File: | jdk/src/java.desktop/share/native/libjavajpeg/jquant1.c |
Warning: | line 258, column 51 Division by zero |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * reserved comment block | |||
3 | * DO NOT REMOVE OR ALTER! | |||
4 | */ | |||
5 | /* | |||
6 | * jquant1.c | |||
7 | * | |||
8 | * Copyright (C) 1991-1996, Thomas G. Lane. | |||
9 | * This file is part of the Independent JPEG Group's software. | |||
10 | * For conditions of distribution and use, see the accompanying README file. | |||
11 | * | |||
12 | * This file contains 1-pass color quantization (color mapping) routines. | |||
13 | * These routines provide mapping to a fixed color map using equally spaced | |||
14 | * color values. Optional Floyd-Steinberg or ordered dithering is available. | |||
15 | */ | |||
16 | ||||
17 | #define JPEG_INTERNALS | |||
18 | #include "jinclude.h" | |||
19 | #include "jpeglib.h" | |||
20 | ||||
21 | #ifdef QUANT_1PASS_SUPPORTED | |||
22 | ||||
23 | ||||
24 | /* | |||
25 | * The main purpose of 1-pass quantization is to provide a fast, if not very | |||
26 | * high quality, colormapped output capability. A 2-pass quantizer usually | |||
27 | * gives better visual quality; however, for quantized grayscale output this | |||
28 | * quantizer is perfectly adequate. Dithering is highly recommended with this | |||
29 | * quantizer, though you can turn it off if you really want to. | |||
30 | * | |||
31 | * In 1-pass quantization the colormap must be chosen in advance of seeing the | |||
32 | * image. We use a map consisting of all combinations of Ncolors[i] color | |||
33 | * values for the i'th component. The Ncolors[] values are chosen so that | |||
34 | * their product, the total number of colors, is no more than that requested. | |||
35 | * (In most cases, the product will be somewhat less.) | |||
36 | * | |||
37 | * Since the colormap is orthogonal, the representative value for each color | |||
38 | * component can be determined without considering the other components; | |||
39 | * then these indexes can be combined into a colormap index by a standard | |||
40 | * N-dimensional-array-subscript calculation. Most of the arithmetic involved | |||
41 | * can be precalculated and stored in the lookup table colorindex[]. | |||
42 | * colorindex[i][j] maps pixel value j in component i to the nearest | |||
43 | * representative value (grid plane) for that component; this index is | |||
44 | * multiplied by the array stride for component i, so that the | |||
45 | * index of the colormap entry closest to a given pixel value is just | |||
46 | * sum( colorindex[component-number][pixel-component-value] ) | |||
47 | * Aside from being fast, this scheme allows for variable spacing between | |||
48 | * representative values with no additional lookup cost. | |||
49 | * | |||
50 | * If gamma correction has been applied in color conversion, it might be wise | |||
51 | * to adjust the color grid spacing so that the representative colors are | |||
52 | * equidistant in linear space. At this writing, gamma correction is not | |||
53 | * implemented by jdcolor, so nothing is done here. | |||
54 | */ | |||
55 | ||||
56 | ||||
57 | /* Declarations for ordered dithering. | |||
58 | * | |||
59 | * We use a standard 16x16 ordered dither array. The basic concept of ordered | |||
60 | * dithering is described in many references, for instance Dale Schumacher's | |||
61 | * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | |||
62 | * In place of Schumacher's comparisons against a "threshold" value, we add a | |||
63 | * "dither" value to the input pixel and then round the result to the nearest | |||
64 | * output value. The dither value is equivalent to (0.5 - threshold) times | |||
65 | * the distance between output values. For ordered dithering, we assume that | |||
66 | * the output colors are equally spaced; if not, results will probably be | |||
67 | * worse, since the dither may be too much or too little at a given point. | |||
68 | * | |||
69 | * The normal calculation would be to form pixel value + dither, range-limit | |||
70 | * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. | |||
71 | * We can skip the separate range-limiting step by extending the colorindex | |||
72 | * table in both directions. | |||
73 | */ | |||
74 | ||||
75 | #define ODITHER_SIZE16 16 /* dimension of dither matrix */ | |||
76 | /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | |||
77 | #define ODITHER_CELLS(16*16) (ODITHER_SIZE16*ODITHER_SIZE16) /* # cells in matrix */ | |||
78 | #define ODITHER_MASK(16 -1) (ODITHER_SIZE16-1) /* mask for wrapping around counters */ | |||
79 | ||||
80 | typedef int ODITHER_MATRIX[ODITHER_SIZE16][ODITHER_SIZE16]; | |||
81 | typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE16]; | |||
82 | ||||
83 | static const UINT8 base_dither_matrix[ODITHER_SIZE16][ODITHER_SIZE16] = { | |||
84 | /* Bayer's order-4 dither array. Generated by the code given in | |||
85 | * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | |||
86 | * The values in this array must range from 0 to ODITHER_CELLS-1. | |||
87 | */ | |||
88 | { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, | |||
89 | { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | |||
