File: | jdk/src/hotspot/share/opto/matcher.cpp |
Warning: | line 2656, column 22 1st function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. | |||
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
4 | * | |||
5 | * This code is free software; you can redistribute it and/or modify it | |||
6 | * under the terms of the GNU General Public License version 2 only, as | |||
7 | * published by the Free Software Foundation. | |||
8 | * | |||
9 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
12 | * version 2 for more details (a copy is included in the LICENSE file that | |||
13 | * accompanied this code). | |||
14 | * | |||
15 | * You should have received a copy of the GNU General Public License version | |||
16 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
18 | * | |||
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
20 | * or visit www.oracle.com if you need additional information or have any | |||
21 | * questions. | |||
22 | * | |||
23 | */ | |||
24 | ||||
25 | #include "precompiled.hpp" | |||
26 | #include "gc/shared/barrierSet.hpp" | |||
27 | #include "gc/shared/c2/barrierSetC2.hpp" | |||
28 | #include "memory/allocation.inline.hpp" | |||
29 | #include "memory/resourceArea.hpp" | |||
30 | #include "oops/compressedOops.hpp" | |||
31 | #include "opto/ad.hpp" | |||
32 | #include "opto/addnode.hpp" | |||
33 | #include "opto/callnode.hpp" | |||
34 | #include "opto/idealGraphPrinter.hpp" | |||
35 | #include "opto/matcher.hpp" | |||
36 | #include "opto/memnode.hpp" | |||
37 | #include "opto/movenode.hpp" | |||
38 | #include "opto/opcodes.hpp" | |||
39 | #include "opto/regmask.hpp" | |||
40 | #include "opto/rootnode.hpp" | |||
41 | #include "opto/runtime.hpp" | |||
42 | #include "opto/type.hpp" | |||
43 | #include "opto/vectornode.hpp" | |||
44 | #include "runtime/os.hpp" | |||
45 | #include "runtime/sharedRuntime.hpp" | |||
46 | #include "utilities/align.hpp" | |||
47 | ||||
48 | OptoReg::Name OptoReg::c_frame_pointer; | |||
49 | ||||
50 | const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; | |||
51 | RegMask Matcher::mreg2regmask[_last_Mach_Reg]; | |||
52 | RegMask Matcher::caller_save_regmask; | |||
53 | RegMask Matcher::caller_save_regmask_exclude_soe; | |||
54 | RegMask Matcher::mh_caller_save_regmask; | |||
55 | RegMask Matcher::mh_caller_save_regmask_exclude_soe; | |||
56 | RegMask Matcher::STACK_ONLY_mask; | |||
57 | RegMask Matcher::c_frame_ptr_mask; | |||
58 | const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; | |||
59 | const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; | |||
60 | ||||
61 | //---------------------------Matcher------------------------------------------- | |||
62 | Matcher::Matcher() | |||
63 | : PhaseTransform( Phase::Ins_Select ), | |||
64 | _states_arena(Chunk::medium_size, mtCompiler), | |||
65 | _visited(&_states_arena), | |||
66 | _shared(&_states_arena), | |||
67 | _dontcare(&_states_arena), | |||
68 | _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), | |||
69 | _swallowed(swallowed), | |||
70 | _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), | |||
71 | _end_inst_chain_rule(_END_INST_CHAIN_RULE), | |||
72 | _must_clone(must_clone), | |||
73 | _shared_nodes(C->comp_arena()), | |||
74 | #ifndef PRODUCT | |||
75 | _old2new_map(C->comp_arena()), | |||
76 | _new2old_map(C->comp_arena()), | |||
77 | _reused(C->comp_arena()), | |||
78 | #endif // !PRODUCT | |||
79 | _allocation_started(false), | |||
80 | _ruleName(ruleName), | |||
81 | _register_save_policy(register_save_policy), | |||
82 | _c_reg_save_policy(c_reg_save_policy), | |||
83 | _register_save_type(register_save_type) { | |||
84 | C->set_matcher(this); | |||
85 | ||||
86 | idealreg2spillmask [Op_RegI] = NULL__null; | |||
87 | idealreg2spillmask [Op_RegN] = NULL__null; | |||
88 | idealreg2spillmask [Op_RegL] = NULL__null; | |||
89 | idealreg2spillmask [Op_RegF] = NULL__null; | |||
90 | idealreg2spillmask [Op_RegD] = NULL__null; | |||
91 | idealreg2spillmask [Op_RegP] = NULL__null; | |||
92 | idealreg2spillmask [Op_VecA] = NULL__null; | |||
93 | idealreg2spillmask [Op_VecS] = NULL__null; | |||
94 | idealreg2spillmask [Op_VecD] = NULL__null; | |||
95 | idealreg2spillmask [Op_VecX] = NULL__null; | |||
96 | idealreg2spillmask [Op_VecY] = NULL__null; | |||
97 | idealreg2spillmask [Op_VecZ] = NULL__null; | |||
98 | idealreg2spillmask [Op_RegFlags] = NULL__null; | |||
99 | idealreg2spillmask [Op_RegVectMask] = NULL__null; | |||
100 | ||||
101 | idealreg2debugmask [Op_RegI] = NULL__null; | |||
102 | idealreg2debugmask [Op_RegN] = NULL__null; | |||
103 | idealreg2debugmask [Op_RegL] = NULL__null; | |||
104 | idealreg2debugmask [Op_RegF] = NULL__null; | |||
105 | idealreg2debugmask [Op_RegD] = NULL__null; | |||
106 | idealreg2debugmask [Op_RegP] = NULL__null; | |||
107 | idealreg2debugmask [Op_VecA] = NULL__null; | |||
108 | idealreg2debugmask [Op_VecS] = NULL__null; | |||
109 | idealreg2debugmask [Op_VecD] = NULL__null; | |||
110 | idealreg2debugmask [Op_VecX] = NULL__null; | |||
111 | idealreg2debugmask [Op_VecY] = NULL__null; | |||
112 | idealreg2debugmask [Op_VecZ] = NULL__null; | |||
113 | idealreg2debugmask [Op_RegFlags] = NULL__null; | |||
114 | idealreg2debugmask [Op_RegVectMask] = NULL__null; | |||
115 | ||||
116 | idealreg2mhdebugmask[Op_RegI] = NULL__null; | |||
117 | idealreg2mhdebugmask[Op_RegN] = NULL__null; | |||
118 | idealreg2mhdebugmask[Op_RegL] = NULL__null; | |||
119 | idealreg2mhdebugmask[Op_RegF] = NULL__null; | |||
120 | idealreg2mhdebugmask[Op_RegD] = NULL__null; | |||
121 | idealreg2mhdebugmask[Op_RegP] = NULL__null; | |||
122 | idealreg2mhdebugmask[Op_VecA] = NULL__null; | |||
123 | idealreg2mhdebugmask[Op_VecS] = NULL__null; | |||
124 | idealreg2mhdebugmask[Op_VecD] = NULL__null; | |||
125 | idealreg2mhdebugmask[Op_VecX] = NULL__null; | |||
126 | idealreg2mhdebugmask[Op_VecY] = NULL__null; | |||
127 | idealreg2mhdebugmask[Op_VecZ] = NULL__null; | |||
128 | idealreg2mhdebugmask[Op_RegFlags] = NULL__null; | |||
129 | idealreg2mhdebugmask[Op_RegVectMask] = NULL__null; | |||
130 | ||||
131 | debug_only(_mem_node = NULL;)_mem_node = __null; // Ideal memory node consumed by mach node | |||
132 | } | |||
133 | ||||
134 | //------------------------------warp_incoming_stk_arg------------------------ | |||
135 | // This warps a VMReg into an OptoReg::Name | |||
136 | OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { | |||
137 | OptoReg::Name warped; | |||
138 | if( reg->is_stack() ) { // Stack slot argument? | |||
139 | warped = OptoReg::add(_old_SP, reg->reg2stack() ); | |||
140 | warped = OptoReg::add(warped, C->out_preserve_stack_slots()); | |||
141 | if( warped >= _in_arg_limit ) | |||
142 | _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen | |||
143 | if (!RegMask::can_represent_arg(warped)) { | |||
144 | // the compiler cannot represent this method's calling sequence | |||
145 | C->record_method_not_compilable("unsupported incoming calling sequence"); | |||
146 | return OptoReg::Bad; | |||
147 | } | |||
148 | return warped; | |||
149 | } | |||
150 | return OptoReg::as_OptoReg(reg); | |||
151 | } | |||
152 | ||||
153 | //---------------------------compute_old_SP------------------------------------ | |||
154 | OptoReg::Name Compile::compute_old_SP() { | |||
155 | int fixed = fixed_slots(); | |||
156 | int preserve = in_preserve_stack_slots(); | |||
157 | return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots())); | |||
158 | } | |||
159 | ||||
160 | ||||
161 | ||||
162 | #ifdef ASSERT1 | |||
163 | void Matcher::verify_new_nodes_only(Node* xroot) { | |||
164 | // Make sure that the new graph only references new nodes | |||
165 | ResourceMark rm; | |||
166 | Unique_Node_List worklist; | |||
167 | VectorSet visited; | |||
168 | worklist.push(xroot); | |||
169 | while (worklist.size() > 0) { | |||
170 | Node* n = worklist.pop(); | |||
171 | visited.set(n->_idx); | |||
172 | assert(C->node_arena()->contains(n), "dead node")do { if (!(C->node_arena()->contains(n))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 172, "assert(" "C->node_arena()->contains(n)" ") failed" , "dead node"); ::breakpoint(); } } while (0); | |||
173 | for (uint j = 0; j < n->req(); j++) { | |||
174 | Node* in = n->in(j); | |||
175 | if (in != NULL__null) { | |||
176 | assert(C->node_arena()->contains(in), "dead node")do { if (!(C->node_arena()->contains(in))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 176, "assert(" "C->node_arena()->contains(in)" ") failed" , "dead node"); ::breakpoint(); } } while (0); | |||
177 | if (!visited.test(in->_idx)) { | |||
178 | worklist.push(in); | |||
179 | } | |||
180 | } | |||
181 | } | |||
182 | } | |||
183 | } | |||
184 | #endif | |||
185 | ||||
186 | ||||
187 | //---------------------------match--------------------------------------------- | |||
188 | void Matcher::match( ) { | |||
189 | if( MaxLabelRootDepth < 100 ) { // Too small? | |||
190 | assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 190, "assert(" "false" ") failed", "invalid MaxLabelRootDepth, increase it to 100 minimum" ); ::breakpoint(); } } while (0); | |||
191 | MaxLabelRootDepth = 100; | |||
192 | } | |||
193 | // One-time initialization of some register masks. | |||
194 | init_spill_mask( C->root()->in(1) ); | |||
195 | _return_addr_mask = return_addr(); | |||
196 | #ifdef _LP641 | |||
197 | // Pointers take 2 slots in 64-bit land | |||
198 | _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); | |||
199 | #endif | |||
200 | ||||
201 | // Map a Java-signature return type into return register-value | |||
202 | // machine registers for 0, 1 and 2 returned values. | |||
203 | const TypeTuple *range = C->tf()->range(); | |||
204 | if( range->cnt() > TypeFunc::Parms ) { // If not a void function | |||
205 | // Get ideal-register return type | |||
206 | uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); | |||
207 | // Get machine return register | |||
208 | uint sop = C->start()->Opcode(); | |||
209 | OptoRegPair regs = return_value(ireg); | |||
210 | ||||
211 | // And mask for same | |||
212 | _return_value_mask = RegMask(regs.first()); | |||
213 | if( OptoReg::is_valid(regs.second()) ) | |||
214 | _return_value_mask.Insert(regs.second()); | |||
215 | } | |||
216 | ||||
217 | // --------------- | |||
218 | // Frame Layout | |||
219 | ||||
220 | // Need the method signature to determine the incoming argument types, | |||
221 | // because the types determine which registers the incoming arguments are | |||
222 | // in, and this affects the matched code. | |||
223 | const TypeTuple *domain = C->tf()->domain(); | |||
224 | uint argcnt = domain->cnt() - TypeFunc::Parms; | |||
225 | BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType )); | |||
226 | VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair )); | |||
227 | _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt )(OptoRegPair*) resource_allocate_bytes((argcnt) * sizeof(OptoRegPair )); | |||
228 | _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt )(RegMask*) resource_allocate_bytes((argcnt) * sizeof(RegMask) ); | |||
229 | uint i; | |||
230 | for( i = 0; i<argcnt; i++ ) { | |||
231 | sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); | |||
232 | } | |||
233 | ||||
234 | // Pass array of ideal registers and length to USER code (from the AD file) | |||
235 | // that will convert this to an array of register numbers. | |||
236 | const StartNode *start = C->start(); | |||
237 | start->calling_convention( sig_bt, vm_parm_regs, argcnt ); | |||
238 | #ifdef ASSERT1 | |||
239 | // Sanity check users' calling convention. Real handy while trying to | |||
240 | // get the initial port correct. | |||
241 | { for (uint i = 0; i<argcnt; i++) { | |||
242 | if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { | |||
243 | assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" )do { if (!(domain->field_at(i+TypeFunc::Parms)==Type::HALF )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 243, "assert(" "domain->field_at(i+TypeFunc::Parms)==Type::HALF" ") failed", "only allowed on halve"); ::breakpoint(); } } while (0); | |||
244 | _parm_regs[i].set_bad(); | |||
245 | continue; | |||
246 | } | |||
247 | VMReg parm_reg = vm_parm_regs[i].first(); | |||
248 | assert(parm_reg->is_valid(), "invalid arg?")do { if (!(parm_reg->is_valid())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 248, "assert(" "parm_reg->is_valid()" ") failed", "invalid arg?" ); ::breakpoint(); } } while (0); | |||
249 | if (parm_reg->is_reg()) { | |||
250 | OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); | |||
251 | assert(can_be_java_arg(opto_parm_reg) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) | |||
252 | C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) | |||
253 | opto_parm_reg == inline_cache_reg(),do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) | |||
254 | "parameters in register must be preserved by runtime stubs")do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0); | |||
255 | } | |||
256 | for (uint j = 0; j < i; j++) { | |||
257 | assert(parm_reg != vm_parm_regs[j].first(),do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0) | |||
258 | "calling conv. must produce distinct regs")do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0); | |||
259 | } | |||
260 | } | |||
261 | } | |||
262 | #endif | |||
263 | ||||
264 | // Do some initial frame layout. | |||
265 | ||||
266 | // Compute the old incoming SP (may be called FP) as | |||
267 | // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. | |||
268 | _old_SP = C->compute_old_SP(); | |||
269 | assert( is_even(_old_SP), "must be even" )do { if (!(is_even(_old_SP))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 269, "assert(" "is_even(_old_SP)" ") failed", "must be even" ); ::breakpoint(); } } while (0); | |||
270 | ||||
271 | // Compute highest incoming stack argument as | |||
272 | // _old_SP + out_preserve_stack_slots + incoming argument size. | |||
273 | _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); | |||
274 | assert( is_even(_in_arg_limit), "out_preserve must be even" )do { if (!(is_even(_in_arg_limit))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 274, "assert(" "is_even(_in_arg_limit)" ") failed", "out_preserve must be even" ); ::breakpoint(); } } while (0); | |||
275 | for( i = 0; i < argcnt; i++ ) { | |||
276 | // Permit args to have no register | |||
277 | _calling_convention_mask[i].Clear(); | |||
278 | if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { | |||
279 | continue; | |||
280 | } | |||
281 | // calling_convention returns stack arguments as a count of | |||
282 | // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to | |||
283 | // the allocators point of view, taking into account all the | |||
284 | // preserve area, locks & pad2. | |||
285 | ||||
286 | OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); | |||
287 | if( OptoReg::is_valid(reg1)) | |||
288 | _calling_convention_mask[i].Insert(reg1); | |||
289 | ||||
290 | OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); | |||
291 | if( OptoReg::is_valid(reg2)) | |||
292 | _calling_convention_mask[i].Insert(reg2); | |||
293 | ||||
294 | // Saved biased stack-slot register number | |||
295 | _parm_regs[i].set_pair(reg2, reg1); | |||
296 | } | |||
297 | ||||
298 | // Finally, make sure the incoming arguments take up an even number of | |||
299 | // words, in case the arguments or locals need to contain doubleword stack | |||
300 | // slots. The rest of the system assumes that stack slot pairs (in | |||
301 | // particular, in the spill area) which look aligned will in fact be | |||
302 | // aligned relative to the stack pointer in the target machine. Double | |||
303 | // stack slots will always be allocated aligned. | |||
304 | _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong)); | |||
305 | ||||
306 | // Compute highest outgoing stack argument as | |||
307 | // _new_SP + out_preserve_stack_slots + max(outgoing argument size). | |||
308 | _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); | |||
309 | assert( is_even(_out_arg_limit), "out_preserve must be even" )do { if (!(is_even(_out_arg_limit))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 309, "assert(" "is_even(_out_arg_limit)" ") failed", "out_preserve must be even" ); ::breakpoint(); } } while (0); | |||
310 | ||||
311 | if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { | |||
312 | // the compiler cannot represent this method's calling sequence | |||
313 | C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); | |||
314 | } | |||
315 | ||||
316 | if (C->failing()) return; // bailed out on incoming arg failure | |||
317 | ||||
318 | // --------------- | |||
319 | // Collect roots of matcher trees. Every node for which | |||
320 | // _shared[_idx] is cleared is guaranteed to not be shared, and thus | |||
321 | // can be a valid interior of some tree. | |||
322 | find_shared( C->root() ); | |||
323 | find_shared( C->top() ); | |||
324 | ||||
325 | C->print_method(PHASE_BEFORE_MATCHING); | |||
326 | ||||
327 | // Create new ideal node ConP #NULL even if it does exist in old space | |||
328 | // to avoid false sharing if the corresponding mach node is not used. | |||
329 | // The corresponding mach node is only used in rare cases for derived | |||
330 | // pointers. | |||
331 | Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); | |||
332 | ||||
333 | // Swap out to old-space; emptying new-space | |||
334 | Arena *old = C->node_arena()->move_contents(C->old_arena()); | |||
335 | ||||
336 | // Save debug and profile information for nodes in old space: | |||
337 | _old_node_note_array = C->node_note_array(); | |||
338 | if (_old_node_note_array != NULL__null) { | |||
339 | C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> | |||
340 | (C->comp_arena(), _old_node_note_array->length(), | |||
341 | 0, NULL__null)); | |||
342 | } | |||
343 | ||||
344 | // Pre-size the new_node table to avoid the need for range checks. | |||
345 | grow_new_node_array(C->unique()); | |||
346 | ||||
347 | // Reset node counter so MachNodes start with _idx at 0 | |||
348 | int live_nodes = C->live_nodes(); | |||
349 | C->set_unique(0); | |||
350 | C->reset_dead_node_list(); | |||
351 | ||||
352 | // Recursively match trees from old space into new space. | |||
353 | // Correct leaves of new-space Nodes; they point to old-space. | |||
354 | _visited.clear(); | |||
355 | C->set_cached_top_node(xform( C->top(), live_nodes )); | |||
356 | if (!C->failing()) { | |||
357 | Node* xroot = xform( C->root(), 1 ); | |||
358 | if (xroot == NULL__null) { | |||
359 | Matcher::soft_match_failure(); // recursive matching process failed | |||
360 | C->record_method_not_compilable("instruction match failed"); | |||
361 | } else { | |||
362 | // During matching shared constants were attached to C->root() | |||
363 | // because xroot wasn't available yet, so transfer the uses to | |||
364 | // the xroot. | |||
365 | for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { | |||
366 | Node* n = C->root()->fast_out(j); | |||
367 | if (C->node_arena()->contains(n)) { | |||
368 | assert(n->in(0) == C->root(), "should be control user")do { if (!(n->in(0) == C->root())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 368, "assert(" "n->in(0) == C->root()" ") failed", "should be control user" ); ::breakpoint(); } } while (0); | |||
369 | n->set_req(0, xroot); | |||
370 | --j; | |||
371 | --jmax; | |||
372 | } | |||
373 | } | |||
374 | ||||
375 | // Generate new mach node for ConP #NULL | |||
