Bug Summary

File:jdk/src/hotspot/share/opto/matcher.hpp
Warning:line 154, column 22
Access to field '_idx' results in a dereference of a null pointer (loaded from variable 'n')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name matcher.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -mthread-model posix -fno-delete-null-pointer-checks -mframe-pointer=all -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/libjvm/objs/precompiled -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D _GNU_SOURCE -D _REENTRANT -D LIBC=gnu -D LINUX -D VM_LITTLE_ENDIAN -D _LP64=1 -D ASSERT -D CHECK_UNHANDLED_OOPS -D TARGET_ARCH_x86 -D INCLUDE_SUFFIX_OS=_linux -D INCLUDE_SUFFIX_CPU=_x86 -D INCLUDE_SUFFIX_COMPILER=_gcc -D TARGET_COMPILER_gcc -D AMD64 -D HOTSPOT_LIB_ARCH="amd64" -D COMPILER1 -D COMPILER2 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -I /home/daniel/Projects/java/jdk/src/hotspot/share/precompiled -I /home/daniel/Projects/java/jdk/src/hotspot/share/include -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix/include -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/support/modules_include/java.base/linux -I /home/daniel/Projects/java/jdk/src/java.base/share/native/libjimage -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc/adfiles -I /home/daniel/Projects/java/jdk/src/hotspot/share -I /home/daniel/Projects/java/jdk/src/hotspot/os/linux -I /home/daniel/Projects/java/jdk/src/hotspot/os/posix -I /home/daniel/Projects/java/jdk/src/hotspot/cpu/x86 -I /home/daniel/Projects/java/jdk/src/hotspot/os_cpu/linux_x86 -I /home/daniel/Projects/java/jdk/build/linux-x86_64-server-fastdebug/hotspot/variant-server/gensrc -D _FORTIFY_SOURCE=2 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/x86_64-linux-gnu/c++/7.5.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.5.0/../../../../include/c++/7.5.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-format-zero-length -Wno-unused-parameter -Wno-unused -Wno-parentheses -Wno-comment -Wno-unknown-pragmas -Wno-address -Wno-delete-non-virtual-dtor -Wno-char-subscripts -Wno-array-bounds -Wno-int-in-bool-context -Wno-ignored-qualifiers -Wno-missing-field-initializers -Wno-implicit-fallthrough -Wno-empty-body -Wno-strict-overflow -Wno-sequence-point -Wno-maybe-uninitialized -Wno-misleading-indentation -Wno-cast-function-type -Wno-shift-negative-value -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /home/daniel/Projects/java/jdk/make/hotspot -ferror-limit 19 -fmessage-length 0 -fvisibility hidden -stack-protector 1 -fno-rtti -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /home/daniel/Projects/java/scan/2021-12-21-193737-8510-1 -x c++ /home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp

/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp

1/*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/shared/barrierSet.hpp"
27#include "gc/shared/c2/barrierSetC2.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "oops/compressedOops.hpp"
31#include "opto/ad.hpp"
32#include "opto/addnode.hpp"
33#include "opto/callnode.hpp"
34#include "opto/idealGraphPrinter.hpp"
35#include "opto/matcher.hpp"
36#include "opto/memnode.hpp"
37#include "opto/movenode.hpp"
38#include "opto/opcodes.hpp"
39#include "opto/regmask.hpp"
40#include "opto/rootnode.hpp"
41#include "opto/runtime.hpp"
42#include "opto/type.hpp"
43#include "opto/vectornode.hpp"
44#include "runtime/os.hpp"
45#include "runtime/sharedRuntime.hpp"
46#include "utilities/align.hpp"
47
48OptoReg::Name OptoReg::c_frame_pointer;
49
50const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
51RegMask Matcher::mreg2regmask[_last_Mach_Reg];
52RegMask Matcher::caller_save_regmask;
