File: | jdk/src/java.desktop/share/native/libjavajpeg/jmemmgr.c |
Warning: | line 413, column 52 Division by zero |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * reserved comment block | |||
3 | * DO NOT REMOVE OR ALTER! | |||
4 | */ | |||
5 | /* | |||
6 | * jmemmgr.c | |||
7 | * | |||
8 | * Copyright (C) 1991-1997, Thomas G. Lane. | |||
9 | * This file is part of the Independent JPEG Group's software. | |||
10 | * For conditions of distribution and use, see the accompanying README file. | |||
11 | * | |||
12 | * This file contains the JPEG system-independent memory management | |||
13 | * routines. This code is usable across a wide variety of machines; most | |||
14 | * of the system dependencies have been isolated in a separate file. | |||
15 | * The major functions provided here are: | |||
16 | * * pool-based allocation and freeing of memory; | |||
17 | * * policy decisions about how to divide available memory among the | |||
18 | * virtual arrays; | |||
19 | * * control logic for swapping virtual arrays between main memory and | |||
20 | * backing storage. | |||
21 | * The separate system-dependent file provides the actual backing-storage | |||
22 | * access code, and it contains the policy decision about how much total | |||
23 | * main memory to use. | |||
24 | * This file is system-dependent in the sense that some of its functions | |||
25 | * are unnecessary in some systems. For example, if there is enough virtual | |||
26 | * memory so that backing storage will never be used, much of the virtual | |||
27 | * array control logic could be removed. (Of course, if you have that much | |||
28 | * memory then you shouldn't care about a little bit of unused code...) | |||
29 | */ | |||
30 | ||||
31 | #define JPEG_INTERNALS | |||
32 | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ | |||
33 | #include "jinclude.h" | |||
34 | #include "jpeglib.h" | |||
35 | #include "jmemsys.h" /* import the system-dependent declarations */ | |||
36 | ||||
37 | #ifndef NO_GETENV | |||
38 | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ | |||
39 | extern char * getenv JPP((const char * name))(const char * name); | |||
40 | #endif | |||
41 | #endif | |||
42 | ||||
43 | ||||
44 | /* | |||
45 | * Some important notes: | |||
46 | * The allocation routines provided here must never return NULL. | |||
47 | * They should exit to error_exit if unsuccessful. | |||
48 | * | |||
49 | * It's not a good idea to try to merge the sarray and barray routines, | |||
50 | * even though they are textually almost the same, because samples are | |||
51 | * usually stored as bytes while coefficients are shorts or ints. Thus, | |||
52 | * in machines where byte pointers have a different representation from | |||
53 | * word pointers, the resulting machine code could not be the same. | |||
54 | */ | |||
55 | ||||
56 | ||||
57 | /* | |||
58 | * Many machines require storage alignment: longs must start on 4-byte | |||
59 | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() | |||
60 | * always returns pointers that are multiples of the worst-case alignment | |||
61 | * requirement, and we had better do so too. | |||
62 | * There isn't any really portable way to determine the worst-case alignment | |||
63 | * requirement. This module assumes that the alignment requirement is | |||
64 | * multiples of sizeof(ALIGN_TYPE). | |||
65 | * By default, we define ALIGN_TYPE as double. This is necessary on some | |||
66 | * workstations (where doubles really do need 8-byte alignment) and will work | |||
67 | * fine on nearly everything. If your machine has lesser alignment needs, | |||
68 | * you can save a few bytes by making ALIGN_TYPE smaller. | |||
69 | * The only place I know of where this will NOT work is certain Macintosh | |||
70 | * 680x0 compilers that define double as a 10-byte IEEE extended float. | |||
71 | * Doing 10-byte alignment is counterproductive because longwords won't be | |||
72 | * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have | |||
73 | * such a compiler. | |||
74 | */ | |||
75 | ||||
76 | #ifndef ALIGN_TYPEdouble /* so can override from jconfig.h */ | |||
77 | #define ALIGN_TYPEdouble double | |||
78 | #endif | |||
79 | ||||
80 | ||||
81 | /* | |||
82 | * We allocate objects from "pools", where each pool is gotten with a single | |||
83 | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object | |||
84 | * overhead within a pool, except for alignment padding. Each pool has a | |||
85 | * header with a link to the next pool of the same class. | |||
86 | * Small and large pool headers are identical except that the latter's | |||
87 | * link pointer must be FAR on 80x86 machines. | |||
88 | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE | |||
89 | * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple | |||
90 | * of the alignment requirement of ALIGN_TYPE. | |||
91 | */ | |||
92 | ||||
93 | typedef union small_pool_struct * small_pool_ptr; | |||
94 | ||||
95 | typedef union small_pool_struct { | |||
96 | struct { | |||
97 | small_pool_ptr next; /* next in list of pools */ | |||
98 | size_t bytes_used; /* how many bytes already used within pool */ | |||
99 | size_t bytes_left; /* bytes still available in this pool */ | |||
100 | } hdr; | |||
101 | ALIGN_TYPEdouble dummy; /* included in union to ensure alignment */ | |||
102 | } small_pool_hdr; | |||
103 | ||||
104 | typedef union large_pool_struct FAR * large_pool_ptr; | |||
105 | ||||
106 | typedef union large_pool_struct { | |||
107 | struct { | |||
108 | large_pool_ptr next; /* next in list of pools */ | |||
109 | size_t bytes_used; /* how many bytes already used within pool */ | |||
110 | size_t bytes_left; /* bytes still available in this pool */ | |||
111 | } hdr; | |||
112 | ALIGN_TYPEdouble dummy; /* included in union to ensure alignment */ | |||
113 | } large_pool_hdr; | |||
114 | ||||
115 | ||||
116 | /* | |||
117 | * Here is the full definition of a memory manager object. | |||
118 | */ | |||
119 | ||||
120 | typedef struct { | |||
121 | struct jpeg_memory_mgr pub; /* public fields */ | |||
122 | ||||
123 | /* Each pool identifier (lifetime class) names a linked list of pools. */ | |||
124 | small_pool_ptr small_list[JPOOL_NUMPOOLS2]; | |||
125 | large_pool_ptr large_list[JPOOL_NUMPOOLS2]; | |||
126 | ||||
127 | /* Since we only have one lifetime class of virtual arrays, only one | |||
128 | * linked list is necessary (for each datatype). Note that the virtual | |||
129 | * array control blocks being linked together are actually stored somewhere | |||
130 | * in the small-pool list. | |||
131 | */ | |||
132 | jvirt_sarray_ptr virt_sarray_list; | |||
133 | jvirt_barray_ptr virt_barray_list; | |||
134 | ||||
135 | /* This counts total space obtained from jpeg_get_small/large */ | |||
136 | size_t total_space_allocated; | |||
137 | ||||
138 | /* alloc_sarray and alloc_barray set this value for use by virtual | |||
139 | * array routines. | |||
