File: | jdk/src/java.desktop/share/native/libjavajpeg/jquant2.c |
Warning: | line 536, column 66 Division by zero |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * reserved comment block | |||
3 | * DO NOT REMOVE OR ALTER! | |||
4 | */ | |||
5 | /* | |||
6 | * jquant2.c | |||
7 | * | |||
8 | * Copyright (C) 1991-1996, Thomas G. Lane. | |||
9 | * This file is part of the Independent JPEG Group's software. | |||
10 | * For conditions of distribution and use, see the accompanying README file. | |||
11 | * | |||
12 | * This file contains 2-pass color quantization (color mapping) routines. | |||
13 | * These routines provide selection of a custom color map for an image, | |||
14 | * followed by mapping of the image to that color map, with optional | |||
15 | * Floyd-Steinberg dithering. | |||
16 | * It is also possible to use just the second pass to map to an arbitrary | |||
17 | * externally-given color map. | |||
18 | * | |||
19 | * Note: ordered dithering is not supported, since there isn't any fast | |||
20 | * way to compute intercolor distances; it's unclear that ordered dither's | |||
21 | * fundamental assumptions even hold with an irregularly spaced color map. | |||
22 | */ | |||
23 | ||||
24 | #define JPEG_INTERNALS | |||
25 | #include "jinclude.h" | |||
26 | #include "jpeglib.h" | |||
27 | ||||
28 | #ifdef QUANT_2PASS_SUPPORTED | |||
29 | ||||
30 | ||||
31 | /* | |||
32 | * This module implements the well-known Heckbert paradigm for color | |||
33 | * quantization. Most of the ideas used here can be traced back to | |||
34 | * Heckbert's seminal paper | |||
35 | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", | |||
36 | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. | |||
37 | * | |||
38 | * In the first pass over the image, we accumulate a histogram showing the | |||
39 | * usage count of each possible color. To keep the histogram to a reasonable | |||
40 | * size, we reduce the precision of the input; typical practice is to retain | |||
41 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted | |||
42 | * in the same histogram cell. | |||
43 | * | |||
44 | * Next, the color-selection step begins with a box representing the whole | |||
45 | * color space, and repeatedly splits the "largest" remaining box until we | |||
46 | * have as many boxes as desired colors. Then the mean color in each | |||
47 | * remaining box becomes one of the possible output colors. | |||
48 | * | |||
49 | * The second pass over the image maps each input pixel to the closest output | |||
50 | * color (optionally after applying a Floyd-Steinberg dithering correction). | |||
51 | * This mapping is logically trivial, but making it go fast enough requires | |||
52 | * considerable care. | |||
53 | * | |||
54 | * Heckbert-style quantizers vary a good deal in their policies for choosing | |||
55 | * the "largest" box and deciding where to cut it. The particular policies | |||
56 | * used here have proved out well in experimental comparisons, but better ones | |||
57 | * may yet be found. | |||
58 | * | |||
59 | * In earlier versions of the IJG code, this module quantized in YCbCr color | |||
60 | * space, processing the raw upsampled data without a color conversion step. | |||
61 | * This allowed the color conversion math to be done only once per colormap | |||
62 | * entry, not once per pixel. However, that optimization precluded other | |||
63 | * useful optimizations (such as merging color conversion with upsampling) | |||
64 | * and it also interfered with desired capabilities such as quantizing to an | |||
65 | * externally-supplied colormap. We have therefore abandoned that approach. | |||
66 | * The present code works in the post-conversion color space, typically RGB. | |||
67 | * | |||
68 | * To improve the visual quality of the results, we actually work in scaled | |||
69 | * RGB space, giving G distances more weight than R, and R in turn more than | |||
70 | * B. To do everything in integer math, we must use integer scale factors. | |||
71 | * The 2/3/1 scale factors used here correspond loosely to the relative | |||
72 | * weights of the colors in the NTSC grayscale equation. | |||
73 | * If you want to use this code to quantize a non-RGB color space, you'll | |||
74 | * probably need to change these scale factors. | |||
75 | */ | |||
76 | ||||
77 | #define R_SCALE2 2 /* scale R distances by this much */ | |||
78 | #define G_SCALE3 3 /* scale G distances by this much */ | |||
79 | #define B_SCALE1 1 /* and B by this much */ | |||
80 | ||||
81 | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined | |||
82 | * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B | |||
83 | * and B,G,R orders. If you define some other weird order in jmorecfg.h, | |||
84 | * you'll get compile errors until you extend this logic. In that case | |||
85 | * you'll probably want to tweak the histogram sizes too. | |||
86 | */ | |||
87 | ||||
88 | #if RGB_RED0 == 0 | |||
89 | #define C0_SCALE2 R_SCALE2 | |||
90 | #endif | |||
91 | #if RGB_BLUE2 == 0 | |||
92 | #define C0_SCALE2 B_SCALE1 | |||
93 | #endif | |||
94 | #if RGB_GREEN1 == 1 | |||
95 | #define C1_SCALE3 G_SCALE3 | |||
96 | #endif | |||
97 | #if RGB_RED0 == 2 | |||
98 | #define C2_SCALE1 R_SCALE2 | |||
99 | #endif | |||
100 | #if RGB_BLUE2 == 2 | |||
101 | #define C2_SCALE1 B_SCALE1 | |||
102 | #endif | |||
103 | ||||
104 | ||||
105 | /* | |||
106 | * First we have the histogram data structure and routines for creating it. | |||
107 | * | |||
108 | * The number of bits of precision can be adjusted by changing these symbols. | |||
109 | * We recommend keeping 6 bits for G and 5 each for R and B. | |||
110 | * If you have plenty of memory and cycles, 6 bits all around gives marginally | |||
111 | * better results; if you are short of memory, 5 bits all around will save | |||
112 | * some space but degrade the results. | |||
113 | * To maintain a fully accurate histogram, we'd need to allocate a "long" | |||
114 | * (preferably unsigned long) for each cell. In practice this is overkill; | |||
115 | * we can get by with 16 bits per cell. Few of the cell counts will overflow, | |||
116 | * and clamping those that do overflow to the maximum value will give close- | |||
117 | * enough results. This reduces the recommended histogram size from 256Kb | |||
118 | * to 128Kb, which is a useful savings on PC-class machines. | |||
119 | * (In the second pass the histogram space is re-used for pixel mapping data; | |||
120 | * in that capacity, each cell must be able to store zero to the number of | |||
121 | * desired colors. 16 bits/cell is plenty for that too.) | |||
122 | * Since the JPEG code is intended to run in small memory model on 80x86 | |||
123 | * machines, we can't just allocate the histogram in one chunk. Instead | |||
124 | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each | |||
125 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and | |||
126 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that | |||
127 | * on 80x86 machines, the pointer row is in near memory but the actual | |||
128 | * arrays are in far memory (same arrangement as we use for image arrays). | |||
129 | */ | |||
130 | ||||
131 | #define MAXNUMCOLORS(255 +1) (MAXJSAMPLE255+1) /* maximum size of colormap */ | |||
132 | ||||
133 | /* These will do the right thing for either R,G,B or B,G,R color order, | |||
134 | * but you may not like the results for other color orders. | |||
135 | */ | |||
136 | #define HIST_C0_BITS5 5 /* bits of precision in R/B histogram */ | |||
137 | #define HIST_C1_BITS6 6 /* bits of precision in G histogram */ | |||
138 | #define HIST_C2_BITS5 5 /* bits of precision in B/R histogram */ | |||
139 | ||||
140 | /* Number of elements along histogram axes. */ | |||
141 | #define HIST_C0_ELEMS(1<<5) (1<<HIST_C0_BITS5) | |||
142 | #define HIST_C1_ELEMS(1<<6) (1<<HIST_C1_BITS6) | |||
143 | #define HIST_C2_ELEMS(1<<5) (1<<HIST_C2_BITS5) | |||
144 | ||||