90 | { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | |||
91 | { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | |||
92 | { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, | |||
93 | { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | |||
94 | { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | |||
95 | { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | |||
96 | { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, | |||
97 | { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | |||
98 | { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | |||
99 | { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | |||
100 | { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, | |||
101 | { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | |||
102 | { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | |||
103 | { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | |||
104 | }; | |||
105 | ||||
106 | ||||
107 | /* Declarations for Floyd-Steinberg dithering. | |||
108 | * | |||
109 | * Errors are accumulated into the array fserrors[], at a resolution of | |||
110 | * 1/16th of a pixel count. The error at a given pixel is propagated | |||
111 | * to its not-yet-processed neighbors using the standard F-S fractions, | |||
112 | * ... (here) 7/16 | |||
113 | * 3/16 5/16 1/16 | |||
114 | * We work left-to-right on even rows, right-to-left on odd rows. | |||
115 | * | |||
116 | * We can get away with a single array (holding one row's worth of errors) | |||
117 | * by using it to store the current row's errors at pixel columns not yet | |||
118 | * processed, but the next row's errors at columns already processed. We | |||
119 | * need only a few extra variables to hold the errors immediately around the | |||
120 | * current column. (If we are lucky, those variables are in registers, but | |||
121 | * even if not, they're probably cheaper to access than array elements are.) | |||
122 | * | |||
123 | * The fserrors[] array is indexed [component#][position]. | |||
124 | * We provide (#columns + 2) entries per component; the extra entry at each | |||
125 | * end saves us from special-casing the first and last pixels. | |||
126 | * | |||
127 | * Note: on a wide image, we might not have enough room in a PC's near data | |||
128 | * segment to hold the error array; so it is allocated with alloc_large. | |||
129 | */ | |||
130 | ||||
131 | #if BITS_IN_JSAMPLE8 == 8 | |||
132 | typedef INT16 FSERROR; /* 16 bits should be enough */ | |||
133 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |||
134 | #else | |||
135 | typedef INT32 FSERROR; /* may need more than 16 bits */ | |||
136 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |||
137 | #endif | |||
138 | ||||
139 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |||
140 | ||||
141 | ||||
142 | /* Private subobject */ | |||
143 | ||||
144 | #define MAX_Q_COMPS4 4 /* max components I can handle */ | |||
145 | ||||
146 | typedef struct { | |||
147 | struct jpeg_color_quantizer pub; /* public fields */ | |||
148 | ||||
149 | /* Initially allocated colormap is saved here */ | |||
150 | JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ | |||
151 | int sv_actual; /* number of entries in use */ | |||
152 | ||||
153 | JSAMPARRAY colorindex; /* Precomputed mapping for speed */ | |||
154 | /* colorindex[i][j] = index of color closest to pixel value j in component i, | |||
155 | * premultiplied as described above. Since colormap indexes must fit into | |||
156 | * JSAMPLEs, the entries of this array will too. | |||
157 | */ | |||
158 | boolean is_padded; /* is the colorindex padded for odither? */ | |||
159 | ||||
160 | int Ncolors[MAX_Q_COMPS4]; /* # of values alloced to each component */ | |||
161 | ||||
162 | /* Variables for ordered dithering */ | |||
163 | int row_index; /* cur row's vertical index in dither matrix */ | |||
164 | ODITHER_MATRIX_PTR odither[MAX_Q_COMPS4]; /* one dither array per component */ | |||
165 | ||||
166 | /* Variables for Floyd-Steinberg dithering */ | |||
167 | FSERRPTR fserrors[MAX_Q_COMPS4]; /* accumulated errors */ | |||
168 | boolean on_odd_row; /* flag to remember which row we are on */ | |||
169 | } my_cquantizer; | |||
170 | ||||
171 | typedef my_cquantizer * my_cquantize_ptr; | |||
172 | ||||
173 | ||||
174 | /* | |||
175 | * Policy-making subroutines for create_colormap and create_colorindex. | |||
176 | * These routines determine the colormap to be used. The rest of the module | |||
177 | * only assumes that the colormap is orthogonal. | |||
178 | * | |||
179 | * * select_ncolors decides how to divvy up the available colors | |||
180 | * among the components. | |||
181 | * * output_value defines the set of representative values for a component. | |||
182 | * * largest_input_value defines the mapping from input values to | |||
183 | * representative values for a component. | |||
184 | * Note that the latter two routines may impose different policies for | |||
185 | * different components, though this is not currently done. | |||
186 | */ | |||
187 | ||||
188 | ||||
189 | LOCAL(int)static int | |||
190 | select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) | |||