140 | */ | |||
141 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ | |||
142 | } my_memory_mgr; | |||
143 | ||||
144 | typedef my_memory_mgr * my_mem_ptr; | |||
145 | ||||
146 | ||||
147 | /* | |||
148 | * The control blocks for virtual arrays. | |||
149 | * Note that these blocks are allocated in the "small" pool area. | |||
150 | * System-dependent info for the associated backing store (if any) is hidden | |||
151 | * inside the backing_store_info struct. | |||
152 | */ | |||
153 | ||||
154 | struct jvirt_sarray_control { | |||
155 | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ | |||
156 | JDIMENSION rows_in_array; /* total virtual array height */ | |||
157 | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ | |||
158 | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ | |||
159 | JDIMENSION rows_in_mem; /* height of memory buffer */ | |||
160 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |||
161 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |||
162 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |||
163 | boolean pre_zero; /* pre-zero mode requested? */ | |||
164 | boolean dirty; /* do current buffer contents need written? */ | |||
165 | boolean b_s_open; /* is backing-store data valid? */ | |||
166 | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ | |||
167 | backing_store_info b_s_info; /* System-dependent control info */ | |||
168 | }; | |||
169 | ||||
170 | struct jvirt_barray_control { | |||
171 | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ | |||
172 | JDIMENSION rows_in_array; /* total virtual array height */ | |||
173 | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ | |||
174 | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ | |||
175 | JDIMENSION rows_in_mem; /* height of memory buffer */ | |||
176 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |||
177 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |||
178 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |||
179 | boolean pre_zero; /* pre-zero mode requested? */ | |||
180 | boolean dirty; /* do current buffer contents need written? */ | |||
181 | boolean b_s_open; /* is backing-store data valid? */ | |||
182 | jvirt_barray_ptr next; /* link to next virtual barray control block */ | |||
183 | backing_store_info b_s_info; /* System-dependent control info */ | |||
184 | }; | |||
185 | ||||
186 | ||||
187 | #ifdef MEM_STATS /* optional extra stuff for statistics */ | |||
188 | ||||
189 | LOCAL(void)static void | |||
190 | print_mem_stats (j_common_ptr cinfo, int pool_id) | |||
191 | { | |||
192 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
193 | small_pool_ptr shdr_ptr; | |||
194 | large_pool_ptr lhdr_ptr; | |||
195 | ||||
196 | /* Since this is only a debugging stub, we can cheat a little by using | |||
197 | * fprintf directly rather than going through the trace message code. | |||
198 | * This is helpful because message parm array can't handle longs. | |||
199 | */ | |||
200 | fprintf(stderr, "Freeing pool %d, total space = %ld\n",__fprintf_chk (stderr, 2 - 1, "Freeing pool %d, total space = %ld\n" , pool_id, mem->total_space_allocated) | |||
201 | pool_id, mem->total_space_allocated)__fprintf_chk (stderr, 2 - 1, "Freeing pool %d, total space = %ld\n" , pool_id, mem->total_space_allocated); | |||
202 | ||||
203 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL((void*)0); | |||
204 | lhdr_ptr = lhdr_ptr->hdr.next) { | |||
205 | fprintf(stderr, " Large chunk used %ld\n",__fprintf_chk (stderr, 2 - 1, " Large chunk used %ld\n", (long ) lhdr_ptr->hdr.bytes_used) | |||
206 | (long) lhdr_ptr->hdr.bytes_used)__fprintf_chk (stderr, 2 - 1, " Large chunk used %ld\n", (long ) lhdr_ptr->hdr.bytes_used); | |||
207 | } | |||
208 | ||||
209 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL((void*)0); | |||
210 | shdr_ptr = shdr_ptr->hdr.next) { | |||
211 | fprintf(stderr, " Small chunk used %ld free %ld\n",__fprintf_chk (stderr, 2 - 1, " Small chunk used %ld free %ld\n" , (long) shdr_ptr->hdr.bytes_used, (long) shdr_ptr->hdr .bytes_left) | |||
212 | (long) shdr_ptr->hdr.bytes_used,__fprintf_chk (stderr, 2 - 1, " Small chunk used %ld free %ld\n" , (long) shdr_ptr->hdr.bytes_used, (long) shdr_ptr->hdr .bytes_left) | |||
213 | (long) shdr_ptr->hdr.bytes_left)__fprintf_chk (stderr, 2 - 1, " Small chunk used %ld free %ld\n" , (long) shdr_ptr->hdr.bytes_used, (long) shdr_ptr->hdr .bytes_left); | |||
214 | } | |||
215 | } | |||
216 | ||||
217 | #endif /* MEM_STATS */ | |||
218 | ||||
219 | ||||
220 | LOCAL(void)static void | |||
221 | out_of_memory (j_common_ptr cinfo, int which) | |||
222 | /* Report an out-of-memory error and stop execution */ | |||
223 | /* If we compiled MEM_STATS support, report alloc requests before dying */ | |||
224 | { | |||
225 | #ifdef MEM_STATS | |||
226 | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ | |||
227 | #endif | |||
228 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which)((cinfo)->err->msg_code = (JERR_OUT_OF_MEMORY), (cinfo) ->err->msg_parm.i[0] = (which), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); | |||
229 | } | |||
230 | ||||
231 | ||||
232 | /* | |||
233 | * Allocation of "small" objects. | |||
234 | * | |||
235 | * For these, we use pooled storage. When a new pool must be created, | |||
236 | * we try to get enough space for the current request plus a "slop" factor, | |||
237 | * where the slop will be the amount of leftover space in the new pool. | |||
238 | * The speed vs. space tradeoff is largely determined by the slop values. | |||
239 | * A different slop value is provided for each pool class (lifetime), | |||
240 | * and we also distinguish the first pool of a class from later ones. | |||
241 | * NOTE: the values given work fairly well on both 16- and 32-bit-int | |||
242 | * machines, but may be too small if longs are 64 bits or more. | |||
243 | */ | |||
244 | ||||
245 | static const size_t first_pool_slop[JPOOL_NUMPOOLS2] = | |||
246 | { | |||
247 | 1600, /* first PERMANENT pool */ | |||
248 | 16000 /* first IMAGE pool */ | |||
249 | }; | |||
250 | ||||
251 | static const size_t extra_pool_slop[JPOOL_NUMPOOLS2] = | |||
252 | { | |||
253 | 0, /* additional PERMANENT pools */ | |||
254 | 5000 /* additional IMAGE pools */ | |||
255 | }; | |||
256 | ||||
257 | #define MIN_SLOP50 50 /* greater than 0 to avoid futile looping */ | |||
258 | ||||
259 | ||||
260 | METHODDEF(void *)static void * | |||
261 | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |||
262 | /* Allocate a "small" object */ | |||
263 | { | |||
264 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
265 | small_pool_ptr hdr_ptr, prev_hdr_ptr; | |||
266 | char * data_ptr; | |||
267 | size_t odd_bytes, min_request, slop; | |||
268 | ||||
269 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | |||
270 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK1000000000L-SIZEOF(small_pool_hdr)((size_t) sizeof(small_pool_hdr)))) | |||