376 | assert(new_ideal_null != NULL, "sanity")do { if (!(new_ideal_null != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 376, "assert(" "new_ideal_null != __null" ") failed", "sanity" ); ::breakpoint(); } } while (0); | |||
377 | _mach_null = match_tree(new_ideal_null); | |||
378 | // Don't set control, it will confuse GCM since there are no uses. | |||
379 | // The control will be set when this node is used first time | |||
380 | // in find_base_for_derived(). | |||
381 | assert(_mach_null != NULL, "")do { if (!(_mach_null != __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 381, "assert(" "_mach_null != __null" ") failed", ""); ::breakpoint (); } } while (0); | |||
382 | ||||
383 | C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL__null); | |||
384 | ||||
385 | #ifdef ASSERT1 | |||
386 | verify_new_nodes_only(xroot); | |||
387 | #endif | |||
388 | } | |||
389 | } | |||
390 | if (C->top() == NULL__null || C->root() == NULL__null) { | |||
391 | C->record_method_not_compilable("graph lost"); // %%% cannot happen? | |||
392 | } | |||
393 | if (C->failing()) { | |||
394 | // delete old; | |||
395 | old->destruct_contents(); | |||
396 | return; | |||
397 | } | |||
398 | assert( C->top(), "" )do { if (!(C->top())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 398, "assert(" "C->top()" ") failed", ""); ::breakpoint( ); } } while (0); | |||
399 | assert( C->root(), "" )do { if (!(C->root())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 399, "assert(" "C->root()" ") failed", ""); ::breakpoint (); } } while (0); | |||
400 | validate_null_checks(); | |||
401 | ||||
402 | // Now smoke old-space | |||
403 | NOT_DEBUG( old->destruct_contents() ); | |||
404 | ||||
405 | // ------------------------ | |||
406 | // Set up save-on-entry registers. | |||
407 | Fixup_Save_On_Entry( ); | |||
408 | ||||
409 | { // Cleanup mach IR after selection phase is over. | |||
410 | Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]); | |||
411 | do_postselect_cleanup(); | |||
412 | if (C->failing()) return; | |||
413 | assert(verify_after_postselect_cleanup(), "")do { if (!(verify_after_postselect_cleanup())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 413, "assert(" "verify_after_postselect_cleanup()" ") failed" , ""); ::breakpoint(); } } while (0); | |||
414 | } | |||
415 | } | |||
416 | ||||
417 | //------------------------------Fixup_Save_On_Entry---------------------------- | |||
418 | // The stated purpose of this routine is to take care of save-on-entry | |||
419 | // registers. However, the overall goal of the Match phase is to convert into | |||
420 | // machine-specific instructions which have RegMasks to guide allocation. | |||
421 | // So what this procedure really does is put a valid RegMask on each input | |||
422 | // to the machine-specific variations of all Return, TailCall and Halt | |||
423 | // instructions. It also adds edgs to define the save-on-entry values (and of | |||
424 | // course gives them a mask). | |||
425 | ||||
426 | static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { | |||
427 | RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size )(RegMask*) resource_allocate_bytes((size) * sizeof(RegMask)); | |||
428 | // Do all the pre-defined register masks | |||
429 | rms[TypeFunc::Control ] = RegMask::Empty; | |||
430 | rms[TypeFunc::I_O ] = RegMask::Empty; | |||
431 | rms[TypeFunc::Memory ] = RegMask::Empty; | |||
432 | rms[TypeFunc::ReturnAdr] = ret_adr; | |||
433 | rms[TypeFunc::FramePtr ] = fp; | |||
434 | return rms; | |||
435 | } | |||
436 | ||||
437 | const int Matcher::scalable_predicate_reg_slots() { | |||
438 | assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(),do { if (!(Matcher::has_predicated_vectors() && Matcher ::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()" ") failed", "scalable predicate vector should be supported") ; ::breakpoint(); } } while (0) | |||
439 | "scalable predicate vector should be supported")do { if (!(Matcher::has_predicated_vectors() && Matcher ::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()" ") failed", "scalable predicate vector should be supported") ; ::breakpoint(); } } while (0); | |||
440 | int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte; | |||
441 | // We assume each predicate register is one-eighth of the size of | |||
442 | // scalable vector register, one mask bit per vector byte. | |||
443 | int predicate_reg_bit_size = vector_reg_bit_size >> 3; | |||
444 | // Compute number of slots which is required when scalable predicate | |||
445 | // register is spilled. E.g. if scalable vector register is 640 bits, | |||
446 | // predicate register is 80 bits, which is 2.5 * slots. | |||
447 | // We will round up the slot number to power of 2, which is required | |||
448 | // by find_first_set(). | |||
449 | int slots = predicate_reg_bit_size & (BitsPerInt - 1) | |||
450 | ? (predicate_reg_bit_size >> LogBitsPerInt) + 1 | |||
451 | : predicate_reg_bit_size >> LogBitsPerInt; | |||
452 | return round_up_power_of_2(slots); | |||
453 | } | |||
454 | ||||
455 | #define NOF_STACK_MASKS(3*13) (3*13) | |||
456 | ||||
457 | // Create the initial stack mask used by values spilling to the stack. | |||
458 | // Disallow any debug info in outgoing argument areas by setting the | |||
459 | // initial mask accordingly. | |||
460 | void Matcher::init_first_stack_mask() { | |||
461 | ||||
462 | // Allocate storage for spill masks as masks for the appropriate load type. | |||
463 | RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS(3*13)); | |||
464 | ||||
465 | // Initialize empty placeholder masks into the newly allocated arena | |||
466 | for (int i = 0; i < NOF_STACK_MASKS(3*13); i++) { | |||
467 | new (rms + i) RegMask(); | |||
468 | } | |||
469 | ||||
470 | idealreg2spillmask [Op_RegN] = &rms[0]; | |||
471 | idealreg2spillmask [Op_RegI] = &rms[1]; | |||
472 | idealreg2spillmask [Op_RegL] = &rms[2]; | |||
473 | idealreg2spillmask [Op_RegF] = &rms[3]; | |||
474 | idealreg2spillmask [Op_RegD] = &rms[4]; | |||
475 | idealreg2spillmask [Op_RegP] = &rms[5]; | |||
476 | ||||
477 | idealreg2debugmask [Op_RegN] = &rms[6]; | |||
478 | idealreg2debugmask [Op_RegI] = &rms[7]; | |||
479 | idealreg2debugmask [Op_RegL] = &rms[8]; | |||
480 | idealreg2debugmask [Op_RegF] = &rms[9]; | |||
481 | idealreg2debugmask [Op_RegD] = &rms[10]; | |||
482 | idealreg2debugmask [Op_RegP] = &rms[11]; | |||
483 | ||||
484 | idealreg2mhdebugmask[Op_RegN] = &rms[12]; | |||
485 | idealreg2mhdebugmask[Op_RegI] = &rms[13]; | |||
486 | idealreg2mhdebugmask[Op_RegL] = &rms[14]; | |||
487 | idealreg2mhdebugmask[Op_RegF] = &rms[15]; | |||
488 | idealreg2mhdebugmask[Op_RegD] = &rms[16]; | |||
489 | idealreg2mhdebugmask[Op_RegP] = &rms[17]; | |||
490 | ||||
491 | idealreg2spillmask [Op_VecA] = &rms[18]; | |||
492 | idealreg2spillmask [Op_VecS] = &rms[19]; | |||
493 | idealreg2spillmask [Op_VecD] = &rms[20]; | |||
494 | idealreg2spillmask [Op_VecX] = &rms[21]; | |||
495 | idealreg2spillmask [Op_VecY] = &rms[22]; | |||
496 | idealreg2spillmask [Op_VecZ] = &rms[23]; | |||
497 | ||||
498 | idealreg2debugmask [Op_VecA] = &rms[24]; | |||
499 | idealreg2debugmask [Op_VecS] = &rms[25]; | |||
500 | idealreg2debugmask [Op_VecD] = &rms[26]; | |||
501 | idealreg2debugmask [Op_VecX] = &rms[27]; | |||
502 | idealreg2debugmask [Op_VecY] = &rms[28]; | |||
503 | idealreg2debugmask [Op_VecZ] = &rms[29]; | |||
504 | ||||
505 | idealreg2mhdebugmask[Op_VecA] = &rms[30]; | |||
506 | idealreg2mhdebugmask[Op_VecS] = &rms[31]; | |||
507 | idealreg2mhdebugmask[Op_VecD] = &rms[32]; | |||
508 | idealreg2mhdebugmask[Op_VecX] = &rms[33]; | |||
509 | idealreg2mhdebugmask[Op_VecY] = &rms[34]; | |||
510 | idealreg2mhdebugmask[Op_VecZ] = &rms[35]; | |||
511 | ||||
512 | idealreg2spillmask [Op_RegVectMask] = &rms[36]; | |||
513 | idealreg2debugmask [Op_RegVectMask] = &rms[37]; | |||
514 | idealreg2mhdebugmask[Op_RegVectMask] = &rms[38]; | |||
515 | ||||
516 | OptoReg::Name i; | |||
517 | ||||
518 | // At first, start with the empty mask | |||
519 | C->FIRST_STACK_mask().Clear(); | |||
520 | ||||
521 | // Add in the incoming argument area | |||
522 | OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); | |||
523 | for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { | |||
524 | C->FIRST_STACK_mask().Insert(i); | |||
525 | } | |||
526 | // Add in all bits past the outgoing argument area | |||
527 | guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit ,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))" ") failed", "must be able to represent all call arguments in reg mask" ); ::breakpoint(); } } while (0) | |||
528 | "must be able to represent all call arguments in reg mask")do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit ,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))" ") failed", "must be able to represent all call arguments in reg mask" ); ::breakpoint(); } } while (0); | |||
529 | OptoReg::Name init = _out_arg_limit; | |||
530 | for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { | |||
531 | C->FIRST_STACK_mask().Insert(i); | |||
532 | } | |||
533 | // Finally, set the "infinite stack" bit. | |||
534 | C->FIRST_STACK_mask().set_AllStack(); | |||
535 | ||||
536 | // Make spill masks. Registers for their class, plus FIRST_STACK_mask. | |||
537 | RegMask aligned_stack_mask = C->FIRST_STACK_mask(); | |||
538 | // Keep spill masks aligned. | |||
539 | aligned_stack_mask.clear_to_pairs(); | |||
540 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 540, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | |||
541 | RegMask scalable_stack_mask = aligned_stack_mask; | |||
542 | ||||
543 | *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; | |||
544 | #ifdef _LP641 | |||
545 | *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; | |||
546 | idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); | |||
547 | idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); | |||
548 | #else | |||
549 | idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); | |||
550 | #endif | |||
551 | *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; | |||
552 | idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); | |||
553 | *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; | |||
554 | idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); | |||
555 | *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; | |||
556 | idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); | |||
557 | *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; | |||
558 | idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); | |||
559 | ||||
560 | if (Matcher::has_predicated_vectors()) { | |||
561 | *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; | |||
562 | idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask); | |||
563 | } else { | |||
564 | *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty; | |||
565 | } | |||
566 | ||||
567 | if (Matcher::vector_size_supported(T_BYTE,4)) { | |||
568 | *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; | |||
569 | idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); | |||
570 | } else { | |||
571 | *idealreg2spillmask[Op_VecS] = RegMask::Empty; | |||
572 | } | |||
573 | ||||
574 | if (Matcher::vector_size_supported(T_FLOAT,2)) { | |||
575 | // For VecD we need dual alignment and 8 bytes (2 slots) for spills. | |||
576 | // RA guarantees such alignment since it is needed for Double and Long values. | |||
577 | *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; | |||
578 | idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); | |||
579 | } else { | |||
580 | *idealreg2spillmask[Op_VecD] = RegMask::Empty; | |||
581 | } | |||
582 | ||||
583 | if (Matcher::vector_size_supported(T_FLOAT,4)) { | |||
584 | // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. | |||
585 | // | |||
586 | // RA can use input arguments stack slots for spills but until RA | |||
587 | // we don't know frame size and offset of input arg stack slots. | |||
588 | // | |||
589 | // Exclude last input arg stack slots to avoid spilling vectors there | |||
590 | // otherwise vector spills could stomp over stack slots in caller frame. | |||
591 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | |||
592 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { | |||
593 | aligned_stack_mask.Remove(in); | |||
594 | in = OptoReg::add(in, -1); | |||
595 | } | |||
596 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); | |||
597 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 597, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | |||
598 | *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; | |||
599 | idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); | |||
600 | } else { | |||
601 | *idealreg2spillmask[Op_VecX] = RegMask::Empty; | |||
602 | } | |||
603 | ||||
604 | if (Matcher::vector_size_supported(T_FLOAT,8)) { | |||
605 | // For VecY we need octo alignment and 32 bytes (8 slots) for spills. | |||
606 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | |||
607 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { | |||
608 | aligned_stack_mask.Remove(in); | |||
609 | in = OptoReg::add(in, -1); | |||
610 | } | |||
611 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); | |||
612 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 612, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | |||
613 | *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; | |||
614 | idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); | |||
615 | } else { | |||
616 | *idealreg2spillmask[Op_VecY] = RegMask::Empty; | |||
617 | } | |||
618 | ||||
619 | if (Matcher::vector_size_supported(T_FLOAT,16)) { | |||
620 | // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. | |||
621 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | |||
622 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { | |||
623 | aligned_stack_mask.Remove(in); | |||
624 | in = OptoReg::add(in, -1); | |||
625 | } | |||
626 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); | |||
627 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 627, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | |||
628 | *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; | |||
629 | idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); | |||
630 | } else { | |||
631 | *idealreg2spillmask[Op_VecZ] = RegMask::Empty; | |||
632 | } | |||
633 | ||||
634 | if (Matcher::supports_scalable_vector()) { | |||
635 | int k = 1; | |||
636 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | |||
637 | if (Matcher::has_predicated_vectors()) { | |||
638 | // Exclude last input arg stack slots to avoid spilling vector register there, | |||
639 | // otherwise RegVectMask spills could stomp over stack slots in caller frame. | |||
640 | for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) { | |||
641 | scalable_stack_mask.Remove(in); | |||
642 | in = OptoReg::add(in, -1); | |||
643 | } | |||
644 | ||||
645 | // For RegVectMask | |||
646 | scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots()); | |||
647 | assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 647, "assert(" "scalable_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | |||
648 | *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; | |||
649 | idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask); | |||
650 | } | |||
651 | ||||
652 | // Exclude last input arg stack slots to avoid spilling vector register there, | |||
653 | // otherwise vector spills could stomp over stack slots in caller frame. | |||
654 | for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) { | |||
655 | scalable_stack_mask.Remove(in); | |||
656 | in = OptoReg::add(in, -1); | |||
657 | } | |||
658 | ||||
659 | // For VecA | |||
660 | scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA); | |||
661 | assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 661, "assert(" "scalable_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | |||
662 | *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA]; | |||
663 | idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask); | |||
664 | } else { | |||
665 | *idealreg2spillmask[Op_VecA] = RegMask::Empty; | |||
666 | } | |||
667 | ||||
668 | if (UseFPUForSpilling) { | |||
669 | // This mask logic assumes that the spill operations are | |||
670 | // symmetric and that the registers involved are the same size. | |||
671 | // On sparc for instance we may have to use 64 bit moves will | |||
672 | // kill 2 registers when used with F0-F31. | |||
673 | idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); | |||
674 | idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); | |||
675 | #ifdef _LP641 | |||
676 | idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); | |||
677 | idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); | |||
678 | idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); | |||
679 | idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); | |||
680 | #else | |||
681 | idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); | |||
682 | #ifdef ARM | |||
683 | // ARM has support for moving 64bit values between a pair of | |||
684 | // integer registers and a double register | |||
685 | idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); | |||
686 | idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); | |||
687 | #endif | |||
688 | #endif | |||
689 | } | |||
690 | ||||
691 | // Make up debug masks. Any spill slot plus callee-save (SOE) registers. | |||
692 | // Caller-save (SOC, AS) registers are assumed to be trashable by the various | |||
693 | // inline-cache fixup routines. | |||
694 | *idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN]; | |||
695 | *idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI]; | |||
696 | *idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL]; | |||
697 | *idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF]; | |||
698 | *idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD]; | |||
699 | *idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP]; | |||
700 | *idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; | |||
701 | ||||
702 | *idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA]; | |||
703 | *idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS]; | |||
704 | *idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD]; | |||
705 | *idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX]; | |||
706 | *idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY]; | |||
707 | *idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ]; | |||
708 | ||||
709 | *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN]; | |||
710 | *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI]; | |||
711 | *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL]; | |||
712 | *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF]; | |||
713 | *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD]; | |||
714 | *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP]; | |||
715 | *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; | |||
716 | ||||
717 | *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA]; | |||
718 | *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS]; | |||
719 | *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD]; | |||
720 | *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX]; | |||
721 | *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY]; | |||
722 | *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ]; | |||
723 | ||||
724 | // Prevent stub compilations from attempting to reference | |||
725 | // callee-saved (SOE) registers from debug info | |||