191 | /* Determine allocation of desired colors to components, */ | |||
192 | /* and fill in Ncolors[] array to indicate choice. */ | |||
193 | /* Return value is total number of colors (product of Ncolors[] values). */ | |||
194 | { | |||
195 | int nc = cinfo->out_color_components; /* number of color components */ | |||
196 | int max_colors = cinfo->desired_number_of_colors; | |||
197 | int total_colors, iroot, i, j; | |||
198 | boolean changed; | |||
199 | long temp; | |||
200 | static const int RGB_order[3] = { RGB_GREEN1, RGB_RED0, RGB_BLUE2 }; | |||
201 | ||||
202 | /* We can allocate at least the nc'th root of max_colors per component. */ | |||
203 | /* Compute floor(nc'th root of max_colors). */ | |||
204 | iroot = 1; | |||
205 | do { | |||
206 | iroot++; | |||
207 | temp = iroot; /* set temp = iroot ** nc */ | |||
208 | for (i = 1; i < nc; i++) | |||
209 | temp *= iroot; | |||
210 | } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ | |||
211 | iroot--; /* now iroot = floor(root) */ | |||
212 | ||||
213 | /* Must have at least 2 color values per component */ | |||
214 | if (iroot < 2) | |||
215 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp)((cinfo)->err->msg_code = (JERR_QUANT_FEW_COLORS), (cinfo )->err->msg_parm.i[0] = ((int) temp), (*(cinfo)->err ->error_exit) ((j_common_ptr) (cinfo))); | |||
216 | ||||
217 | /* Initialize to iroot color values for each component */ | |||
218 | total_colors = 1; | |||
219 | for (i = 0; i < nc; i++) { | |||
220 | Ncolors[i] = iroot; | |||
221 | total_colors *= iroot; | |||
222 | } | |||
223 | /* We may be able to increment the count for one or more components without | |||
224 | * exceeding max_colors, though we know not all can be incremented. | |||
225 | * Sometimes, the first component can be incremented more than once! | |||
226 | * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | |||
227 | * In RGB colorspace, try to increment G first, then R, then B. | |||
228 | */ | |||
229 | do { | |||
230 | changed = FALSE0; | |||
231 | for (i = 0; i < nc; i++) { | |||
232 | j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | |||
233 | /* calculate new total_colors if Ncolors[j] is incremented */ | |||
234 | temp = total_colors / Ncolors[j]; | |||
235 | temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ | |||
236 | if (temp > (long) max_colors) | |||
237 | break; /* won't fit, done with this pass */ | |||
238 | Ncolors[j]++; /* OK, apply the increment */ | |||
239 | total_colors = (int) temp; | |||
240 | changed = TRUE1; | |||
241 | } | |||
242 | } while (changed); | |||
243 | ||||
244 | return total_colors; | |||
245 | } | |||
246 | ||||
247 | ||||
248 | LOCAL(int)static int | |||
249 | output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |||
250 | /* Return j'th output value, where j will range from 0 to maxj */ | |||
251 | /* The output values must fall in 0..MAXJSAMPLE in increasing order */ | |||
252 | { | |||
253 | /* We always provide values 0 and MAXJSAMPLE for each component; | |||
254 | * any additional values are equally spaced between these limits. | |||
255 | * (Forcing the upper and lower values to the limits ensures that | |||
256 | * dithering can't produce a color outside the selected gamut.) | |||
257 | */ | |||
258 | return (int) (((INT32) j * MAXJSAMPLE255 + maxj/2) / maxj); | |||
| ||||
259 | } | |||
260 | ||||
261 | ||||
262 | LOCAL(int)static int | |||
263 | largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |||
264 | /* Return largest input value that should map to j'th output value */ | |||
265 | /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ | |||
266 | { | |||
267 | /* Breakpoints are halfway between values returned by output_value */ | |||
268 | return (int) (((INT32) (2*j + 1) * MAXJSAMPLE255 + maxj) / (2*maxj)); | |||
269 | } | |||
270 | ||||
271 | ||||
272 | /* | |||
273 | * Create the colormap. | |||
274 | */ | |||
275 | ||||
276 | LOCAL(void)static void | |||
277 | create_colormap (j_decompress_ptr cinfo) | |||
278 | { | |||
279 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
280 | JSAMPARRAY colormap; /* Created colormap */ | |||
281 | int total_colors; /* Number of distinct output colors */ | |||
282 | int i,j,k, nci, blksize, blkdist, ptr, val; | |||
283 | ||||
284 | /* Select number of colors for each component */ | |||
285 | total_colors = select_ncolors(cinfo, cquantize->Ncolors); | |||
286 | ||||
287 | /* Report selected color counts */ | |||
288 | if (cinfo->out_color_components == 3) | |||
289 | TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,do { int * _mp = (cinfo)->err->msg_parm.i; _mp[0] = (total_colors ); _mp[1] = (cquantize->Ncolors[0]); _mp[2] = (cquantize-> Ncolors[1]); _mp[3] = (cquantize->Ncolors[2]); (cinfo)-> err->msg_code = (JTRC_QUANT_3_NCOLORS); (*(cinfo)->err-> emit_message) ((j_common_ptr) (cinfo), (1)); } while (0) | |||
290 | total_colors, cquantize->Ncolors[0],do { int * _mp = (cinfo)->err->msg_parm.i; _mp[0] = (total_colors ); _mp[1] = (cquantize->Ncolors[0]); _mp[2] = (cquantize-> Ncolors[1]); _mp[3] = (cquantize->Ncolors[2]); (cinfo)-> err->msg_code = (JTRC_QUANT_3_NCOLORS); (*(cinfo)->err-> emit_message) ((j_common_ptr) (cinfo), (1)); } while (0) | |||