53RegMask Matcher::caller_save_regmask_exclude_soe;
54RegMask Matcher::mh_caller_save_regmask;
55RegMask Matcher::mh_caller_save_regmask_exclude_soe;
56RegMask Matcher::STACK_ONLY_mask;
57RegMask Matcher::c_frame_ptr_mask;
58const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
59const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
60
61//---------------------------Matcher-------------------------------------------
62Matcher::Matcher()
63: PhaseTransform( Phase::Ins_Select ),
64 _states_arena(Chunk::medium_size, mtCompiler),
65 _visited(&_states_arena),
66 _shared(&_states_arena),
67 _dontcare(&_states_arena),
68 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
69 _swallowed(swallowed),
70 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
71 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
72 _must_clone(must_clone),
73 _shared_nodes(C->comp_arena()),
74#ifndef PRODUCT
75 _old2new_map(C->comp_arena()),
76 _new2old_map(C->comp_arena()),
77 _reused(C->comp_arena()),
78#endif // !PRODUCT
79 _allocation_started(false),
80 _ruleName(ruleName),
81 _register_save_policy(register_save_policy),
82 _c_reg_save_policy(c_reg_save_policy),
83 _register_save_type(register_save_type) {
84 C->set_matcher(this);
85
86 idealreg2spillmask [Op_RegI] = NULL__null;
87 idealreg2spillmask [Op_RegN] = NULL__null;
88 idealreg2spillmask [Op_RegL] = NULL__null;
89 idealreg2spillmask [Op_RegF] = NULL__null;
90 idealreg2spillmask [Op_RegD] = NULL__null;
91 idealreg2spillmask [Op_RegP] = NULL__null;
92 idealreg2spillmask [Op_VecA] = NULL__null;
93 idealreg2spillmask [Op_VecS] = NULL__null;
94 idealreg2spillmask [Op_VecD] = NULL__null;
95 idealreg2spillmask [Op_VecX] = NULL__null;
96 idealreg2spillmask [Op_VecY] = NULL__null;
97 idealreg2spillmask [Op_VecZ] = NULL__null;
98 idealreg2spillmask [Op_RegFlags] = NULL__null;
99 idealreg2spillmask [Op_RegVectMask] = NULL__null;
100
101 idealreg2debugmask [Op_RegI] = NULL__null;
102 idealreg2debugmask [Op_RegN] = NULL__null;
103 idealreg2debugmask [Op_RegL] = NULL__null;
104 idealreg2debugmask [Op_RegF] = NULL__null;
105 idealreg2debugmask [Op_RegD] = NULL__null;
106 idealreg2debugmask [Op_RegP] = NULL__null;
107 idealreg2debugmask [Op_VecA] = NULL__null;
108 idealreg2debugmask [Op_VecS] = NULL__null;
109 idealreg2debugmask [Op_VecD] = NULL__null;
110 idealreg2debugmask [Op_VecX] = NULL__null;
111 idealreg2debugmask [Op_VecY] = NULL__null;
112 idealreg2debugmask [Op_VecZ] = NULL__null;
113 idealreg2debugmask [Op_RegFlags] = NULL__null;
114 idealreg2debugmask [Op_RegVectMask] = NULL__null;
115
116 idealreg2mhdebugmask[Op_RegI] = NULL__null;
117 idealreg2mhdebugmask[Op_RegN] = NULL__null;
118 idealreg2mhdebugmask[Op_RegL] = NULL__null;
119 idealreg2mhdebugmask[Op_RegF] = NULL__null;
120 idealreg2mhdebugmask[Op_RegD] = NULL__null;
121 idealreg2mhdebugmask[Op_RegP] = NULL__null;
122 idealreg2mhdebugmask[Op_VecA] = NULL__null;
123 idealreg2mhdebugmask[Op_VecS] = NULL__null;
124 idealreg2mhdebugmask[Op_VecD] = NULL__null;
125 idealreg2mhdebugmask[Op_VecX] = NULL__null;
126 idealreg2mhdebugmask[Op_VecY] = NULL__null;
127 idealreg2mhdebugmask[Op_VecZ] = NULL__null;
128 idealreg2mhdebugmask[Op_RegFlags] = NULL__null;
129 idealreg2mhdebugmask[Op_RegVectMask] = NULL__null;
130
131 debug_only(_mem_node = NULL;)_mem_node = __null; // Ideal memory node consumed by mach node
132}
133
134//------------------------------warp_incoming_stk_arg------------------------
135// This warps a VMReg into an OptoReg::Name
136OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
137 OptoReg::Name warped;
138 if( reg->is_stack() ) { // Stack slot argument?