726 | bool exclude_soe = !Compile::current()->is_method_compilation(); | |||
727 | RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask; | |||
728 | RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask; | |||
729 | ||||
730 | idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask); | |||
731 | idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask); | |||
732 | idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask); | |||
733 | idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask); | |||
734 | idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask); | |||
735 | idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask); | |||
736 | idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask); | |||
737 | ||||
738 | idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask); | |||
739 | idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask); | |||
740 | idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask); | |||
741 | idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask); | |||
742 | idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask); | |||
743 | idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask); | |||
744 | ||||
745 | idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask); | |||
746 | idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask); | |||
747 | idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask); | |||
748 | idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask); | |||
749 | idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask); | |||
750 | idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask); | |||
751 | idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask); | |||
752 | ||||
753 | idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask); | |||
754 | idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask); | |||
755 | idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask); | |||
756 | idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask); | |||
757 | idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask); | |||
758 | idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask); | |||
759 | } | |||
760 | ||||
761 | //---------------------------is_save_on_entry---------------------------------- | |||
762 | bool Matcher::is_save_on_entry(int reg) { | |||
763 | return | |||
764 | _register_save_policy[reg] == 'E' || | |||
765 | _register_save_policy[reg] == 'A'; // Save-on-entry register? | |||
766 | } | |||
767 | ||||
768 | //---------------------------Fixup_Save_On_Entry------------------------------- | |||
769 | void Matcher::Fixup_Save_On_Entry( ) { | |||
770 | init_first_stack_mask(); | |||
771 | ||||
772 | Node *root = C->root(); // Short name for root | |||
773 | // Count number of save-on-entry registers. | |||
774 | uint soe_cnt = number_of_saved_registers(); | |||
775 | uint i; | |||
776 | ||||
777 | // Find the procedure Start Node | |||
778 | StartNode *start = C->start(); | |||
779 | assert( start, "Expect a start node" )do { if (!(start)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 779, "assert(" "start" ") failed", "Expect a start node"); :: breakpoint(); } } while (0); | |||
780 | ||||
781 | // Input RegMask array shared by all Returns. | |||
782 | // The type for doubles and longs has a count of 2, but | |||
783 | // there is only 1 returned value | |||
784 | uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); | |||
785 | RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | |||
786 | // Returns have 0 or 1 returned values depending on call signature. | |||
787 | // Return register is specified by return_value in the AD file. | |||
788 | if (ret_edge_cnt > TypeFunc::Parms) | |||
789 | ret_rms[TypeFunc::Parms+0] = _return_value_mask; | |||
790 | ||||
791 | // Input RegMask array shared by all Rethrows. | |||
792 | uint reth_edge_cnt = TypeFunc::Parms+1; | |||
793 | RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | |||
794 | // Rethrow takes exception oop only, but in the argument 0 slot. | |||
795 | OptoReg::Name reg = find_receiver(); | |||
796 | if (reg >= 0) { | |||
797 | reth_rms[TypeFunc::Parms] = mreg2regmask[reg]; | |||
798 | #ifdef _LP641 | |||
799 | // Need two slots for ptrs in 64-bit land | |||
800 | reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1)); | |||
801 | #endif | |||
802 | } | |||
803 | ||||
804 | // Input RegMask array shared by all TailCalls | |||
805 | uint tail_call_edge_cnt = TypeFunc::Parms+2; | |||
806 | RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | |||
807 | ||||
808 | // Input RegMask array shared by all TailJumps | |||
809 | uint tail_jump_edge_cnt = TypeFunc::Parms+2; | |||
810 | RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | |||
811 | ||||
812 | // TailCalls have 2 returned values (target & moop), whose masks come | |||
813 | // from the usual MachNode/MachOper mechanism. Find a sample | |||
814 | // TailCall to extract these masks and put the correct masks into | |||
815 | // the tail_call_rms array. | |||
816 | for( i=1; i < root->req(); i++ ) { | |||
817 | MachReturnNode *m = root->in(i)->as_MachReturn(); | |||
818 | if( m->ideal_Opcode() == Op_TailCall ) { | |||
819 | tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); | |||
820 | tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); | |||
821 | break; | |||
822 | } | |||
823 | } | |||
824 | ||||
825 | // TailJumps have 2 returned values (target & ex_oop), whose masks come | |||
826 | // from the usual MachNode/MachOper mechanism. Find a sample | |||
827 | // TailJump to extract these masks and put the correct masks into | |||
828 | // the tail_jump_rms array. | |||
829 | for( i=1; i < root->req(); i++ ) { | |||
830 | MachReturnNode *m = root->in(i)->as_MachReturn(); | |||
831 | if( m->ideal_Opcode() == Op_TailJump ) { | |||
832 | tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); | |||
833 | tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); | |||
834 | break; | |||
835 | } | |||
836 | } | |||
837 | ||||
838 | // Input RegMask array shared by all Halts | |||
839 | uint halt_edge_cnt = TypeFunc::Parms; | |||
840 | RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | |||
841 | ||||
842 | // Capture the return input masks into each exit flavor | |||
843 | for( i=1; i < root->req(); i++ ) { | |||
844 | MachReturnNode *exit = root->in(i)->as_MachReturn(); | |||
845 | switch( exit->ideal_Opcode() ) { | |||
846 | case Op_Return : exit->_in_rms = ret_rms; break; | |||
847 | case Op_Rethrow : exit->_in_rms = reth_rms; break; | |||
848 | case Op_TailCall : exit->_in_rms = tail_call_rms; break; | |||
849 | case Op_TailJump : exit->_in_rms = tail_jump_rms; break; | |||
850 | case Op_Halt : exit->_in_rms = halt_rms; break; | |||
851 | default : ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 851); ::breakpoint(); } while (0); | |||
852 | } | |||
853 | } | |||
854 | ||||
855 | // Next unused projection number from Start. | |||
856 | int proj_cnt = C->tf()->domain()->cnt(); | |||
857 | ||||
858 | // Do all the save-on-entry registers. Make projections from Start for | |||
859 | // them, and give them a use at the exit points. To the allocator, they | |||
860 | // look like incoming register arguments. | |||
861 | for( i = 0; i < _last_Mach_Reg; i++ ) { | |||
862 | if( is_save_on_entry(i) ) { | |||
863 | ||||
864 | // Add the save-on-entry to the mask array | |||
865 | ret_rms [ ret_edge_cnt] = mreg2regmask[i]; | |||
866 | reth_rms [ reth_edge_cnt] = mreg2regmask[i]; | |||
867 | tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; | |||
868 | tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; | |||
869 | // Halts need the SOE registers, but only in the stack as debug info. | |||
870 | // A just-prior uncommon-trap or deoptimization will use the SOE regs. | |||
871 | halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; | |||
872 | ||||
873 | Node *mproj; | |||
874 | ||||
875 | // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's | |||
876 | // into a single RegD. | |||
877 | if( (i&1) == 0 && | |||
878 | _register_save_type[i ] == Op_RegF && | |||
879 | _register_save_type[i+1] == Op_RegF && | |||
880 | is_save_on_entry(i+1) ) { | |||
881 | // Add other bit for double | |||
882 | ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
883 | reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
884 | tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
885 | tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
886 | halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
887 | mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); | |||
888 | proj_cnt += 2; // Skip 2 for doubles | |||
889 | } | |||
890 | else if( (i&1) == 1 && // Else check for high half of double | |||
891 | _register_save_type[i-1] == Op_RegF && | |||
892 | _register_save_type[i ] == Op_RegF && | |||
893 | is_save_on_entry(i-1) ) { | |||
894 | ret_rms [ ret_edge_cnt] = RegMask::Empty; | |||
895 | reth_rms [ reth_edge_cnt] = RegMask::Empty; | |||
896 | tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; | |||
897 | tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; | |||
898 | halt_rms [ halt_edge_cnt] = RegMask::Empty; | |||
899 | mproj = C->top(); | |||
900 | } | |||
901 | // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's | |||
902 | // into a single RegL. | |||
903 | else if( (i&1) == 0 && | |||
904 | _register_save_type[i ] == Op_RegI && | |||
905 | _register_save_type[i+1] == Op_RegI && | |||
906 | is_save_on_entry(i+1) ) { | |||
907 | // Add other bit for long | |||
908 | ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
909 | reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
910 | tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
911 | tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
912 | halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); | |||
913 | mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); | |||
914 | proj_cnt += 2; // Skip 2 for longs | |||
915 | } | |||
916 | else if( (i&1) == 1 && // Else check for high half of long | |||
917 | _register_save_type[i-1] == Op_RegI && | |||
918 | _register_save_type[i ] == Op_RegI && | |||
919 | is_save_on_entry(i-1) ) { | |||
920 | ret_rms [ ret_edge_cnt] = RegMask::Empty; | |||
921 | reth_rms [ reth_edge_cnt] = RegMask::Empty; | |||
922 | tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; | |||
923 | tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; | |||
924 | halt_rms [ halt_edge_cnt] = RegMask::Empty; | |||
925 | mproj = C->top(); | |||
926 | } else { | |||
927 | // Make a projection for it off the Start | |||
928 | mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); | |||
929 | } | |||
930 | ||||
931 | ret_edge_cnt ++; | |||
932 | reth_edge_cnt ++; | |||
933 | tail_call_edge_cnt ++; | |||
934 | tail_jump_edge_cnt ++; | |||
935 | halt_edge_cnt ++; | |||
936 | ||||
937 | // Add a use of the SOE register to all exit paths | |||
938 | for( uint j=1; j < root->req(); j++ ) | |||
939 | root->in(j)->add_req(mproj); | |||
940 | } // End of if a save-on-entry register | |||
941 | } // End of for all machine registers | |||
942 | } | |||
943 | ||||
944 | //------------------------------init_spill_mask-------------------------------- | |||
945 | void Matcher::init_spill_mask( Node *ret ) { | |||
946 | if( idealreg2regmask[Op_RegI] ) return; // One time only init | |||
947 | ||||
948 | OptoReg::c_frame_pointer = c_frame_pointer(); | |||
949 | c_frame_ptr_mask = c_frame_pointer(); | |||
950 | #ifdef _LP641 | |||
951 | // pointers are twice as big | |||
952 | c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); | |||
953 | #endif | |||
954 | ||||
955 | // Start at OptoReg::stack0() | |||
956 | STACK_ONLY_mask.Clear(); | |||
957 | OptoReg::Name init = OptoReg::stack2reg(0); | |||
958 | // STACK_ONLY_mask is all stack bits | |||
959 | OptoReg::Name i; | |||
960 | for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) | |||
961 | STACK_ONLY_mask.Insert(i); | |||
962 | // Also set the "infinite stack" bit. | |||
963 | STACK_ONLY_mask.set_AllStack(); | |||
964 | ||||
965 | for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) { | |||
966 | // Copy the register names over into the shared world. | |||
967 | // SharedInfo::regName[i] = regName[i]; | |||
968 | // Handy RegMasks per machine register | |||
969 | mreg2regmask[i].Insert(i); | |||
970 | ||||
971 | // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks. | |||
972 | if (_register_save_policy[i] == 'C' || | |||
973 | _register_save_policy[i] == 'A') { | |||
974 | caller_save_regmask.Insert(i); | |||
975 | mh_caller_save_regmask.Insert(i); | |||
976 | } | |||
977 | // Exclude save-on-entry registers from debug masks for stub compilations. | |||
978 | if (_register_save_policy[i] == 'C' || | |||
979 | _register_save_policy[i] == 'A' || | |||
980 | _register_save_policy[i] == 'E') { | |||
981 | caller_save_regmask_exclude_soe.Insert(i); | |||
982 | mh_caller_save_regmask_exclude_soe.Insert(i); | |||
983 | } | |||
984 | } | |||
985 | ||||
986 | // Also exclude the register we use to save the SP for MethodHandle | |||
987 | // invokes to from the corresponding MH debug masks | |||
988 | const RegMask sp_save_mask = method_handle_invoke_SP_save_mask(); | |||
989 | mh_caller_save_regmask.OR(sp_save_mask); | |||
990 | mh_caller_save_regmask_exclude_soe.OR(sp_save_mask); | |||
991 | ||||
992 | // Grab the Frame Pointer | |||
993 | Node *fp = ret->in(TypeFunc::FramePtr); | |||
994 | // Share frame pointer while making spill ops | |||
995 | set_shared(fp); | |||
996 | ||||
997 | // Get the ADLC notion of the right regmask, for each basic type. | |||
998 | #ifdef _LP641 | |||
999 | idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret); | |||
1000 | #endif | |||
1001 | idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret); | |||
1002 | idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret); | |||
1003 | idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret); | |||
1004 | idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret); | |||
1005 | idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret); | |||
1006 | idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret); | |||
1007 | idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret); | |||
1008 | idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret); | |||
1009 | idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret); | |||
1010 | idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret); | |||
1011 | idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret); | |||
1012 | idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret); | |||
1013 | } | |||
1014 | ||||
1015 | #ifdef ASSERT1 | |||
1016 | static void match_alias_type(Compile* C, Node* n, Node* m) { | |||
1017 | if (!VerifyAliases) return; // do not go looking for trouble by default | |||
1018 | const TypePtr* nat = n->adr_type(); | |||
1019 | const TypePtr* mat = m->adr_type(); | |||
1020 | int nidx = C->get_alias_index(nat); | |||
1021 | int midx = C->get_alias_index(mat); | |||
1022 | // Detune the assert for cases like (AndI 0xFF (LoadB p)). | |||
1023 | if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { | |||
1024 | for (uint i = 1; i < n->req(); i++) { | |||
1025 | Node* n1 = n->in(i); | |||
1026 | const TypePtr* n1at = n1->adr_type(); | |||
1027 | if (n1at != NULL__null) { | |||
1028 | nat = n1at; | |||
1029 | nidx = C->get_alias_index(n1at); | |||
1030 | } | |||
1031 | } | |||
1032 | } | |||
1033 | // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: | |||
1034 | if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { | |||
1035 | switch (n->Opcode()) { | |||
1036 | case Op_PrefetchAllocation: | |||
1037 | nidx = Compile::AliasIdxRaw; | |||
1038 | nat = TypeRawPtr::BOTTOM; | |||
1039 | break; | |||
1040 | } | |||
1041 | } | |||
1042 | if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { | |||
1043 | switch (n->Opcode()) { | |||
1044 | case Op_ClearArray: | |||
1045 | midx = Compile::AliasIdxRaw; | |||
1046 | mat = TypeRawPtr::BOTTOM; | |||
1047 | break; | |||
1048 | } | |||
1049 | } | |||
1050 | if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { | |||
1051 | switch (n->Opcode()) { | |||
1052 | case Op_Return: | |||
1053 | case Op_Rethrow: | |||
1054 | case Op_Halt: | |||
1055 | case Op_TailCall: | |||
1056 | case Op_TailJump: | |||
1057 | nidx = Compile::AliasIdxBot; | |||
1058 | nat = TypePtr::BOTTOM; | |||
1059 | break; | |||
1060 | } | |||
1061 | } | |||
1062 | if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { | |||
1063 | switch (n->Opcode()) { | |||
1064 | case Op_StrComp: | |||
1065 | case Op_StrEquals: | |||
1066 | case Op_StrIndexOf: | |||
1067 | case Op_StrIndexOfChar: | |||
1068 | case Op_AryEq: | |||
1069 | case Op_HasNegatives: | |||
1070 | case Op_MemBarVolatile: | |||
1071 | case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? | |||
1072 | case Op_StrInflatedCopy: | |||
1073 | case Op_StrCompressedCopy: | |||
1074 | case Op_OnSpinWait: | |||
1075 | case Op_EncodeISOArray: | |||
1076 | nidx = Compile::AliasIdxTop; | |||
1077 | nat = NULL__null; | |||
1078 | break; | |||
1079 | } | |||
1080 | } | |||
1081 | if (nidx != midx) { | |||
1082 | if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { | |||
1083 | tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); | |||
1084 | n->dump(); | |||
1085 | m->dump(); | |||
1086 | } | |||
1087 | assert(C->subsume_loads() && C->must_alias(nat, midx),do { if (!(C->subsume_loads() && C->must_alias( nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)" ") failed", "must not lose alias info when matching"); ::breakpoint (); } } while (0) | |||
1088 | "must not lose alias info when matching")do { if (!(C->subsume_loads() && C->must_alias( nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)" ") failed", "must not lose alias info when matching"); ::breakpoint (); } } while (0); | |||
1089 | } | |||
1090 | } | |||
1091 | #endif | |||
1092 | ||||
1093 | //------------------------------xform------------------------------------------ | |||
1094 | // Given a Node in old-space, Match him (Label/Reduce) to produce a machine | |||
1095 | // Node in new-space. Given a new-space Node, recursively walk his children. | |||
1096 | Node *Matcher::transform( Node *n ) { ShouldNotCallThis()do { (*g_assert_poison) = 'X';; report_should_not_call("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1096); ::breakpoint(); } while (0); return n; } | |||
1097 | Node *Matcher::xform( Node *n, int max_stack ) { | |||
1098 | // Use one stack to keep both: child's node/state and parent's node/index | |||
1099 | MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 | |||
1100 | mstack.push(n, Visit, NULL__null, -1); // set NULL as parent to indicate root | |||
1101 | while (mstack.is_nonempty()) { | |||
1102 | C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); | |||
1103 | if (C->failing()) return NULL__null; | |||
1104 | n = mstack.node(); // Leave node on stack | |||
1105 | Node_State nstate = mstack.state(); | |||
1106 | if (nstate == Visit) { | |||
1107 | mstack.set_state(Post_Visit); | |||
1108 | Node *oldn = n; | |||
1109 | // Old-space or new-space check | |||
1110 | if (!C->node_arena()->contains(n)) { | |||
1111 | // Old space! | |||
1112 | Node* m; | |||
1113 | if (has_new_node(n)) { // Not yet Label/Reduced | |||
1114 | m = new_node(n); | |||
1115 | } else { | |||
1116 | if (!is_dontcare(n)) { // Matcher can match this guy | |||
1117 | // Calls match special. They match alone with no children. | |||