291 | cquantize->Ncolors[1], cquantize->Ncolors[2])do { int * _mp = (cinfo)->err->msg_parm.i; _mp[0] = (total_colors ); _mp[1] = (cquantize->Ncolors[0]); _mp[2] = (cquantize-> Ncolors[1]); _mp[3] = (cquantize->Ncolors[2]); (cinfo)-> err->msg_code = (JTRC_QUANT_3_NCOLORS); (*(cinfo)->err-> emit_message) ((j_common_ptr) (cinfo), (1)); } while (0); | |||
292 | else | |||
293 | TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors)((cinfo)->err->msg_code = (JTRC_QUANT_NCOLORS), (cinfo) ->err->msg_parm.i[0] = (total_colors), (*(cinfo)->err ->emit_message) ((j_common_ptr) (cinfo), (1))); | |||
294 | ||||
295 | /* Allocate and fill in the colormap. */ | |||
296 | /* The colors are ordered in the map in standard row-major order, */ | |||
297 | /* i.e. rightmost (highest-indexed) color changes most rapidly. */ | |||
298 | ||||
299 | colormap = (*cinfo->mem->alloc_sarray) | |||
300 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
301 | (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); | |||
302 | ||||
303 | /* blksize is number of adjacent repeated entries for a component */ | |||
304 | /* blkdist is distance between groups of identical entries for a component */ | |||
305 | blkdist = total_colors; | |||
306 | ||||
307 | for (i = 0; i < cinfo->out_color_components; i++) { | |||
308 | /* fill in colormap entries for i'th color component */ | |||
309 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |||
310 | blksize = blkdist / nci; | |||
311 | for (j = 0; j < nci; j++) { | |||
312 | /* Compute j'th output value (out of nci) for component */ | |||
313 | val = output_value(cinfo, i, j, nci-1); | |||
314 | /* Fill in all colormap entries that have this value of this component */ | |||
315 | for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | |||
316 | /* fill in blksize entries beginning at ptr */ | |||
317 | for (k = 0; k < blksize; k++) | |||
318 | colormap[i][ptr+k] = (JSAMPLE) val; | |||
319 | } | |||
320 | } | |||
321 | blkdist = blksize; /* blksize of this color is blkdist of next */ | |||
322 | } | |||
323 | ||||
324 | /* Save the colormap in private storage, | |||
325 | * where it will survive color quantization mode changes. | |||
326 | */ | |||
327 | cquantize->sv_colormap = colormap; | |||
328 | cquantize->sv_actual = total_colors; | |||
329 | } | |||
330 | ||||
331 | ||||
332 | /* | |||
333 | * Create the color index table. | |||
334 | */ | |||
335 | ||||
336 | LOCAL(void)static void | |||
337 | create_colorindex (j_decompress_ptr cinfo) | |||
338 | { | |||
339 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
340 | JSAMPROW indexptr; | |||
341 | int i,j,k, nci, blksize, val, pad; | |||
342 | ||||
343 | /* For ordered dither, we pad the color index tables by MAXJSAMPLE in | |||
344 | * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). | |||
345 | * This is not necessary in the other dithering modes. However, we | |||
346 | * flag whether it was done in case user changes dithering mode. | |||
347 | */ | |||
348 | if (cinfo->dither_mode == JDITHER_ORDERED) { | |||
349 | pad = MAXJSAMPLE255*2; | |||
350 | cquantize->is_padded = TRUE1; | |||
351 | } else { | |||
352 | pad = 0; | |||
353 | cquantize->is_padded = FALSE0; | |||
354 | } | |||
355 | ||||
356 | cquantize->colorindex = (*cinfo->mem->alloc_sarray) | |||
357 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
358 | (JDIMENSION) (MAXJSAMPLE255+1 + pad), | |||
359 | (JDIMENSION) cinfo->out_color_components); | |||
360 | ||||
361 | /* blksize is number of adjacent repeated entries for a component */ | |||
362 | blksize = cquantize->sv_actual; | |||
363 | ||||
364 | for (i = 0; i < cinfo->out_color_components; i++) { | |||
365 | /* fill in colorindex entries for i'th color component */ | |||
366 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |||
367 | blksize = blksize / nci; | |||
368 | ||||
369 | /* adjust colorindex pointers to provide padding at negative indexes. */ | |||
370 | if (pad) | |||
371 | cquantize->colorindex[i] += MAXJSAMPLE255; | |||
372 | ||||
373 | /* in loop, val = index of current output value, */ | |||
374 | /* and k = largest j that maps to current val */ | |||
375 | indexptr = cquantize->colorindex[i]; | |||
376 | val = 0; | |||
377 | k = largest_input_value(cinfo, i, 0, nci-1); | |||
378 | for (j = 0; j <= MAXJSAMPLE255; j++) { | |||
379 | while (j > k) /* advance val if past boundary */ | |||
380 | k = largest_input_value(cinfo, i, ++val, nci-1); | |||
381 | /* premultiply so that no multiplication needed in main processing */ | |||
382 | indexptr[j] = (JSAMPLE) (val * blksize); | |||
383 | } | |||
384 | /* Pad at both ends if necessary */ | |||
385 | if (pad) | |||
386 | for (j = 1; j <= MAXJSAMPLE255; j++) { | |||
387 | indexptr[-j] = indexptr[0]; | |||
388 | indexptr[MAXJSAMPLE255+j] = indexptr[MAXJSAMPLE255]; | |||
389 | } | |||
390 | } | |||
391 | } | |||
392 | ||||
393 | ||||
394 | /* | |||
395 | * Create an ordered-dither array for a component having ncolors | |||
396 | * distinct output values. | |||
397 | */ | |||
398 | ||||
399 | LOCAL(ODITHER_MATRIX_PTR)static ODITHER_MATRIX_PTR | |||
400 | make_odither_array (j_decompress_ptr cinfo, int ncolors) | |||
401 | { | |||
402 | ODITHER_MATRIX_PTR odither; | |||