139 warped = OptoReg::add(_old_SP, reg->reg2stack() );
140 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
141 if( warped >= _in_arg_limit )
142 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
143 if (!RegMask::can_represent_arg(warped)) {
144 // the compiler cannot represent this method's calling sequence
145 C->record_method_not_compilable("unsupported incoming calling sequence");
146 return OptoReg::Bad;
147 }
148 return warped;
149 }
150 return OptoReg::as_OptoReg(reg);
151}
152
153//---------------------------compute_old_SP------------------------------------
154OptoReg::Name Compile::compute_old_SP() {
155 int fixed = fixed_slots();
156 int preserve = in_preserve_stack_slots();
157 return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
158}
159
160
161
162#ifdef ASSERT1
163void Matcher::verify_new_nodes_only(Node* xroot) {
164 // Make sure that the new graph only references new nodes
165 ResourceMark rm;
166 Unique_Node_List worklist;
167 VectorSet visited;
168 worklist.push(xroot);
169 while (worklist.size() > 0) {
170 Node* n = worklist.pop();
171 visited.set(n->_idx);
172 assert(C->node_arena()->contains(n), "dead node")do { if (!(C->node_arena()->contains(n))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 172, "assert(" "C->node_arena()->contains(n)" ") failed"
, "dead node"); ::breakpoint(); } } while (0)
;
173 for (uint j = 0; j < n->req(); j++) {
174 Node* in = n->in(j);
175 if (in != NULL__null) {
176 assert(C->node_arena()->contains(in), "dead node")do { if (!(C->node_arena()->contains(in))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 176, "assert(" "C->node_arena()->contains(in)" ") failed"
, "dead node"); ::breakpoint(); } } while (0)
;
177 if (!visited.test(in->_idx)) {
178 worklist.push(in);
179 }
180 }
181 }
182 }
183}
184#endif
185
186
187//---------------------------match---------------------------------------------
188void Matcher::match( ) {
189 if( MaxLabelRootDepth < 100 ) { // Too small?
1
Assuming 'MaxLabelRootDepth' is >= 100
2
Taking false branch
190 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 190, "assert(" "false" ") failed", "invalid MaxLabelRootDepth, increase it to 100 minimum"
); ::breakpoint(); } } while (0)
;
191 MaxLabelRootDepth = 100;
192 }
193 // One-time initialization of some register masks.
194 init_spill_mask( C->root()->in(1) );
195 _return_addr_mask = return_addr();
196#ifdef _LP641
197 // Pointers take 2 slots in 64-bit land
198 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
199#endif
200
201 // Map a Java-signature return type into return register-value
202 // machine registers for 0, 1 and 2 returned values.
203 const TypeTuple *range = C->tf()->range();
204 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
3
Assuming the condition is false
4
Taking false branch
205 // Get ideal-register return type
206 uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
207 // Get machine return register
208 uint sop = C->start()->Opcode();
209 OptoRegPair regs = return_value(ireg);
210
211 // And mask for same
212 _return_value_mask = RegMask(regs.first());
213 if( OptoReg::is_valid(regs.second()) )
214 _return_value_mask.Insert(regs.second());
215 }
216
217 // ---------------
218 // Frame Layout
219
220 // Need the method signature to determine the incoming argument types,
221 // because the types determine which registers the incoming arguments are
222 // in, and this affects the matched code.
223 const TypeTuple *domain = C->tf()->domain();
224 uint argcnt = domain->cnt() - TypeFunc::Parms;
225 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType
))
;
226 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair
))
;
227 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt )(OptoRegPair*) resource_allocate_bytes((argcnt) * sizeof(OptoRegPair
))
;
228 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt )(RegMask*) resource_allocate_bytes((argcnt) * sizeof(RegMask)
)
;
229 uint i;
230 for( i = 0; i<argcnt; i++ ) {
5
Assuming 'i' is >= 'argcnt'
6
Loop condition is false. Execution continues on line 236
231 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
232 }
233
234 // Pass array of ideal registers and length to USER code (from the AD file)
235 // that will convert this to an array of register numbers.
236 const StartNode *start = C->start();
237 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
238#ifdef ASSERT1
239 // Sanity check users' calling convention. Real handy while trying to
240 // get the initial port correct.
241 { for (uint i = 0; i<argcnt; i++) {
7
Loop condition is false. Execution continues on line 268
242 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
243 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" )do { if (!(domain->field_at(i+TypeFunc::Parms)==Type::HALF
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 243, "assert(" "domain->field_at(i+TypeFunc::Parms)==Type::HALF"
") failed", "only allowed on halve"); ::breakpoint(); } } while
(0)
;
244 _parm_regs[i].set_bad();
245 continue;
246 }
247 VMReg parm_reg = vm_parm_regs[i].first();
248 assert(parm_reg->is_valid(), "invalid arg?")do { if (!(parm_reg->is_valid())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 248, "assert(" "parm_reg->is_valid()" ") failed", "invalid arg?"
); ::breakpoint(); } } while (0)
;
249 if (parm_reg->is_reg()) {
250 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
251 assert(can_be_java_arg(opto_parm_reg) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function
() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg
== inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()"
") failed", "parameters in register must be preserved by runtime stubs"
); ::breakpoint(); } } while (0)
252 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function
() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg
== inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()"
") failed", "parameters in register must be preserved by runtime stubs"
); ::breakpoint(); } } while (0)
253 opto_parm_reg == inline_cache_reg(),do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function
() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg
== inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()"
") failed", "parameters in register must be preserved by runtime stubs"
); ::breakpoint(); } } while (0)
254 "parameters in register must be preserved by runtime stubs")do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function
() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg
== inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()"
") failed", "parameters in register must be preserved by runtime stubs"
); ::breakpoint(); } } while (0)
;
255 }
256 for (uint j = 0; j < i; j++) {
257 assert(parm_reg != vm_parm_regs[j].first(),do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed"
, "calling conv. must produce distinct regs"); ::breakpoint()
; } } while (0)
258 "calling conv. must produce distinct regs")do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed"
, "calling conv. must produce distinct regs"); ::breakpoint()
; } } while (0)
;
259 }
260 }
261 }
262#endif
263
264 // Do some initial frame layout.