271 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ | |||
272 | ||||
273 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |||
274 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)); | |||
275 | if (odd_bytes > 0) | |||
276 | sizeofobject += SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)) - odd_bytes; | |||
277 | ||||
278 | /* See if space is available in any existing pool */ | |||
279 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS2) | |||
280 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | |||
281 | prev_hdr_ptr = NULL((void*)0); | |||
282 | hdr_ptr = mem->small_list[pool_id]; | |||
283 | while (hdr_ptr != NULL((void*)0)) { | |||
284 | if (hdr_ptr->hdr.bytes_left >= sizeofobject) | |||
285 | break; /* found pool with enough space */ | |||
286 | prev_hdr_ptr = hdr_ptr; | |||
287 | hdr_ptr = hdr_ptr->hdr.next; | |||
288 | } | |||
289 | ||||
290 | /* Time to make a new pool? */ | |||
291 | if (hdr_ptr == NULL((void*)0)) { | |||
292 | /* min_request is what we need now, slop is what will be leftover */ | |||
293 | min_request = sizeofobject + SIZEOF(small_pool_hdr)((size_t) sizeof(small_pool_hdr)); | |||
294 | if (prev_hdr_ptr == NULL((void*)0)) /* first pool in class? */ | |||
295 | slop = first_pool_slop[pool_id]; | |||
296 | else | |||
297 | slop = extra_pool_slop[pool_id]; | |||
298 | /* Don't ask for more than MAX_ALLOC_CHUNK */ | |||
299 | if (slop > (size_t) (MAX_ALLOC_CHUNK1000000000L-min_request)) | |||
300 | slop = (size_t) (MAX_ALLOC_CHUNK1000000000L-min_request); | |||
301 | /* Try to get space, if fail reduce slop and try again */ | |||
302 | for (;;) { | |||
303 | hdr_ptr = (small_pool_ptr) jpeg_get_smalljGetSmall(cinfo, min_request + slop); | |||
304 | if (hdr_ptr != NULL((void*)0)) | |||
305 | break; | |||
306 | slop /= 2; | |||
307 | if (slop < MIN_SLOP50) /* give up when it gets real small */ | |||
308 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | |||
309 | } | |||
310 | mem->total_space_allocated += min_request + slop; | |||
311 | /* Success, initialize the new pool header and add to end of list */ | |||
312 | hdr_ptr->hdr.next = NULL((void*)0); | |||
313 | hdr_ptr->hdr.bytes_used = 0; | |||
314 | hdr_ptr->hdr.bytes_left = sizeofobject + slop; | |||
315 | if (prev_hdr_ptr == NULL((void*)0)) /* first pool in class? */ | |||
316 | mem->small_list[pool_id] = hdr_ptr; | |||
317 | else | |||
318 | prev_hdr_ptr->hdr.next = hdr_ptr; | |||
319 | } | |||
320 | ||||
321 | /* OK, allocate the object from the current pool */ | |||
322 | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ | |||
323 | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ | |||
324 | hdr_ptr->hdr.bytes_used += sizeofobject; | |||
325 | hdr_ptr->hdr.bytes_left -= sizeofobject; | |||
326 | ||||
327 | return (void *) data_ptr; | |||
328 | } | |||
329 | ||||
330 | ||||
331 | /* | |||
332 | * Allocation of "large" objects. | |||
333 | * | |||
334 | * The external semantics of these are the same as "small" objects, | |||
335 | * except that FAR pointers are used on 80x86. However the pool | |||
336 | * management heuristics are quite different. We assume that each | |||
337 | * request is large enough that it may as well be passed directly to | |||
338 | * jpeg_get_large; the pool management just links everything together | |||
339 | * so that we can free it all on demand. | |||
340 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | |||
341 | * structures. The routines that create these structures (see below) | |||
342 | * deliberately bunch rows together to ensure a large request size. | |||
343 | */ | |||
344 | ||||
345 | METHODDEF(void FAR *)static void * | |||
346 | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |||
347 | /* Allocate a "large" object */ | |||
348 | { | |||
349 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
350 | large_pool_ptr hdr_ptr; | |||
351 | size_t odd_bytes; | |||
352 | ||||
353 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | |||
354 | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK1000000000L-SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr)))) | |||
355 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ | |||
356 | ||||
357 | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |||
358 | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)); | |||
359 | if (odd_bytes > 0) | |||
360 | sizeofobject += SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)) - odd_bytes; | |||
361 | ||||
362 | /* Always make a new pool */ | |||
363 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS2) | |||
364 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | |||
365 | ||||
366 | hdr_ptr = (large_pool_ptr) jpeg_get_largejGetLarge(cinfo, sizeofobject + | |||
367 | SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr))); | |||
368 | if (hdr_ptr == NULL((void*)0)) | |||
369 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ | |||
370 | mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr)); | |||
371 | ||||
372 | /* Success, initialize the new pool header and add to list */ | |||
373 | hdr_ptr->hdr.next = mem->large_list[pool_id]; | |||
374 | /* We maintain space counts in each pool header for statistical purposes, | |||
375 | * even though they are not needed for allocation. | |||
376 | */ | |||
377 | hdr_ptr->hdr.bytes_used = sizeofobject; | |||
378 | hdr_ptr->hdr.bytes_left = 0; | |||
379 | mem->large_list[pool_id] = hdr_ptr; | |||
380 | ||||
381 | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ | |||
382 | } | |||
383 | ||||
384 | ||||
385 | /* | |||
386 | * Creation of 2-D sample arrays. | |||
387 | * The pointers are in near heap, the samples themselves in FAR heap. | |||
388 | * | |||
389 | * To minimize allocation overhead and to allow I/O of large contiguous | |||
390 | * blocks, we allocate the sample rows in groups of as many rows as possible | |||
391 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | |||
392 | * NB: the virtual array control routines, later in this file, know about | |||
393 | * this chunking of rows. The rowsperchunk value is left in the mem manager | |||
394 | * object so that it can be saved away if this sarray is the workspace for | |||
395 | * a virtual array. | |||
396 | */ | |||
397 | ||||
398 | METHODDEF(JSAMPARRAY)static JSAMPARRAY | |||
399 | alloc_sarray (j_common_ptr cinfo, int pool_id, | |||
400 | JDIMENSION samplesperrow, JDIMENSION numrows) | |||
401 | /* Allocate a 2-D sample array */ | |||
402 | { | |||
403 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
404 | JSAMPARRAY result; | |||
405 | JSAMPROW workspace; | |||
406 | JDIMENSION rowsperchunk, currow, i; | |||
407 | long ltemp; | |||
408 | ||||
409 | if (samplesperrow == 0) { | |||
410 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
411 | } | |||
412 | /* Calculate max # of rows allowed in one allocation chunk */ | |||
413 | ltemp = (MAX_ALLOC_CHUNK1000000000L-SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr))) / | |||