1118 | // Their children, the incoming arguments, match normally. | |||
1119 | m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); | |||
1120 | if (C->failing()) return NULL__null; | |||
1121 | if (m == NULL__null) { Matcher::soft_match_failure(); return NULL__null; } | |||
1122 | if (n->is_MemBar()) { | |||
1123 | m->as_MachMemBar()->set_adr_type(n->adr_type()); | |||
1124 | } | |||
1125 | } else { // Nothing the matcher cares about | |||
1126 | if (n->is_Proj() && n->in(0) != NULL__null && n->in(0)->is_Multi()) { // Projections? | |||
1127 | // Convert to machine-dependent projection | |||
1128 | m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); | |||
1129 | NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n); | |||
1130 | if (m->in(0) != NULL__null) // m might be top | |||
1131 | collect_null_checks(m, n); | |||
1132 | } else { // Else just a regular 'ol guy | |||
1133 | m = n->clone(); // So just clone into new-space | |||
1134 | NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n); | |||
1135 | // Def-Use edges will be added incrementally as Uses | |||
1136 | // of this node are matched. | |||
1137 | assert(m->outcnt() == 0, "no Uses of this clone yet")do { if (!(m->outcnt() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1137, "assert(" "m->outcnt() == 0" ") failed", "no Uses of this clone yet" ); ::breakpoint(); } } while (0); | |||
1138 | } | |||
1139 | } | |||
1140 | ||||
1141 | set_new_node(n, m); // Map old to new | |||
1142 | if (_old_node_note_array != NULL__null) { | |||
1143 | Node_Notes* nn = C->locate_node_notes(_old_node_note_array, | |||
1144 | n->_idx); | |||
1145 | C->set_node_notes_at(m->_idx, nn); | |||
1146 | } | |||
1147 | debug_only(match_alias_type(C, n, m))match_alias_type(C, n, m); | |||
1148 | } | |||
1149 | n = m; // n is now a new-space node | |||
1150 | mstack.set_node(n); | |||
1151 | } | |||
1152 | ||||
1153 | // New space! | |||
1154 | if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) | |||
1155 | ||||
1156 | int i; | |||
1157 | // Put precedence edges on stack first (match them last). | |||
1158 | for (i = oldn->req(); (uint)i < oldn->len(); i++) { | |||
1159 | Node *m = oldn->in(i); | |||
1160 | if (m == NULL__null) break; | |||
1161 | // set -1 to call add_prec() instead of set_req() during Step1 | |||
1162 | mstack.push(m, Visit, n, -1); | |||
1163 | } | |||
1164 | ||||
1165 | // Handle precedence edges for interior nodes | |||
1166 | for (i = n->len()-1; (uint)i >= n->req(); i--) { | |||
1167 | Node *m = n->in(i); | |||
1168 | if (m == NULL__null || C->node_arena()->contains(m)) continue; | |||
1169 | n->rm_prec(i); | |||
1170 | // set -1 to call add_prec() instead of set_req() during Step1 | |||
1171 | mstack.push(m, Visit, n, -1); | |||
1172 | } | |||
1173 | ||||
1174 | // For constant debug info, I'd rather have unmatched constants. | |||
1175 | int cnt = n->req(); | |||
1176 | JVMState* jvms = n->jvms(); | |||
1177 | int debug_cnt = jvms ? jvms->debug_start() : cnt; | |||
1178 | ||||
1179 | // Now do only debug info. Clone constants rather than matching. | |||
1180 | // Constants are represented directly in the debug info without | |||
1181 | // the need for executable machine instructions. | |||
1182 | // Monitor boxes are also represented directly. | |||
1183 | for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do | |||
1184 | Node *m = n->in(i); // Get input | |||
1185 | int op = m->Opcode(); | |||
1186 | assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites")do { if (!((op == Op_BoxLock) == jvms->is_monitor_use(i))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1186, "assert(" "(op == Op_BoxLock) == jvms->is_monitor_use(i)" ") failed", "boxes only at monitor sites"); ::breakpoint(); } } while (0); | |||
1187 | if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || | |||
1188 | op == Op_ConF || op == Op_ConD || op == Op_ConL | |||
1189 | // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp | |||
1190 | ) { | |||
1191 | m = m->clone(); | |||
1192 | NOT_PRODUCT(record_new2old(m, n))record_new2old(m, n); | |||
1193 | mstack.push(m, Post_Visit, n, i); // Don't need to visit | |||
1194 | mstack.push(m->in(0), Visit, m, 0); | |||
1195 | } else { | |||
1196 | mstack.push(m, Visit, n, i); | |||
1197 | } | |||
1198 | } | |||
1199 | ||||
1200 | // And now walk his children, and convert his inputs to new-space. | |||
1201 | for( ; i >= 0; --i ) { // For all normal inputs do | |||
1202 | Node *m = n->in(i); // Get input | |||
1203 | if(m != NULL__null) | |||
1204 | mstack.push(m, Visit, n, i); | |||
1205 | } | |||
1206 | ||||
1207 | } | |||
1208 | else if (nstate == Post_Visit) { | |||
1209 | // Set xformed input | |||
1210 | Node *p = mstack.parent(); | |||
1211 | if (p != NULL__null) { // root doesn't have parent | |||
1212 | int i = (int)mstack.index(); | |||
1213 | if (i >= 0) | |||
1214 | p->set_req(i, n); // required input | |||
1215 | else if (i == -1) | |||
1216 | p->add_prec(n); // precedence input | |||
1217 | else | |||
1218 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1218); ::breakpoint(); } while (0); | |||
1219 | } | |||
1220 | mstack.pop(); // remove processed node from stack | |||
1221 | } | |||
1222 | else { | |||
1223 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1223); ::breakpoint(); } while (0); | |||
1224 | } | |||
1225 | } // while (mstack.is_nonempty()) | |||
1226 | return n; // Return new-space Node | |||
1227 | } | |||
1228 | ||||
1229 | //------------------------------warp_outgoing_stk_arg------------------------ | |||
1230 | OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { | |||
1231 | // Convert outgoing argument location to a pre-biased stack offset | |||
1232 | if (reg->is_stack()) { | |||
1233 | OptoReg::Name warped = reg->reg2stack(); | |||
1234 | // Adjust the stack slot offset to be the register number used | |||
1235 | // by the allocator. | |||
1236 | warped = OptoReg::add(begin_out_arg_area, warped); | |||
1237 | // Keep track of the largest numbered stack slot used for an arg. | |||
1238 | // Largest used slot per call-site indicates the amount of stack | |||
1239 | // that is killed by the call. | |||
1240 | if( warped >= out_arg_limit_per_call ) | |||
1241 | out_arg_limit_per_call = OptoReg::add(warped,1); | |||
1242 | if (!RegMask::can_represent_arg(warped)) { | |||
1243 | C->record_method_not_compilable("unsupported calling sequence"); | |||
1244 | return OptoReg::Bad; | |||
1245 | } | |||
1246 | return warped; | |||
1247 | } | |||
1248 | return OptoReg::as_OptoReg(reg); | |||
1249 | } | |||
1250 | ||||
1251 | ||||
1252 | //------------------------------match_sfpt------------------------------------- | |||
1253 | // Helper function to match call instructions. Calls match special. | |||
1254 | // They match alone with no children. Their children, the incoming | |||
1255 | // arguments, match normally. | |||
1256 | MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { | |||
1257 | MachSafePointNode *msfpt = NULL__null; | |||
1258 | MachCallNode *mcall = NULL__null; | |||
1259 | uint cnt; | |||
1260 | // Split out case for SafePoint vs Call | |||
1261 | CallNode *call; | |||
1262 | const TypeTuple *domain; | |||
1263 | ciMethod* method = NULL__null; | |||
1264 | bool is_method_handle_invoke = false; // for special kill effects | |||
1265 | if( sfpt->is_Call() ) { | |||
1266 | call = sfpt->as_Call(); | |||
1267 | domain = call->tf()->domain(); | |||
1268 | cnt = domain->cnt(); | |||
1269 | ||||
1270 | // Match just the call, nothing else | |||
1271 | MachNode *m = match_tree(call); | |||
1272 | if (C->failing()) return NULL__null; | |||
1273 | if( m == NULL__null ) { Matcher::soft_match_failure(); return NULL__null; } | |||
1274 | ||||
1275 | // Copy data from the Ideal SafePoint to the machine version | |||
1276 | mcall = m->as_MachCall(); | |||
1277 | ||||
1278 | mcall->set_tf( call->tf()); | |||
1279 | mcall->set_entry_point( call->entry_point()); | |||
1280 | mcall->set_cnt( call->cnt()); | |||
1281 | mcall->set_guaranteed_safepoint(call->guaranteed_safepoint()); | |||
1282 | ||||
1283 | if( mcall->is_MachCallJava() ) { | |||
1284 | MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); | |||
1285 | const CallJavaNode *call_java = call->as_CallJava(); | |||
1286 | assert(call_java->validate_symbolic_info(), "inconsistent info")do { if (!(call_java->validate_symbolic_info())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1286, "assert(" "call_java->validate_symbolic_info()" ") failed" , "inconsistent info"); ::breakpoint(); } } while (0); | |||
1287 | method = call_java->method(); | |||
1288 | mcall_java->_method = method; | |||
1289 | mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); | |||
1290 | is_method_handle_invoke = call_java->is_method_handle_invoke(); | |||
1291 | mcall_java->_method_handle_invoke = is_method_handle_invoke; | |||
1292 | mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); | |||
1293 | mcall_java->_arg_escape = call_java->arg_escape(); | |||
1294 | if (is_method_handle_invoke) { | |||
1295 | C->set_has_method_handle_invokes(true); | |||
1296 | } | |||
1297 | if( mcall_java->is_MachCallStaticJava() ) | |||
1298 | mcall_java->as_MachCallStaticJava()->_name = | |||
1299 | call_java->as_CallStaticJava()->_name; | |||
1300 | if( mcall_java->is_MachCallDynamicJava() ) | |||
1301 | mcall_java->as_MachCallDynamicJava()->_vtable_index = | |||
1302 | call_java->as_CallDynamicJava()->_vtable_index; | |||
1303 | } | |||
1304 | else if( mcall->is_MachCallRuntime() ) { | |||
1305 | MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime(); | |||
1306 | mach_call_rt->_name = call->as_CallRuntime()->_name; | |||
1307 | mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP(); | |||
1308 | } | |||
1309 | else if( mcall->is_MachCallNative() ) { | |||
1310 | MachCallNativeNode* mach_call_native = mcall->as_MachCallNative(); | |||
1311 | CallNativeNode* call_native = call->as_CallNative(); | |||
1312 | mach_call_native->_name = call_native->_name; | |||
1313 | mach_call_native->_arg_regs = call_native->_arg_regs; | |||
1314 | mach_call_native->_ret_regs = call_native->_ret_regs; | |||
1315 | } | |||
1316 | msfpt = mcall; | |||
1317 | } | |||
1318 | // This is a non-call safepoint | |||
1319 | else { | |||
1320 | call = NULL__null; | |||
1321 | domain = NULL__null; | |||
1322 | MachNode *mn = match_tree(sfpt); | |||
1323 | if (C->failing()) return NULL__null; | |||
1324 | msfpt = mn->as_MachSafePoint(); | |||
1325 | cnt = TypeFunc::Parms; | |||
1326 | } | |||
1327 | msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope(); | |||
1328 | ||||
1329 | // Advertise the correct memory effects (for anti-dependence computation). | |||
1330 | msfpt->set_adr_type(sfpt->adr_type()); | |||
1331 | ||||
1332 | // Allocate a private array of RegMasks. These RegMasks are not shared. | |||
1333 | msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt )(RegMask*) resource_allocate_bytes((cnt) * sizeof(RegMask)); | |||
1334 | // Empty them all. | |||
1335 | for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask(); | |||
1336 | ||||
1337 | // Do all the pre-defined non-Empty register masks | |||
1338 | msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; | |||
1339 | msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; | |||
1340 | ||||
1341 | // Place first outgoing argument can possibly be put. | |||
1342 | OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); | |||
1343 | assert( is_even(begin_out_arg_area), "" )do { if (!(is_even(begin_out_arg_area))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1343, "assert(" "is_even(begin_out_arg_area)" ") failed", "" ); ::breakpoint(); } } while (0); | |||
1344 | // Compute max outgoing register number per call site. | |||
1345 | OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; | |||
1346 | // Calls to C may hammer extra stack slots above and beyond any arguments. | |||
1347 | // These are usually backing store for register arguments for varargs. | |||
1348 | if( call != NULL__null && call->is_CallRuntime() ) | |||
1349 | out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); | |||
1350 | if( call != NULL__null && call->is_CallNative() ) | |||
1351 | out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call, call->as_CallNative()->_shadow_space_bytes); | |||
1352 | ||||
1353 | ||||
1354 | // Do the normal argument list (parameters) register masks | |||
1355 | int argcnt = cnt - TypeFunc::Parms; | |||
1356 | if( argcnt > 0 ) { // Skip it all if we have no args | |||
1357 | BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType )); | |||
1358 | VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair )); | |||
1359 | int i; | |||
1360 | for( i = 0; i < argcnt; i++ ) { | |||
1361 | sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); | |||
1362 | } | |||
1363 | // V-call to pick proper calling convention | |||
1364 | call->calling_convention( sig_bt, parm_regs, argcnt ); | |||
1365 | ||||
1366 | #ifdef ASSERT1 | |||
1367 | // Sanity check users' calling convention. Really handy during | |||
1368 | // the initial porting effort. Fairly expensive otherwise. | |||
1369 | { for (int i = 0; i<argcnt; i++) { | |||
1370 | if( !parm_regs[i].first()->is_valid() && | |||
1371 | !parm_regs[i].second()->is_valid() ) continue; | |||
1372 | VMReg reg1 = parm_regs[i].first(); | |||
1373 | VMReg reg2 = parm_regs[i].second(); | |||
1374 | for (int j = 0; j < i; j++) { | |||
1375 | if( !parm_regs[j].first()->is_valid() && | |||
1376 | !parm_regs[j].second()->is_valid() ) continue; | |||
1377 | VMReg reg3 = parm_regs[j].first(); | |||
1378 | VMReg reg4 = parm_regs[j].second(); | |||
1379 | if( !reg1->is_valid() ) { | |||
1380 | assert( !reg2->is_valid(), "valid halvsies" )do { if (!(!reg2->is_valid())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1380, "assert(" "!reg2->is_valid()" ") failed", "valid halvsies" ); ::breakpoint(); } } while (0); | |||
1381 | } else if( !reg3->is_valid() ) { | |||
1382 | assert( !reg4->is_valid(), "valid halvsies" )do { if (!(!reg4->is_valid())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1382, "assert(" "!reg4->is_valid()" ") failed", "valid halvsies" ); ::breakpoint(); } } while (0); | |||
1383 | } else { | |||
1384 | assert( reg1 != reg2, "calling conv. must produce distinct regs")do { if (!(reg1 != reg2)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1384, "assert(" "reg1 != reg2" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | |||
1385 | assert( reg1 != reg3, "calling conv. must produce distinct regs")do { if (!(reg1 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1385, "assert(" "reg1 != reg3" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | |||
1386 | assert( reg1 != reg4, "calling conv. must produce distinct regs")do { if (!(reg1 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1386, "assert(" "reg1 != reg4" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | |||
1387 | assert( reg2 != reg3, "calling conv. must produce distinct regs")do { if (!(reg2 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1387, "assert(" "reg2 != reg3" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | |||
1388 | assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs")do { if (!(reg2 != reg4 || !reg2->is_valid())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1388, "assert(" "reg2 != reg4 || !reg2->is_valid()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0); | |||
1389 | assert( reg3 != reg4, "calling conv. must produce distinct regs")do { if (!(reg3 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1389, "assert(" "reg3 != reg4" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | |||
1390 | } | |||
1391 | } | |||
1392 | } | |||
1393 | } | |||
1394 | #endif | |||
1395 | ||||
1396 | // Visit each argument. Compute its outgoing register mask. | |||
1397 | // Return results now can have 2 bits returned. | |||
1398 | // Compute max over all outgoing arguments both per call-site | |||
1399 | // and over the entire method. | |||
1400 | for( i = 0; i < argcnt; i++ ) { | |||
1401 | // Address of incoming argument mask to fill in | |||
1402 | RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; | |||
1403 | VMReg first = parm_regs[i].first(); | |||
1404 | VMReg second = parm_regs[i].second(); | |||
1405 | if(!first->is_valid() && | |||
1406 | !second->is_valid()) { | |||
1407 | continue; // Avoid Halves | |||
1408 | } | |||
1409 | // Handle case where arguments are in vector registers. | |||
1410 | if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) { | |||
1411 | OptoReg::Name reg_fst = OptoReg::as_OptoReg(first); | |||
1412 | OptoReg::Name reg_snd = OptoReg::as_OptoReg(second); | |||
1413 | assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd)do { if (!(reg_fst <= reg_snd)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1413, "assert(" "reg_fst <= reg_snd" ") failed", "fst=%d snd=%d" , reg_fst, reg_snd); ::breakpoint(); } } while (0); | |||
1414 | for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) { | |||
1415 | rm->Insert(r); | |||
1416 | } | |||
1417 | } | |||
1418 | // Grab first register, adjust stack slots and insert in mask. | |||
1419 | OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call ); | |||
1420 | if (OptoReg::is_valid(reg1)) | |||
1421 | rm->Insert( reg1 ); | |||
1422 | // Grab second register (if any), adjust stack slots and insert in mask. | |||
1423 | OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call ); | |||
1424 | if (OptoReg::is_valid(reg2)) | |||
1425 | rm->Insert( reg2 ); | |||
1426 | } // End of for all arguments | |||
1427 | } | |||
1428 | ||||
1429 | // Compute the max stack slot killed by any call. These will not be | |||
1430 | // available for debug info, and will be used to adjust FIRST_STACK_mask | |||
1431 | // after all call sites have been visited. | |||
1432 | if( _out_arg_limit < out_arg_limit_per_call) | |||
1433 | _out_arg_limit = out_arg_limit_per_call; | |||
1434 | ||||
1435 | if (mcall) { | |||
1436 | // Kill the outgoing argument area, including any non-argument holes and | |||
1437 | // any legacy C-killed slots. Use Fat-Projections to do the killing. | |||
1438 | // Since the max-per-method covers the max-per-call-site and debug info | |||
1439 | // is excluded on the max-per-method basis, debug info cannot land in | |||
1440 | // this killed area. | |||
1441 | uint r_cnt = mcall->tf()->range()->cnt(); | |||
1442 | MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); | |||
1443 | if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { | |||
1444 | C->record_method_not_compilable("unsupported outgoing calling sequence"); | |||
1445 | } else { | |||
1446 | for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) | |||
1447 | proj->_rout.Insert(OptoReg::Name(i)); | |||
1448 | } | |||
1449 | if (proj->_rout.is_NotEmpty()) { | |||
1450 | push_projection(proj); | |||
1451 | } | |||
1452 | } | |||
1453 | // Transfer the safepoint information from the call to the mcall | |||
1454 | // Move the JVMState list | |||
1455 | msfpt->set_jvms(sfpt->jvms()); | |||
1456 | for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { | |||
1457 | jvms->set_map(sfpt); | |||
1458 | } | |||
1459 | ||||
1460 | // Debug inputs begin just after the last incoming parameter | |||
1461 | assert((mcall == NULL) || (mcall->jvms() == NULL) ||do { if (!((mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall ->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())" ") failed", ""); ::breakpoint(); } } while (0) | |||