265
266 // Compute the old incoming SP (may be called FP) as
267 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
268 _old_SP = C->compute_old_SP();
269 assert( is_even(_old_SP), "must be even" )do { if (!(is_even(_old_SP))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 269, "assert(" "is_even(_old_SP)" ") failed", "must be even"
); ::breakpoint(); } } while (0)
;
8
Taking false branch
9
Loop condition is false. Exiting loop
270
271 // Compute highest incoming stack argument as
272 // _old_SP + out_preserve_stack_slots + incoming argument size.
273 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
274 assert( is_even(_in_arg_limit), "out_preserve must be even" )do { if (!(is_even(_in_arg_limit))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 274, "assert(" "is_even(_in_arg_limit)" ") failed", "out_preserve must be even"
); ::breakpoint(); } } while (0)
;
10
Taking false branch
11
Loop condition is false. Exiting loop
275 for( i = 0; i < argcnt; i++ ) {
12
Loop condition is false. Execution continues on line 304
276 // Permit args to have no register
277 _calling_convention_mask[i].Clear();
278 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
279 continue;
280 }
281 // calling_convention returns stack arguments as a count of
282 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
283 // the allocators point of view, taking into account all the
284 // preserve area, locks & pad2.
285
286 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
287 if( OptoReg::is_valid(reg1))
288 _calling_convention_mask[i].Insert(reg1);
289
290 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
291 if( OptoReg::is_valid(reg2))
292 _calling_convention_mask[i].Insert(reg2);
293
294 // Saved biased stack-slot register number
295 _parm_regs[i].set_pair(reg2, reg1);
296 }
297
298 // Finally, make sure the incoming arguments take up an even number of
299 // words, in case the arguments or locals need to contain doubleword stack
300 // slots. The rest of the system assumes that stack slot pairs (in
301 // particular, in the spill area) which look aligned will in fact be
302 // aligned relative to the stack pointer in the target machine. Double
303 // stack slots will always be allocated aligned.
304 _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
305
306 // Compute highest outgoing stack argument as
307 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
308 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
309 assert( is_even(_out_arg_limit), "out_preserve must be even" )do { if (!(is_even(_out_arg_limit))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 309, "assert(" "is_even(_out_arg_limit)" ") failed", "out_preserve must be even"
); ::breakpoint(); } } while (0)
;
13
Taking false branch
14
Loop condition is false. Exiting loop
310
311 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
15
Taking true branch
312 // the compiler cannot represent this method's calling sequence
313 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
314 }
315
316 if (C->failing()) return; // bailed out on incoming arg failure
16
Taking false branch
317
318 // ---------------
319 // Collect roots of matcher trees. Every node for which
320 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
321 // can be a valid interior of some tree.
322 find_shared( C->root() );
323 find_shared( C->top() );
324
325 C->print_method(PHASE_BEFORE_MATCHING);
326
327 // Create new ideal node ConP #NULL even if it does exist in old space
328 // to avoid false sharing if the corresponding mach node is not used.
329 // The corresponding mach node is only used in rare cases for derived
330 // pointers.
331 Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
332
333 // Swap out to old-space; emptying new-space
334 Arena *old = C->node_arena()->move_contents(C->old_arena());
335
336 // Save debug and profile information for nodes in old space:
337 _old_node_note_array = C->node_note_array();
338 if (_old_node_note_array != NULL__null) {
17
Assuming field '_old_node_note_array' is equal to NULL
18
Taking false branch
339 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
340 (C->comp_arena(), _old_node_note_array->length(),
341 0, NULL__null));
342 }
343
344 // Pre-size the new_node table to avoid the need for range checks.
345 grow_new_node_array(C->unique());
346
347 // Reset node counter so MachNodes start with _idx at 0
348 int live_nodes = C->live_nodes();
349 C->set_unique(0);
350 C->reset_dead_node_list();
351
352 // Recursively match trees from old space into new space.
353 // Correct leaves of new-space Nodes; they point to old-space.