| ||||
414 | ((long) samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE))); | |||
415 | if (ltemp <= 0) | |||
416 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
417 | if (ltemp < (long) numrows) | |||
418 | rowsperchunk = (JDIMENSION) ltemp; | |||
419 | else | |||
420 | rowsperchunk = numrows; | |||
421 | mem->last_rowsperchunk = rowsperchunk; | |||
422 | ||||
423 | /* Get space for row pointers (small object) */ | |||
424 | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, | |||
425 | (size_t) (numrows * SIZEOF(JSAMPROW)((size_t) sizeof(JSAMPROW)))); | |||
426 | ||||
427 | /* Get the rows themselves (large objects) */ | |||
428 | currow = 0; | |||
429 | while (currow < numrows) { | |||
430 | rowsperchunk = MIN(rowsperchunk, numrows - currow)((rowsperchunk) < (numrows - currow) ? (rowsperchunk) : (numrows - currow)); | |||
431 | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, | |||
432 | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow | |||
433 | * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)))); | |||
434 | for (i = rowsperchunk; i > 0; i--) { | |||
435 | result[currow++] = workspace; | |||
436 | workspace += samplesperrow; | |||
437 | } | |||
438 | } | |||
439 | ||||
440 | return result; | |||
441 | } | |||
442 | ||||
443 | ||||
444 | /* | |||
445 | * Creation of 2-D coefficient-block arrays. | |||
446 | * This is essentially the same as the code for sample arrays, above. | |||
447 | */ | |||
448 | ||||
449 | METHODDEF(JBLOCKARRAY)static JBLOCKARRAY | |||
450 | alloc_barray (j_common_ptr cinfo, int pool_id, | |||
451 | JDIMENSION blocksperrow, JDIMENSION numrows) | |||
452 | /* Allocate a 2-D coefficient-block array */ | |||
453 | { | |||
454 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
455 | JBLOCKARRAY result; | |||
456 | JBLOCKROW workspace; | |||
457 | JDIMENSION rowsperchunk, currow, i; | |||
458 | long ltemp; | |||
459 | ||||
460 | if (blocksperrow == 0) { | |||
461 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
462 | } | |||
463 | ||||
464 | /* Calculate max # of rows allowed in one allocation chunk */ | |||
465 | ltemp = (MAX_ALLOC_CHUNK1000000000L-SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr))) / | |||
466 | ((long) blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | |||
467 | if (ltemp <= 0) | |||
468 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW)((cinfo)->err->msg_code = (JERR_WIDTH_OVERFLOW), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
469 | if (ltemp < (long) numrows) | |||
470 | rowsperchunk = (JDIMENSION) ltemp; | |||
471 | else | |||
472 | rowsperchunk = numrows; | |||
473 | mem->last_rowsperchunk = rowsperchunk; | |||
474 | ||||
475 | /* Get space for row pointers (small object) */ | |||
476 | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, | |||
477 | (size_t) (numrows * SIZEOF(JBLOCKROW)((size_t) sizeof(JBLOCKROW)))); | |||
478 | ||||
479 | /* Get the rows themselves (large objects) */ | |||
480 | currow = 0; | |||
481 | while (currow < numrows) { | |||
482 | rowsperchunk = MIN(rowsperchunk, numrows - currow)((rowsperchunk) < (numrows - currow) ? (rowsperchunk) : (numrows - currow)); | |||
483 | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, | |||
484 | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow | |||
485 | * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)))); | |||
486 | for (i = rowsperchunk; i > 0; i--) { | |||
487 | result[currow++] = workspace; | |||
488 | workspace += blocksperrow; | |||
489 | } | |||
490 | } | |||
491 | ||||
492 | return result; | |||
493 | } | |||
494 | ||||
495 | ||||
496 | /* | |||
497 | * About virtual array management: | |||
498 | * | |||
499 | * The above "normal" array routines are only used to allocate strip buffers | |||
500 | * (as wide as the image, but just a few rows high). Full-image-sized buffers | |||
501 | * are handled as "virtual" arrays. The array is still accessed a strip at a | |||
502 | * time, but the memory manager must save the whole array for repeated | |||
503 | * accesses. The intended implementation is that there is a strip buffer in | |||
504 | * memory (as high as is possible given the desired memory limit), plus a | |||
505 | * backing file that holds the rest of the array. | |||
506 | * | |||
507 | * The request_virt_array routines are told the total size of the image and | |||
508 | * the maximum number of rows that will be accessed at once. The in-memory | |||
509 | * buffer must be at least as large as the maxaccess value. | |||
510 | * | |||
511 | * The request routines create control blocks but not the in-memory buffers. | |||
512 | * That is postponed until realize_virt_arrays is called. At that time the | |||
513 | * total amount of space needed is known (approximately, anyway), so free | |||
514 | * memory can be divided up fairly. | |||
515 | * | |||
516 | * The access_virt_array routines are responsible for making a specific strip | |||
517 | * area accessible (after reading or writing the backing file, if necessary). | |||
518 | * Note that the access routines are told whether the caller intends to modify | |||
519 | * the accessed strip; during a read-only pass this saves having to rewrite | |||
520 | * data to disk. The access routines are also responsible for pre-zeroing | |||
521 | * any newly accessed rows, if pre-zeroing was requested. | |||
522 | * | |||
523 | * In current usage, the access requests are usually for nonoverlapping | |||
524 | * strips; that is, successive access start_row numbers differ by exactly | |||
525 | * num_rows = maxaccess. This means we can get good performance with simple | |||
526 | * buffer dump/reload logic, by making the in-memory buffer be a multiple | |||
527 | * of the access height; then there will never be accesses across bufferload | |||
528 | * boundaries. The code will still work with overlapping access requests, | |||
529 | * but it doesn't handle bufferload overlaps very efficiently. | |||
530 | */ | |||
531 | ||||
532 | ||||
533 | METHODDEF(jvirt_sarray_ptr)static jvirt_sarray_ptr | |||
534 | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |||
535 | JDIMENSION samplesperrow, JDIMENSION numrows, | |||
536 | JDIMENSION maxaccess) | |||
537 | /* Request a virtual 2-D sample array */ | |||
538 | { | |||
539 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
540 | jvirt_sarray_ptr result; | |||
541 | ||||
542 | /* Only IMAGE-lifetime virtual arrays are currently supported */ | |||
543 | if (pool_id != JPOOL_IMAGE1) | |||
544 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | |||
545 | ||||
546 | /* get control block */ | |||
547 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, | |||
548 | SIZEOF(struct jvirt_sarray_control)((size_t) sizeof(struct jvirt_sarray_control))); | |||
549 | ||||
550 | result->mem_buffer = NULL((void*)0); /* marks array not yet realized */ | |||
551 | result->rows_in_array = numrows; | |||
552 | result->samplesperrow = samplesperrow; | |||