145 | /* These are the amounts to shift an input value to get a histogram index. */ | |||
146 | #define C0_SHIFT(8 -5) (BITS_IN_JSAMPLE8-HIST_C0_BITS5) | |||
147 | #define C1_SHIFT(8 -6) (BITS_IN_JSAMPLE8-HIST_C1_BITS6) | |||
148 | #define C2_SHIFT(8 -5) (BITS_IN_JSAMPLE8-HIST_C2_BITS5) | |||
149 | ||||
150 | ||||
151 | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ | |||
152 | ||||
153 | typedef histcell FAR * histptr; /* for pointers to histogram cells */ | |||
154 | ||||
155 | typedef histcell hist1d[HIST_C2_ELEMS(1<<5)]; /* typedefs for the array */ | |||
156 | typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ | |||
157 | typedef hist2d * hist3d; /* type for top-level pointer */ | |||
158 | ||||
159 | ||||
160 | /* Declarations for Floyd-Steinberg dithering. | |||
161 | * | |||
162 | * Errors are accumulated into the array fserrors[], at a resolution of | |||
163 | * 1/16th of a pixel count. The error at a given pixel is propagated | |||
164 | * to its not-yet-processed neighbors using the standard F-S fractions, | |||
165 | * ... (here) 7/16 | |||
166 | * 3/16 5/16 1/16 | |||
167 | * We work left-to-right on even rows, right-to-left on odd rows. | |||
168 | * | |||
169 | * We can get away with a single array (holding one row's worth of errors) | |||
170 | * by using it to store the current row's errors at pixel columns not yet | |||
171 | * processed, but the next row's errors at columns already processed. We | |||
172 | * need only a few extra variables to hold the errors immediately around the | |||
173 | * current column. (If we are lucky, those variables are in registers, but | |||
174 | * even if not, they're probably cheaper to access than array elements are.) | |||
175 | * | |||
176 | * The fserrors[] array has (#columns + 2) entries; the extra entry at | |||
177 | * each end saves us from special-casing the first and last pixels. | |||
178 | * Each entry is three values long, one value for each color component. | |||
179 | * | |||
180 | * Note: on a wide image, we might not have enough room in a PC's near data | |||
181 | * segment to hold the error array; so it is allocated with alloc_large. | |||
182 | */ | |||
183 | ||||
184 | #if BITS_IN_JSAMPLE8 == 8 | |||
185 | typedef INT16 FSERROR; /* 16 bits should be enough */ | |||
186 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |||
187 | #else | |||
188 | typedef INT32 FSERROR; /* may need more than 16 bits */ | |||
189 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |||
190 | #endif | |||
191 | ||||
192 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |||
193 | ||||
194 | ||||
195 | /* Private subobject */ | |||
196 | ||||
197 | typedef struct { | |||
198 | struct jpeg_color_quantizer pub; /* public fields */ | |||
199 | ||||
200 | /* Space for the eventually created colormap is stashed here */ | |||
201 | JSAMPARRAY sv_colormap; /* colormap allocated at init time */ | |||
202 | int desired; /* desired # of colors = size of colormap */ | |||
203 | ||||
204 | /* Variables for accumulating image statistics */ | |||
205 | hist3d histogram; /* pointer to the histogram */ | |||
206 | ||||
207 | boolean needs_zeroed; /* TRUE if next pass must zero histogram */ | |||
208 | ||||
209 | /* Variables for Floyd-Steinberg dithering */ | |||
210 | FSERRPTR fserrors; /* accumulated errors */ | |||
211 | boolean on_odd_row; /* flag to remember which row we are on */ | |||
212 | int * error_limiter; /* table for clamping the applied error */ | |||
213 | } my_cquantizer; | |||
214 | ||||
215 | typedef my_cquantizer * my_cquantize_ptr; | |||
216 | ||||
217 | ||||
218 | /* | |||
219 | * Prescan some rows of pixels. | |||
220 | * In this module the prescan simply updates the histogram, which has been | |||
221 | * initialized to zeroes by start_pass. | |||
222 | * An output_buf parameter is required by the method signature, but no data | |||
223 | * is actually output (in fact the buffer controller is probably passing a | |||
224 | * NULL pointer). | |||
225 | */ | |||
226 | ||||
227 | METHODDEF(void)static void | |||
228 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
229 | JSAMPARRAY output_buf, int num_rows) | |||
230 | { | |||
231 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
232 | register JSAMPROW ptr; | |||
233 | register histptr histp; | |||
234 | register hist3d histogram = cquantize->histogram; | |||
235 | int row; | |||
236 | JDIMENSION col; | |||
237 | JDIMENSION width = cinfo->output_width; | |||
238 | ||||
239 | for (row = 0; row < num_rows; row++) { | |||
240 | ptr = input_buf[row]; | |||
241 | for (col = width; col > 0; col--) { | |||
242 | /* get pixel value and index into the histogram */ | |||
243 | histp = & histogram[GETJSAMPLE(ptr[0])((int) (ptr[0])) >> C0_SHIFT(8 -5)] | |||
244 | [GETJSAMPLE(ptr[1])((int) (ptr[1])) >> C1_SHIFT(8 -6)] | |||
245 | [GETJSAMPLE(ptr[2])((int) (ptr[2])) >> C2_SHIFT(8 -5)]; | |||
246 | /* increment, check for overflow and undo increment if so. */ | |||
247 | if (++(*histp) <= 0) | |||
248 | (*histp)--; | |||
249 | ptr += 3; | |||
250 | } | |||
251 | } | |||
252 | } | |||
253 | ||||
254 | ||||
255 | /* | |||
256 | * Next we have the really interesting routines: selection of a colormap | |||
257 | * given the completed histogram. | |||
258 | * These routines work with a list of "boxes", each representing a rectangular | |||
259 | * subset of the input color space (to histogram precision). | |||
260 | */ | |||
261 | ||||
262 | typedef struct { | |||
263 | /* The bounds of the box (inclusive); expressed as histogram indexes */ | |||
264 | int c0min, c0max; | |||
265 | int c1min, c1max; | |||
266 | int c2min, c2max; | |||
267 | /* The volume (actually 2-norm) of the box */ | |||
268 | INT32 volume; | |||
269 | /* The number of nonzero histogram cells within this box */ | |||
270 | long colorcount; | |||
271 | } box; | |||
272 | ||||
273 | typedef box * boxptr; | |||
274 | ||||
275 | ||||
276 | LOCAL(boxptr)static boxptr | |||
277 | find_biggest_color_pop (boxptr boxlist, int numboxes) | |||
278 | /* Find the splittable box with the largest color population */ | |||
279 | /* Returns NULL if no splittable boxes remain */ | |||
280 | { | |||
281 | register boxptr boxp; | |||
282 | register int i; | |||
283 | register long maxc = 0; | |||
284 | boxptr which = NULL((void*)0); | |||
285 | ||||
286 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |||
287 | if (boxp->colorcount > maxc && boxp->volume > 0) { | |||
288 | which = boxp; | |||
289 | maxc = boxp->colorcount; | |||
290 | } | |||
291 | } | |||
292 | return which; | |||
293 | } | |||
294 | ||||
295 | ||||
296 | LOCAL(boxptr)static boxptr | |||
297 | find_biggest_volume (boxptr boxlist, int numboxes) | |||
298 | /* Find the splittable box with the largest (scaled) volume */ | |||
299 | /* Returns NULL if no splittable boxes remain */ | |||
300 | { | |||
301 | register boxptr boxp; | |||
302 | register int i; | |||
303 | register INT32 maxv = 0; | |||
304 | boxptr which = NULL((void*)0); | |||
305 | ||||
306 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |||
307 | if (boxp->volume > maxv) { | |||
308 | which = boxp; | |||
309 | maxv = boxp->volume; | |||
310 | } | |||
311 | } | |||
312 | return which; | |||
313 | } | |||
314 | ||||
315 | ||||
316 | LOCAL(void)static void | |||
317 | update_box (j_decompress_ptr cinfo, boxptr boxp) | |||
318 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ | |||
319 | /* and recompute its volume and population */ | |||
320 | { | |||
321 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
322 | hist3d histogram = cquantize->histogram; | |||
323 | histptr histp; | |||
324 | int c0,c1,c2; | |||
325 | int c0min,c0max,c1min,c1max,c2min,c2max; | |||
326 | INT32 dist0,dist1,dist2; | |||
327 | long ccount; | |||
328 | ||||
329 | c0min = boxp->c0min; c0max = boxp->c0max; | |||
330 | c1min = boxp->c1min; c1max = boxp->c1max; | |||
331 | c2min = boxp->c2min; c2max = boxp->c2max; | |||
332 | ||||