354 _visited.clear();
355 C->set_cached_top_node(xform( C->top(), live_nodes ));
356 if (!C->failing()) {
19
Taking true branch
357 Node* xroot = xform( C->root(), 1 );
358 if (xroot
19.1
'xroot' is equal to NULL
19.1
'xroot' is equal to NULL
== NULL__null) {
20
Taking true branch
359 Matcher::soft_match_failure(); // recursive matching process failed
360 C->record_method_not_compilable("instruction match failed");
361 } else {
362 // During matching shared constants were attached to C->root()
363 // because xroot wasn't available yet, so transfer the uses to
364 // the xroot.
365 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
366 Node* n = C->root()->fast_out(j);
367 if (C->node_arena()->contains(n)) {
368 assert(n->in(0) == C->root(), "should be control user")do { if (!(n->in(0) == C->root())) { (*g_assert_poison)
= 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 368, "assert(" "n->in(0) == C->root()" ") failed", "should be control user"
); ::breakpoint(); } } while (0)
;
369 n->set_req(0, xroot);
370 --j;
371 --jmax;
372 }
373 }
374
375 // Generate new mach node for ConP #NULL
376 assert(new_ideal_null != NULL, "sanity")do { if (!(new_ideal_null != __null)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 376, "assert(" "new_ideal_null != __null" ") failed", "sanity"
); ::breakpoint(); } } while (0)
;
377 _mach_null = match_tree(new_ideal_null);
378 // Don't set control, it will confuse GCM since there are no uses.
379 // The control will be set when this node is used first time
380 // in find_base_for_derived().
381 assert(_mach_null != NULL, "")do { if (!(_mach_null != __null)) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 381, "assert(" "_mach_null != __null" ") failed", ""); ::breakpoint
(); } } while (0)
;
382
383 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL__null);
384
385#ifdef ASSERT1
386 verify_new_nodes_only(xroot);
387#endif
388 }
389 }
390 if (C->top() == NULL__null || C->root() == NULL__null) {
21
Assuming the condition is false
22
Assuming the condition is false
23
Taking false branch
391 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
392 }
393 if (C->failing()) {
24
Taking false branch
394 // delete old;
395 old->destruct_contents();
396 return;
397 }
398 assert( C->top(), "" )do { if (!(C->top())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 398, "assert(" "C->top()" ") failed", ""); ::breakpoint(
); } } while (0)
;
25
Taking false branch
26
Loop condition is false. Exiting loop
399 assert( C->root(), "" )do { if (!(C->root())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 399, "assert(" "C->root()" ") failed", ""); ::breakpoint
(); } } while (0)
;
27
Taking false branch
28
Loop condition is false. Exiting loop
400 validate_null_checks();
29
Calling 'Matcher::validate_null_checks'
401
402 // Now smoke old-space
403 NOT_DEBUG( old->destruct_contents() );
404
405 // ------------------------
406 // Set up save-on-entry registers.
407 Fixup_Save_On_Entry( );
408
409 { // Cleanup mach IR after selection phase is over.
410 Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]);
411 do_postselect_cleanup();
412 if (C->failing()) return;
413 assert(verify_after_postselect_cleanup(), "")do { if (!(verify_after_postselect_cleanup())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 413, "assert(" "verify_after_postselect_cleanup()" ") failed"
, ""); ::breakpoint(); } } while (0)
;
414 }
415}
416
417//------------------------------Fixup_Save_On_Entry----------------------------
418// The stated purpose of this routine is to take care of save-on-entry
419// registers. However, the overall goal of the Match phase is to convert into
420// machine-specific instructions which have RegMasks to guide allocation.
421// So what this procedure really does is put a valid RegMask on each input
422// to the machine-specific variations of all Return, TailCall and Halt
423// instructions. It also adds edgs to define the save-on-entry values (and of
424// course gives them a mask).
425
426static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
427 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size )(RegMask*) resource_allocate_bytes((size) * sizeof(RegMask));
428 // Do all the pre-defined register masks
429 rms[TypeFunc::Control ] = RegMask::Empty;
430 rms[TypeFunc::I_O ] = RegMask::Empty;
431 rms[TypeFunc::Memory ] = RegMask::Empty;
432 rms[TypeFunc::ReturnAdr] = ret_adr;
433 rms[TypeFunc::FramePtr ] = fp;
434 return rms;
435}
436
437const int Matcher::scalable_predicate_reg_slots() {
438 assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(),do { if (!(Matcher::has_predicated_vectors() && Matcher
::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()"
") failed", "scalable predicate vector should be supported")
; ::breakpoint(); } } while (0)
439 "scalable predicate vector should be supported")do { if (!(Matcher::has_predicated_vectors() && Matcher
::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()"
") failed", "scalable predicate vector should be supported")
; ::breakpoint(); } } while (0)
;
440 int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte;
441 // We assume each predicate register is one-eighth of the size of
442 // scalable vector register, one mask bit per vector byte.