553 | result->maxaccess = maxaccess; | |||
554 | result->pre_zero = pre_zero; | |||
555 | result->b_s_open = FALSE0; /* no associated backing-store object */ | |||
556 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | |||
557 | mem->virt_sarray_list = result; | |||
558 | ||||
559 | return result; | |||
560 | } | |||
561 | ||||
562 | ||||
563 | METHODDEF(jvirt_barray_ptr)static jvirt_barray_ptr | |||
564 | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |||
565 | JDIMENSION blocksperrow, JDIMENSION numrows, | |||
566 | JDIMENSION maxaccess) | |||
567 | /* Request a virtual 2-D coefficient-block array */ | |||
568 | { | |||
569 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
570 | jvirt_barray_ptr result; | |||
571 | ||||
572 | /* Only IMAGE-lifetime virtual arrays are currently supported */ | |||
573 | if (pool_id != JPOOL_IMAGE1) | |||
574 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | |||
575 | ||||
576 | /* get control block */ | |||
577 | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, | |||
578 | SIZEOF(struct jvirt_barray_control)((size_t) sizeof(struct jvirt_barray_control))); | |||
579 | ||||
580 | result->mem_buffer = NULL((void*)0); /* marks array not yet realized */ | |||
581 | result->rows_in_array = numrows; | |||
582 | result->blocksperrow = blocksperrow; | |||
583 | result->maxaccess = maxaccess; | |||
584 | result->pre_zero = pre_zero; | |||
585 | result->b_s_open = FALSE0; /* no associated backing-store object */ | |||
586 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | |||
587 | mem->virt_barray_list = result; | |||
588 | ||||
589 | return result; | |||
590 | } | |||
591 | ||||
592 | ||||
593 | METHODDEF(void)static void | |||
594 | realize_virt_arrays (j_common_ptr cinfo) | |||
595 | /* Allocate the in-memory buffers for any unrealized virtual arrays */ | |||
596 | { | |||
597 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
598 | size_t space_per_minheight, maximum_space, avail_mem; | |||
599 | size_t minheights, max_minheights; | |||
600 | jvirt_sarray_ptr sptr; | |||
601 | jvirt_barray_ptr bptr; | |||
602 | ||||
603 | /* Compute the minimum space needed (maxaccess rows in each buffer) | |||
604 | * and the maximum space needed (full image height in each buffer). | |||
605 | * These may be of use to the system-dependent jpeg_mem_available routine. | |||
606 | */ | |||
607 | space_per_minheight = 0; | |||
608 | maximum_space = 0; | |||
609 | for (sptr = mem->virt_sarray_list; sptr != NULL((void*)0); sptr = sptr->next) { | |||
| ||||
610 | if (sptr->mem_buffer == NULL((void*)0)) { /* if not realized yet */ | |||
611 | space_per_minheight += (long) sptr->maxaccess * | |||
612 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | |||
613 | maximum_space += (long) sptr->rows_in_array * | |||
614 | (long) sptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | |||
615 | } | |||
616 | } | |||
617 | for (bptr = mem->virt_barray_list; bptr != NULL((void*)0); bptr = bptr->next) { | |||
618 | if (bptr->mem_buffer == NULL((void*)0)) { /* if not realized yet */ | |||
619 | space_per_minheight += (long) bptr->maxaccess * | |||
620 | (long) bptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | |||
621 | maximum_space += (long) bptr->rows_in_array * | |||
622 | (long) bptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | |||
623 | } | |||
624 | } | |||
625 | ||||
626 | if (space_per_minheight <= 0) | |||
627 | return; /* no unrealized arrays, no work */ | |||
628 | ||||
629 | /* Determine amount of memory to actually use; this is system-dependent. */ | |||
630 | avail_mem = jpeg_mem_availablejMemAvail(cinfo, space_per_minheight, maximum_space, | |||
631 | mem->total_space_allocated); | |||
632 | ||||
633 | /* If the maximum space needed is available, make all the buffers full | |||
634 | * height; otherwise parcel it out with the same number of minheights | |||
635 | * in each buffer. | |||
636 | */ | |||
637 | if (avail_mem >= maximum_space) | |||
638 | max_minheights = 1000000000L; | |||
639 | else { | |||
640 | max_minheights = avail_mem / space_per_minheight; | |||
641 | /* If there doesn't seem to be enough space, try to get the minimum | |||
642 | * anyway. This allows a "stub" implementation of jpeg_mem_available(). | |||
643 | */ | |||
644 | if (max_minheights <= 0) | |||
645 | max_minheights = 1; | |||
646 | } | |||
647 | ||||
648 | /* Allocate the in-memory buffers and initialize backing store as needed. */ | |||
649 | ||||
650 | for (sptr = mem->virt_sarray_list; sptr
| |||
651 | if (sptr->mem_buffer
| |||
652 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | |||
653 | if (minheights <= max_minheights) { | |||
654 | /* This buffer fits in memory */ | |||
655 | sptr->rows_in_mem = sptr->rows_in_array; | |||
656 | } else { | |||
657 | /* It doesn't fit in memory, create backing store. */ | |||
658 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); | |||
659 | jpeg_open_backing_storejOpenBackStore(cinfo, & sptr->b_s_info, | |||
660 | (long) sptr->rows_in_array * | |||
661 | (long) sptr->samplesperrow * | |||
662 | (long) SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE))); | |||
663 | sptr->b_s_open = TRUE1; | |||
664 | } | |||
665 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE1, | |||
666 | sptr->samplesperrow, sptr->rows_in_mem); | |||
667 | sptr->rowsperchunk = mem->last_rowsperchunk; | |||
668 | sptr->cur_start_row = 0; | |||
669 | sptr->first_undef_row = 0; | |||
670 | sptr->dirty = FALSE0; | |||
671 | } | |||
672 | } | |||
673 | ||||
674 | for (bptr = mem->virt_barray_list; bptr != NULL((void*)0); bptr = bptr->next) { | |||
675 | if (bptr->mem_buffer == NULL((void*)0)) { /* if not realized yet */ | |||
676 | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | |||
677 | if (minheights <= max_minheights) { | |||
678 | /* This buffer fits in memory */ | |||
679 | bptr->rows_in_mem = bptr->rows_in_array; | |||
680 | } else { | |||
681 | /* It doesn't fit in memory, create backing store. */ | |||
682 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); | |||
683 | jpeg_open_backing_storejOpenBackStore(cinfo, & bptr->b_s_info, | |||
684 | (long) bptr->rows_in_array * | |||
685 | (long) bptr->blocksperrow * | |||
686 | (long) SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK))); | |||
687 | bptr->b_s_open = TRUE1; | |||
688 | } | |||
689 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE1, | |||
690 | bptr->blocksperrow, bptr->rows_in_mem); | |||
691 | bptr->rowsperchunk = mem->last_rowsperchunk; | |||
692 | bptr->cur_start_row = 0; | |||
693 | bptr->first_undef_row = 0; | |||
694 | bptr->dirty = FALSE0; | |||
695 | } | |||
696 | } | |||
697 | } | |||
698 | ||||
699 | ||||
700 | LOCAL(void)static void | |||
701 | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | |||
702 | /* Do backing store read or write of a virtual sample array */ | |||
703 | { | |||
704 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |||