333 | if (c0max > c0min) | |||
334 | for (c0 = c0min; c0 <= c0max; c0++) | |||
335 | for (c1 = c1min; c1 <= c1max; c1++) { | |||
336 | histp = & histogram[c0][c1][c2min]; | |||
337 | for (c2 = c2min; c2 <= c2max; c2++) | |||
338 | if (*histp++ != 0) { | |||
339 | boxp->c0min = c0min = c0; | |||
340 | goto have_c0min; | |||
341 | } | |||
342 | } | |||
343 | have_c0min: | |||
344 | if (c0max > c0min) | |||
345 | for (c0 = c0max; c0 >= c0min; c0--) | |||
346 | for (c1 = c1min; c1 <= c1max; c1++) { | |||
347 | histp = & histogram[c0][c1][c2min]; | |||
348 | for (c2 = c2min; c2 <= c2max; c2++) | |||
349 | if (*histp++ != 0) { | |||
350 | boxp->c0max = c0max = c0; | |||
351 | goto have_c0max; | |||
352 | } | |||
353 | } | |||
354 | have_c0max: | |||
355 | if (c1max > c1min) | |||
356 | for (c1 = c1min; c1 <= c1max; c1++) | |||
357 | for (c0 = c0min; c0 <= c0max; c0++) { | |||
358 | histp = & histogram[c0][c1][c2min]; | |||
359 | for (c2 = c2min; c2 <= c2max; c2++) | |||
360 | if (*histp++ != 0) { | |||
361 | boxp->c1min = c1min = c1; | |||
362 | goto have_c1min; | |||
363 | } | |||
364 | } | |||
365 | have_c1min: | |||
366 | if (c1max > c1min) | |||
367 | for (c1 = c1max; c1 >= c1min; c1--) | |||
368 | for (c0 = c0min; c0 <= c0max; c0++) { | |||
369 | histp = & histogram[c0][c1][c2min]; | |||
370 | for (c2 = c2min; c2 <= c2max; c2++) | |||
371 | if (*histp++ != 0) { | |||
372 | boxp->c1max = c1max = c1; | |||
373 | goto have_c1max; | |||
374 | } | |||
375 | } | |||
376 | have_c1max: | |||
377 | if (c2max > c2min) | |||
378 | for (c2 = c2min; c2 <= c2max; c2++) | |||
379 | for (c0 = c0min; c0 <= c0max; c0++) { | |||
380 | histp = & histogram[c0][c1min][c2]; | |||
381 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS(1<<5)) | |||
382 | if (*histp != 0) { | |||
383 | boxp->c2min = c2min = c2; | |||
384 | goto have_c2min; | |||
385 | } | |||
386 | } | |||
387 | have_c2min: | |||
388 | if (c2max > c2min) | |||
389 | for (c2 = c2max; c2 >= c2min; c2--) | |||
390 | for (c0 = c0min; c0 <= c0max; c0++) { | |||
391 | histp = & histogram[c0][c1min][c2]; | |||
392 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS(1<<5)) | |||
393 | if (*histp != 0) { | |||
394 | boxp->c2max = c2max = c2; | |||
395 | goto have_c2max; | |||
396 | } | |||
397 | } | |||
398 | have_c2max: | |||
399 | ||||
400 | /* Update box volume. | |||
401 | * We use 2-norm rather than real volume here; this biases the method | |||
402 | * against making long narrow boxes, and it has the side benefit that | |||
403 | * a box is splittable iff norm > 0. | |||
404 | * Since the differences are expressed in histogram-cell units, | |||
405 | * we have to shift back to JSAMPLE units to get consistent distances; | |||
406 | * after which, we scale according to the selected distance scale factors. | |||
407 | */ | |||
408 | dist0 = ((c0max - c0min) << C0_SHIFT(8 -5)) * C0_SCALE2; | |||
409 | dist1 = ((c1max - c1min) << C1_SHIFT(8 -6)) * C1_SCALE3; | |||
410 | dist2 = ((c2max - c2min) << C2_SHIFT(8 -5)) * C2_SCALE1; | |||
411 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; | |||
412 | ||||
413 | /* Now scan remaining volume of box and compute population */ | |||
414 | ccount = 0; | |||
415 | for (c0 = c0min; c0 <= c0max; c0++) | |||
416 | for (c1 = c1min; c1 <= c1max; c1++) { | |||
417 | histp = & histogram[c0][c1][c2min]; | |||
418 | for (c2 = c2min; c2 <= c2max; c2++, histp++) | |||
419 | if (*histp != 0) { | |||
420 | ccount++; | |||
421 | } | |||
422 | } | |||
423 | boxp->colorcount = ccount; | |||
424 | } | |||
425 | ||||
426 | ||||
427 | LOCAL(int)static int | |||
428 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, | |||
429 | int desired_colors) | |||
430 | /* Repeatedly select and split the largest box until we have enough boxes */ | |||
431 | { | |||
432 | int n,lb; | |||
433 | int c0,c1,c2,cmax; | |||
434 | register boxptr b1,b2; | |||
435 | ||||
436 | while (numboxes < desired_colors) { | |||
437 | /* Select box to split. | |||
438 | * Current algorithm: by population for first half, then by volume. | |||
439 | */ | |||
440 | if (numboxes*2 <= desired_colors) { | |||
441 | b1 = find_biggest_color_pop(boxlist, numboxes); | |||
442 | } else { | |||
443 | b1 = find_biggest_volume(boxlist, numboxes); | |||
444 | } | |||
445 | if (b1 == NULL((void*)0)) /* no splittable boxes left! */ | |||
446 | break; | |||
447 | b2 = &boxlist[numboxes]; /* where new box will go */ | |||
448 | /* Copy the color bounds to the new box. */ | |||
449 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; | |||
450 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; | |||
451 | /* Choose which axis to split the box on. | |||
452 | * Current algorithm: longest scaled axis. | |||
453 | * See notes in update_box about scaling distances. | |||
454 | */ | |||
455 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT(8 -5)) * C0_SCALE2; | |||
456 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT(8 -6)) * C1_SCALE3; | |||
457 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT(8 -5)) * C2_SCALE1; | |||
458 | /* We want to break any ties in favor of green, then red, blue last. | |||
459 | * This code does the right thing for R,G,B or B,G,R color orders only. | |||
460 | */ | |||
461 | #if RGB_RED0 == 0 | |||
462 | cmax = c1; n = 1; | |||
463 | if (c0 > cmax) { cmax = c0; n = 0; } | |||
464 | if (c2 > cmax) { n = 2; } | |||
465 | #else | |||
466 | cmax = c1; n = 1; | |||
467 | if (c2 > cmax) { cmax = c2; n = 2; } | |||
468 | if (c0 > cmax) { n = 0; } | |||
469 | #endif | |||
470 | /* Choose split point along selected axis, and update box bounds. | |||
471 | * Current algorithm: split at halfway point. | |||
472 | * (Since the box has been shrunk to minimum volume, | |||
473 | * any split will produce two nonempty subboxes.) | |||
474 | * Note that lb value is max for lower box, so must be < old max. | |||
475 | */ | |||
476 | switch (n) { | |||
477 | case 0: | |||
478 | lb = (b1->c0max + b1->c0min) / 2; | |||
479 | b1->c0max = lb; | |||
480 | b2->c0min = lb+1; | |||
481 | break; | |||
482 | case 1: | |||
483 | lb = (b1->c1max + b1->c1min) / 2; | |||
484 | b1->c1max = lb; | |||
485 | b2->c1min = lb+1; | |||
486 | break; | |||
487 | case 2: | |||
488 | lb = (b1->c2max + b1->c2min) / 2; | |||
489 | b1->c2max = lb; | |||
490 | b2->c2min = lb+1; | |||
491 | break; | |||
492 | } | |||
493 | /* Update stats for boxes */ | |||
494 | update_box(cinfo, b1); | |||
495 | update_box(cinfo, b2); | |||
496 | numboxes++; | |||
497 | } | |||
498 | return numboxes; | |||
499 | } | |||
500 | ||||
501 | ||||
502 | LOCAL(void)static void | |||
503 | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) | |||
504 | /* Compute representative color for a box, put it in colormap[icolor] */ | |||
505 | { | |||
506 | /* Current algorithm: mean weighted by pixels (not colors) */ | |||
507 | /* Note it is important to get the rounding correct! */ | |||
508 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
509 | hist3d histogram = cquantize->histogram; | |||
510 | histptr histp; | |||
511 | int c0,c1,c2; | |||
512 | int c0min,c0max,c1min,c1max,c2min,c2max; | |||
513 | long count; | |||
514 | long total = 0; | |||
515 | long c0total = 0; | |||
516 | long c1total = 0; | |||
517 | long c2total = 0; | |||
518 | ||||
519 | c0min = boxp->c0min; c0max = boxp->c0max; | |||
520 | c1min = boxp->c1min; c1max = boxp->c1max; | |||
521 | c2min = boxp->c2min; c2max = boxp->c2max; | |||
522 | ||||
523 | for (c0 = c0min; c0 <= c0max; c0++) | |||
524 | for (c1 = c1min; c1 <= c1max; c1++) { | |||
525 | histp = & histogram[c0][c1][c2min]; | |||
526 | for (c2 = c2min; c2 <= c2max; c2++) { | |||
527 | if ((count = *histp++) != 0) { | |||
528 | total += count; | |||
529 | c0total += ((c0 << C0_SHIFT(8 -5)) + ((1<<C0_SHIFT(8 -5))>>1)) * count; | |||
530 | c1total += ((c1 << C1_SHIFT(8 -6)) + ((1<<C1_SHIFT(8 -6))>>1)) * count; | |||
531 | c2total += ((c2 << C2_SHIFT(8 -5)) + ((1<<C2_SHIFT(8 -5))>>1)) * count; | |||