1462 | (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "")do { if (!((mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall ->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())" ") failed", ""); ::breakpoint(); } } while (0); | |||
1463 | ||||
1464 | // Add additional edges. | |||
1465 | if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { | |||
1466 | // For these calls we can not add MachConstantBase in expand(), as the | |||
1467 | // ins are not complete then. | |||
1468 | msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); | |||
1469 | if (msfpt->jvms() && | |||
1470 | msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { | |||
1471 | // We added an edge before jvms, so we must adapt the position of the ins. | |||
1472 | msfpt->jvms()->adapt_position(+1); | |||
1473 | } | |||
1474 | } | |||
1475 | ||||
1476 | // Registers killed by the call are set in the local scheduling pass | |||
1477 | // of Global Code Motion. | |||
1478 | return msfpt; | |||
1479 | } | |||
1480 | ||||
1481 | //---------------------------match_tree---------------------------------------- | |||
1482 | // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part | |||
1483 | // of the whole-sale conversion from Ideal to Mach Nodes. Also used for | |||
1484 | // making GotoNodes while building the CFG and in init_spill_mask() to identify | |||
1485 | // a Load's result RegMask for memoization in idealreg2regmask[] | |||
1486 | MachNode *Matcher::match_tree( const Node *n ) { | |||
1487 | assert( n->Opcode() != Op_Phi, "cannot match" )do { if (!(n->Opcode() != Op_Phi)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1487, "assert(" "n->Opcode() != Op_Phi" ") failed", "cannot match" ); ::breakpoint(); } } while (0); | |||
1488 | assert( !n->is_block_start(), "cannot match" )do { if (!(!n->is_block_start())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1488, "assert(" "!n->is_block_start()" ") failed", "cannot match" ); ::breakpoint(); } } while (0); | |||
1489 | // Set the mark for all locally allocated State objects. | |||
1490 | // When this call returns, the _states_arena arena will be reset | |||
1491 | // freeing all State objects. | |||
1492 | ResourceMark rm( &_states_arena ); | |||
1493 | ||||
1494 | LabelRootDepth = 0; | |||
1495 | ||||
1496 | // StoreNodes require their Memory input to match any LoadNodes | |||
1497 | Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; | |||
1498 | #ifdef ASSERT1 | |||
1499 | Node* save_mem_node = _mem_node; | |||
1500 | _mem_node = n->is_Store() ? (Node*)n : NULL__null; | |||
1501 | #endif | |||
1502 | // State object for root node of match tree | |||
1503 | // Allocate it on _states_arena - stack allocation can cause stack overflow. | |||
1504 | State *s = new (&_states_arena) State; | |||
1505 | s->_kids[0] = NULL__null; | |||
1506 | s->_kids[1] = NULL__null; | |||
1507 | s->_leaf = (Node*)n; | |||
1508 | // Label the input tree, allocating labels from top-level arena | |||
1509 | Node* root_mem = mem; | |||
1510 | Label_Root(n, s, n->in(0), root_mem); | |||
1511 | if (C->failing()) return NULL__null; | |||
1512 | ||||
1513 | // The minimum cost match for the whole tree is found at the root State | |||
1514 | uint mincost = max_juint; | |||
1515 | uint cost = max_juint; | |||
1516 | uint i; | |||
1517 | for (i = 0; i < NUM_OPERANDS139; i++) { | |||
1518 | if (s->valid(i) && // valid entry and | |||
1519 | s->cost(i) < cost && // low cost and | |||
1520 | s->rule(i) >= NUM_OPERANDS139) {// not an operand | |||
1521 | mincost = i; | |||
1522 | cost = s->cost(i); | |||
1523 | } | |||
1524 | } | |||
1525 | if (mincost == max_juint) { | |||
1526 | #ifndef PRODUCT | |||
1527 | tty->print("No matching rule for:"); | |||
1528 | s->dump(); | |||
1529 | #endif | |||
1530 | Matcher::soft_match_failure(); | |||
1531 | return NULL__null; | |||
1532 | } | |||
1533 | // Reduce input tree based upon the state labels to machine Nodes | |||
1534 | MachNode *m = ReduceInst(s, s->rule(mincost), mem); | |||
1535 | // New-to-old mapping is done in ReduceInst, to cover complex instructions. | |||
1536 | NOT_PRODUCT(_old2new_map.map(n->_idx, m);)_old2new_map.map(n->_idx, m); | |||
1537 | ||||
1538 | // Add any Matcher-ignored edges | |||
1539 | uint cnt = n->req(); | |||
1540 | uint start = 1; | |||
1541 | if( mem != (Node*)1 ) start = MemNode::Memory+1; | |||
1542 | if( n->is_AddP() ) { | |||
1543 | assert( mem == (Node*)1, "" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1543, "assert(" "mem == (Node*)1" ") failed", ""); ::breakpoint (); } } while (0); | |||
1544 | start = AddPNode::Base+1; | |||
1545 | } | |||
1546 | for( i = start; i < cnt; i++ ) { | |||
1547 | if( !n->match_edge(i) ) { | |||
1548 | if( i < m->req() ) | |||
1549 | m->ins_req( i, n->in(i) ); | |||
1550 | else | |||
1551 | m->add_req( n->in(i) ); | |||
1552 | } | |||
1553 | } | |||
1554 | ||||
1555 | debug_only( _mem_node = save_mem_node; )_mem_node = save_mem_node; | |||
1556 | return m; | |||
1557 | } | |||
1558 | ||||
1559 | ||||
1560 | //------------------------------match_into_reg--------------------------------- | |||
1561 | // Choose to either match this Node in a register or part of the current | |||
1562 | // match tree. Return true for requiring a register and false for matching | |||
1563 | // as part of the current match tree. | |||
1564 | static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { | |||
1565 | ||||
1566 | const Type *t = m->bottom_type(); | |||
1567 | ||||
1568 | if (t->singleton()) { | |||
1569 | // Never force constants into registers. Allow them to match as | |||
1570 | // constants or registers. Copies of the same value will share | |||
1571 | // the same register. See find_shared_node. | |||
1572 | return false; | |||
1573 | } else { // Not a constant | |||
1574 | // Stop recursion if they have different Controls. | |||
1575 | Node* m_control = m->in(0); | |||
1576 | // Control of load's memory can post-dominates load's control. | |||
1577 | // So use it since load can't float above its memory. | |||
1578 | Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL__null; | |||
1579 | if (control && m_control && control != m_control && control != mem_control) { | |||
1580 | ||||
1581 | // Actually, we can live with the most conservative control we | |||
1582 | // find, if it post-dominates the others. This allows us to | |||
1583 | // pick up load/op/store trees where the load can float a little | |||
1584 | // above the store. | |||
1585 | Node *x = control; | |||
1586 | const uint max_scan = 6; // Arbitrary scan cutoff | |||
1587 | uint j; | |||
1588 | for (j=0; j<max_scan; j++) { | |||
1589 | if (x->is_Region()) // Bail out at merge points | |||
1590 | return true; | |||
1591 | x = x->in(0); | |||
1592 | if (x == m_control) // Does 'control' post-dominate | |||
1593 | break; // m->in(0)? If so, we can use it | |||
1594 | if (x == mem_control) // Does 'control' post-dominate | |||
1595 | break; // mem_control? If so, we can use it | |||
1596 | } | |||
1597 | if (j == max_scan) // No post-domination before scan end? | |||
1598 | return true; // Then break the match tree up | |||
1599 | } | |||
1600 | if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || | |||
1601 | (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { | |||
1602 | // These are commonly used in address expressions and can | |||
1603 | // efficiently fold into them on X64 in some cases. | |||
1604 | return false; | |||
1605 | } | |||
1606 | } | |||
1607 | ||||
1608 | // Not forceable cloning. If shared, put it into a register. | |||
1609 | return shared; | |||
1610 | } | |||
1611 | ||||
1612 | ||||
1613 | //------------------------------Instruction Selection-------------------------- | |||
1614 | // Label method walks a "tree" of nodes, using the ADLC generated DFA to match | |||
1615 | // ideal nodes to machine instructions. Trees are delimited by shared Nodes, | |||
1616 | // things the Matcher does not match (e.g., Memory), and things with different | |||
1617 | // Controls (hence forced into different blocks). We pass in the Control | |||
1618 | // selected for this entire State tree. | |||
1619 | ||||
1620 | // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the | |||
1621 | // Store and the Load must have identical Memories (as well as identical | |||
1622 | // pointers). Since the Matcher does not have anything for Memory (and | |||
1623 | // does not handle DAGs), I have to match the Memory input myself. If the | |||
1624 | // Tree root is a Store or if there are multiple Loads in the tree, I require | |||
1625 | // all Loads to have the identical memory. | |||
1626 | Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) { | |||
1627 | // Since Label_Root is a recursive function, its possible that we might run | |||
1628 | // out of stack space. See bugs 6272980 & 6227033 for more info. | |||
1629 | LabelRootDepth++; | |||
1630 | if (LabelRootDepth > MaxLabelRootDepth) { | |||
1631 | C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth"); | |||
1632 | return NULL__null; | |||
1633 | } | |||
1634 | uint care = 0; // Edges matcher cares about | |||
1635 | uint cnt = n->req(); | |||
1636 | uint i = 0; | |||
1637 | ||||
1638 | // Examine children for memory state | |||
1639 | // Can only subsume a child into your match-tree if that child's memory state | |||
1640 | // is not modified along the path to another input. | |||
1641 | // It is unsafe even if the other inputs are separate roots. | |||
1642 | Node *input_mem = NULL__null; | |||
1643 | for( i = 1; i < cnt; i++ ) { | |||
1644 | if( !n->match_edge(i) ) continue; | |||
1645 | Node *m = n->in(i); // Get ith input | |||
1646 | assert( m, "expect non-null children" )do { if (!(m)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1646, "assert(" "m" ") failed", "expect non-null children") ; ::breakpoint(); } } while (0); | |||
1647 | if( m->is_Load() ) { | |||
1648 | if( input_mem == NULL__null ) { | |||
1649 | input_mem = m->in(MemNode::Memory); | |||
1650 | if (mem == (Node*)1) { | |||
1651 | // Save this memory to bail out if there's another memory access | |||
1652 | // to a different memory location in the same tree. | |||
1653 | mem = input_mem; | |||
1654 | } | |||
1655 | } else if( input_mem != m->in(MemNode::Memory) ) { | |||
1656 | input_mem = NodeSentinel(Node*)-1; | |||
1657 | } | |||
1658 | } | |||
1659 | } | |||
1660 | ||||
1661 | for( i = 1; i < cnt; i++ ){// For my children | |||
1662 | if( !n->match_edge(i) ) continue; | |||
1663 | Node *m = n->in(i); // Get ith input | |||
1664 | // Allocate states out of a private arena | |||
1665 | State *s = new (&_states_arena) State; | |||
1666 | svec->_kids[care++] = s; | |||
1667 | assert( care <= 2, "binary only for now" )do { if (!(care <= 2)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1667, "assert(" "care <= 2" ") failed", "binary only for now" ); ::breakpoint(); } } while (0); | |||
1668 | ||||
1669 | // Recursively label the State tree. | |||
1670 | s->_kids[0] = NULL__null; | |||
1671 | s->_kids[1] = NULL__null; | |||
1672 | s->_leaf = m; | |||
1673 | ||||
1674 | // Check for leaves of the State Tree; things that cannot be a part of | |||
1675 | // the current tree. If it finds any, that value is matched as a | |||
1676 | // register operand. If not, then the normal matching is used. | |||
1677 | if( match_into_reg(n, m, control, i, is_shared(m)) || | |||
1678 | // Stop recursion if this is a LoadNode and there is another memory access | |||
1679 | // to a different memory location in the same tree (for example, a StoreNode | |||
1680 | // at the root of this tree or another LoadNode in one of the children). | |||
1681 | ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || | |||
1682 | // Can NOT include the match of a subtree when its memory state | |||
1683 | // is used by any of the other subtrees | |||
1684 | (input_mem == NodeSentinel(Node*)-1) ) { | |||
1685 | // Print when we exclude matching due to different memory states at input-loads | |||
1686 | if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel(Node*)-1) | |||
1687 | && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { | |||
1688 | tty->print_cr("invalid input_mem"); | |||
1689 | } | |||
1690 | // Switch to a register-only opcode; this value must be in a register | |||
1691 | // and cannot be subsumed as part of a larger instruction. | |||
1692 | s->DFA( m->ideal_reg(), m ); | |||
1693 | ||||
1694 | } else { | |||
1695 | // If match tree has no control and we do, adopt it for entire tree | |||
1696 | if( control == NULL__null && m->in(0) != NULL__null && m->req() > 1 ) | |||
1697 | control = m->in(0); // Pick up control | |||
1698 | // Else match as a normal part of the match tree. | |||
1699 | control = Label_Root(m, s, control, mem); | |||
1700 | if (C->failing()) return NULL__null; | |||
1701 | } | |||
1702 | } | |||
1703 | ||||
1704 | // Call DFA to match this node, and return | |||
1705 | svec->DFA( n->Opcode(), n ); | |||
1706 | ||||
1707 | #ifdef ASSERT1 | |||
1708 | uint x; | |||
1709 | for( x = 0; x < _LAST_MACH_OPER; x++ ) | |||
1710 | if( svec->valid(x) ) | |||
1711 | break; | |||
1712 | ||||
1713 | if (x >= _LAST_MACH_OPER) { | |||
1714 | n->dump(); | |||
1715 | svec->dump(); | |||
1716 | assert( false, "bad AD file" )do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1716, "assert(" "false" ") failed", "bad AD file"); ::breakpoint (); } } while (0); | |||
1717 | } | |||
1718 | #endif | |||
1719 | return control; | |||
1720 | } | |||
1721 | ||||
1722 | ||||
1723 | // Con nodes reduced using the same rule can share their MachNode | |||
1724 | // which reduces the number of copies of a constant in the final | |||
1725 | // program. The register allocator is free to split uses later to | |||
1726 | // split live ranges. | |||
1727 | MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { | |||
1728 | if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL__null; | |||
1729 | ||||
1730 | // See if this Con has already been reduced using this rule. | |||
1731 | if (_shared_nodes.Size() <= leaf->_idx) return NULL__null; | |||
1732 | MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); | |||
1733 | if (last != NULL__null && rule == last->rule()) { | |||
1734 | // Don't expect control change for DecodeN | |||
1735 | if (leaf->is_DecodeNarrowPtr()) | |||
1736 | return last; | |||
1737 | // Get the new space root. | |||
1738 | Node* xroot = new_node(C->root()); | |||
1739 | if (xroot == NULL__null) { | |||
1740 | // This shouldn't happen give the order of matching. | |||
1741 | return NULL__null; | |||
1742 | } | |||
1743 | ||||
1744 | // Shared constants need to have their control be root so they | |||
1745 | // can be scheduled properly. | |||
1746 | Node* control = last->in(0); | |||
1747 | if (control != xroot) { | |||
1748 | if (control == NULL__null || control == C->root()) { | |||
1749 | last->set_req(0, xroot); | |||
1750 | } else { | |||
1751 | assert(false, "unexpected control")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1751, "assert(" "false" ") failed", "unexpected control"); :: breakpoint(); } } while (0); | |||
1752 | return NULL__null; | |||
1753 | } | |||
1754 | } | |||
1755 | return last; | |||
1756 | } | |||
1757 | return NULL__null; | |||
1758 | } | |||
1759 | ||||
1760 | ||||
1761 | //------------------------------ReduceInst------------------------------------- | |||
1762 | // Reduce a State tree (with given Control) into a tree of MachNodes. | |||
1763 | // This routine (and it's cohort ReduceOper) convert Ideal Nodes into | |||
1764 | // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. | |||
1765 | // Each MachNode has a number of complicated MachOper operands; each | |||
1766 | // MachOper also covers a further tree of Ideal Nodes. | |||
1767 | ||||
1768 | // The root of the Ideal match tree is always an instruction, so we enter | |||
1769 | // the recursion here. After building the MachNode, we need to recurse | |||
1770 | // the tree checking for these cases: | |||
1771 | // (1) Child is an instruction - | |||
1772 | // Build the instruction (recursively), add it as an edge. | |||
1773 | // Build a simple operand (register) to hold the result of the instruction. | |||
1774 | // (2) Child is an interior part of an instruction - | |||
1775 | // Skip over it (do nothing) | |||
1776 | // (3) Child is the start of a operand - | |||
1777 | // Build the operand, place it inside the instruction | |||
1778 | // Call ReduceOper. | |||
1779 | MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { | |||
1780 | assert( rule >= NUM_OPERANDS, "called with operand rule" )do { if (!(rule >= 139)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1780, "assert(" "rule >= 139" ") failed", "called with operand rule" ); ::breakpoint(); } } while (0); | |||
1781 | ||||
1782 | MachNode* shared_node = find_shared_node(s->_leaf, rule); | |||
1783 | if (shared_node != NULL__null) { | |||
1784 | return shared_node; | |||
1785 | } | |||
1786 | ||||
1787 | // Build the object to represent this state & prepare for recursive calls | |||
1788 | MachNode *mach = s->MachNodeGenerator(rule); | |||
1789 | guarantee(mach != NULL, "Missing MachNode")do { if (!(mach != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1789, "guarantee(" "mach != NULL" ") failed", "Missing MachNode" ); ::breakpoint(); } } while (0); | |||
1790 | mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); | |||
1791 | assert( mach->_opnds[0] != NULL, "Missing result operand" )do { if (!(mach->_opnds[0] != __null)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1791, "assert(" "mach->_opnds[0] != __null" ") failed", "Missing result operand" ); ::breakpoint(); } } while (0); | |||
1792 | Node *leaf = s->_leaf; | |||
1793 | NOT_PRODUCT(record_new2old(mach, leaf);)record_new2old(mach, leaf); | |||
1794 | // Check for instruction or instruction chain rule | |||
1795 | if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { | |||
1796 | assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node (s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)" ") failed", "duplicating node that's already been matched"); ::breakpoint(); } } while (0) | |||
1797 | "duplicating node that's already been matched")do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node (s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)" ") failed", "duplicating node that's already been matched"); ::breakpoint(); } } while (0); | |||
1798 | // Instruction | |||
1799 | mach->add_req( leaf->in(0) ); // Set initial control | |||
1800 | // Reduce interior of complex instruction | |||
1801 | ReduceInst_Interior( s, rule, mem, mach, 1 ); | |||
1802 | } else { | |||
1803 | // Instruction chain rules are data-dependent on their inputs | |||
1804 | mach->add_req(0); // Set initial control to none | |||
1805 | ReduceInst_Chain_Rule( s, rule, mem, mach ); | |||
1806 | } | |||
1807 | ||||
1808 | // If a Memory was used, insert a Memory edge | |||
1809 | if( mem != (Node*)1 ) { | |||
1810 | mach->ins_req(MemNode::Memory,mem); | |||
1811 | #ifdef ASSERT1 | |||
1812 | // Verify adr type after matching memory operation | |||
1813 | const MachOper* oper = mach->memory_operand(); | |||
1814 | if (oper != NULL__null && oper != (MachOper*)-1) { | |||
1815 | // It has a unique memory operand. Find corresponding ideal mem node. | |||
1816 | Node* m = NULL__null; | |||
1817 | if (leaf->is_Mem()) { | |||
1818 | m = leaf; | |||
1819 | } else { | |||
1820 | m = _mem_node; | |||