443 int predicate_reg_bit_size = vector_reg_bit_size >> 3;
444 // Compute number of slots which is required when scalable predicate
445 // register is spilled. E.g. if scalable vector register is 640 bits,
446 // predicate register is 80 bits, which is 2.5 * slots.
447 // We will round up the slot number to power of 2, which is required
448 // by find_first_set().
449 int slots = predicate_reg_bit_size & (BitsPerInt - 1)
450 ? (predicate_reg_bit_size >> LogBitsPerInt) + 1
451 : predicate_reg_bit_size >> LogBitsPerInt;
452 return round_up_power_of_2(slots);
453}
454
455#define NOF_STACK_MASKS(3*13) (3*13)
456
457// Create the initial stack mask used by values spilling to the stack.
458// Disallow any debug info in outgoing argument areas by setting the
459// initial mask accordingly.
460void Matcher::init_first_stack_mask() {
461
462 // Allocate storage for spill masks as masks for the appropriate load type.
463 RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS(3*13));
464
465 // Initialize empty placeholder masks into the newly allocated arena
466 for (int i = 0; i < NOF_STACK_MASKS(3*13); i++) {
467 new (rms + i) RegMask();
468 }
469
470 idealreg2spillmask [Op_RegN] = &rms[0];
471 idealreg2spillmask [Op_RegI] = &rms[1];
472 idealreg2spillmask [Op_RegL] = &rms[2];
473 idealreg2spillmask [Op_RegF] = &rms[3];
474 idealreg2spillmask [Op_RegD] = &rms[4];
475 idealreg2spillmask [Op_RegP] = &rms[5];
476
477 idealreg2debugmask [Op_RegN] = &rms[6];
478 idealreg2debugmask [Op_RegI] = &rms[7];
479 idealreg2debugmask [Op_RegL] = &rms[8];
480 idealreg2debugmask [Op_RegF] = &rms[9];
481 idealreg2debugmask [Op_RegD] = &rms[10];
482 idealreg2debugmask [Op_RegP] = &rms[11];
483
484 idealreg2mhdebugmask[Op_RegN] = &rms[12];
485 idealreg2mhdebugmask[Op_RegI] = &rms[13];
486 idealreg2mhdebugmask[Op_RegL] = &rms[14];
487 idealreg2mhdebugmask[Op_RegF] = &rms[15];
488 idealreg2mhdebugmask[Op_RegD] = &rms[16];
489 idealreg2mhdebugmask[Op_RegP] = &rms[17];
490
491 idealreg2spillmask [Op_VecA] = &rms[18];
492 idealreg2spillmask [Op_VecS] = &rms[19];
493 idealreg2spillmask [Op_VecD] = &rms[20];
494 idealreg2spillmask [Op_VecX] = &rms[21];
495 idealreg2spillmask [Op_VecY] = &rms[22];
496 idealreg2spillmask [Op_VecZ] = &rms[23];
497
498 idealreg2debugmask [Op_VecA] = &rms[24];
499 idealreg2debugmask [Op_VecS] = &rms[25];
500 idealreg2debugmask [Op_VecD] = &rms[26];
501 idealreg2debugmask [Op_VecX] = &rms[27];
502 idealreg2debugmask [Op_VecY] = &rms[28];
503 idealreg2debugmask [Op_VecZ] = &rms[29];
504
505 idealreg2mhdebugmask[Op_VecA] = &rms[30];
506 idealreg2mhdebugmask[Op_VecS] = &rms[31];
507 idealreg2mhdebugmask[Op_VecD] = &rms[32];
508 idealreg2mhdebugmask[Op_VecX] = &rms[33];
509 idealreg2mhdebugmask[Op_VecY] = &rms[34];
510 idealreg2mhdebugmask[Op_VecZ] = &rms[35];
511
512 idealreg2spillmask [Op_RegVectMask] = &rms[36];
513 idealreg2debugmask [Op_RegVectMask] = &rms[37];
514 idealreg2mhdebugmask[Op_RegVectMask] = &rms[38];
515
516 OptoReg::Name i;
517
518 // At first, start with the empty mask
519 C->FIRST_STACK_mask().Clear();
520
521 // Add in the incoming argument area
522 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
523 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
524 C->FIRST_STACK_mask().Insert(i);
525 }
526 // Add in all bits past the outgoing argument area
527 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit
,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))"
") failed", "must be able to represent all call arguments in reg mask"
); ::breakpoint(); } } while (0)
528 "must be able to represent all call arguments in reg mask")do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit
,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))"
") failed", "must be able to represent all call arguments in reg mask"
); ::breakpoint(); } } while (0)
;
529 OptoReg::Name init = _out_arg_limit;
530 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
531 C->FIRST_STACK_mask().Insert(i);
532 }
533 // Finally, set the "infinite stack" bit.