532 | } | |||
533 | } | |||
534 | } | |||
535 | ||||
536 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); | |||
| ||||
537 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); | |||
538 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); | |||
539 | } | |||
540 | ||||
541 | ||||
542 | LOCAL(void)static void | |||
543 | select_colors (j_decompress_ptr cinfo, int desired_colors) | |||
544 | /* Master routine for color selection */ | |||
545 | { | |||
546 | boxptr boxlist; | |||
547 | int numboxes; | |||
548 | int i; | |||
549 | ||||
550 | /* Allocate workspace for box list */ | |||
551 | boxlist = (boxptr) (*cinfo->mem->alloc_small) | |||
552 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, desired_colors * SIZEOF(box)((size_t) sizeof(box))); | |||
553 | /* Initialize one box containing whole space */ | |||
554 | numboxes = 1; | |||
555 | boxlist[0].c0min = 0; | |||
556 | boxlist[0].c0max = MAXJSAMPLE255 >> C0_SHIFT(8 -5); | |||
557 | boxlist[0].c1min = 0; | |||
558 | boxlist[0].c1max = MAXJSAMPLE255 >> C1_SHIFT(8 -6); | |||
559 | boxlist[0].c2min = 0; | |||
560 | boxlist[0].c2max = MAXJSAMPLE255 >> C2_SHIFT(8 -5); | |||
561 | /* Shrink it to actually-used volume and set its statistics */ | |||
562 | update_box(cinfo, & boxlist[0]); | |||
563 | /* Perform median-cut to produce final box list */ | |||
564 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); | |||
565 | /* Compute the representative color for each box, fill colormap */ | |||
566 | for (i = 0; i < numboxes; i++) | |||
567 | compute_color(cinfo, & boxlist[i], i); | |||
568 | cinfo->actual_number_of_colors = numboxes; | |||
569 | TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes)((cinfo)->err->msg_code = (JTRC_QUANT_SELECTED), (cinfo )->err->msg_parm.i[0] = (numboxes), (*(cinfo)->err-> emit_message) ((j_common_ptr) (cinfo), (1))); | |||
570 | } | |||
571 | ||||
572 | ||||
573 | /* | |||
574 | * These routines are concerned with the time-critical task of mapping input | |||
575 | * colors to the nearest color in the selected colormap. | |||
576 | * | |||
577 | * We re-use the histogram space as an "inverse color map", essentially a | |||
578 | * cache for the results of nearest-color searches. All colors within a | |||
579 | * histogram cell will be mapped to the same colormap entry, namely the one | |||
580 | * closest to the cell's center. This may not be quite the closest entry to | |||
581 | * the actual input color, but it's almost as good. A zero in the cache | |||
582 | * indicates we haven't found the nearest color for that cell yet; the array | |||
583 | * is cleared to zeroes before starting the mapping pass. When we find the | |||
584 | * nearest color for a cell, its colormap index plus one is recorded in the | |||
585 | * cache for future use. The pass2 scanning routines call fill_inverse_cmap | |||
586 | * when they need to use an unfilled entry in the cache. | |||
587 | * | |||
588 | * Our method of efficiently finding nearest colors is based on the "locally | |||
589 | * sorted search" idea described by Heckbert and on the incremental distance | |||
590 | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics | |||
591 | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that | |||
592 | * the distances from a given colormap entry to each cell of the histogram can | |||
593 | * be computed quickly using an incremental method: the differences between | |||
594 | * distances to adjacent cells themselves differ by a constant. This allows a | |||
595 | * fairly fast implementation of the "brute force" approach of computing the | |||
596 | * distance from every colormap entry to every histogram cell. Unfortunately, | |||
597 | * it needs a work array to hold the best-distance-so-far for each histogram | |||
598 | * cell (because the inner loop has to be over cells, not colormap entries). | |||
599 | * The work array elements have to be INT32s, so the work array would need | |||
600 | * 256Kb at our recommended precision. This is not feasible in DOS machines. | |||
601 | * | |||
602 | * To get around these problems, we apply Thomas' method to compute the | |||
603 | * nearest colors for only the cells within a small subbox of the histogram. | |||
604 | * The work array need be only as big as the subbox, so the memory usage | |||
605 | * problem is solved. Furthermore, we need not fill subboxes that are never | |||
606 | * referenced in pass2; many images use only part of the color gamut, so a | |||
607 | * fair amount of work is saved. An additional advantage of this | |||
608 | * approach is that we can apply Heckbert's locality criterion to quickly | |||
609 | * eliminate colormap entries that are far away from the subbox; typically | |||
610 | * three-fourths of the colormap entries are rejected by Heckbert's criterion, | |||
611 | * and we need not compute their distances to individual cells in the subbox. | |||
612 | * The speed of this approach is heavily influenced by the subbox size: too | |||
613 | * small means too much overhead, too big loses because Heckbert's criterion | |||
614 | * can't eliminate as many colormap entries. Empirically the best subbox | |||
615 | * size seems to be about 1/512th of the histogram (1/8th in each direction). | |||
616 | * | |||
617 | * Thomas' article also describes a refined method which is asymptotically | |||
618 | * faster than the brute-force method, but it is also far more complex and | |||
619 | * cannot efficiently be applied to small subboxes. It is therefore not | |||
620 | * useful for programs intended to be portable to DOS machines. On machines | |||
621 | * with plenty of memory, filling the whole histogram in one shot with Thomas' | |||
622 | * refined method might be faster than the present code --- but then again, | |||
623 | * it might not be any faster, and it's certainly more complicated. | |||
624 | */ | |||
625 | ||||
626 | ||||
627 | /* log2(histogram cells in update box) for each axis; this can be adjusted */ | |||
628 | #define BOX_C0_LOG(5 -3) (HIST_C0_BITS5-3) | |||
629 | #define BOX_C1_LOG(6 -3) (HIST_C1_BITS6-3) | |||
630 | #define BOX_C2_LOG(5 -3) (HIST_C2_BITS5-3) | |||
631 | ||||
632 | #define BOX_C0_ELEMS(1<<(5 -3)) (1<<BOX_C0_LOG(5 -3)) /* # of hist cells in update box */ | |||
633 | #define BOX_C1_ELEMS(1<<(6 -3)) (1<<BOX_C1_LOG(6 -3)) | |||
634 | #define BOX_C2_ELEMS(1<<(5 -3)) (1<<BOX_C2_LOG(5 -3)) | |||
635 | ||||
636 | #define BOX_C0_SHIFT((8 -5) + (5 -3)) (C0_SHIFT(8 -5) + BOX_C0_LOG(5 -3)) | |||
637 | #define BOX_C1_SHIFT((8 -6) + (6 -3)) (C1_SHIFT(8 -6) + BOX_C1_LOG(6 -3)) | |||
638 | #define BOX_C2_SHIFT((8 -5) + (5 -3)) (C2_SHIFT(8 -5) + BOX_C2_LOG(5 -3)) | |||
639 | ||||
640 | ||||
641 | /* | |||
642 | * The next three routines implement inverse colormap filling. They could | |||
643 | * all be folded into one big routine, but splitting them up this way saves | |||
644 | * some stack space (the mindist[] and bestdist[] arrays need not coexist) | |||
645 | * and may allow some compilers to produce better code by registerizing more | |||
646 | * inner-loop variables. | |||
647 | */ | |||
648 | ||||
649 | LOCAL(int)static int | |||
650 | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |||
651 | JSAMPLE colorlist[]) | |||
652 | /* Locate the colormap entries close enough to an update box to be candidates | |||
653 | * for the nearest entry to some cell(s) in the update box. The update box | |||
654 | * is specified by the center coordinates of its first cell. The number of | |||
655 | * candidate colormap entries is returned, and their colormap indexes are | |||
656 | * placed in colorlist[]. | |||
657 | * This routine uses Heckbert's "locally sorted search" criterion to select | |||
658 | * the colors that need further consideration. | |||
659 | */ | |||
660 | { | |||
661 | int numcolors = cinfo->actual_number_of_colors; | |||
662 | int maxc0, maxc1, maxc2; | |||
663 | int centerc0, centerc1, centerc2; | |||