1821 | assert(m != NULL && m->is_Mem(), "expecting memory node")do { if (!(m != __null && m->is_Mem())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1821, "assert(" "m != __null && m->is_Mem()" ") failed" , "expecting memory node"); ::breakpoint(); } } while (0); | |||
1822 | } | |||
1823 | const Type* mach_at = mach->adr_type(); | |||
1824 | // DecodeN node consumed by an address may have different type | |||
1825 | // than its input. Don't compare types for such case. | |||
1826 | if (m->adr_type() != mach_at && | |||
1827 | (m->in(MemNode::Address)->is_DecodeNarrowPtr() || | |||
1828 | (m->in(MemNode::Address)->is_AddP() && | |||
1829 | m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) || | |||
1830 | (m->in(MemNode::Address)->is_AddP() && | |||
1831 | m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && | |||
1832 | m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) { | |||
1833 | mach_at = m->adr_type(); | |||
1834 | } | |||
1835 | if (m->adr_type() != mach_at) { | |||
1836 | m->dump(); | |||
1837 | tty->print_cr("mach:"); | |||
1838 | mach->dump(1); | |||
1839 | } | |||
1840 | assert(m->adr_type() == mach_at, "matcher should not change adr type")do { if (!(m->adr_type() == mach_at)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1840, "assert(" "m->adr_type() == mach_at" ") failed", "matcher should not change adr type" ); ::breakpoint(); } } while (0); | |||
1841 | } | |||
1842 | #endif | |||
1843 | } | |||
1844 | ||||
1845 | // If the _leaf is an AddP, insert the base edge | |||
1846 | if (leaf->is_AddP()) { | |||
1847 | mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); | |||
1848 | } | |||
1849 | ||||
1850 | uint number_of_projections_prior = number_of_projections(); | |||
1851 | ||||
1852 | // Perform any 1-to-many expansions required | |||
1853 | MachNode *ex = mach->Expand(s, _projection_list, mem); | |||
1854 | if (ex != mach) { | |||
1855 | assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match")do { if (!(ex->ideal_reg() == mach->ideal_reg())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1855, "assert(" "ex->ideal_reg() == mach->ideal_reg()" ") failed", "ideal types should match"); ::breakpoint(); } } while (0); | |||
1856 | if( ex->in(1)->is_Con() ) | |||
1857 | ex->in(1)->set_req(0, C->root()); | |||
1858 | // Remove old node from the graph | |||
1859 | for( uint i=0; i<mach->req(); i++ ) { | |||
1860 | mach->set_req(i,NULL__null); | |||
1861 | } | |||
1862 | NOT_PRODUCT(record_new2old(ex, s->_leaf);)record_new2old(ex, s->_leaf); | |||
1863 | } | |||
1864 | ||||
1865 | // PhaseChaitin::fixup_spills will sometimes generate spill code | |||
1866 | // via the matcher. By the time, nodes have been wired into the CFG, | |||
1867 | // and any further nodes generated by expand rules will be left hanging | |||
1868 | // in space, and will not get emitted as output code. Catch this. | |||
1869 | // Also, catch any new register allocation constraints ("projections") | |||
1870 | // generated belatedly during spill code generation. | |||
1871 | if (_allocation_started) { | |||
1872 | guarantee(ex == mach, "no expand rules during spill generation")do { if (!(ex == mach)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1872, "guarantee(" "ex == mach" ") failed", "no expand rules during spill generation" ); ::breakpoint(); } } while (0); | |||
1873 | guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation")do { if (!(number_of_projections_prior == number_of_projections ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1873, "guarantee(" "number_of_projections_prior == number_of_projections()" ") failed", "no allocation during spill generation"); ::breakpoint (); } } while (0); | |||
1874 | } | |||
1875 | ||||
1876 | if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { | |||
1877 | // Record the con for sharing | |||
1878 | _shared_nodes.map(leaf->_idx, ex); | |||
1879 | } | |||
1880 | ||||
1881 | // Have mach nodes inherit GC barrier data | |||
1882 | if (leaf->is_LoadStore()) { | |||
1883 | mach->set_barrier_data(leaf->as_LoadStore()->barrier_data()); | |||
1884 | } else if (leaf->is_Mem()) { | |||
1885 | mach->set_barrier_data(leaf->as_Mem()->barrier_data()); | |||
1886 | } | |||
1887 | ||||
1888 | return ex; | |||
1889 | } | |||
1890 | ||||
1891 | void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { | |||
1892 | for (uint i = n->req(); i < n->len(); i++) { | |||
1893 | if (n->in(i) != NULL__null) { | |||
1894 | mach->add_prec(n->in(i)); | |||
1895 | } | |||
1896 | } | |||
1897 | } | |||
1898 | ||||
1899 | void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) { | |||
1900 | // 'op' is what I am expecting to receive | |||
1901 | int op = _leftOp[rule]; | |||
1902 | // Operand type to catch childs result | |||
1903 | // This is what my child will give me. | |||
1904 | unsigned int opnd_class_instance = s->rule(op); | |||
1905 | // Choose between operand class or not. | |||
1906 | // This is what I will receive. | |||
1907 | int catch_op = (FIRST_OPERAND_CLASS138 <= op && op < NUM_OPERANDS139) ? opnd_class_instance : op; | |||
1908 | // New rule for child. Chase operand classes to get the actual rule. | |||
1909 | unsigned int newrule = s->rule(catch_op); | |||
1910 | ||||
1911 | if (newrule < NUM_OPERANDS139) { | |||
1912 | // Chain from operand or operand class, may be output of shared node | |||
1913 | assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand")do { if (!(opnd_class_instance < 139)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1913, "assert(" "opnd_class_instance < 139" ") failed", "Bad AD file: Instruction chain rule must chain from operand" ); ::breakpoint(); } } while (0); | |||
1914 | // Insert operand into array of operands for this instruction | |||
1915 | mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); | |||
1916 | ||||
1917 | ReduceOper(s, newrule, mem, mach); | |||
1918 | } else { | |||
1919 | // Chain from the result of an instruction | |||
1920 | assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand")do { if (!(newrule >= _LAST_MACH_OPER)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1920, "assert(" "newrule >= _LAST_MACH_OPER" ") failed", "Do NOT chain from internal operand"); ::breakpoint(); } } while (0); | |||
1921 | mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); | |||
1922 | Node *mem1 = (Node*)1; | |||
1923 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; | |||
1924 | mach->add_req( ReduceInst(s, newrule, mem1) ); | |||
1925 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; | |||
1926 | } | |||
1927 | return; | |||
1928 | } | |||
1929 | ||||
1930 | ||||
1931 | uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { | |||
1932 | handle_precedence_edges(s->_leaf, mach); | |||
1933 | ||||
1934 | if( s->_leaf->is_Load() ) { | |||
1935 | Node *mem2 = s->_leaf->in(MemNode::Memory); | |||
1936 | assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1 || mem == mem2)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1936, "assert(" "mem == (Node*)1 || mem == mem2" ") failed" , "multiple Memories being matched at once?"); ::breakpoint() ; } } while (0); | |||
1937 | debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)if( mem == (Node*)1 ) _mem_node = s->_leaf; | |||
1938 | mem = mem2; | |||
1939 | } | |||
1940 | if( s->_leaf->in(0) != NULL__null && s->_leaf->req() > 1) { | |||
1941 | if( mach->in(0) == NULL__null ) | |||
1942 | mach->set_req(0, s->_leaf->in(0)); | |||
1943 | } | |||
1944 | ||||
1945 | // Now recursively walk the state tree & add operand list. | |||
1946 | for( uint i=0; i<2; i++ ) { // binary tree | |||
1947 | State *newstate = s->_kids[i]; | |||
1948 | if( newstate == NULL__null ) break; // Might only have 1 child | |||
1949 | // 'op' is what I am expecting to receive | |||
1950 | int op; | |||
1951 | if( i == 0 ) { | |||
1952 | op = _leftOp[rule]; | |||
1953 | } else { | |||
1954 | op = _rightOp[rule]; | |||
1955 | } | |||
1956 | // Operand type to catch childs result | |||
1957 | // This is what my child will give me. | |||
1958 | int opnd_class_instance = newstate->rule(op); | |||
1959 | // Choose between operand class or not. | |||
1960 | // This is what I will receive. | |||
1961 | int catch_op = (op >= FIRST_OPERAND_CLASS138 && op < NUM_OPERANDS139) ? opnd_class_instance : op; | |||
1962 | // New rule for child. Chase operand classes to get the actual rule. | |||
1963 | int newrule = newstate->rule(catch_op); | |||
1964 | ||||
1965 | if (newrule < NUM_OPERANDS139) { // Operand/operandClass or internalOp/instruction? | |||
1966 | // Operand/operandClass | |||
1967 | // Insert operand into array of operands for this instruction | |||
1968 | mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); | |||
1969 | ReduceOper(newstate, newrule, mem, mach); | |||
1970 | ||||
1971 | } else { // Child is internal operand or new instruction | |||
1972 | if (newrule < _LAST_MACH_OPER) { // internal operand or instruction? | |||
1973 | // internal operand --> call ReduceInst_Interior | |||
1974 | // Interior of complex instruction. Do nothing but recurse. | |||
1975 | num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds); | |||
1976 | } else { | |||
1977 | // instruction --> call build operand( ) to catch result | |||
1978 | // --> ReduceInst( newrule ) | |||
1979 | mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); | |||
1980 | Node *mem1 = (Node*)1; | |||
1981 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; | |||
1982 | mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); | |||
1983 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; | |||
1984 | } | |||
1985 | } | |||
1986 | assert( mach->_opnds[num_opnds-1], "" )do { if (!(mach->_opnds[num_opnds-1])) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1986, "assert(" "mach->_opnds[num_opnds-1]" ") failed", "" ); ::breakpoint(); } } while (0); | |||
1987 | } | |||
1988 | return num_opnds; | |||
1989 | } | |||
1990 | ||||
1991 | // This routine walks the interior of possible complex operands. | |||
1992 | // At each point we check our children in the match tree: | |||
1993 | // (1) No children - | |||
1994 | // We are a leaf; add _leaf field as an input to the MachNode | |||
1995 | // (2) Child is an internal operand - | |||
1996 | // Skip over it ( do nothing ) | |||
1997 | // (3) Child is an instruction - | |||
1998 | // Call ReduceInst recursively and | |||
1999 | // and instruction as an input to the MachNode | |||
2000 | void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { | |||
2001 | assert( rule < _LAST_MACH_OPER, "called with operand rule" )do { if (!(rule < _LAST_MACH_OPER)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2001, "assert(" "rule < _LAST_MACH_OPER" ") failed", "called with operand rule" ); ::breakpoint(); } } while (0); | |||
2002 | State *kid = s->_kids[0]; | |||
2003 | assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" )do { if (!(kid == __null || s->_leaf->in(0) == __null)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2003, "assert(" "kid == __null || s->_leaf->in(0) == __null" ") failed", "internal operands have no control"); ::breakpoint (); } } while (0); | |||
2004 | ||||
2005 | // Leaf? And not subsumed? | |||
2006 | if( kid == NULL__null && !_swallowed[rule] ) { | |||
2007 | mach->add_req( s->_leaf ); // Add leaf pointer | |||
2008 | return; // Bail out | |||
2009 | } | |||
2010 | ||||
2011 | if( s->_leaf->is_Load() ) { | |||
2012 | assert( mem == (Node*)1, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2012, "assert(" "mem == (Node*)1" ") failed", "multiple Memories being matched at once?" ); ::breakpoint(); } } while (0); | |||
2013 | mem = s->_leaf->in(MemNode::Memory); | |||
2014 | debug_only(_mem_node = s->_leaf;)_mem_node = s->_leaf; | |||
2015 | } | |||
2016 | ||||
2017 | handle_precedence_edges(s->_leaf, mach); | |||
2018 | ||||
2019 | if( s->_leaf->in(0) && s->_leaf->req() > 1) { | |||
2020 | if( !mach->in(0) ) | |||
2021 | mach->set_req(0,s->_leaf->in(0)); | |||
2022 | else { | |||
2023 | assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" )do { if (!(s->_leaf->in(0) == mach->in(0))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2023, "assert(" "s->_leaf->in(0) == mach->in(0)" ") failed" , "same instruction, differing controls?"); ::breakpoint(); } } while (0); | |||
2024 | } | |||
2025 | } | |||
2026 | ||||
2027 | for (uint i = 0; kid != NULL__null && i < 2; kid = s->_kids[1], i++) { // binary tree | |||
2028 | int newrule; | |||
2029 | if( i == 0) { | |||
2030 | newrule = kid->rule(_leftOp[rule]); | |||
2031 | } else { | |||
2032 | newrule = kid->rule(_rightOp[rule]); | |||
2033 | } | |||
2034 | ||||
2035 | if (newrule < _LAST_MACH_OPER) { // Operand or instruction? | |||
2036 | // Internal operand; recurse but do nothing else | |||
2037 | ReduceOper(kid, newrule, mem, mach); | |||
2038 | ||||
2039 | } else { // Child is a new instruction | |||
2040 | // Reduce the instruction, and add a direct pointer from this | |||
2041 | // machine instruction to the newly reduced one. | |||
2042 | Node *mem1 = (Node*)1; | |||
2043 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; | |||
2044 | mach->add_req( ReduceInst( kid, newrule, mem1 ) ); | |||
2045 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; | |||
2046 | } | |||
2047 | } | |||
2048 | } | |||
2049 | ||||
2050 | ||||
2051 | // ------------------------------------------------------------------------- | |||
2052 | // Java-Java calling convention | |||
2053 | // (what you use when Java calls Java) | |||
2054 | ||||
2055 | //------------------------------find_receiver---------------------------------- | |||
2056 | // For a given signature, return the OptoReg for parameter 0. | |||
2057 | OptoReg::Name Matcher::find_receiver() { | |||
2058 | VMRegPair regs; | |||
2059 | BasicType sig_bt = T_OBJECT; | |||
2060 | SharedRuntime::java_calling_convention(&sig_bt, ®s, 1); | |||
2061 | // Return argument 0 register. In the LP64 build pointers | |||
2062 | // take 2 registers, but the VM wants only the 'main' name. | |||
2063 | return OptoReg::as_OptoReg(regs.first()); | |||
2064 | } | |||
2065 | ||||
2066 | bool Matcher::is_vshift_con_pattern(Node* n, Node* m) { | |||
2067 | if (n != NULL__null && m != NULL__null) { | |||
2068 | return VectorNode::is_vector_shift(n) && | |||
2069 | VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con(); | |||
2070 | } | |||
2071 | return false; | |||
2072 | } | |||
2073 | ||||
2074 | bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) { | |||
2075 | // Must clone all producers of flags, or we will not match correctly. | |||
2076 | // Suppose a compare setting int-flags is shared (e.g., a switch-tree) | |||
2077 | // then it will match into an ideal Op_RegFlags. Alas, the fp-flags | |||
2078 | // are also there, so we may match a float-branch to int-flags and | |||
2079 | // expect the allocator to haul the flags from the int-side to the | |||
2080 | // fp-side. No can do. | |||
2081 | if (_must_clone[m->Opcode()]) { | |||
2082 | mstack.push(m, Visit); | |||
2083 | return true; | |||
2084 | } | |||
2085 | return pd_clone_node(n, m, mstack); | |||
2086 | } | |||
2087 | ||||
2088 | bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { | |||
2089 | Node *off = m->in(AddPNode::Offset); | |||
2090 | if (off->is_Con()) { | |||
2091 | address_visited.test_set(m->_idx); // Flag as address_visited | |||
2092 | mstack.push(m->in(AddPNode::Address), Pre_Visit); | |||
2093 | // Clone X+offset as it also folds into most addressing expressions | |||
2094 | mstack.push(off, Visit); | |||
2095 | mstack.push(m->in(AddPNode::Base), Pre_Visit); | |||
2096 | return true; | |||
2097 | } | |||
2098 | return false; | |||
2099 | } | |||
2100 | ||||
2101 | // A method-klass-holder may be passed in the inline_cache_reg | |||
2102 | // and then expanded into the inline_cache_reg and a method_ptr register | |||
2103 | // defined in ad_<arch>.cpp | |||
2104 | ||||
2105 | //------------------------------find_shared------------------------------------ | |||
2106 | // Set bits if Node is shared or otherwise a root | |||
2107 | void Matcher::find_shared(Node* n) { | |||
2108 | // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc | |||
2109 | MStack mstack(C->live_nodes() * 2); | |||
2110 | // Mark nodes as address_visited if they are inputs to an address expression | |||
2111 | VectorSet address_visited; | |||
2112 | mstack.push(n, Visit); // Don't need to pre-visit root node | |||
2113 | while (mstack.is_nonempty()) { | |||
2114 | n = mstack.node(); // Leave node on stack | |||
2115 | Node_State nstate = mstack.state(); | |||
2116 | uint nop = n->Opcode(); | |||
2117 | if (nstate == Pre_Visit) { | |||
2118 | if (address_visited.test(n->_idx)) { // Visited in address already? | |||
2119 | // Flag as visited and shared now. | |||
2120 | set_visited(n); | |||
2121 | } | |||
2122 | if (is_visited(n)) { // Visited already? | |||
2123 | // Node is shared and has no reason to clone. Flag it as shared. | |||
2124 | // This causes it to match into a register for the sharing. | |||
2125 | set_shared(n); // Flag as shared and | |||
2126 | if (n->is_DecodeNarrowPtr()) { | |||
2127 | // Oop field/array element loads must be shared but since | |||
2128 | // they are shared through a DecodeN they may appear to have | |||
2129 | // a single use so force sharing here. | |||
2130 | set_shared(n->in(1)); | |||
2131 | } | |||
2132 | mstack.pop(); // remove node from stack | |||
2133 | continue; | |||
2134 | } | |||
2135 | nstate = Visit; // Not already visited; so visit now | |||
2136 | } | |||
2137 | if (nstate == Visit) { | |||
2138 | mstack.set_state(Post_Visit); | |||
2139 | set_visited(n); // Flag as visited now | |||
2140 | bool mem_op = false; | |||
2141 | int mem_addr_idx = MemNode::Address; | |||
2142 | if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) { | |||
2143 | continue; | |||
2144 | } | |||
2145 | for (int i = n->req() - 1; i >= 0; --i) { // For my children | |||
2146 | Node* m = n->in(i); // Get ith input | |||
2147 | if (m == NULL__null) { | |||
2148 | continue; // Ignore NULLs | |||
2149 | } | |||
2150 | if (clone_node(n, m, mstack)) { | |||
2151 | continue; | |||
2152 | } | |||
2153 | ||||
2154 | // Clone addressing expressions as they are "free" in memory access instructions | |||
2155 | if (mem_op && i == mem_addr_idx && m->is_AddP() && | |||
2156 | // When there are other uses besides address expressions | |||
2157 | // put it on stack and mark as shared. | |||
2158 | !is_visited(m)) { | |||
2159 | // Some inputs for address expression are not put on stack | |||
2160 | // to avoid marking them as shared and forcing them into register | |||
2161 | // if they are used only in address expressions. | |||
2162 | // But they should be marked as shared if there are other uses | |||
2163 | // besides address expressions. | |||
2164 | ||||
2165 | if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) { | |||
2166 | continue; | |||
2167 | } | |||
2168 | } // if( mem_op && | |||
2169 | mstack.push(m, Pre_Visit); | |||
2170 | } // for(int i = ...) | |||
2171 | } | |||
2172 | else if (nstate == Alt_Post_Visit) { | |||
2173 | mstack.pop(); // Remove node from stack | |||
2174 | // We cannot remove the Cmp input from the Bool here, as the Bool may be | |||
2175 | // shared and all users of the Bool need to move the Cmp in parallel. | |||
2176 | // This leaves both the Bool and the If pointing at the Cmp. To | |||
2177 | // prevent the Matcher from trying to Match the Cmp along both paths | |||
2178 | // BoolNode::match_edge always returns a zero. | |||
2179 | ||||
2180 | // We reorder the Op_If in a pre-order manner, so we can visit without | |||