705 | ||||
706 | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | |||
707 | file_offset = ptr->cur_start_row * bytesperrow; | |||
708 | /* Loop to read or write each allocation chunk in mem_buffer */ | |||
709 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |||
710 | /* One chunk, but check for short chunk at end of buffer */ | |||
711 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i)(((long) ptr->rowsperchunk) < ((long) ptr->rows_in_mem - i) ? ((long) ptr->rowsperchunk) : ((long) ptr->rows_in_mem - i)); | |||
712 | /* Transfer no more than is currently defined */ | |||
713 | thisrow = (long) ptr->cur_start_row + i; | |||
714 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow)((rows) < ((long) ptr->first_undef_row - thisrow) ? (rows ) : ((long) ptr->first_undef_row - thisrow)); | |||
715 | /* Transfer no more than fits in file */ | |||
716 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow)((rows) < ((long) ptr->rows_in_array - thisrow) ? (rows ) : ((long) ptr->rows_in_array - thisrow)); | |||
717 | if (rows <= 0) /* this chunk might be past end of file! */ | |||
718 | break; | |||
719 | byte_count = rows * bytesperrow; | |||
720 | if (writing) | |||
721 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |||
722 | (void FAR *) ptr->mem_buffer[i], | |||
723 | file_offset, byte_count); | |||
724 | else | |||
725 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |||
726 | (void FAR *) ptr->mem_buffer[i], | |||
727 | file_offset, byte_count); | |||
728 | file_offset += byte_count; | |||
729 | } | |||
730 | } | |||
731 | ||||
732 | ||||
733 | LOCAL(void)static void | |||
734 | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | |||
735 | /* Do backing store read or write of a virtual coefficient-block array */ | |||
736 | { | |||
737 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |||
738 | ||||
739 | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | |||
740 | file_offset = ptr->cur_start_row * bytesperrow; | |||
741 | /* Loop to read or write each allocation chunk in mem_buffer */ | |||
742 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |||
743 | /* One chunk, but check for short chunk at end of buffer */ | |||
744 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i)(((long) ptr->rowsperchunk) < ((long) ptr->rows_in_mem - i) ? ((long) ptr->rowsperchunk) : ((long) ptr->rows_in_mem - i)); | |||
745 | /* Transfer no more than is currently defined */ | |||
746 | thisrow = (long) ptr->cur_start_row + i; | |||
747 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow)((rows) < ((long) ptr->first_undef_row - thisrow) ? (rows ) : ((long) ptr->first_undef_row - thisrow)); | |||
748 | /* Transfer no more than fits in file */ | |||
749 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow)((rows) < ((long) ptr->rows_in_array - thisrow) ? (rows ) : ((long) ptr->rows_in_array - thisrow)); | |||
750 | if (rows <= 0) /* this chunk might be past end of file! */ | |||
751 | break; | |||
752 | byte_count = rows * bytesperrow; | |||
753 | if (writing) | |||
754 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |||
755 | (void FAR *) ptr->mem_buffer[i], | |||
756 | file_offset, byte_count); | |||
757 | else | |||
758 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |||
759 | (void FAR *) ptr->mem_buffer[i], | |||
760 | file_offset, byte_count); | |||
761 | file_offset += byte_count; | |||
762 | } | |||
763 | } | |||
764 | ||||
765 | ||||
766 | METHODDEF(JSAMPARRAY)static JSAMPARRAY | |||
767 | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, | |||
768 | JDIMENSION start_row, JDIMENSION num_rows, | |||
769 | boolean writable) | |||
770 | /* Access the part of a virtual sample array starting at start_row */ | |||
771 | /* and extending for num_rows rows. writable is true if */ | |||
772 | /* caller intends to modify the accessed area. */ | |||
773 | { | |||
774 | JDIMENSION end_row = start_row + num_rows; | |||
775 | JDIMENSION undef_row; | |||
776 | ||||
777 | /* debugging check */ | |||
778 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |||
779 | ptr->mem_buffer == NULL((void*)0)) | |||
780 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | |||
781 | ||||
782 | /* Make the desired part of the virtual array accessible */ | |||
783 | if (start_row < ptr->cur_start_row || | |||
784 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { | |||
785 | if (! ptr->b_s_open) | |||
786 | ERREXIT(cinfo, JERR_VIRTUAL_BUG)((cinfo)->err->msg_code = (JERR_VIRTUAL_BUG), (*(cinfo) ->err->error_exit) ((j_common_ptr) (cinfo))); | |||
787 | /* Flush old buffer contents if necessary */ | |||
788 | if (ptr->dirty) { | |||
789 | do_sarray_io(cinfo, ptr, TRUE1); | |||
790 | ptr->dirty = FALSE0; | |||
791 | } | |||
792 | /* Decide what part of virtual array to access. | |||
793 | * Algorithm: if target address > current window, assume forward scan, | |||
794 | * load starting at target address. If target address < current window, | |||
795 | * assume backward scan, load so that target area is top of window. | |||
796 | * Note that when switching from forward write to forward read, will have | |||
797 | * start_row = 0, so the limiting case applies and we load from 0 anyway. | |||
798 | */ | |||
799 | if (start_row > ptr->cur_start_row) { | |||
800 | ptr->cur_start_row = start_row; | |||
801 | } else { | |||
802 | /* use long arithmetic here to avoid overflow & unsigned problems */ | |||
803 | long ltemp; | |||
804 | ||||
805 | ltemp = (long) end_row - (long) ptr->rows_in_mem; | |||
806 | if (ltemp < 0) | |||
807 | ltemp = 0; /* don't fall off front end of file */ | |||
808 | ptr->cur_start_row = (JDIMENSION) ltemp; | |||
809 | } | |||
810 | /* Read in the selected part of the array. | |||
811 | * During the initial write pass, we will do no actual read | |||
812 | * because the selected part is all undefined. | |||
813 | */ | |||
814 | do_sarray_io(cinfo, ptr, FALSE0); | |||
815 | } | |||
816 | /* Ensure the accessed part of the array is defined; prezero if needed. | |||
817 | * To improve locality of access, we only prezero the part of the array | |||
818 | * that the caller is about to access, not the entire in-memory array. | |||
819 | */ | |||
820 | if (ptr->first_undef_row < end_row) { | |||
821 | if (ptr->first_undef_row < start_row) { | |||
822 | if (writable) /* writer skipped over a section of array */ | |||
823 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | |||
824 | undef_row = start_row; /* but reader is allowed to read ahead */ | |||
825 | } else { | |||
826 | undef_row = ptr->first_undef_row; | |||
827 | } | |||
828 | if (writable) | |||
829 | ptr->first_undef_row = end_row; | |||
830 | if (ptr->pre_zero) { | |||
831 | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE)((size_t) sizeof(JSAMPLE)); | |||
832 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |||
833 | end_row -= ptr->cur_start_row; | |||
834 | while (undef_row < end_row) { | |||