664 | int i, x, ncolors; | |||
665 | INT32 minmaxdist, min_dist, max_dist, tdist; | |||
666 | INT32 mindist[MAXNUMCOLORS(255 +1)]; /* min distance to colormap entry i */ | |||
667 | ||||
668 | /* Compute true coordinates of update box's upper corner and center. | |||
669 | * Actually we compute the coordinates of the center of the upper-corner | |||
670 | * histogram cell, which are the upper bounds of the volume we care about. | |||
671 | * Note that since ">>" rounds down, the "center" values may be closer to | |||
672 | * min than to max; hence comparisons to them must be "<=", not "<". | |||
673 | */ | |||
674 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT((8 -5) + (5 -3))) - (1 << C0_SHIFT(8 -5))); | |||
675 | centerc0 = (minc0 + maxc0) >> 1; | |||
676 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT((8 -6) + (6 -3))) - (1 << C1_SHIFT(8 -6))); | |||
677 | centerc1 = (minc1 + maxc1) >> 1; | |||
678 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT((8 -5) + (5 -3))) - (1 << C2_SHIFT(8 -5))); | |||
679 | centerc2 = (minc2 + maxc2) >> 1; | |||
680 | ||||
681 | /* For each color in colormap, find: | |||
682 | * 1. its minimum squared-distance to any point in the update box | |||
683 | * (zero if color is within update box); | |||
684 | * 2. its maximum squared-distance to any point in the update box. | |||
685 | * Both of these can be found by considering only the corners of the box. | |||
686 | * We save the minimum distance for each color in mindist[]; | |||
687 | * only the smallest maximum distance is of interest. | |||
688 | */ | |||
689 | minmaxdist = 0x7FFFFFFFL; | |||
690 | ||||
691 | for (i = 0; i < numcolors; i++) { | |||
692 | /* We compute the squared-c0-distance term, then add in the other two. */ | |||
693 | x = GETJSAMPLE(cinfo->colormap[0][i])((int) (cinfo->colormap[0][i])); | |||
694 | if (x < minc0) { | |||
695 | tdist = (x - minc0) * C0_SCALE2; | |||
696 | min_dist = tdist*tdist; | |||
697 | tdist = (x - maxc0) * C0_SCALE2; | |||
698 | max_dist = tdist*tdist; | |||
699 | } else if (x > maxc0) { | |||
700 | tdist = (x - maxc0) * C0_SCALE2; | |||
701 | min_dist = tdist*tdist; | |||
702 | tdist = (x - minc0) * C0_SCALE2; | |||
703 | max_dist = tdist*tdist; | |||
704 | } else { | |||
705 | /* within cell range so no contribution to min_dist */ | |||
706 | min_dist = 0; | |||
707 | if (x <= centerc0) { | |||
708 | tdist = (x - maxc0) * C0_SCALE2; | |||
709 | max_dist = tdist*tdist; | |||
710 | } else { | |||
711 | tdist = (x - minc0) * C0_SCALE2; | |||
712 | max_dist = tdist*tdist; | |||
713 | } | |||
714 | } | |||
715 | ||||
716 | x = GETJSAMPLE(cinfo->colormap[1][i])((int) (cinfo->colormap[1][i])); | |||
717 | if (x < minc1) { | |||
718 | tdist = (x - minc1) * C1_SCALE3; | |||
719 | min_dist += tdist*tdist; | |||
720 | tdist = (x - maxc1) * C1_SCALE3; | |||
721 | max_dist += tdist*tdist; | |||
722 | } else if (x > maxc1) { | |||
723 | tdist = (x - maxc1) * C1_SCALE3; | |||
724 | min_dist += tdist*tdist; | |||
725 | tdist = (x - minc1) * C1_SCALE3; | |||
726 | max_dist += tdist*tdist; | |||
727 | } else { | |||
728 | /* within cell range so no contribution to min_dist */ | |||
729 | if (x <= centerc1) { | |||
730 | tdist = (x - maxc1) * C1_SCALE3; | |||
731 | max_dist += tdist*tdist; | |||
732 | } else { | |||
733 | tdist = (x - minc1) * C1_SCALE3; | |||
734 | max_dist += tdist*tdist; | |||
735 | } | |||
736 | } | |||
737 | ||||
738 | x = GETJSAMPLE(cinfo->colormap[2][i])((int) (cinfo->colormap[2][i])); | |||
739 | if (x < minc2) { | |||
740 | tdist = (x - minc2) * C2_SCALE1; | |||
741 | min_dist += tdist*tdist; | |||
742 | tdist = (x - maxc2) * C2_SCALE1; | |||
743 | max_dist += tdist*tdist; | |||
744 | } else if (x > maxc2) { | |||
745 | tdist = (x - maxc2) * C2_SCALE1; | |||
746 | min_dist += tdist*tdist; | |||
747 | tdist = (x - minc2) * C2_SCALE1; | |||
748 | max_dist += tdist*tdist; | |||
749 | } else { | |||
750 | /* within cell range so no contribution to min_dist */ | |||
751 | if (x <= centerc2) { | |||
752 | tdist = (x - maxc2) * C2_SCALE1; | |||
753 | max_dist += tdist*tdist; | |||
754 | } else { | |||
755 | tdist = (x - minc2) * C2_SCALE1; | |||
756 | max_dist += tdist*tdist; | |||
757 | } | |||
758 | } | |||
759 | ||||
760 | mindist[i] = min_dist; /* save away the results */ | |||
761 | if (max_dist < minmaxdist) | |||
762 | minmaxdist = max_dist; | |||
763 | } | |||
764 | ||||
765 | /* Now we know that no cell in the update box is more than minmaxdist | |||
766 | * away from some colormap entry. Therefore, only colors that are | |||
767 | * within minmaxdist of some part of the box need be considered. | |||
768 | */ | |||
769 | ncolors = 0; | |||
770 | for (i = 0; i < numcolors; i++) { | |||
771 | if (mindist[i] <= minmaxdist) | |||
772 | colorlist[ncolors++] = (JSAMPLE) i; | |||
773 | } | |||
774 | return ncolors; | |||
775 | } | |||
776 | ||||
777 | ||||
778 | LOCAL(void)static void | |||
779 | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |||
780 | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) | |||
781 | /* Find the closest colormap entry for each cell in the update box, | |||
782 | * given the list of candidate colors prepared by find_nearby_colors. | |||
783 | * Return the indexes of the closest entries in the bestcolor[] array. | |||
784 | * This routine uses Thomas' incremental distance calculation method to | |||
785 | * find the distance from a colormap entry to successive cells in the box. | |||
786 | */ | |||
787 | { | |||
788 | int ic0, ic1, ic2; | |||
789 | int i, icolor; | |||
790 | register INT32 * bptr; /* pointer into bestdist[] array */ | |||
791 | JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |||
792 | INT32 dist0, dist1; /* initial distance values */ | |||
793 | register INT32 dist2; /* current distance in inner loop */ | |||
794 | INT32 xx0, xx1; /* distance increments */ | |||
795 | register INT32 xx2; | |||
796 | INT32 inc0, inc1, inc2; /* initial values for increments */ | |||
797 | /* This array holds the distance to the nearest-so-far color for each cell */ | |||
798 | INT32 bestdist[BOX_C0_ELEMS(1<<(5 -3)) * BOX_C1_ELEMS(1<<(6 -3)) * BOX_C2_ELEMS(1<<(5 -3))]; | |||
799 | ||||
800 | /* Initialize best-distance for each cell of the update box */ | |||
801 | bptr = bestdist; | |||
802 | for (i = BOX_C0_ELEMS(1<<(5 -3))*BOX_C1_ELEMS(1<<(6 -3))*BOX_C2_ELEMS(1<<(5 -3))-1; i >= 0; i--) | |||
803 | *bptr++ = 0x7FFFFFFFL; | |||
804 | ||||
805 | /* For each color selected by find_nearby_colors, | |||
806 | * compute its distance to the center of each cell in the box. | |||
807 | * If that's less than best-so-far, update best distance and color number. | |||
808 | */ | |||
809 | ||||
810 | /* Nominal steps between cell centers ("x" in Thomas article) */ | |||
811 | #define STEP_C0((1 << (8 -5)) * 2) ((1 << C0_SHIFT(8 -5)) * C0_SCALE2) | |||
812 | #define STEP_C1((1 << (8 -6)) * 3) ((1 << C1_SHIFT(8 -6)) * C1_SCALE3) | |||
813 | #define STEP_C2((1 << (8 -5)) * 1) ((1 << C2_SHIFT(8 -5)) * C2_SCALE1) | |||
814 | ||||
815 | for (i = 0; i < numcolors; i++) { | |||
816 | icolor = GETJSAMPLE(colorlist[i])((int) (colorlist[i])); | |||
817 | /* Compute (square of) distance from minc0/c1/c2 to this color */ | |||
818 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])((int) (cinfo->colormap[0][icolor]))) * C0_SCALE2; | |||
819 | dist0 = inc0*inc0; | |||
820 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])((int) (cinfo->colormap[1][icolor]))) * C1_SCALE3; | |||
821 | dist0 += inc1*inc1; | |||
822 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])((int) (cinfo->colormap[2][icolor]))) * C2_SCALE1; | |||
823 | dist0 += inc2*inc2; | |||
824 | /* Form the initial difference increments */ | |||
825 | inc0 = inc0 * (2 * STEP_C0((1 << (8 -5)) * 2)) + STEP_C0((1 << (8 -5)) * 2) * STEP_C0((1 << (8 -5)) * 2); | |||
826 | inc1 = inc1 * (2 * STEP_C1((1 << (8 -6)) * 3)) + STEP_C1((1 << (8 -6)) * 3) * STEP_C1((1 << (8 -6)) * 3); | |||