2181 | // accidentally sharing the Cmp (the Bool and the If make 2 users). | |||
2182 | n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool | |||
2183 | } | |||
2184 | else if (nstate == Post_Visit) { | |||
2185 | mstack.pop(); // Remove node from stack | |||
2186 | ||||
2187 | // Now hack a few special opcodes | |||
2188 | uint opcode = n->Opcode(); | |||
2189 | bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode); | |||
2190 | if (!gc_handled) { | |||
2191 | find_shared_post_visit(n, opcode); | |||
2192 | } | |||
2193 | } | |||
2194 | else { | |||
2195 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2195); ::breakpoint(); } while (0); | |||
2196 | } | |||
2197 | } // end of while (mstack.is_nonempty()) | |||
2198 | } | |||
2199 | ||||
2200 | bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) { | |||
2201 | switch(opcode) { // Handle some opcodes special | |||
2202 | case Op_Phi: // Treat Phis as shared roots | |||
2203 | case Op_Parm: | |||
2204 | case Op_Proj: // All handled specially during matching | |||
2205 | case Op_SafePointScalarObject: | |||
2206 | set_shared(n); | |||
2207 | set_dontcare(n); | |||
2208 | break; | |||
2209 | case Op_If: | |||
2210 | case Op_CountedLoopEnd: | |||
2211 | mstack.set_state(Alt_Post_Visit); // Alternative way | |||
2212 | // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps | |||
2213 | // with matching cmp/branch in 1 instruction. The Matcher needs the | |||
2214 | // Bool and CmpX side-by-side, because it can only get at constants | |||
2215 | // that are at the leaves of Match trees, and the Bool's condition acts | |||
2216 | // as a constant here. | |||
2217 | mstack.push(n->in(1), Visit); // Clone the Bool | |||
2218 | mstack.push(n->in(0), Pre_Visit); // Visit control input | |||
2219 | return true; // while (mstack.is_nonempty()) | |||
2220 | case Op_ConvI2D: // These forms efficiently match with a prior | |||
2221 | case Op_ConvI2F: // Load but not a following Store | |||
2222 | if( n->in(1)->is_Load() && // Prior load | |||
2223 | n->outcnt() == 1 && // Not already shared | |||
2224 | n->unique_out()->is_Store() ) // Following store | |||
2225 | set_shared(n); // Force it to be a root | |||
2226 | break; | |||
2227 | case Op_ReverseBytesI: | |||
2228 | case Op_ReverseBytesL: | |||
2229 | if( n->in(1)->is_Load() && // Prior load | |||
2230 | n->outcnt() == 1 ) // Not already shared | |||
2231 | set_shared(n); // Force it to be a root | |||
2232 | break; | |||
2233 | case Op_BoxLock: // Cant match until we get stack-regs in ADLC | |||
2234 | case Op_IfFalse: | |||
2235 | case Op_IfTrue: | |||
2236 | case Op_MachProj: | |||
2237 | case Op_MergeMem: | |||
2238 | case Op_Catch: | |||
2239 | case Op_CatchProj: | |||
2240 | case Op_CProj: | |||
2241 | case Op_JumpProj: | |||
2242 | case Op_JProj: | |||
2243 | case Op_NeverBranch: | |||
2244 | set_dontcare(n); | |||
2245 | break; | |||
2246 | case Op_Jump: | |||
2247 | mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) | |||
2248 | mstack.push(n->in(0), Pre_Visit); // Visit Control input | |||
2249 | return true; // while (mstack.is_nonempty()) | |||
2250 | case Op_StrComp: | |||
2251 | case Op_StrEquals: | |||
2252 | case Op_StrIndexOf: | |||
2253 | case Op_StrIndexOfChar: | |||
2254 | case Op_AryEq: | |||
2255 | case Op_HasNegatives: | |||
2256 | case Op_StrInflatedCopy: | |||
2257 | case Op_StrCompressedCopy: | |||
2258 | case Op_EncodeISOArray: | |||
2259 | case Op_FmaD: | |||
2260 | case Op_FmaF: | |||
2261 | case Op_FmaVD: | |||
2262 | case Op_FmaVF: | |||
2263 | case Op_MacroLogicV: | |||
2264 | case Op_LoadVectorMasked: | |||
2265 | case Op_VectorCmpMasked: | |||
2266 | case Op_VectorLoadMask: | |||
2267 | set_shared(n); // Force result into register (it will be anyways) | |||
2268 | break; | |||
2269 | case Op_ConP: { // Convert pointers above the centerline to NUL | |||
2270 | TypeNode *tn = n->as_Type(); // Constants derive from type nodes | |||
2271 | const TypePtr* tp = tn->type()->is_ptr(); | |||
2272 | if (tp->_ptr == TypePtr::AnyNull) { | |||
2273 | tn->set_type(TypePtr::NULL_PTR); | |||
2274 | } | |||
2275 | break; | |||
2276 | } | |||
2277 | case Op_ConN: { // Convert narrow pointers above the centerline to NUL | |||
2278 | TypeNode *tn = n->as_Type(); // Constants derive from type nodes | |||
2279 | const TypePtr* tp = tn->type()->make_ptr(); | |||
2280 | if (tp && tp->_ptr == TypePtr::AnyNull) { | |||
2281 | tn->set_type(TypeNarrowOop::NULL_PTR); | |||
2282 | } | |||
2283 | break; | |||
2284 | } | |||
2285 | case Op_Binary: // These are introduced in the Post_Visit state. | |||
2286 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2286); ::breakpoint(); } while (0); | |||
2287 | break; | |||
2288 | case Op_ClearArray: | |||
2289 | case Op_SafePoint: | |||
2290 | mem_op = true; | |||
2291 | break; | |||
2292 | default: | |||
2293 | if( n->is_Store() ) { | |||
2294 | // Do match stores, despite no ideal reg | |||
2295 | mem_op = true; | |||
2296 | break; | |||
2297 | } | |||
2298 | if( n->is_Mem() ) { // Loads and LoadStores | |||
2299 | mem_op = true; | |||
2300 | // Loads must be root of match tree due to prior load conflict | |||
2301 | if( C->subsume_loads() == false ) | |||
2302 | set_shared(n); | |||
2303 | } | |||
2304 | // Fall into default case | |||
2305 | if( !n->ideal_reg() ) | |||
2306 | set_dontcare(n); // Unmatchable Nodes | |||
2307 | } // end_switch | |||
2308 | return false; | |||
2309 | } | |||
2310 | ||||
2311 | void Matcher::find_shared_post_visit(Node* n, uint opcode) { | |||
2312 | if (n->is_predicated_vector()) { | |||
2313 | // Restructure into binary trees for Matching. | |||
2314 | if (n->req() == 4) { | |||
2315 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); | |||
2316 | n->set_req(2, n->in(3)); | |||
2317 | n->del_req(3); | |||
2318 | } else if (n->req() == 5) { | |||
2319 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); | |||
2320 | n->set_req(2, new BinaryNode(n->in(3), n->in(4))); | |||
2321 | n->del_req(4); | |||
2322 | n->del_req(3); | |||
2323 | } | |||
2324 | return; | |||
2325 | } | |||
2326 | ||||
2327 | switch(opcode) { // Handle some opcodes special | |||
2328 | case Op_StorePConditional: | |||
2329 | case Op_StoreIConditional: | |||
2330 | case Op_StoreLConditional: | |||
2331 | case Op_CompareAndExchangeB: | |||
2332 | case Op_CompareAndExchangeS: | |||
2333 | case Op_CompareAndExchangeI: | |||
2334 | case Op_CompareAndExchangeL: | |||
2335 | case Op_CompareAndExchangeP: | |||
2336 | case Op_CompareAndExchangeN: | |||
2337 | case Op_WeakCompareAndSwapB: | |||
2338 | case Op_WeakCompareAndSwapS: | |||
2339 | case Op_WeakCompareAndSwapI: | |||
2340 | case Op_WeakCompareAndSwapL: | |||
2341 | case Op_WeakCompareAndSwapP: | |||
2342 | case Op_WeakCompareAndSwapN: | |||
2343 | case Op_CompareAndSwapB: | |||
2344 | case Op_CompareAndSwapS: | |||
2345 | case Op_CompareAndSwapI: | |||
2346 | case Op_CompareAndSwapL: | |||
2347 | case Op_CompareAndSwapP: | |||
2348 | case Op_CompareAndSwapN: { // Convert trinary to binary-tree | |||
2349 | Node* newval = n->in(MemNode::ValueIn); | |||
2350 | Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); | |||
2351 | Node* pair = new BinaryNode(oldval, newval); | |||
2352 | n->set_req(MemNode::ValueIn, pair); | |||
2353 | n->del_req(LoadStoreConditionalNode::ExpectedIn); | |||
2354 | break; | |||
2355 | } | |||
2356 | case Op_CMoveD: // Convert trinary to binary-tree | |||
2357 | case Op_CMoveF: | |||
2358 | case Op_CMoveI: | |||
2359 | case Op_CMoveL: | |||
2360 | case Op_CMoveN: | |||
2361 | case Op_CMoveP: | |||
2362 | case Op_CMoveVF: | |||
2363 | case Op_CMoveVD: { | |||
2364 | // Restructure into a binary tree for Matching. It's possible that | |||
2365 | // we could move this code up next to the graph reshaping for IfNodes | |||
2366 | // or vice-versa, but I do not want to debug this for Ladybird. | |||
2367 | // 10/2/2000 CNC. | |||
2368 | Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1)); | |||
2369 | n->set_req(1, pair1); | |||
2370 | Node* pair2 = new BinaryNode(n->in(2), n->in(3)); | |||
2371 | n->set_req(2, pair2); | |||
2372 | n->del_req(3); | |||
2373 | break; | |||
2374 | } | |||
2375 | case Op_VectorCmpMasked: { | |||
2376 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); | |||
2377 | n->set_req(2, pair1); | |||
2378 | n->del_req(3); | |||
2379 | break; | |||
2380 | } | |||
2381 | case Op_MacroLogicV: { | |||
2382 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); | |||
2383 | Node* pair2 = new BinaryNode(n->in(3), n->in(4)); | |||
2384 | n->set_req(1, pair1); | |||
2385 | n->set_req(2, pair2); | |||
2386 | n->del_req(4); | |||
2387 | n->del_req(3); | |||
2388 | break; | |||
2389 | } | |||
2390 | case Op_StoreVectorMasked: { | |||
2391 | Node* pair = new BinaryNode(n->in(3), n->in(4)); | |||
2392 | n->set_req(3, pair); | |||
2393 | n->del_req(4); | |||
2394 | break; | |||
2395 | } | |||
2396 | case Op_LoopLimit: { | |||
2397 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); | |||
2398 | n->set_req(1, pair1); | |||
2399 | n->set_req(2, n->in(3)); | |||
2400 | n->del_req(3); | |||
2401 | break; | |||
2402 | } | |||
2403 | case Op_StrEquals: | |||
2404 | case Op_StrIndexOfChar: { | |||
2405 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); | |||
2406 | n->set_req(2, pair1); | |||
2407 | n->set_req(3, n->in(4)); | |||
2408 | n->del_req(4); | |||
2409 | break; | |||
2410 | } | |||
2411 | case Op_StrComp: | |||
2412 | case Op_StrIndexOf: { | |||
2413 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); | |||
2414 | n->set_req(2, pair1); | |||
2415 | Node* pair2 = new BinaryNode(n->in(4),n->in(5)); | |||
2416 | n->set_req(3, pair2); | |||
2417 | n->del_req(5); | |||
2418 | n->del_req(4); | |||
2419 | break; | |||
2420 | } | |||
2421 | case Op_StrCompressedCopy: | |||
2422 | case Op_StrInflatedCopy: | |||
2423 | case Op_EncodeISOArray: { | |||
2424 | // Restructure into a binary tree for Matching. | |||
2425 | Node* pair = new BinaryNode(n->in(3), n->in(4)); | |||
2426 | n->set_req(3, pair); | |||
2427 | n->del_req(4); | |||
2428 | break; | |||
2429 | } | |||
2430 | case Op_FmaD: | |||
2431 | case Op_FmaF: | |||
2432 | case Op_FmaVD: | |||
2433 | case Op_FmaVF: { | |||
2434 | // Restructure into a binary tree for Matching. | |||
2435 | Node* pair = new BinaryNode(n->in(1), n->in(2)); | |||
2436 | n->set_req(2, pair); | |||
2437 | n->set_req(1, n->in(3)); | |||
2438 | n->del_req(3); | |||
2439 | break; | |||
2440 | } | |||
2441 | case Op_MulAddS2I: { | |||
2442 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); | |||
2443 | Node* pair2 = new BinaryNode(n->in(3), n->in(4)); | |||
2444 | n->set_req(1, pair1); | |||
2445 | n->set_req(2, pair2); | |||
2446 | n->del_req(4); | |||
2447 | n->del_req(3); | |||
2448 | break; | |||
2449 | } | |||
2450 | case Op_CopySignD: | |||
2451 | case Op_SignumF: | |||
2452 | case Op_SignumD: { | |||
2453 | Node* pair = new BinaryNode(n->in(2), n->in(3)); | |||
2454 | n->set_req(2, pair); | |||
2455 | n->del_req(3); | |||
2456 | break; | |||
2457 | } | |||
2458 | case Op_VectorBlend: | |||
2459 | case Op_VectorInsert: { | |||
2460 | Node* pair = new BinaryNode(n->in(1), n->in(2)); | |||
2461 | n->set_req(1, pair); | |||
2462 | n->set_req(2, n->in(3)); | |||
2463 | n->del_req(3); | |||
2464 | break; | |||
2465 | } | |||
2466 | case Op_LoadVectorGatherMasked: | |||
2467 | case Op_StoreVectorScatter: { | |||
2468 | Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); | |||
2469 | n->set_req(MemNode::ValueIn, pair); | |||
2470 | n->del_req(MemNode::ValueIn+1); | |||
2471 | break; | |||
2472 | } | |||
2473 | case Op_StoreVectorScatterMasked: { | |||
2474 | Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2)); | |||
2475 | n->set_req(MemNode::ValueIn+1, pair); | |||
2476 | n->del_req(MemNode::ValueIn+2); | |||
2477 | pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); | |||
2478 | n->set_req(MemNode::ValueIn, pair); | |||
2479 | n->del_req(MemNode::ValueIn+1); | |||
2480 | break; | |||
2481 | } | |||
2482 | case Op_VectorMaskCmp: { | |||
2483 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); | |||
2484 | n->set_req(2, n->in(3)); | |||
2485 | n->del_req(3); | |||
2486 | break; | |||
2487 | } | |||
2488 | default: | |||
2489 | break; | |||
2490 | } | |||
2491 | } | |||
2492 | ||||
2493 | #ifndef PRODUCT | |||
2494 | void Matcher::record_new2old(Node* newn, Node* old) { | |||
2495 | _new2old_map.map(newn->_idx, old); | |||
2496 | if (!_reused.test_set(old->_igv_idx)) { | |||
2497 | // Reuse the Ideal-level IGV identifier so that the node can be tracked | |||
2498 | // across matching. If there are multiple machine nodes expanded from the | |||
2499 | // same Ideal node, only one will reuse its IGV identifier. | |||
2500 | newn->_igv_idx = old->_igv_idx; | |||
2501 | } | |||
2502 | } | |||
2503 | ||||
2504 | // machine-independent root to machine-dependent root | |||
2505 | void Matcher::dump_old2new_map() { | |||
2506 | _old2new_map.dump(); | |||
2507 | } | |||
2508 | #endif // !PRODUCT | |||
2509 | ||||
2510 | //---------------------------collect_null_checks------------------------------- | |||
2511 | // Find null checks in the ideal graph; write a machine-specific node for | |||
2512 | // it. Used by later implicit-null-check handling. Actually collects | |||
2513 | // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal | |||
2514 | // value being tested. | |||
2515 | void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { | |||
2516 | Node *iff = proj->in(0); | |||
2517 | if( iff->Opcode() == Op_If ) { | |||
2518 | // During matching If's have Bool & Cmp side-by-side | |||
2519 | BoolNode *b = iff->in(1)->as_Bool(); | |||
2520 | Node *cmp = iff->in(2); | |||
2521 | int opc = cmp->Opcode(); | |||
2522 | if (opc != Op_CmpP && opc != Op_CmpN) return; | |||
2523 | ||||
2524 | const Type* ct = cmp->in(2)->bottom_type(); | |||
2525 | if (ct == TypePtr::NULL_PTR || | |||
2526 | (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { | |||
2527 | ||||
2528 | bool push_it = false; | |||
2529 | if( proj->Opcode() == Op_IfTrue ) { | |||
2530 | #ifndef PRODUCT | |||
2531 | extern int all_null_checks_found; | |||
2532 | all_null_checks_found++; | |||
2533 | #endif | |||
2534 | if( b->_test._test == BoolTest::ne ) { | |||
2535 | push_it = true; | |||
2536 | } | |||
2537 | } else { | |||
2538 | assert( proj->Opcode() == Op_IfFalse, "" )do { if (!(proj->Opcode() == Op_IfFalse)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2538, "assert(" "proj->Opcode() == Op_IfFalse" ") failed" , ""); ::breakpoint(); } } while (0); | |||
2539 | if( b->_test._test == BoolTest::eq ) { | |||
2540 | push_it = true; | |||
2541 | } | |||
2542 | } | |||
2543 | if( push_it ) { | |||
2544 | _null_check_tests.push(proj); | |||
2545 | Node* val = cmp->in(1); | |||
2546 | #ifdef _LP641 | |||
2547 | if (val->bottom_type()->isa_narrowoop() && | |||
2548 | !Matcher::narrow_oop_use_complex_address()) { | |||
2549 | // | |||
2550 | // Look for DecodeN node which should be pinned to orig_proj. | |||
2551 | // On platforms (Sparc) which can not handle 2 adds | |||
2552 | // in addressing mode we have to keep a DecodeN node and | |||
2553 | // use it to do implicit NULL check in address. | |||
2554 | // | |||
2555 | // DecodeN node was pinned to non-null path (orig_proj) during | |||
2556 | // CastPP transformation in final_graph_reshaping_impl(). | |||
2557 | // | |||
2558 | uint cnt = orig_proj->outcnt(); | |||
2559 | for (uint i = 0; i < orig_proj->outcnt(); i++) { | |||
2560 | Node* d = orig_proj->raw_out(i); | |||
2561 | if (d->is_DecodeN() && d->in(1) == val) { | |||
2562 | val = d; | |||
2563 | val->set_req(0, NULL__null); // Unpin now. | |||
2564 | // Mark this as special case to distinguish from | |||
2565 | // a regular case: CmpP(DecodeN, NULL). | |||
2566 | val = (Node*)(((intptr_t)val) | 1); | |||
2567 | break; | |||
2568 | } | |||
2569 | } | |||
2570 | } | |||
2571 | #endif | |||
2572 | _null_check_tests.push(val); | |||
2573 | } | |||
2574 | } | |||
2575 | } | |||
2576 | } | |||
2577 | ||||
2578 | //---------------------------validate_null_checks------------------------------ | |||
2579 | // Its possible that the value being NULL checked is not the root of a match | |||
2580 | // tree. If so, I cannot use the value in an implicit null check. | |||
2581 | void Matcher::validate_null_checks( ) { | |||
2582 | uint cnt = _null_check_tests.size(); | |||
2583 | for( uint i=0; i < cnt; i+=2 ) { | |||
2584 | Node *test = _null_check_tests[i]; | |||
2585 | Node *val = _null_check_tests[i+1]; | |||
2586 | bool is_decoden = ((intptr_t)val) & 1; | |||
2587 | val = (Node*)(((intptr_t)val) & ~1); | |||
2588 | if (has_new_node(val)) { | |||
2589 | Node* new_val = new_node(val); | |||
2590 | if (is_decoden) { | |||
2591 | assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity")do { if (!(val->is_DecodeNarrowPtr() && val->in (0) == __null)) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2591, "assert(" "val->is_DecodeNarrowPtr() && val->in(0) == __null" ") failed", "sanity"); ::breakpoint(); } } while (0); | |||
2592 | // Note: new_val may have a control edge if | |||
2593 | // the original ideal node DecodeN was matched before | |||
2594 | // it was unpinned in Matcher::collect_null_checks(). | |||
2595 | // Unpin the mach node and mark it. | |||
2596 | new_val->set_req(0, NULL__null); | |||
2597 | new_val = (Node*)(((intptr_t)new_val) | 1); | |||
2598 | } | |||
2599 | // Is a match-tree root, so replace with the matched value | |||
2600 | _null_check_tests.map(i+1, new_val); | |||
2601 | } else { | |||
2602 | // Yank from candidate list | |||
2603 | _null_check_tests.map(i+1,_null_check_tests[--cnt]); | |||
2604 | _null_check_tests.map(i,_null_check_tests[--cnt]); | |||
2605 | _null_check_tests.pop(); | |||
2606 | _null_check_tests.pop(); | |||
2607 | i-=2; | |||
2608 | } | |||
2609 | } | |||
2610 | } | |||
2611 | ||||
2612 | bool Matcher::gen_narrow_oop_implicit_null_checks() { | |||
2613 | // Advice matcher to perform null checks on the narrow oop side. | |||
2614 | // Implicit checks are not possible on the uncompressed oop side anyway | |||
2615 | // (at least not for read accesses). | |||
2616 | // Performs significantly better (especially on Power 6). | |||
2617 | if (!os::zero_page_read_protected()) { | |||
2618 | return true; | |||
2619 | } | |||
2620 | return CompressedOops::use_implicit_null_checks() && | |||
2621 | (narrow_oop_use_complex_address() || | |||
2622 | CompressedOops::base() != NULL__null); | |||
2623 | } | |||
2624 | ||||
2625 | // Compute RegMask for an ideal register. | |||
2626 | const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) { | |||
2627 | const Type* t = Type::mreg2type[ideal_reg]; | |||
2628 | if (t == NULL__null) { | |||
| ||||
2629 | assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg)do { if (!(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2629, "assert(" "ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ" ") failed", "not a vector: %d", ideal_reg); ::breakpoint(); } } while (0); | |||
2630 | return NULL__null; // not supported | |||
2631 | } | |||
2632 | Node* fp = ret->in(TypeFunc::FramePtr); | |||
2633 | Node* mem = ret->in(TypeFunc::Memory); | |||
2634 | const TypePtr* atp = TypePtr::BOTTOM; | |||
2635 | MemNode::MemOrd mo = MemNode::unordered; | |||
2636 | ||||
2637 | Node* spill; | |||
2638 | switch (ideal_reg) { | |||
2639 | case Op_RegN: spill = new LoadNNode(NULL__null, mem, fp, atp, t->is_narrowoop(), mo); break; | |||