403 | int j,k; | |||
404 | INT32 num,den; | |||
405 | ||||
406 | odither = (ODITHER_MATRIX_PTR) | |||
407 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
408 | SIZEOF(ODITHER_MATRIX)((size_t) sizeof(ODITHER_MATRIX))); | |||
409 | /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). | |||
410 | * Hence the dither value for the matrix cell with fill order f | |||
411 | * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). | |||
412 | * On 16-bit-int machine, be careful to avoid overflow. | |||
413 | */ | |||
414 | den = 2 * ODITHER_CELLS(16*16) * ((INT32) (ncolors - 1)); | |||
415 | for (j = 0; j < ODITHER_SIZE16; j++) { | |||
416 | for (k = 0; k < ODITHER_SIZE16; k++) { | |||
417 | num = ((INT32) (ODITHER_CELLS(16*16)-1 - 2*((int)base_dither_matrix[j][k]))) | |||
418 | * MAXJSAMPLE255; | |||
419 | /* Ensure round towards zero despite C's lack of consistency | |||
420 | * about rounding negative values in integer division... | |||
421 | */ | |||
422 | odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); | |||
423 | } | |||
424 | } | |||
425 | return odither; | |||
426 | } | |||
427 | ||||
428 | ||||
429 | /* | |||
430 | * Create the ordered-dither tables. | |||
431 | * Components having the same number of representative colors may | |||
432 | * share a dither table. | |||
433 | */ | |||
434 | ||||
435 | LOCAL(void)static void | |||
436 | create_odither_tables (j_decompress_ptr cinfo) | |||
437 | { | |||
438 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
439 | ODITHER_MATRIX_PTR odither; | |||
440 | int i, j, nci; | |||
441 | ||||
442 | for (i = 0; i < cinfo->out_color_components; i++) { | |||
443 | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |||
444 | odither = NULL((void*)0); /* search for matching prior component */ | |||
445 | for (j = 0; j < i; j++) { | |||
446 | if (nci == cquantize->Ncolors[j]) { | |||
447 | odither = cquantize->odither[j]; | |||
448 | break; | |||
449 | } | |||
450 | } | |||
451 | if (odither == NULL((void*)0)) /* need a new table? */ | |||
452 | odither = make_odither_array(cinfo, nci); | |||
453 | cquantize->odither[i] = odither; | |||
454 | } | |||
455 | } | |||
456 | ||||
457 | ||||
458 | /* | |||
459 | * Map some rows of pixels to the output colormapped representation. | |||
460 | */ | |||
461 | ||||
462 | METHODDEF(void)static void | |||
463 | color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
464 | JSAMPARRAY output_buf, int num_rows) | |||
465 | /* General case, no dithering */ | |||
466 | { | |||
467 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
468 | JSAMPARRAY colorindex = cquantize->colorindex; | |||
469 | register int pixcode, ci; | |||
470 | register JSAMPROW ptrin, ptrout; | |||
471 | int row; | |||
472 | JDIMENSION col; | |||
473 | JDIMENSION width = cinfo->output_width; | |||
474 | register int nc = cinfo->out_color_components; | |||
475 | ||||
476 | for (row = 0; row < num_rows; row++) { | |||
477 | ptrin = input_buf[row]; | |||
478 | ptrout = output_buf[row]; | |||
479 | for (col = width; col > 0; col--) { | |||
480 | pixcode = 0; | |||
481 | for (ci = 0; ci < nc; ci++) { | |||
482 | pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)])((int) (colorindex[ci][((int) (*ptrin++))])); | |||
483 | } | |||
484 | *ptrout++ = (JSAMPLE) pixcode; | |||
485 | } | |||
486 | } | |||
487 | } | |||
488 | ||||
489 | ||||
490 | METHODDEF(void)static void | |||
491 | color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
492 | JSAMPARRAY output_buf, int num_rows) | |||
493 | /* Fast path for out_color_components==3, no dithering */ | |||
494 | { | |||
495 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
496 | register int pixcode; | |||
497 | register JSAMPROW ptrin, ptrout; | |||
498 | JSAMPROW colorindex0 = cquantize->colorindex[0]; | |||
499 | JSAMPROW colorindex1 = cquantize->colorindex[1]; | |||
500 | JSAMPROW colorindex2 = cquantize->colorindex[2]; | |||
501 | int row; | |||
502 | JDIMENSION col; | |||
503 | JDIMENSION width = cinfo->output_width; | |||
504 | ||||
505 | for (row = 0; row < num_rows; row++) { | |||
506 | ptrin = input_buf[row]; | |||
507 | ptrout = output_buf[row]; | |||
508 | for (col = width; col > 0; col--) { | |||
509 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)])((int) (colorindex0[((int) (*ptrin++))])); | |||
510 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)])((int) (colorindex1[((int) (*ptrin++))])); | |||
511 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)])((int) (colorindex2[((int) (*ptrin++))])); | |||
512 | *ptrout++ = (JSAMPLE) pixcode; | |||
513 | } | |||
514 | } | |||
515 | } | |||
516 | ||||
517 | ||||
518 | METHODDEF(void)static void | |||
519 | quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
520 | JSAMPARRAY output_buf, int num_rows) | |||
521 | /* General case, with ordered dithering */ | |||
522 | { | |||
523 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
524 | register JSAMPROW input_ptr; | |||
525 | register JSAMPROW output_ptr; | |||
526 | JSAMPROW colorindex_ci; | |||
527 | int * dither; /* points to active row of dither matrix */ | |||
528 | int row_index, col_index; /* current indexes into dither matrix */ | |||
529 | int nc = cinfo->out_color_components; | |||