827 | inc2 = inc2 * (2 * STEP_C2((1 << (8 -5)) * 1)) + STEP_C2((1 << (8 -5)) * 1) * STEP_C2((1 << (8 -5)) * 1); | |||
828 | /* Now loop over all cells in box, updating distance per Thomas method */ | |||
829 | bptr = bestdist; | |||
830 | cptr = bestcolor; | |||
831 | xx0 = inc0; | |||
832 | for (ic0 = BOX_C0_ELEMS(1<<(5 -3))-1; ic0 >= 0; ic0--) { | |||
833 | dist1 = dist0; | |||
834 | xx1 = inc1; | |||
835 | for (ic1 = BOX_C1_ELEMS(1<<(6 -3))-1; ic1 >= 0; ic1--) { | |||
836 | dist2 = dist1; | |||
837 | xx2 = inc2; | |||
838 | for (ic2 = BOX_C2_ELEMS(1<<(5 -3))-1; ic2 >= 0; ic2--) { | |||
839 | if (dist2 < *bptr) { | |||
840 | *bptr = dist2; | |||
841 | *cptr = (JSAMPLE) icolor; | |||
842 | } | |||
843 | dist2 += xx2; | |||
844 | xx2 += 2 * STEP_C2((1 << (8 -5)) * 1) * STEP_C2((1 << (8 -5)) * 1); | |||
845 | bptr++; | |||
846 | cptr++; | |||
847 | } | |||
848 | dist1 += xx1; | |||
849 | xx1 += 2 * STEP_C1((1 << (8 -6)) * 3) * STEP_C1((1 << (8 -6)) * 3); | |||
850 | } | |||
851 | dist0 += xx0; | |||
852 | xx0 += 2 * STEP_C0((1 << (8 -5)) * 2) * STEP_C0((1 << (8 -5)) * 2); | |||
853 | } | |||
854 | } | |||
855 | } | |||
856 | ||||
857 | ||||
858 | LOCAL(void)static void | |||
859 | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) | |||
860 | /* Fill the inverse-colormap entries in the update box that contains */ | |||
861 | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ | |||
862 | /* we can fill as many others as we wish.) */ | |||
863 | { | |||
864 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
865 | hist3d histogram = cquantize->histogram; | |||
866 | int minc0, minc1, minc2; /* lower left corner of update box */ | |||
867 | int ic0, ic1, ic2; | |||
868 | register JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |||
869 | register histptr cachep; /* pointer into main cache array */ | |||
870 | /* This array lists the candidate colormap indexes. */ | |||
871 | JSAMPLE colorlist[MAXNUMCOLORS(255 +1)]; | |||
872 | int numcolors; /* number of candidate colors */ | |||
873 | /* This array holds the actually closest colormap index for each cell. */ | |||
874 | JSAMPLE bestcolor[BOX_C0_ELEMS(1<<(5 -3)) * BOX_C1_ELEMS(1<<(6 -3)) * BOX_C2_ELEMS(1<<(5 -3))]; | |||
875 | ||||
876 | /* Convert cell coordinates to update box ID */ | |||
877 | c0 >>= BOX_C0_LOG(5 -3); | |||
878 | c1 >>= BOX_C1_LOG(6 -3); | |||
879 | c2 >>= BOX_C2_LOG(5 -3); | |||
880 | ||||
881 | /* Compute true coordinates of update box's origin corner. | |||
882 | * Actually we compute the coordinates of the center of the corner | |||
883 | * histogram cell, which are the lower bounds of the volume we care about. | |||
884 | */ | |||
885 | minc0 = (c0 << BOX_C0_SHIFT((8 -5) + (5 -3))) + ((1 << C0_SHIFT(8 -5)) >> 1); | |||
886 | minc1 = (c1 << BOX_C1_SHIFT((8 -6) + (6 -3))) + ((1 << C1_SHIFT(8 -6)) >> 1); | |||
887 | minc2 = (c2 << BOX_C2_SHIFT((8 -5) + (5 -3))) + ((1 << C2_SHIFT(8 -5)) >> 1); | |||
888 | ||||
889 | /* Determine which colormap entries are close enough to be candidates | |||
890 | * for the nearest entry to some cell in the update box. | |||
891 | */ | |||
892 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); | |||
893 | ||||
894 | /* Determine the actually nearest colors. */ | |||
895 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, | |||
896 | bestcolor); | |||
897 | ||||
898 | /* Save the best color numbers (plus 1) in the main cache array */ | |||
899 | c0 <<= BOX_C0_LOG(5 -3); /* convert ID back to base cell indexes */ | |||
900 | c1 <<= BOX_C1_LOG(6 -3); | |||
901 | c2 <<= BOX_C2_LOG(5 -3); | |||
902 | cptr = bestcolor; | |||
903 | for (ic0 = 0; ic0 < BOX_C0_ELEMS(1<<(5 -3)); ic0++) { | |||
904 | for (ic1 = 0; ic1 < BOX_C1_ELEMS(1<<(6 -3)); ic1++) { | |||
905 | cachep = & histogram[c0+ic0][c1+ic1][c2]; | |||
906 | for (ic2 = 0; ic2 < BOX_C2_ELEMS(1<<(5 -3)); ic2++) { | |||
907 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++)((int) (*cptr++)) + 1); | |||
908 | } | |||
909 | } | |||
910 | } | |||
911 | } | |||
912 | ||||
913 | ||||
914 | /* | |||
915 | * Map some rows of pixels to the output colormapped representation. | |||
916 | */ | |||
917 | ||||
918 | METHODDEF(void)static void | |||
919 | pass2_no_dither (j_decompress_ptr cinfo, | |||
920 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |||
921 | /* This version performs no dithering */ | |||
922 | { | |||
923 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
924 | hist3d histogram = cquantize->histogram; | |||
925 | register JSAMPROW inptr, outptr; | |||
926 | register histptr cachep; | |||
927 | register int c0, c1, c2; | |||
928 | int row; | |||
929 | JDIMENSION col; | |||
930 | JDIMENSION width = cinfo->output_width; | |||
931 | ||||
932 | for (row = 0; row < num_rows; row++) { | |||
933 | inptr = input_buf[row]; | |||
934 | outptr = output_buf[row]; | |||
935 | for (col = width; col > 0; col--) { | |||
936 | /* get pixel value and index into the cache */ | |||
937 | c0 = GETJSAMPLE(*inptr++)((int) (*inptr++)) >> C0_SHIFT(8 -5); | |||
938 | c1 = GETJSAMPLE(*inptr++)((int) (*inptr++)) >> C1_SHIFT(8 -6); | |||
939 | c2 = GETJSAMPLE(*inptr++)((int) (*inptr++)) >> C2_SHIFT(8 -5); | |||
940 | cachep = & histogram[c0][c1][c2]; | |||
941 | /* If we have not seen this color before, find nearest colormap entry */ | |||
942 | /* and update the cache */ | |||
943 | if (*cachep == 0) | |||
944 | fill_inverse_cmap(cinfo, c0,c1,c2); | |||
945 | /* Now emit the colormap index for this cell */ | |||
946 | *outptr++ = (JSAMPLE) (*cachep - 1); | |||
947 | } | |||
948 | } | |||
949 | } | |||
950 | ||||
951 | ||||
952 | METHODDEF(void)static void | |||
953 | pass2_fs_dither (j_decompress_ptr cinfo, | |||
954 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |||
955 | /* This version performs Floyd-Steinberg dithering */ | |||
956 | { | |||
957 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
958 | hist3d histogram = cquantize->histogram; | |||
959 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ | |||
960 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ | |||
961 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ | |||
962 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |||
963 | JSAMPROW inptr; /* => current input pixel */ | |||
964 | JSAMPROW outptr; /* => current output pixel */ | |||
965 | histptr cachep; | |||
966 | int dir; /* +1 or -1 depending on direction */ | |||
967 | int dir3; /* 3*dir, for advancing inptr & errorptr */ | |||
968 | int row; | |||
969 | JDIMENSION col; | |||
970 | JDIMENSION width = cinfo->output_width; | |||
971 | JSAMPLE *range_limit = cinfo->sample_range_limit; | |||
972 | int *error_limit = cquantize->error_limiter; | |||
973 | JSAMPROW colormap0 = cinfo->colormap[0]; | |||
974 | JSAMPROW colormap1 = cinfo->colormap[1]; | |||
975 | JSAMPROW colormap2 = cinfo->colormap[2]; | |||
976 | SHIFT_TEMPS | |||
977 | ||||
978 | for (row = 0; row < num_rows; row++) { | |||
979 | inptr = input_buf[row]; | |||
980 | outptr = output_buf[row]; | |||
981 | if (cquantize->on_odd_row) { | |||
982 | /* work right to left in this row */ | |||
983 | inptr += (width-1) * 3; /* so point to rightmost pixel */ | |||
984 | outptr += width-1; | |||
985 | dir = -1; | |||
986 | dir3 = -3; | |||
987 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ | |||
988 | cquantize->on_odd_row = FALSE0; /* flip for next time */ | |||
989 | } else { | |||
990 | /* work left to right in this row */ | |||
991 | dir = 1; | |||
992 | dir3 = 3; | |||
993 | errorptr = cquantize->fserrors; /* => entry before first real column */ | |||
994 | cquantize->on_odd_row = TRUE1; /* flip for next time */ | |||
995 | } | |||
996 | /* Preset error values: no error propagated to first pixel from left */ | |||
997 | cur0 = cur1 = cur2 = 0; | |||
998 | /* and no error propagated to row below yet */ | |||
999 | belowerr0 = belowerr1 = belowerr2 = 0; | |||
1000 | bpreverr0 = bpreverr1 = bpreverr2 = 0; | |||
1001 | ||||
1002 | for (col = width; col > 0; col--) { | |||