2640 | case Op_RegI: spill = new LoadINode(NULL__null, mem, fp, atp, t->is_int(), mo); break; | |||
2641 | case Op_RegP: spill = new LoadPNode(NULL__null, mem, fp, atp, t->is_ptr(), mo); break; | |||
2642 | case Op_RegF: spill = new LoadFNode(NULL__null, mem, fp, atp, t, mo); break; | |||
2643 | case Op_RegD: spill = new LoadDNode(NULL__null, mem, fp, atp, t, mo); break; | |||
2644 | case Op_RegL: spill = new LoadLNode(NULL__null, mem, fp, atp, t->is_long(), mo); break; | |||
2645 | ||||
2646 | case Op_VecA: // fall-through | |||
2647 | case Op_VecS: // fall-through | |||
2648 | case Op_VecD: // fall-through | |||
2649 | case Op_VecX: // fall-through | |||
2650 | case Op_VecY: // fall-through | |||
2651 | case Op_VecZ: spill = new LoadVectorNode(NULL__null, mem, fp, atp, t->is_vect()); break; | |||
2652 | case Op_RegVectMask: return Matcher::predicate_reg_mask(); | |||
2653 | ||||
2654 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2654); ::breakpoint(); } while (0); | |||
2655 | } | |||
2656 | MachNode* mspill = match_tree(spill); | |||
| ||||
2657 | assert(mspill != NULL, "matching failed: %d", ideal_reg)do { if (!(mspill != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2657, "assert(" "mspill != __null" ") failed", "matching failed: %d" , ideal_reg); ::breakpoint(); } } while (0); | |||
2658 | // Handle generic vector operand case | |||
2659 | if (Matcher::supports_generic_vector_operands && t->isa_vect()) { | |||
2660 | specialize_mach_node(mspill); | |||
2661 | } | |||
2662 | return &mspill->out_RegMask(); | |||
2663 | } | |||
2664 | ||||
2665 | // Process Mach IR right after selection phase is over. | |||
2666 | void Matcher::do_postselect_cleanup() { | |||
2667 | if (supports_generic_vector_operands) { | |||
2668 | specialize_generic_vector_operands(); | |||
2669 | if (C->failing()) return; | |||
2670 | } | |||
2671 | } | |||
2672 | ||||
2673 | //---------------------------------------------------------------------- | |||
2674 | // Generic machine operands elision. | |||
2675 | //---------------------------------------------------------------------- | |||
2676 | ||||
2677 | // Compute concrete vector operand for a generic TEMP vector mach node based on its user info. | |||
2678 | void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) { | |||
2679 | assert(use->in(idx) == tmp, "not a user")do { if (!(use->in(idx) == tmp)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2679, "assert(" "use->in(idx) == tmp" ") failed", "not a user" ); ::breakpoint(); } } while (0); | |||
2680 | assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet")do { if (!(!Matcher::is_generic_vector(use->_opnds[0]))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2680, "assert(" "!Matcher::is_generic_vector(use->_opnds[0])" ") failed", "use not processed yet"); ::breakpoint(); } } while (0); | |||
2681 | ||||
2682 | if ((uint)idx == use->two_adr()) { // DEF_TEMP case | |||
2683 | tmp->_opnds[0] = use->_opnds[0]->clone(); | |||
2684 | } else { | |||
2685 | uint ideal_vreg = vector_ideal_reg(C->max_vector_size()); | |||
2686 | tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/); | |||
2687 | } | |||
2688 | } | |||
2689 | ||||
2690 | // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx). | |||
2691 | MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) { | |||
2692 | assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates")do { if (!(Matcher::is_generic_vector(m->_opnds[opnd_idx]) )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2692, "assert(" "Matcher::is_generic_vector(m->_opnds[opnd_idx])" ") failed", "repeated updates"); ::breakpoint(); } } while ( 0); | |||
2693 | Node* def = NULL__null; | |||
2694 | if (opnd_idx == 0) { // DEF | |||
2695 | def = m; // use mach node itself to compute vector operand type | |||
2696 | } else { | |||
2697 | int base_idx = m->operand_index(opnd_idx); | |||
2698 | def = m->in(base_idx); | |||
2699 | if (def->is_Mach()) { | |||
2700 | if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) { | |||
2701 | specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site | |||
2702 | } else if (is_reg2reg_move(def->as_Mach())) { | |||
2703 | def = def->in(1); // skip over generic reg-to-reg moves | |||
2704 | } | |||
2705 | } | |||
2706 | } | |||
2707 | assert(def->bottom_type()->isa_vect(), "not a vector")do { if (!(def->bottom_type()->isa_vect())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2707, "assert(" "def->bottom_type()->isa_vect()" ") failed" , "not a vector"); ::breakpoint(); } } while (0); | |||
2708 | uint ideal_vreg = def->bottom_type()->ideal_reg(); | |||
2709 | return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/); | |||
2710 | } | |||
2711 | ||||
2712 | void Matcher::specialize_mach_node(MachNode* m) { | |||
2713 | assert(!m->is_MachTemp(), "processed along with its user")do { if (!(!m->is_MachTemp())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2713, "assert(" "!m->is_MachTemp()" ") failed", "processed along with its user" ); ::breakpoint(); } } while (0); | |||
2714 | // For generic use operands pull specific register class operands from | |||
2715 | // its def instruction's output operand (def operand). | |||
2716 | for (uint i = 0; i < m->num_opnds(); i++) { | |||
2717 | if (Matcher::is_generic_vector(m->_opnds[i])) { | |||
2718 | m->_opnds[i] = specialize_vector_operand(m, i); | |||
2719 | } | |||
2720 | } | |||
2721 | } | |||
2722 | ||||
2723 | // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph. | |||
2724 | void Matcher::specialize_generic_vector_operands() { | |||
2725 | assert(supports_generic_vector_operands, "sanity")do { if (!(supports_generic_vector_operands)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2725, "assert(" "supports_generic_vector_operands" ") failed" , "sanity"); ::breakpoint(); } } while (0); | |||
2726 | ResourceMark rm; | |||
2727 | ||||
2728 | // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ]) | |||
2729 | // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec). | |||
2730 | Unique_Node_List live_nodes; | |||
2731 | C->identify_useful_nodes(live_nodes); | |||
2732 | ||||
2733 | while (live_nodes.size() > 0) { | |||
2734 | MachNode* m = live_nodes.pop()->isa_Mach(); | |||
2735 | if (m != NULL__null) { | |||
2736 | if (Matcher::is_reg2reg_move(m)) { | |||
2737 | // Register allocator properly handles vec <=> leg moves using register masks. | |||
2738 | int opnd_idx = m->operand_index(1); | |||
2739 | Node* def = m->in(opnd_idx); | |||
2740 | m->subsume_by(def, C); | |||
2741 | } else if (m->is_MachTemp()) { | |||
2742 | // process MachTemp nodes at use site (see Matcher::specialize_vector_operand) | |||
2743 | } else { | |||
2744 | specialize_mach_node(m); | |||
2745 | } | |||
2746 | } | |||
2747 | } | |||
2748 | } | |||
2749 | ||||
2750 | uint Matcher::vector_length(const Node* n) { | |||
2751 | const TypeVect* vt = n->bottom_type()->is_vect(); | |||
2752 | return vt->length(); | |||
2753 | } | |||
2754 | ||||
2755 | uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) { | |||
2756 | int def_idx = use->operand_index(opnd); | |||
2757 | Node* def = use->in(def_idx); | |||
2758 | return def->bottom_type()->is_vect()->length(); | |||
2759 | } | |||
2760 | ||||
2761 | uint Matcher::vector_length_in_bytes(const Node* n) { | |||
2762 | const TypeVect* vt = n->bottom_type()->is_vect(); | |||
2763 | return vt->length_in_bytes(); | |||
2764 | } | |||
2765 | ||||
2766 | uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) { | |||
2767 | uint def_idx = use->operand_index(opnd); | |||
2768 | Node* def = use->in(def_idx); | |||
2769 | return def->bottom_type()->is_vect()->length_in_bytes(); | |||
2770 | } | |||
2771 | ||||
2772 | BasicType Matcher::vector_element_basic_type(const Node* n) { | |||
2773 | const TypeVect* vt = n->bottom_type()->is_vect(); | |||
2774 | return vt->element_basic_type(); | |||
2775 | } | |||
2776 | ||||
2777 | BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) { | |||
2778 | int def_idx = use->operand_index(opnd); | |||
2779 | Node* def = use->in(def_idx); | |||
2780 | return def->bottom_type()->is_vect()->element_basic_type(); | |||
2781 | } | |||
2782 | ||||
2783 | #ifdef ASSERT1 | |||
2784 | bool Matcher::verify_after_postselect_cleanup() { | |||
2785 | assert(!C->failing(), "sanity")do { if (!(!C->failing())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2785, "assert(" "!C->failing()" ") failed", "sanity"); :: breakpoint(); } } while (0); | |||
2786 | if (supports_generic_vector_operands) { | |||
2787 | Unique_Node_List useful; | |||
2788 | C->identify_useful_nodes(useful); | |||
2789 | for (uint i = 0; i < useful.size(); i++) { | |||
2790 | MachNode* m = useful.at(i)->isa_Mach(); | |||
2791 | if (m != NULL__null) { | |||
2792 | assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed")do { if (!(!Matcher::is_reg2reg_move(m))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2792, "assert(" "!Matcher::is_reg2reg_move(m)" ") failed", "no MoveVec nodes allowed" ); ::breakpoint(); } } while (0); | |||
2793 | for (uint j = 0; j < m->num_opnds(); j++) { | |||
2794 | assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed")do { if (!(!Matcher::is_generic_vector(m->_opnds[j]))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2794, "assert(" "!Matcher::is_generic_vector(m->_opnds[j])" ") failed", "no generic vector operands allowed"); ::breakpoint (); } } while (0); | |||
2795 | } | |||
2796 | } | |||
2797 | } | |||
2798 | } | |||
2799 | return true; | |||
2800 | } | |||
2801 | #endif // ASSERT | |||
2802 | ||||
2803 | // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or | |||
2804 | // atomic instruction acting as a store_load barrier without any | |||
2805 | // intervening volatile load, and thus we don't need a barrier here. | |||
2806 | // We retain the Node to act as a compiler ordering barrier. | |||
2807 | bool Matcher::post_store_load_barrier(const Node* vmb) { | |||
2808 | Compile* C = Compile::current(); | |||
2809 | assert(vmb->is_MemBar(), "")do { if (!(vmb->is_MemBar())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2809, "assert(" "vmb->is_MemBar()" ") failed", ""); ::breakpoint (); } } while (0); | |||
2810 | assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "")do { if (!(vmb->Opcode() != Op_MemBarAcquire && vmb ->Opcode() != Op_LoadFence)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2810, "assert(" "vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence" ") failed", ""); ::breakpoint(); } } while (0); | |||
2811 | const MemBarNode* membar = vmb->as_MemBar(); | |||
2812 | ||||
2813 | // Get the Ideal Proj node, ctrl, that can be used to iterate forward | |||
2814 | Node* ctrl = NULL__null; | |||
2815 | for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { | |||
2816 | Node* p = membar->fast_out(i); | |||
2817 | assert(p->is_Proj(), "only projections here")do { if (!(p->is_Proj())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2817, "assert(" "p->is_Proj()" ") failed", "only projections here" ); ::breakpoint(); } } while (0); | |||
2818 | if ((p->as_Proj()->_con == TypeFunc::Control) && | |||
2819 | !C->node_arena()->contains(p)) { // Unmatched old-space only | |||
2820 | ctrl = p; | |||
2821 | break; | |||
2822 | } | |||
2823 | } | |||
2824 | assert((ctrl != NULL), "missing control projection")do { if (!((ctrl != __null))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2824, "assert(" "(ctrl != __null)" ") failed", "missing control projection" ); ::breakpoint(); } } while (0); | |||
2825 | ||||
2826 | for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { | |||
2827 | Node *x = ctrl->fast_out(j); | |||
2828 | int xop = x->Opcode(); | |||
2829 | ||||
2830 | // We don't need current barrier if we see another or a lock | |||
2831 | // before seeing volatile load. | |||
2832 | // | |||
2833 | // Op_Fastunlock previously appeared in the Op_* list below. | |||
2834 | // With the advent of 1-0 lock operations we're no longer guaranteed | |||
2835 | // that a monitor exit operation contains a serializing instruction. | |||
2836 | ||||
2837 | if (xop == Op_MemBarVolatile || | |||
2838 | xop == Op_CompareAndExchangeB || | |||
2839 | xop == Op_CompareAndExchangeS || | |||
2840 | xop == Op_CompareAndExchangeI || | |||
2841 | xop == Op_CompareAndExchangeL || | |||
2842 | xop == Op_CompareAndExchangeP || | |||
2843 | xop == Op_CompareAndExchangeN || | |||
2844 | xop == Op_WeakCompareAndSwapB || | |||
2845 | xop == Op_WeakCompareAndSwapS || | |||
2846 | xop == Op_WeakCompareAndSwapL || | |||
2847 | xop == Op_WeakCompareAndSwapP || | |||
2848 | xop == Op_WeakCompareAndSwapN || | |||
2849 | xop == Op_WeakCompareAndSwapI || | |||
2850 | xop == Op_CompareAndSwapB || | |||
2851 | xop == Op_CompareAndSwapS || | |||
2852 | xop == Op_CompareAndSwapL || | |||
2853 | xop == Op_CompareAndSwapP || | |||
2854 | xop == Op_CompareAndSwapN || | |||
2855 | xop == Op_CompareAndSwapI || | |||
2856 | BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) { | |||
2857 | return true; | |||
2858 | } | |||
2859 | ||||
2860 | // Op_FastLock previously appeared in the Op_* list above. | |||
2861 | if (xop == Op_FastLock) { | |||
2862 | return true; | |||
2863 | } | |||
2864 | ||||
2865 | if (x->is_MemBar()) { | |||
2866 | // We must retain this membar if there is an upcoming volatile | |||
2867 | // load, which will be followed by acquire membar. | |||
2868 | if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { | |||
2869 | return false; | |||
2870 | } else { | |||
2871 | // For other kinds of barriers, check by pretending we | |||
2872 | // are them, and seeing if we can be removed. | |||
2873 | return post_store_load_barrier(x->as_MemBar()); | |||
2874 | } | |||
2875 | } | |||
2876 | ||||
2877 | // probably not necessary to check for these | |||
2878 | if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { | |||
2879 | return false; | |||
2880 | } | |||
2881 | } | |||
2882 | return false; | |||
2883 | } | |||
2884 | ||||
2885 | // Check whether node n is a branch to an uncommon trap that we could | |||
2886 | // optimize as test with very high branch costs in case of going to | |||
2887 | // the uncommon trap. The code must be able to be recompiled to use | |||
2888 | // a cheaper test. | |||
2889 | bool Matcher::branches_to_uncommon_trap(const Node *n) { | |||
2890 | // Don't do it for natives, adapters, or runtime stubs | |||
2891 | Compile *C = Compile::current(); | |||
2892 | if (!C->is_method_compilation()) return false; | |||
2893 | ||||
2894 | assert(n->is_If(), "You should only call this on if nodes.")do { if (!(n->is_If())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2894, "assert(" "n->is_If()" ") failed", "You should only call this on if nodes." ); ::breakpoint(); } } while (0); | |||
2895 | IfNode *ifn = n->as_If(); | |||
2896 | ||||
2897 | Node *ifFalse = NULL__null; | |||
2898 | for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { | |||
2899 | if (ifn->fast_out(i)->is_IfFalse()) { | |||
2900 | ifFalse = ifn->fast_out(i); | |||
2901 | break; | |||
2902 | } | |||
2903 | } | |||
2904 | assert(ifFalse, "An If should have an ifFalse. Graph is broken.")do { if (!(ifFalse)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2904, "assert(" "ifFalse" ") failed", "An If should have an ifFalse. Graph is broken." ); ::breakpoint(); } } while (0); | |||
2905 | ||||
2906 | Node *reg = ifFalse; | |||
2907 | int cnt = 4; // We must protect against cycles. Limit to 4 iterations. | |||
2908 | // Alternatively use visited set? Seems too expensive. | |||
2909 | while (reg != NULL__null && cnt > 0) { | |||
2910 | CallNode *call = NULL__null; | |||
2911 | RegionNode *nxt_reg = NULL__null; | |||
2912 | for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { | |||
2913 | Node *o = reg->fast_out(i); | |||
2914 | if (o->is_Call()) { | |||
2915 | call = o->as_Call(); | |||
2916 | } | |||
2917 | if (o->is_Region()) { | |||
2918 | nxt_reg = o->as_Region(); | |||
2919 | } | |||
2920 | } | |||
2921 | ||||
2922 | if (call && | |||
2923 | call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { | |||
2924 | const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); | |||
2925 | if (trtype->isa_int() && trtype->is_int()->is_con()) { | |||
2926 | jint tr_con = trtype->is_int()->get_con(); | |||
2927 | Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); | |||
2928 | Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); | |||
2929 | assert((int)reason < (int)BitsPerInt, "recode bit map")do { if (!((int)reason < (int)BitsPerInt)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2929, "assert(" "(int)reason < (int)BitsPerInt" ") failed" , "recode bit map"); ::breakpoint(); } } while (0); | |||
2930 | ||||
2931 | if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) | |||
2932 | && action != Deoptimization::Action_none) { | |||
2933 | // This uncommon trap is sure to recompile, eventually. | |||
2934 | // When that happens, C->too_many_traps will prevent | |||
2935 | // this transformation from happening again. | |||
2936 | return true; | |||
2937 | } | |||
2938 | } | |||
2939 | } | |||
2940 | ||||
2941 | reg = nxt_reg; | |||
2942 | cnt--; | |||
2943 | } | |||
2944 | ||||
2945 | return false; | |||
2946 | } | |||
2947 | ||||
2948 | //============================================================================= | |||
2949 | //---------------------------State--------------------------------------------- | |||
2950 | State::State(void) : _rule() { | |||
2951 | #ifdef ASSERT1 | |||
2952 | _id = 0; | |||
2953 | _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL); | |||
2954 | _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL); | |||
2955 | #endif | |||
2956 | } | |||
2957 | ||||
2958 | #ifdef ASSERT1 | |||
2959 | State::~State() { | |||
2960 | _id = 99; | |||
2961 | _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL); | |||
2962 | _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL); | |||
2963 | memset(_cost, -3, sizeof(_cost)); | |||
2964 | memset(_rule, -3, sizeof(_rule)); | |||
2965 | } | |||
2966 | #endif | |||
2967 | ||||
2968 | #ifndef PRODUCT | |||
2969 | //---------------------------dump---------------------------------------------- | |||
2970 | void State::dump() { | |||
2971 | tty->print("\n"); | |||
2972 | dump(0); | |||
2973 | } | |||
2974 | ||||
2975 | void State::dump(int depth) { | |||
2976 | for (int j = 0; j < depth; j++) { | |||
2977 | tty->print(" "); | |||
2978 | } | |||
2979 | tty->print("--N: "); | |||
2980 | _leaf->dump(); | |||
2981 | uint i; | |||
2982 | for (i = 0; i < _LAST_MACH_OPER; i++) { | |||
2983 | // Check for valid entry | |||
2984 | if (valid(i)) { | |||
2985 | for (int j = 0; j < depth; j++) { | |||
2986 | tty->print(" "); | |||
2987 | } | |||
2988 | assert(cost(i) != max_juint, "cost must be a valid value")do { if (!(cost(i) != max_juint)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2988, "assert(" "cost(i) != max_juint" ") failed", "cost must be a valid value" ); ::breakpoint(); } } while (0); | |||
2989 | assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule")do { if (!(rule(i) < _last_Mach_Node)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2989, "assert(" "rule(i) < _last_Mach_Node" ") failed", "rule[i] must be valid rule" ); ::breakpoint(); } } while (0); | |||
2990 | tty->print_cr("%s %d %s", | |||
2991 | ruleName[i], cost(i), ruleName[rule(i)] ); | |||
2992 | } | |||
2993 | } | |||
2994 | tty->cr(); | |||
2995 | ||||
2996 | for (i = 0; i < 2; i++) { | |||
2997 | if (_kids[i]) { | |||
2998 | _kids[i]->dump(depth + 1); | |||
2999 | } | |||
3000 | } | |||
3001 | } | |||
3002 | #endif |