionAttr( |
2728 | int vector_len, // The length of vector to be applied in encoding - for both AVX and EVEX |
2729 | bool rex_vex_w, // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true |
2730 | bool legacy_mode, // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX |
2731 | bool no_reg_mask, // when true, k0 is used when EVEX encoding is chosen, else embedded_opmask_register_specifier is used |
2732 | bool uses_vl) // This instruction may have legacy constraints based on vector length for EVEX |
2733 | : |
2734 | _rex_vex_w(rex_vex_w), |
2735 | _legacy_mode(legacy_mode || UseAVX < 3), |
2736 | _no_reg_mask(no_reg_mask), |
2737 | _uses_vl(uses_vl), |
2738 | _rex_vex_w_reverted(false), |
2739 | _is_evex_instruction(false), |
2740 | _is_clear_context(true), |
2741 | _is_extended_context(false), |
2742 | _avx_vector_len(vector_len), |
2743 | _tuple_type(Assembler::EVEX_ETUP), |
2744 | _input_size_in_bits(Assembler::EVEX_NObit), |
2745 | _evex_encoding(0), |
2746 | _embedded_opmask_register_specifier(0), // hard code k0 |
2747 | _current_assembler(NULL__null) { } |
2748 | |
2749 | ~InstructionAttr() { |
2750 | if (_current_assembler != NULL__null) { |
2751 | _current_assembler->clear_attributes(); |
2752 | } |
2753 | _current_assembler = NULL__null; |
2754 | } |
2755 | |
2756 | private: |
2757 | bool _rex_vex_w; |
2758 | bool _legacy_mode; |
2759 | bool _no_reg_mask; |
2760 | bool _uses_vl; |
2761 | bool _rex_vex_w_reverted; |
2762 | bool _is_evex_instruction; |
2763 | bool _is_clear_context; |
2764 | bool _is_extended_context; |
2765 | int _avx_vector_len; |
2766 | int _tuple_type; |
2767 | int _input_size_in_bits; |
2768 | int _evex_encoding; |
2769 | int _embedded_opmask_register_specifier; |
2770 | |
2771 | Assembler *_current_assembler; |
2772 | |
2773 | public: |
2774 | // query functions for field accessors |
2775 | bool is_rex_vex_w(void) const { return _rex_vex_w; } |
2776 | bool is_legacy_mode(void) const { return _legacy_mode; } |
2777 | bool is_no_reg_mask(void) const { return _no_reg_mask; } |
2778 | bool uses_vl(void) const { return _uses_vl; } |
2779 | bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; } |
2780 | bool is_evex_instruction(void) const { return _is_evex_instruction; } |
2781 | bool is_clear_context(void) const { return _is_clear_context; } |
2782 | bool is_extended_context(void) const { return _is_extended_context; } |
2783 | int get_vector_len(void) const { return _avx_vector_len; } |
2784 | int get_tuple_type(void) const { return _tuple_type; } |
2785 | int get_input_size(void) const { return _input_size_in_bits; } |
2786 | int get_evex_encoding(void) const { return _evex_encoding; } |
2787 | int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; } |
2788 | |
2789 | // Set the vector len manually |
2790 | void set_vector_len(int vector_len) { _avx_vector_len = vector_len; } |
2791 | |
2792 | // Set revert rex_vex_w for avx encoding |
2793 | void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; } |
2794 | |
2795 | // Set rex_vex_w based on state |
2796 | void set_rex_vex_w(bool state) { _rex_vex_w = state; } |
2797 | |
2798 | // Set the instruction to be encoded in AVX mode |
2799 | void set_is_legacy_mode(void) { _legacy_mode = true; } |
2800 | |
2801 | // Set the current instuction to be encoded as an EVEX instuction |
2802 | void set_is_evex_instruction(void) { _is_evex_instruction = true; } |
2803 | |
2804 | // Internal encoding data used in compressed immediate offset programming |
2805 | void set_evex_encoding(int value) { _evex_encoding = value; } |
2806 | |
2807 | // When the Evex.Z field is set (true), it is used to clear all non directed XMM/YMM/ZMM components. |
2808 | // This method unsets it so that merge semantics are used instead. |
2809 | void reset_is_clear_context(void) { _is_clear_context = false; } |
2810 | |
2811 | // Map back to current asembler so that we can manage object level assocation |
2812 | void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; } |
2813 | |
2814 | // Address modifiers used for compressed displacement calculation |
2815 | void set_address_attributes(int tuple_type, int input_size_in_bits); |
2816 | |
2817 | // Set embedded opmask register specifier. |
2818 | void set_embedded_opmask_register_specifier(KRegister mask) { |
2819 | _embedded_opmask_register_specifier = (*mask).encoding() & 0x7; |
2820 | } |
2821 | |
2822 | }; |
2823 | |
2824 | #endif // CPU_X86_ASSEMBLER_X86_HPP |