534 C->FIRST_STACK_mask().set_AllStack();
535
536 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
537 RegMask aligned_stack_mask = C->FIRST_STACK_mask();
538 // Keep spill masks aligned.
539 aligned_stack_mask.clear_to_pairs();
540 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 540, "assert(" "aligned_stack_mask.is_AllStack()" ") failed"
, "should be infinite stack"); ::breakpoint(); } } while (0)
;
541 RegMask scalable_stack_mask = aligned_stack_mask;
542
543 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
544#ifdef _LP641
545 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
546 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
547 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
548#else
549 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
550#endif
551 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
552 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
553 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
554 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
555 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
556 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
557 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
558 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
559
560 if (Matcher::has_predicated_vectors()) {
561 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
562 idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask);
563 } else {
564 *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty;
565 }
566
567 if (Matcher::vector_size_supported(T_BYTE,4)) {
568 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
569 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
570 } else {
571 *idealreg2spillmask[Op_VecS] = RegMask::Empty;
572 }
573
574 if (Matcher::vector_size_supported(T_FLOAT,2)) {
575 // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
576 // RA guarantees such alignment since it is needed for Double and Long values.
577 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
578 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
579 } else {
580 *idealreg2spillmask[Op_VecD] = RegMask::Empty;
581 }
582
583 if (Matcher::vector_size_supported(T_FLOAT,4)) {
584 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
585 //
586 // RA can use input arguments stack slots for spills but until RA
587 // we don't know frame size and offset of input arg stack slots.
588 //
589 // Exclude last input arg stack slots to avoid spilling vectors there
590 // otherwise vector spills could stomp over stack slots in caller frame.
591 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
592 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
593 aligned_stack_mask.Remove(in);
594 in = OptoReg::add(in, -1);
595 }
596 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
597 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 597, "assert(" "aligned_stack_mask.is_AllStack()" ") failed"
, "should be infinite stack"); ::breakpoint(); } } while (0)
;
598 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
599 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
600 } else {
601 *idealreg2spillmask[Op_VecX] = RegMask::Empty;
602 }
603
604 if (Matcher::vector_size_supported(T_FLOAT,8)) {
605 // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
606 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
607 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
608 aligned_stack_mask.Remove(in);
609 in = OptoReg::add(in, -1);
610 }
611 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
612 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 612, "assert(" "aligned_stack_mask.is_AllStack()" ") failed"
, "should be infinite stack"); ::breakpoint(); } } while (0)
;
613 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
614 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
615 } else {
616 *idealreg2spillmask[Op_VecY] = RegMask::Empty;
617 }
618
619 if (Matcher::vector_size_supported(T_FLOAT,16)) {
620 // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
621 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
622 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
623 aligned_stack_mask.Remove(in);
624 in = OptoReg::add(in, -1);
625 }
626 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
627 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 627, "assert(" "aligned_stack_mask.is_AllStack()" ") failed"
, "should be infinite stack"); ::breakpoint(); } } while (0)
;
628 *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
629 idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
630 } else {
631 *idealreg2spillmask[Op_VecZ] = RegMask::Empty;
632 }
633
634 if (Matcher::supports_scalable_vector()) {
635 int k = 1;
636 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
637 if (Matcher::has_predicated_vectors()) {
638 // Exclude last input arg stack slots to avoid spilling vector register there,
639 // otherwise RegVectMask spills could stomp over stack slots in caller frame.
640 for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) {
641 scalable_stack_mask.Remove(in);
642 in = OptoReg::add(in, -1);
643 }
644
645 // For RegVectMask
646 scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots());
647 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 647, "assert(" "scalable_stack_mask.is_AllStack()" ") failed"
, "should be infinite stack"); ::breakpoint(); } } while (0)
;
648 *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
649 idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask);
650 }
651
652 // Exclude last input arg stack slots to avoid spilling vector register there,
653 // otherwise vector spills could stomp over stack slots in caller frame.
654 for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) {
655 scalable_stack_mask.Remove(in);
656 in = OptoReg::add(in, -1);
657 }
658
659 // For VecA
660 scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA);
661 assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 661, "assert(" "scalable_stack_mask.is_AllStack()" ") failed"
, "should be infinite stack"); ::breakpoint(); } } while (0)
;
662 *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA];
663 idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask);
664 } else {
665 *idealreg2spillmask[Op_VecA] = RegMask::Empty;
666 }
667
668 if (UseFPUForSpilling) {
669 // This mask logic assumes that the spill operations are
670 // symmetric and that the registers involved are the same size.