530 | int ci; | |||
531 | int row; | |||
532 | JDIMENSION col; | |||
533 | JDIMENSION width = cinfo->output_width; | |||
534 | ||||
535 | for (row = 0; row < num_rows; row++) { | |||
536 | /* Initialize output values to 0 so can process components separately */ | |||
537 | jzero_farjZeroFar((void FAR *) output_buf[row], | |||
538 | (size_t) (width * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)))); | |||
539 | row_index = cquantize->row_index; | |||
540 | for (ci = 0; ci < nc; ci++) { | |||
541 | input_ptr = input_buf[row] + ci; | |||
542 | output_ptr = output_buf[row]; | |||
543 | colorindex_ci = cquantize->colorindex[ci]; | |||
544 | dither = cquantize->odither[ci][row_index]; | |||
545 | col_index = 0; | |||
546 | ||||
547 | for (col = width; col > 0; col--) { | |||
548 | /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, | |||
549 | * select output value, accumulate into output code for this pixel. | |||
550 | * Range-limiting need not be done explicitly, as we have extended | |||
551 | * the colorindex table to produce the right answers for out-of-range | |||
552 | * inputs. The maximum dither is +- MAXJSAMPLE; this sets the | |||
553 | * required amount of padding. | |||
554 | */ | |||
555 | *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)((int) (*input_ptr))+dither[col_index]]; | |||
556 | input_ptr += nc; | |||
557 | output_ptr++; | |||
558 | col_index = (col_index + 1) & ODITHER_MASK(16 -1); | |||
559 | } | |||
560 | } | |||
561 | /* Advance row index for next row */ | |||
562 | row_index = (row_index + 1) & ODITHER_MASK(16 -1); | |||
563 | cquantize->row_index = row_index; | |||
564 | } | |||
565 | } | |||
566 | ||||
567 | ||||
568 | METHODDEF(void)static void | |||
569 | quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
570 | JSAMPARRAY output_buf, int num_rows) | |||
571 | /* Fast path for out_color_components==3, with ordered dithering */ | |||
572 | { | |||
573 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
574 | register int pixcode; | |||
575 | register JSAMPROW input_ptr; | |||
576 | register JSAMPROW output_ptr; | |||
577 | JSAMPROW colorindex0 = cquantize->colorindex[0]; | |||
578 | JSAMPROW colorindex1 = cquantize->colorindex[1]; | |||
579 | JSAMPROW colorindex2 = cquantize->colorindex[2]; | |||
580 | int * dither0; /* points to active row of dither matrix */ | |||
581 | int * dither1; | |||
582 | int * dither2; | |||
583 | int row_index, col_index; /* current indexes into dither matrix */ | |||
584 | int row; | |||
585 | JDIMENSION col; | |||
586 | JDIMENSION width = cinfo->output_width; | |||
587 | ||||
588 | for (row = 0; row < num_rows; row++) { | |||
589 | row_index = cquantize->row_index; | |||
590 | input_ptr = input_buf[row]; | |||
591 | output_ptr = output_buf[row]; | |||
592 | dither0 = cquantize->odither[0][row_index]; | |||
593 | dither1 = cquantize->odither[1][row_index]; | |||
594 | dither2 = cquantize->odither[2][row_index]; | |||
595 | col_index = 0; | |||
596 | ||||
597 | for (col = width; col > 0; col--) { | |||
598 | pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +((int) (colorindex0[((int) (*input_ptr++)) + dither0[col_index ]])) | |||
599 | dither0[col_index]])((int) (colorindex0[((int) (*input_ptr++)) + dither0[col_index ]])); | |||
600 | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +((int) (colorindex1[((int) (*input_ptr++)) + dither1[col_index ]])) | |||
601 | dither1[col_index]])((int) (colorindex1[((int) (*input_ptr++)) + dither1[col_index ]])); | |||
602 | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +((int) (colorindex2[((int) (*input_ptr++)) + dither2[col_index ]])) | |||
603 | dither2[col_index]])((int) (colorindex2[((int) (*input_ptr++)) + dither2[col_index ]])); | |||
604 | *output_ptr++ = (JSAMPLE) pixcode; | |||
605 | col_index = (col_index + 1) & ODITHER_MASK(16 -1); | |||
606 | } | |||
607 | row_index = (row_index + 1) & ODITHER_MASK(16 -1); | |||
608 | cquantize->row_index = row_index; | |||
609 | } | |||
610 | } | |||
611 | ||||
612 | ||||
613 | METHODDEF(void)static void | |||
614 | quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
615 | JSAMPARRAY output_buf, int num_rows) | |||
616 | /* General case, with Floyd-Steinberg dithering */ | |||
617 | { | |||
618 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
619 | register LOCFSERROR cur; /* current error or pixel value */ | |||
620 | LOCFSERROR belowerr; /* error for pixel below cur */ | |||
621 | LOCFSERROR bpreverr; /* error for below/prev col */ | |||
622 | LOCFSERROR bnexterr; /* error for below/next col */ | |||
623 | LOCFSERROR delta; | |||
624 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |||
625 | register JSAMPROW input_ptr; | |||
626 | register JSAMPROW output_ptr; | |||
627 | JSAMPROW colorindex_ci; | |||
628 | JSAMPROW colormap_ci; | |||
629 | int pixcode; | |||
630 | int nc = cinfo->out_color_components; | |||
631 | int dir; /* 1 for left-to-right, -1 for right-to-left */ | |||
632 | int dirnc; /* dir * nc */ | |||
633 | int ci; | |||
634 | int row; | |||
635 | JDIMENSION col; | |||
636 | JDIMENSION width = cinfo->output_width; | |||
637 | JSAMPLE *range_limit = cinfo->sample_range_limit; | |||
638 | SHIFT_TEMPS | |||
639 | ||||