835 | jzero_farjZeroFar((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |||
836 | undef_row++; | |||
837 | } | |||
838 | } else { | |||
839 | if (! writable) /* reader looking at undefined data */ | |||
840 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | |||
841 | } | |||
842 | } | |||
843 | /* Flag the buffer dirty if caller will write in it */ | |||
844 | if (writable) | |||
845 | ptr->dirty = TRUE1; | |||
846 | /* Return address of proper part of the buffer */ | |||
847 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |||
848 | } | |||
849 | ||||
850 | ||||
851 | METHODDEF(JBLOCKARRAY)static JBLOCKARRAY | |||
852 | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, | |||
853 | JDIMENSION start_row, JDIMENSION num_rows, | |||
854 | boolean writable) | |||
855 | /* Access the part of a virtual block array starting at start_row */ | |||
856 | /* and extending for num_rows rows. writable is true if */ | |||
857 | /* caller intends to modify the accessed area. */ | |||
858 | { | |||
859 | JDIMENSION end_row = start_row + num_rows; | |||
860 | JDIMENSION undef_row; | |||
861 | ||||
862 | /* debugging check */ | |||
863 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |||
864 | ptr->mem_buffer == NULL((void*)0)) | |||
865 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | |||
866 | ||||
867 | /* Make the desired part of the virtual array accessible */ | |||
868 | if (start_row < ptr->cur_start_row || | |||
869 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { | |||
870 | if (! ptr->b_s_open) | |||
871 | ERREXIT(cinfo, JERR_VIRTUAL_BUG)((cinfo)->err->msg_code = (JERR_VIRTUAL_BUG), (*(cinfo) ->err->error_exit) ((j_common_ptr) (cinfo))); | |||
872 | /* Flush old buffer contents if necessary */ | |||
873 | if (ptr->dirty) { | |||
874 | do_barray_io(cinfo, ptr, TRUE1); | |||
875 | ptr->dirty = FALSE0; | |||
876 | } | |||
877 | /* Decide what part of virtual array to access. | |||
878 | * Algorithm: if target address > current window, assume forward scan, | |||
879 | * load starting at target address. If target address < current window, | |||
880 | * assume backward scan, load so that target area is top of window. | |||
881 | * Note that when switching from forward write to forward read, will have | |||
882 | * start_row = 0, so the limiting case applies and we load from 0 anyway. | |||
883 | */ | |||
884 | if (start_row > ptr->cur_start_row) { | |||
885 | ptr->cur_start_row = start_row; | |||
886 | } else { | |||
887 | /* use long arithmetic here to avoid overflow & unsigned problems */ | |||
888 | long ltemp; | |||
889 | ||||
890 | ltemp = (long) end_row - (long) ptr->rows_in_mem; | |||
891 | if (ltemp < 0) | |||
892 | ltemp = 0; /* don't fall off front end of file */ | |||
893 | ptr->cur_start_row = (JDIMENSION) ltemp; | |||
894 | } | |||
895 | /* Read in the selected part of the array. | |||
896 | * During the initial write pass, we will do no actual read | |||
897 | * because the selected part is all undefined. | |||
898 | */ | |||
899 | do_barray_io(cinfo, ptr, FALSE0); | |||
900 | } | |||
901 | /* Ensure the accessed part of the array is defined; prezero if needed. | |||
902 | * To improve locality of access, we only prezero the part of the array | |||
903 | * that the caller is about to access, not the entire in-memory array. | |||
904 | */ | |||
905 | if (ptr->first_undef_row < end_row) { | |||
906 | if (ptr->first_undef_row < start_row) { | |||
907 | if (writable) /* writer skipped over a section of array */ | |||
908 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | |||
909 | undef_row = start_row; /* but reader is allowed to read ahead */ | |||
910 | } else { | |||
911 | undef_row = ptr->first_undef_row; | |||
912 | } | |||
913 | if (writable) | |||
914 | ptr->first_undef_row = end_row; | |||
915 | if (ptr->pre_zero) { | |||
916 | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK)((size_t) sizeof(JBLOCK)); | |||
917 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |||
918 | end_row -= ptr->cur_start_row; | |||
919 | while (undef_row < end_row) { | |||
920 | jzero_farjZeroFar((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |||
921 | undef_row++; | |||
922 | } | |||
923 | } else { | |||
924 | if (! writable) /* reader looking at undefined data */ | |||
925 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS)((cinfo)->err->msg_code = (JERR_BAD_VIRTUAL_ACCESS), (* (cinfo)->err->error_exit) ((j_common_ptr) (cinfo))); | |||
926 | } | |||
927 | } | |||
928 | /* Flag the buffer dirty if caller will write in it */ | |||
929 | if (writable) | |||
930 | ptr->dirty = TRUE1; | |||
931 | /* Return address of proper part of the buffer */ | |||
932 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |||
933 | } | |||
934 | ||||
935 | ||||
936 | /* | |||
937 | * Release all objects belonging to a specified pool. | |||
938 | */ | |||
939 | ||||
940 | METHODDEF(void)static void | |||
941 | free_pool (j_common_ptr cinfo, int pool_id) | |||
942 | { | |||
943 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |||
944 | small_pool_ptr shdr_ptr; | |||
945 | large_pool_ptr lhdr_ptr; | |||
946 | size_t space_freed; | |||
947 | ||||
948 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS2) | |||
949 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id)((cinfo)->err->msg_code = (JERR_BAD_POOL_ID), (cinfo)-> err->msg_parm.i[0] = (pool_id), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); /* safety check */ | |||
950 | ||||
951 | #ifdef MEM_STATS | |||
952 | if (cinfo->err->trace_level > 1) | |||
953 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | |||
954 | #endif | |||
955 | ||||
956 | /* If freeing IMAGE pool, close any virtual arrays first */ | |||
957 | if (pool_id == JPOOL_IMAGE1) { | |||
958 | jvirt_sarray_ptr sptr; | |||
959 | jvirt_barray_ptr bptr; | |||
960 | ||||
961 | for (sptr = mem->virt_sarray_list; sptr != NULL((void*)0); sptr = sptr->next) { | |||
962 | if (sptr->b_s_open) { /* there may be no backing store */ | |||
963 | sptr->b_s_open = FALSE0; /* prevent recursive close if error */ | |||
964 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); | |||
965 | } | |||
966 | } | |||
967 | mem->virt_sarray_list = NULL((void*)0); | |||
968 | for (bptr = mem->virt_barray_list; bptr != NULL((void*)0); bptr = bptr->next) { | |||
969 | if (bptr->b_s_open) { /* there may be no backing store */ | |||
970 | bptr->b_s_open = FALSE0; /* prevent recursive close if error */ | |||
971 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); | |||
972 | } | |||
973 | } | |||
974 | mem->virt_barray_list = NULL((void*)0); | |||
975 | } | |||
976 | ||||
977 | /* Release large objects */ | |||
978 | lhdr_ptr = mem->large_list[pool_id]; | |||
979 | mem->large_list[pool_id] = NULL((void*)0); | |||
980 | ||||
981 | while (lhdr_ptr != NULL((void*)0)) { | |||
982 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; | |||
983 | space_freed = lhdr_ptr->hdr.bytes_used + | |||