1003 | /* curN holds the error propagated from the previous pixel on the | |||
1004 | * current line. Add the error propagated from the previous line | |||
1005 | * to form the complete error correction term for this pixel, and | |||
1006 | * round the error term (which is expressed * 16) to an integer. | |||
1007 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |||
1008 | * for either sign of the error value. | |||
1009 | * Note: errorptr points to *previous* column's array entry. | |||
1010 | */ | |||
1011 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4)((cur0 + errorptr[dir3+0] + 8) >> (4)); | |||
1012 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4)((cur1 + errorptr[dir3+1] + 8) >> (4)); | |||
1013 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4)((cur2 + errorptr[dir3+2] + 8) >> (4)); | |||
1014 | /* Limit the error using transfer function set by init_error_limit. | |||
1015 | * See comments with init_error_limit for rationale. | |||
1016 | */ | |||
1017 | cur0 = error_limit[cur0]; | |||
1018 | cur1 = error_limit[cur1]; | |||
1019 | cur2 = error_limit[cur2]; | |||
1020 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |||
1021 | * The maximum error is +- MAXJSAMPLE (or less with error limiting); | |||
1022 | * this sets the required size of the range_limit array. | |||
1023 | */ | |||
1024 | cur0 += GETJSAMPLE(inptr[0])((int) (inptr[0])); | |||
1025 | cur1 += GETJSAMPLE(inptr[1])((int) (inptr[1])); | |||
1026 | cur2 += GETJSAMPLE(inptr[2])((int) (inptr[2])); | |||
1027 | cur0 = GETJSAMPLE(range_limit[cur0])((int) (range_limit[cur0])); | |||
1028 | cur1 = GETJSAMPLE(range_limit[cur1])((int) (range_limit[cur1])); | |||
1029 | cur2 = GETJSAMPLE(range_limit[cur2])((int) (range_limit[cur2])); | |||
1030 | /* Index into the cache with adjusted pixel value */ | |||
1031 | cachep = & histogram[cur0>>C0_SHIFT(8 -5)][cur1>>C1_SHIFT(8 -6)][cur2>>C2_SHIFT(8 -5)]; | |||
1032 | /* If we have not seen this color before, find nearest colormap */ | |||
1033 | /* entry and update the cache */ | |||
1034 | if (*cachep == 0) | |||
1035 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT(8 -5),cur1>>C1_SHIFT(8 -6),cur2>>C2_SHIFT(8 -5)); | |||
1036 | /* Now emit the colormap index for this cell */ | |||
1037 | { register int pixcode = *cachep - 1; | |||
1038 | *outptr = (JSAMPLE) pixcode; | |||
1039 | /* Compute representation error for this pixel */ | |||
1040 | cur0 -= GETJSAMPLE(colormap0[pixcode])((int) (colormap0[pixcode])); | |||
1041 | cur1 -= GETJSAMPLE(colormap1[pixcode])((int) (colormap1[pixcode])); | |||
1042 | cur2 -= GETJSAMPLE(colormap2[pixcode])((int) (colormap2[pixcode])); | |||
1043 | } | |||
1044 | /* Compute error fractions to be propagated to adjacent pixels. | |||
1045 | * Add these into the running sums, and simultaneously shift the | |||
1046 | * next-line error sums left by 1 column. | |||
1047 | */ | |||
1048 | { register LOCFSERROR bnexterr, delta; | |||
1049 | ||||
1050 | bnexterr = cur0; /* Process component 0 */ | |||
1051 | delta = cur0 * 2; | |||
1052 | cur0 += delta; /* form error * 3 */ | |||
1053 | errorptr[0] = (FSERROR) (bpreverr0 + cur0); | |||
1054 | cur0 += delta; /* form error * 5 */ | |||
1055 | bpreverr0 = belowerr0 + cur0; | |||
1056 | belowerr0 = bnexterr; | |||
1057 | cur0 += delta; /* form error * 7 */ | |||
1058 | bnexterr = cur1; /* Process component 1 */ | |||
1059 | delta = cur1 * 2; | |||
1060 | cur1 += delta; /* form error * 3 */ | |||
1061 | errorptr[1] = (FSERROR) (bpreverr1 + cur1); | |||
1062 | cur1 += delta; /* form error * 5 */ | |||
1063 | bpreverr1 = belowerr1 + cur1; | |||
1064 | belowerr1 = bnexterr; | |||
1065 | cur1 += delta; /* form error * 7 */ | |||
1066 | bnexterr = cur2; /* Process component 2 */ | |||
1067 | delta = cur2 * 2; | |||
1068 | cur2 += delta; /* form error * 3 */ | |||
1069 | errorptr[2] = (FSERROR) (bpreverr2 + cur2); | |||
1070 | cur2 += delta; /* form error * 5 */ | |||
1071 | bpreverr2 = belowerr2 + cur2; | |||
1072 | belowerr2 = bnexterr; | |||
1073 | cur2 += delta; /* form error * 7 */ | |||
1074 | } | |||
1075 | /* At this point curN contains the 7/16 error value to be propagated | |||
1076 | * to the next pixel on the current line, and all the errors for the | |||
1077 | * next line have been shifted over. We are therefore ready to move on. | |||
1078 | */ | |||
1079 | inptr += dir3; /* Advance pixel pointers to next column */ | |||
1080 | outptr += dir; | |||
1081 | errorptr += dir3; /* advance errorptr to current column */ | |||
1082 | } | |||
1083 | /* Post-loop cleanup: we must unload the final error values into the | |||
1084 | * final fserrors[] entry. Note we need not unload belowerrN because | |||
1085 | * it is for the dummy column before or after the actual array. | |||
1086 | */ | |||
1087 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ | |||
1088 | errorptr[1] = (FSERROR) bpreverr1; | |||
1089 | errorptr[2] = (FSERROR) bpreverr2; | |||
1090 | } | |||
1091 | } | |||
1092 | ||||
1093 | ||||
1094 | /* | |||
1095 | * Initialize the error-limiting transfer function (lookup table). | |||
1096 | * The raw F-S error computation can potentially compute error values of up to | |||
1097 | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be | |||
1098 | * much less, otherwise obviously wrong pixels will be created. (Typical | |||
1099 | * effects include weird fringes at color-area boundaries, isolated bright | |||
1100 | * pixels in a dark area, etc.) The standard advice for avoiding this problem | |||
1101 | * is to ensure that the "corners" of the color cube are allocated as output | |||
1102 | * colors; then repeated errors in the same direction cannot cause cascading | |||
1103 | * error buildup. However, that only prevents the error from getting | |||
1104 | * completely out of hand; Aaron Giles reports that error limiting improves | |||
1105 | * the results even with corner colors allocated. | |||
1106 | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty | |||
1107 | * well, but the smoother transfer function used below is even better. Thanks | |||
1108 | * to Aaron Giles for this idea. | |||
1109 | */ | |||
1110 | ||||
1111 | LOCAL(void)static void | |||
1112 | init_error_limit (j_decompress_ptr cinfo) | |||
1113 | /* Allocate and fill in the error_limiter table */ | |||
1114 | { | |||
1115 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
1116 | int * table; | |||
1117 | int in, out; | |||
1118 | ||||
1119 | table = (int *) (*cinfo->mem->alloc_small) | |||
1120 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, (MAXJSAMPLE255*2+1) * SIZEOF(int)((size_t) sizeof(int))); | |||
1121 | table += MAXJSAMPLE255; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ | |||
1122 | cquantize->error_limiter = table; | |||
1123 | ||||
1124 | #define STEPSIZE ((MAXJSAMPLE255+1)/16) | |||
1125 | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ | |||
1126 | out = 0; | |||
1127 | for (in = 0; in < STEPSIZE; in++, out++) { | |||
1128 | table[in] = out; table[-in] = -out; | |||
1129 | } | |||
1130 | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ | |||
1131 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | |||
1132 | table[in] = out; table[-in] = -out; | |||
1133 | } | |||
1134 | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ | |||
1135 | for (; in <= MAXJSAMPLE255; in++) { | |||
1136 | table[in] = out; table[-in] = -out; | |||
1137 | } | |||
1138 | #undef STEPSIZE | |||
1139 | } | |||
1140 | ||||
1141 | ||||
1142 | /* | |||
1143 | * Finish up at the end of each pass. | |||
1144 | */ | |||
1145 | ||||
1146 | METHODDEF(void)static void | |||
1147 | finish_pass1 (j_decompress_ptr cinfo) | |||
1148 | { | |||
1149 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
1150 | ||||
1151 | /* Select the representative colors and fill in cinfo->colormap */ | |||
1152 | cinfo->colormap = cquantize->sv_colormap; | |||
1153 | select_colors(cinfo, cquantize->desired); | |||
| ||||