640 | for (row = 0; row < num_rows; row++) { | |||
641 | /* Initialize output values to 0 so can process components separately */ | |||
642 | jzero_farjZeroFar((void FAR *) output_buf[row], | |||
643 | (size_t) (width * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)))); | |||
644 | for (ci = 0; ci < nc; ci++) { | |||
645 | input_ptr = input_buf[row] + ci; | |||
646 | output_ptr = output_buf[row]; | |||
647 | if (cquantize->on_odd_row) { | |||
648 | /* work right to left in this row */ | |||
649 | input_ptr += (width-1) * nc; /* so point to rightmost pixel */ | |||
650 | output_ptr += width-1; | |||
651 | dir = -1; | |||
652 | dirnc = -nc; | |||
653 | errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ | |||
654 | } else { | |||
655 | /* work left to right in this row */ | |||
656 | dir = 1; | |||
657 | dirnc = nc; | |||
658 | errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | |||
659 | } | |||
660 | colorindex_ci = cquantize->colorindex[ci]; | |||
661 | colormap_ci = cquantize->sv_colormap[ci]; | |||
662 | /* Preset error values: no error propagated to first pixel from left */ | |||
663 | cur = 0; | |||
664 | /* and no error propagated to row below yet */ | |||
665 | belowerr = bpreverr = 0; | |||
666 | ||||
667 | for (col = width; col > 0; col--) { | |||
668 | /* cur holds the error propagated from the previous pixel on the | |||
669 | * current line. Add the error propagated from the previous line | |||
670 | * to form the complete error correction term for this pixel, and | |||
671 | * round the error term (which is expressed * 16) to an integer. | |||
672 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |||
673 | * for either sign of the error value. | |||
674 | * Note: errorptr points to *previous* column's array entry. | |||
675 | */ | |||
676 | cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4)((cur + errorptr[dir] + 8) >> (4)); | |||
677 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |||
678 | * The maximum error is +- MAXJSAMPLE; this sets the required size | |||
679 | * of the range_limit array. | |||
680 | */ | |||
681 | cur += GETJSAMPLE(*input_ptr)((int) (*input_ptr)); | |||
682 | cur = GETJSAMPLE(range_limit[cur])((int) (range_limit[cur])); | |||
683 | /* Select output value, accumulate into output code for this pixel */ | |||
684 | pixcode = GETJSAMPLE(colorindex_ci[cur])((int) (colorindex_ci[cur])); | |||
685 | *output_ptr += (JSAMPLE) pixcode; | |||
686 | /* Compute actual representation error at this pixel */ | |||
687 | /* Note: we can do this even though we don't have the final */ | |||
688 | /* pixel code, because the colormap is orthogonal. */ | |||
689 | cur -= GETJSAMPLE(colormap_ci[pixcode])((int) (colormap_ci[pixcode])); | |||
690 | /* Compute error fractions to be propagated to adjacent pixels. | |||
691 | * Add these into the running sums, and simultaneously shift the | |||
692 | * next-line error sums left by 1 column. | |||
693 | */ | |||
694 | bnexterr = cur; | |||
695 | delta = cur * 2; | |||
696 | cur += delta; /* form error * 3 */ | |||
697 | errorptr[0] = (FSERROR) (bpreverr + cur); | |||
698 | cur += delta; /* form error * 5 */ | |||
699 | bpreverr = belowerr + cur; | |||
700 | belowerr = bnexterr; | |||
701 | cur += delta; /* form error * 7 */ | |||
702 | /* At this point cur contains the 7/16 error value to be propagated | |||
703 | * to the next pixel on the current line, and all the errors for the | |||
704 | * next line have been shifted over. We are therefore ready to move on. | |||
705 | */ | |||
706 | input_ptr += dirnc; /* advance input ptr to next column */ | |||
707 | output_ptr += dir; /* advance output ptr to next column */ | |||
708 | errorptr += dir; /* advance errorptr to current column */ | |||
709 | } | |||
710 | /* Post-loop cleanup: we must unload the final error value into the | |||
711 | * final fserrors[] entry. Note we need not unload belowerr because | |||
712 | * it is for the dummy column before or after the actual array. | |||
713 | */ | |||
714 | errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ | |||
715 | } | |||
716 | cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE0 : TRUE1); | |||
717 | } | |||
718 | } | |||
719 | ||||
720 | ||||
721 | /* | |||
722 | * Allocate workspace for Floyd-Steinberg errors. | |||
723 | */ | |||
724 | ||||
725 | LOCAL(void)static void | |||
726 | alloc_fs_workspace (j_decompress_ptr cinfo) | |||
727 | { | |||
728 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
729 | size_t arraysize; | |||
730 | int i; | |||
731 | ||||
732 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)((size_t) sizeof(FSERROR))); | |||
733 | for (i = 0; i < cinfo->out_color_components; i++) { | |||
734 | cquantize->fserrors[i] = (FSERRPTR) | |||
735 | (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE1, arraysize); | |||
736 | } | |||
737 | } | |||
738 | ||||
739 | ||||
740 | /* | |||
741 | * Initialize for one-pass color quantization. | |||
742 | */ | |||
743 | ||||
744 | METHODDEF(void)static void | |||
745 | start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |||
746 | { | |||
747 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
748 | size_t arraysize; | |||
749 | int i; | |||