984 | lhdr_ptr->hdr.bytes_left + | |||
985 | SIZEOF(large_pool_hdr)((size_t) sizeof(large_pool_hdr)); | |||
986 | jpeg_free_largejFreeLarge(cinfo, (void FAR *) lhdr_ptr, space_freed); | |||
987 | mem->total_space_allocated -= space_freed; | |||
988 | lhdr_ptr = next_lhdr_ptr; | |||
989 | } | |||
990 | ||||
991 | /* Release small objects */ | |||
992 | shdr_ptr = mem->small_list[pool_id]; | |||
993 | mem->small_list[pool_id] = NULL((void*)0); | |||
994 | ||||
995 | while (shdr_ptr != NULL((void*)0)) { | |||
996 | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; | |||
997 | space_freed = shdr_ptr->hdr.bytes_used + | |||
998 | shdr_ptr->hdr.bytes_left + | |||
999 | SIZEOF(small_pool_hdr)((size_t) sizeof(small_pool_hdr)); | |||
1000 | jpeg_free_smalljFreeSmall(cinfo, (void *) shdr_ptr, space_freed); | |||
1001 | mem->total_space_allocated -= space_freed; | |||
1002 | shdr_ptr = next_shdr_ptr; | |||
1003 | } | |||
1004 | } | |||
1005 | ||||
1006 | ||||
1007 | /* | |||
1008 | * Close up shop entirely. | |||
1009 | * Note that this cannot be called unless cinfo->mem is non-NULL. | |||
1010 | */ | |||
1011 | ||||
1012 | METHODDEF(void)static void | |||
1013 | self_destruct (j_common_ptr cinfo) | |||
1014 | { | |||
1015 | int pool; | |||
1016 | ||||
1017 | /* Close all backing store, release all memory. | |||
1018 | * Releasing pools in reverse order might help avoid fragmentation | |||
1019 | * with some (brain-damaged) malloc libraries. | |||
1020 | */ | |||
1021 | for (pool = JPOOL_NUMPOOLS2-1; pool >= JPOOL_PERMANENT0; pool--) { | |||
1022 | free_pool(cinfo, pool); | |||
1023 | } | |||
1024 | ||||
1025 | /* Release the memory manager control block too. */ | |||
1026 | jpeg_free_smalljFreeSmall(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)((size_t) sizeof(my_memory_mgr))); | |||
1027 | cinfo->mem = NULL((void*)0); /* ensures I will be called only once */ | |||
1028 | ||||
1029 | jpeg_mem_termjMemTerm(cinfo); /* system-dependent cleanup */ | |||
1030 | } | |||
1031 | ||||
1032 | ||||
1033 | /* | |||
1034 | * Memory manager initialization. | |||
1035 | * When this is called, only the error manager pointer is valid in cinfo! | |||
1036 | */ | |||
1037 | ||||
1038 | GLOBAL(void)void | |||
1039 | jinit_memory_mgrjIMemMgr (j_common_ptr cinfo) | |||
1040 | { | |||
1041 | my_mem_ptr mem; | |||
1042 | size_t max_to_use; | |||
1043 | int pool; | |||
1044 | size_t test_mac; | |||
1045 | ||||
1046 | cinfo->mem = NULL((void*)0); /* for safety if init fails */ | |||
1047 | ||||
1048 | /* Check for configuration errors. | |||
1049 | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably | |||
1050 | * doesn't reflect any real hardware alignment requirement. | |||
1051 | * The test is a little tricky: for X>0, X and X-1 have no one-bits | |||
1052 | * in common if and only if X is a power of 2, ie has only one one-bit. | |||
1053 | * Some compilers may give an "unreachable code" warning here; ignore it. | |||
1054 | */ | |||
1055 | if ((SIZEOF(ALIGN_TYPE)((size_t) sizeof(double)) & (SIZEOF(ALIGN_TYPE)((size_t) sizeof(double))-1)) != 0) | |||
1056 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE)((cinfo)->err->msg_code = (JERR_BAD_ALIGN_TYPE), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
1057 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | |||
1058 | * a multiple of SIZEOF(ALIGN_TYPE). | |||
1059 | * Again, an "unreachable code" warning may be ignored here. | |||
1060 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | |||
1061 | */ | |||
1062 | test_mac = (size_t) MAX_ALLOC_CHUNK1000000000L; | |||
1063 | if ((long) test_mac != MAX_ALLOC_CHUNK1000000000L || | |||
1064 | (MAX_ALLOC_CHUNK1000000000L % SIZEOF(ALIGN_TYPE)((size_t) sizeof(double))) != 0) | |||
1065 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK)((cinfo)->err->msg_code = (JERR_BAD_ALLOC_CHUNK), (*(cinfo )->err->error_exit) ((j_common_ptr) (cinfo))); | |||
1066 | ||||
1067 | max_to_use = jpeg_mem_initjMemInit(cinfo); /* system-dependent initialization */ | |||
1068 | ||||
1069 | /* Attempt to allocate memory manager's control block */ | |||
1070 | mem = (my_mem_ptr) jpeg_get_smalljGetSmall(cinfo, SIZEOF(my_memory_mgr)((size_t) sizeof(my_memory_mgr))); | |||
1071 | ||||
1072 | if (mem == NULL((void*)0)) { | |||
1073 | jpeg_mem_termjMemTerm(cinfo); /* system-dependent cleanup */ | |||
1074 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0)((cinfo)->err->msg_code = (JERR_OUT_OF_MEMORY), (cinfo) ->err->msg_parm.i[0] = (0), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); | |||
1075 | } | |||
1076 | ||||
1077 | /* OK, fill in the method pointers */ | |||
1078 | mem->pub.alloc_small = alloc_small; | |||
1079 | mem->pub.alloc_large = alloc_large; | |||
1080 | mem->pub.alloc_sarray = alloc_sarray; | |||
1081 | mem->pub.alloc_barray = alloc_barray; | |||
1082 | mem->pub.request_virt_sarray = request_virt_sarray; | |||
1083 | mem->pub.request_virt_barray = request_virt_barray; | |||
1084 | mem->pub.realize_virt_arrays = realize_virt_arrays; | |||
1085 | mem->pub.access_virt_sarray = access_virt_sarray; | |||
1086 | mem->pub.access_virt_barray = access_virt_barray; | |||
1087 | mem->pub.free_pool = free_pool; | |||
1088 | mem->pub.self_destruct = self_destruct; | |||
1089 | ||||
1090 | /* Make MAX_ALLOC_CHUNK accessible to other modules */ | |||
1091 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK1000000000L; | |||
1092 | ||||
1093 | /* Initialize working state */ | |||
1094 | mem->pub.max_memory_to_use = max_to_use; | |||
1095 | ||||
1096 | for (pool = JPOOL_NUMPOOLS2-1; pool >= JPOOL_PERMANENT0; pool--) { | |||
1097 | mem->small_list[pool] = NULL((void*)0); | |||
1098 | mem->large_list[pool] = NULL((void*)0); | |||
1099 | } | |||
1100 | mem->virt_sarray_list = NULL((void*)0); | |||
1101 | mem->virt_barray_list = NULL((void*)0); | |||
1102 | ||||
1103 | mem->total_space_allocated = SIZEOF(my_memory_mgr)((size_t) sizeof(my_memory_mgr)); | |||
1104 | ||||
1105 | /* Declare ourselves open for business */ | |||
1106 | cinfo->mem = & mem->pub; | |||
1107 | ||||
1108 | /* Check for an environment variable JPEGMEM; if found, override the | |||
1109 | * default max_memory setting from jpeg_mem_init. Note that the | |||
1110 | * surrounding application may again override this value. | |||
1111 | * If your system doesn't support getenv(), define NO_GETENV to disable | |||
1112 | * this feature. | |||
1113 | */ | |||
1114 | #ifndef NO_GETENV | |||
1115 | { char * memenv; | |||
1116 | ||||
1117 | if ((memenv = getenv("JPEGMEM")) != NULL((void*)0)) { | |||
1118 | char ch = 'x'; | |||
1119 | unsigned int mem_max = 0u; | |||
1120 | ||||
1121 | if (sscanf(memenv, "%u%c", &mem_max, &ch) > 0) { | |||
1122 | max_to_use = (size_t)mem_max; | |||
1123 | if (ch == 'm' || ch == 'M') | |||
1124 | max_to_use *= 1000L; | |||
1125 | mem->pub.max_memory_to_use = max_to_use * 1000L; | |||
1126 | } | |||
1127 | } | |||
1128 | } | |||
1129 | #endif | |||
1130 | ||||
1131 | } |