1154 | /* Force next pass to zero the color index table */ | |||
1155 | cquantize->needs_zeroed = TRUE1; | |||
1156 | } | |||
1157 | ||||
1158 | ||||
1159 | METHODDEF(void)static void | |||
1160 | finish_pass2 (j_decompress_ptr cinfo) | |||
1161 | { | |||
1162 | /* no work */ | |||
1163 | } | |||
1164 | ||||
1165 | ||||
1166 | /* | |||
1167 | * Initialize for each processing pass. | |||
1168 | */ | |||
1169 | ||||
1170 | METHODDEF(void)static void | |||
1171 | start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |||
1172 | { | |||
1173 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
1174 | hist3d histogram = cquantize->histogram; | |||
1175 | int i; | |||
1176 | ||||
1177 | /* Only F-S dithering or no dithering is supported. */ | |||
1178 | /* If user asks for ordered dither, give him F-S. */ | |||
1179 | if (cinfo->dither_mode != JDITHER_NONE) | |||
1180 | cinfo->dither_mode = JDITHER_FS; | |||
1181 | ||||
1182 | if (is_pre_scan) { | |||
1183 | /* Set up method pointers */ | |||
1184 | cquantize->pub.color_quantize = prescan_quantize; | |||
1185 | cquantize->pub.finish_pass = finish_pass1; | |||
1186 | cquantize->needs_zeroed = TRUE1; /* Always zero histogram */ | |||
1187 | } else { | |||
1188 | /* Set up method pointers */ | |||
1189 | if (cinfo->dither_mode == JDITHER_FS) | |||
1190 | cquantize->pub.color_quantize = pass2_fs_dither; | |||
1191 | else | |||
1192 | cquantize->pub.color_quantize = pass2_no_dither; | |||
1193 | cquantize->pub.finish_pass = finish_pass2; | |||
1194 | ||||
1195 | /* Make sure color count is acceptable */ | |||
1196 | i = cinfo->actual_number_of_colors; | |||
1197 | if (i < 1) | |||
1198 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1)((cinfo)->err->msg_code = (JERR_QUANT_FEW_COLORS), (cinfo )->err->msg_parm.i[0] = (1), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); | |||
1199 | if (i > MAXNUMCOLORS(255 +1)) | |||
1200 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS)((cinfo)->err->msg_code = (JERR_QUANT_MANY_COLORS), (cinfo )->err->msg_parm.i[0] = ((255 +1)), (*(cinfo)->err-> error_exit) ((j_common_ptr) (cinfo))); | |||
1201 | ||||
1202 | if (cinfo->dither_mode == JDITHER_FS) { | |||
1203 | size_t arraysize = (size_t) ((cinfo->output_width + 2) * | |||
1204 | (3 * SIZEOF(FSERROR)((size_t) sizeof(FSERROR)))); | |||
1205 | /* Allocate Floyd-Steinberg workspace if we didn't already. */ | |||
1206 | if (cquantize->fserrors == NULL((void*)0)) | |||
1207 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |||
1208 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, arraysize); | |||
1209 | /* Initialize the propagated errors to zero. */ | |||
1210 | jzero_farjZeroFar((void FAR *) cquantize->fserrors, arraysize); | |||
1211 | /* Make the error-limit table if we didn't already. */ | |||
1212 | if (cquantize->error_limiter == NULL((void*)0)) | |||
1213 | init_error_limit(cinfo); | |||
1214 | cquantize->on_odd_row = FALSE0; | |||
1215 | } | |||
1216 | ||||
1217 | } | |||
1218 | /* Zero the histogram or inverse color map, if necessary */ | |||
1219 | if (cquantize->needs_zeroed) { | |||
1220 | for (i = 0; i < HIST_C0_ELEMS(1<<5); i++) { | |||
1221 | jzero_farjZeroFar((void FAR *) histogram[i], | |||
1222 | HIST_C1_ELEMS(1<<6)*HIST_C2_ELEMS(1<<5) * SIZEOF(histcell)((size_t) sizeof(histcell))); | |||
1223 | } | |||
1224 | cquantize->needs_zeroed = FALSE0; | |||
1225 | } | |||
1226 | } | |||
1227 | ||||
1228 | ||||
1229 | /* | |||
1230 | * Switch to a new external colormap between output passes. | |||
1231 | */ | |||
1232 | ||||
1233 | METHODDEF(void)static void | |||
1234 | new_color_map_2_quant (j_decompress_ptr cinfo) | |||
1235 | { | |||
1236 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
1237 | ||||
1238 | /* Reset the inverse color map */ | |||
1239 | cquantize->needs_zeroed = TRUE1; | |||
1240 | } | |||
1241 | ||||
1242 | ||||
1243 | /* | |||
1244 | * Module initialization routine for 2-pass color quantization. | |||
1245 | */ | |||
1246 | ||||
1247 | GLOBAL(void)void | |||
1248 | jinit_2pass_quantizerjI2Quant (j_decompress_ptr cinfo) | |||
1249 | { | |||
1250 | my_cquantize_ptr cquantize; | |||
1251 | int i; | |||
1252 | ||||
1253 | cquantize = (my_cquantize_ptr) | |||
1254 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
1255 | SIZEOF(my_cquantizer)((size_t) sizeof(my_cquantizer))); | |||
1256 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | |||
1257 | cquantize->pub.start_pass = start_pass_2_quant; | |||
1258 | cquantize->pub.new_color_map = new_color_map_2_quant; | |||
1259 | cquantize->fserrors = NULL((void*)0); /* flag optional arrays not allocated */ | |||
1260 | cquantize->error_limiter = NULL((void*)0); | |||
1261 | ||||
1262 | /* Make sure jdmaster didn't give me a case I can't handle */ | |||
1263 | if (cinfo->out_color_components != 3) | |||
1264 | ERREXIT(cinfo, JERR_NOTIMPL)((cinfo)->err->msg_code = (JERR_NOTIMPL), (*(cinfo)-> err->error_exit) ((j_common_ptr) (cinfo))); | |||
1265 | ||||
1266 | /* Allocate the histogram/inverse colormap storage */ | |||
1267 | cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) | |||
1268 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, HIST_C0_ELEMS(1<<5) * SIZEOF(hist2d)((size_t) sizeof(hist2d))); | |||
1269 | for (i = 0; i < HIST_C0_ELEMS(1<<5); i++) { | |||
1270 | cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) | |||
1271 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
1272 | HIST_C1_ELEMS(1<<6)*HIST_C2_ELEMS(1<<5) * SIZEOF(histcell)((size_t) sizeof(histcell))); | |||
1273 | } | |||
1274 | cquantize->needs_zeroed = TRUE1; /* histogram is garbage now */ | |||
1275 | ||||
1276 | /* Allocate storage for the completed colormap, if required. | |||
1277 | * We do this now since it is FAR storage and may affect | |||
1278 | * the memory manager's space calculations. | |||
1279 | */ | |||
1280 | if (cinfo->enable_2pass_quant) { | |||
1281 | /* Make sure color count is acceptable */ | |||
1282 | int desired = cinfo->desired_number_of_colors; | |||
1283 | /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ | |||
1284 | if (desired < 8) | |||
1285 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8)((cinfo)->err->msg_code = (JERR_QUANT_FEW_COLORS), (cinfo )->err->msg_parm.i[0] = (8), (*(cinfo)->err->error_exit ) ((j_common_ptr) (cinfo))); | |||
1286 | /* Make sure colormap indexes can be represented by JSAMPLEs */ | |||
1287 | if (desired > MAXNUMCOLORS(255 +1)) | |||
1288 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS)((cinfo)->err->msg_code = (JERR_QUANT_MANY_COLORS), (cinfo )->err->msg_parm.i[0] = ((255 +1)), (*(cinfo)->err-> error_exit) ((j_common_ptr) (cinfo))); | |||
1289 | cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) | |||
1290 | ((j_common_ptr) cinfo,JPOOL_IMAGE1, (JDIMENSION) desired, (JDIMENSION) 3); | |||
1291 | cquantize->desired = desired; | |||
1292 | } else | |||
1293 | cquantize->sv_colormap = NULL((void*)0); | |||
1294 | ||||
1295 | /* Only F-S dithering or no dithering is supported. */ | |||
1296 | /* If user asks for ordered dither, give him F-S. */ | |||
1297 | if (cinfo->dither_mode != JDITHER_NONE) | |||
1298 | cinfo->dither_mode = JDITHER_FS; | |||
1299 | ||||
1300 | /* Allocate Floyd-Steinberg workspace if necessary. | |||
1301 | * This isn't really needed until pass 2, but again it is FAR storage. | |||
1302 | * Although we will cope with a later change in dither_mode, | |||
1303 | * we do not promise to honor max_memory_to_use if dither_mode changes. | |||
1304 | */ | |||
1305 | if (cinfo->dither_mode == JDITHER_FS) { | |||
1306 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |||
1307 | ((j_common_ptr) cinfo, JPOOL_IMAGE1, | |||
1308 | (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)((size_t) sizeof(FSERROR))))); | |||
1309 | /* Might as well create the error-limiting table too. */ | |||
1310 | init_error_limit(cinfo); | |||
1311 | } | |||
1312 | } | |||
1313 | ||||
1314 | #endif /* QUANT_2PASS_SUPPORTED */ |