750 | ||||
751 | /* Install my colormap. */ | |||
752 | cinfo->colormap = cquantize->sv_colormap; | |||
753 | cinfo->actual_number_of_colors = cquantize->sv_actual; | |||
754 | ||||
755 | /* Initialize for desired dithering mode. */ | |||
756 | switch (cinfo->dither_mode) { | |||
757 | case JDITHER_NONE: | |||
758 | if (cinfo->out_color_components == 3) | |||
759 | cquantize->pub.color_quantize = color_quantize3; | |||
760 | else | |||
761 | cquantize->pub.color_quantize = color_quantize; | |||
762 | break; | |||
763 | case JDITHER_ORDERED: | |||
764 | if (cinfo->out_color_components == 3) | |||
765 | cquantize->pub.color_quantize = quantize3_ord_dither; | |||
766 | else | |||
767 | cquantize->pub.color_quantize = quantize_ord_dither; | |||
768 | cquantize->row_index = 0; /* initialize state for ordered dither */ | |||
769 | /* If user changed to ordered dither from another mode, | |||
770 | * we must recreate the color index table with padding. | |||
771 | * This will cost extra space, but probably isn't very likely. | |||
772 | */ | |||
773 | if (! cquantize->is_padded) | |||
774 | create_colorindex(cinfo); | |||
775 | /* Create ordered-dither tables if we didn't already. */ | |||
776 | if (cquantize->odither[0] == NULL((void*)0)) | |||
777 | create_odither_tables(cinfo); | |||
778 | break; | |||
779 | case JDITHER_FS: | |||
780 | cquantize->pub.color_quantize = quantize_fs_dither; | |||
781 | cquantize->on_odd_row = FALSE0; /* initialize state for F-S dither */ | |||
782 | /* Allocate Floyd-Steinberg workspace if didn't already. */ | |||
783 | if (cquantize->fserrors[0] == NULL((void*)0)) | |||
784 | alloc_fs_workspace(cinfo); | |||
785 | /* Initialize the propagated errors to zero. */ | |||
786 | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)((size_t) sizeof(FSERROR))); | |||
787 | for (i = 0; i < cinfo->out_color_components; i++) | |||
788 | jzero_farjZeroFar((void FAR *) cquantize->fserrors[i], arraysize); | |||
789 | break; | |||
790 | default: | |||
791 | ERREXIT(cinfo, JERR_NOT_COMPILED)((cinfo)->err->msg_code = (JERR_NOT_COMPILED), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
792 | break; | |||
793 | } | |||
794 | } | |||
795 | ||||
796 | ||||
797 | /* | |||
798 | * Finish up at the end of the pass. | |||
799 | */ | |||
800 | ||||
801 | METHODDEF(void)static void | |||
802 | finish_pass_1_quant (j_decompress_ptr cinfo) | |||
803 | { | |||
804 | /* no work in 1-pass case */ | |||
805 | } | |||
806 | ||||
807 | ||||
808 | /* | |||
809 | * Switch to a new external colormap between output passes. | |||
810 | * Shouldn't get to this module! | |||
811 | */ | |||
812 | ||||
813 | METHODDEF(void)static void | |||
814 | new_color_map_1_quant (j_decompress_ptr cinfo) | |||
815 | { | |||
816 | ERREXIT(cinfo, JERR_MODE_CHANGE)((cinfo)->err->msg_code = (JERR_MODE_CHANGE), (*(cinfo) ->err->error_exit) ((j_common_ptr) (cinfo))); | |||
817 | } | |||
818 | ||||
819 | ||||
820 | /* | |||
821 | * Module initialization routine for 1-pass color quantization. | |||
822 | */ | |||
823 | ||||
824 | GLOBAL(void)void | |||
825 | jinit_1pass_quantizerjI1Quant (j_decompress_ptr cinfo) | |||
826 | { | |||
827 | my_cquantize_ptr cquantize; | |||
828 | ||||
829 | cquantize = (my_cquantize_ptr) | |||
830 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
831 | SIZEOF(my_cquantizer)((size_t) sizeof(my_cquantizer))); | |||
832 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | |||
833 | cquantize->pub.start_pass = start_pass_1_quant; | |||
834 | cquantize->pub.finish_pass = finish_pass_1_quant; | |||
835 | cquantize->pub.new_color_map = new_color_map_1_quant; | |||
836 | cquantize->fserrors[0] = NULL((void*)0); /* Flag FS workspace not allocated */ | |||
837 | cquantize->odither[0] = NULL((void*)0); /* Also flag odither arrays not allocated */ | |||
838 | ||||
839 | /* Make sure my internal arrays won't overflow */ | |||
840 | if (cinfo->out_color_components > MAX_Q_COMPS4) | |||
| ||||
841 | ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS)((cinfo)->err->msg_code = (JERR_QUANT_COMPONENTS), (cinfo )->err->msg_parm.i[0] = (4), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); | |||
842 | /* Make sure colormap indexes can be represented by JSAMPLEs */ | |||
843 | if (cinfo->desired_number_of_colors > (MAXJSAMPLE255+1)) | |||
844 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1)((cinfo)->err->msg_code = (JERR_QUANT_MANY_COLORS), (cinfo )->err->msg_parm.i[0] = (255 +1), (*(cinfo)->err-> error_exit) ((j_common_ptr) (cinfo))); | |||
845 | ||||
846 | /* Create the colormap and color index table. */ | |||
847 | create_colormap(cinfo); | |||
848 | create_colorindex(cinfo); | |||
849 | ||||
850 | /* Allocate Floyd-Steinberg workspace now if requested. | |||
851 | * We do this now since it is FAR storage and may affect the memory | |||
852 | * manager's space calculations. If the user changes to FS dither | |||
853 | * mode in a later pass, we will allocate the space then, and will | |||
854 | * possibly overrun the max_memory_to_use setting. | |||
855 | */ | |||
856 | if (cinfo->dither_mode == JDITHER_FS) | |||
857 | alloc_fs_workspace(cinfo); | |||
858 | } | |||
859 | ||||
860 | #endif /* QUANT_1PASS_SUPPORTED */ |