671 // On sparc for instance we may have to use 64 bit moves will
672 // kill 2 registers when used with F0-F31.
673 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
674 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
675#ifdef _LP641
676 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
677 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
678 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
679 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
680#else
681 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
682#ifdef ARM
683 // ARM has support for moving 64bit values between a pair of
684 // integer registers and a double register
685 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
686 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
687#endif
688#endif
689 }
690
691 // Make up debug masks. Any spill slot plus callee-save (SOE) registers.
692 // Caller-save (SOC, AS) registers are assumed to be trashable by the various
693 // inline-cache fixup routines.
694 *idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN];
695 *idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI];
696 *idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL];
697 *idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF];
698 *idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD];
699 *idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP];
700 *idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask];
701
702 *idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA];
703 *idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS];
704 *idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD];
705 *idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX];
706 *idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY];
707 *idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ];
708
709 *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN];
710 *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI];
711 *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL];
712 *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF];
713 *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD];
714 *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP];
715 *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask];
716
717 *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA];
718 *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS];
719 *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD];
720 *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX];
721 *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY];
722 *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ];
723
724 // Prevent stub compilations from attempting to reference
725 // callee-saved (SOE) registers from debug info
726 bool exclude_soe = !Compile::current()->is_method_compilation();
727 RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask;
728 RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask;
729
730 idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask);
731 idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask);
732 idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask);
733 idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask);
734 idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask);
735 idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask);
736 idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask);
737
738 idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask);
739 idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask);
740 idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask);
741 idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask);
742 idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask);
743 idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask);
744
745 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask);
746 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask);
747 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask);
748 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask);
749 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask);
750 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask);
751 idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask);
752
753 idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask);
754 idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask);
755 idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask);
756 idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask);
757 idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask);
758 idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask);
759}
760
761//---------------------------is_save_on_entry----------------------------------
762bool Matcher::is_save_on_entry(int reg) {
763 return
764 _register_save_policy[reg] == 'E' ||
765 _register_save_policy[reg] == 'A'; // Save-on-entry register?
766}
767
768//---------------------------Fixup_Save_On_Entry-------------------------------
769void Matcher::Fixup_Save_On_Entry( ) {
770 init_first_stack_mask();
771
772 Node *root = C->root(); // Short name for root
773 // Count number of save-on-entry registers.
774 uint soe_cnt = number_of_saved_registers();
775 uint i;
776
777 // Find the procedure Start Node
778 StartNode *start = C->start();
779 assert( start, "Expect a start node" )do { if (!(start)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 779, "assert(" "start" ") failed", "Expect a start node"); ::
breakpoint(); } } while (0)
;
780
781 // Input RegMask array shared by all Returns.
782 // The type for doubles and longs has a count of 2, but
783 // there is only 1 returned value
784 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
785 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
786 // Returns have 0 or 1 returned values depending on call signature.
787 // Return register is specified by return_value in the AD file.
788 if (ret_edge_cnt > TypeFunc::Parms)
789 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
790
791 // Input RegMask array shared by all Rethrows.
792 uint reth_edge_cnt = TypeFunc::Parms+1;
793 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
794 // Rethrow takes exception oop only, but in the argument 0 slot.
795 OptoReg::Name reg = find_receiver();
796 if (reg >= 0) {
797 reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
798#ifdef _LP641
799 // Need two slots for ptrs in 64-bit land
800 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
801#endif
802 }
803
804 // Input RegMask array shared by all TailCalls
805 uint tail_call_edge_cnt = TypeFunc::Parms+2;
806 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
807
808 // Input RegMask array shared by all TailJumps
809 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
810 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
811
812 // TailCalls have 2 returned values (target & moop), whose masks come
813 // from the usual MachNode/MachOper mechanism. Find a sample
814 // TailCall to extract these masks and put the correct masks into
815 // the tail_call_rms array.
816 for( i=1; i < root->req(); i++ ) {
817 MachReturnNode *m = root->in(i)->as_MachReturn();
818 if( m->ideal_Opcode() == Op_TailCall ) {
819 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
820 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
821 break;
822 }
823 }
824
825 // TailJumps have 2 returned values (target & ex_oop), whose masks come
826 // from the usual MachNode/MachOper mechanism. Find a sample
827 // TailJump to extract these masks and put the correct masks into
828 // the tail_jump_rms array.
829 for( i=1; i < root->req(); i++ ) {
830 MachReturnNode *m = root->in(i)->as_MachReturn();
831 if( m->ideal_Opcode() == Op_TailJump ) {
832 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
833 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
834 break;
835 }
836 }
837
838 // Input RegMask array shared by all Halts
839 uint halt_edge_cnt = TypeFunc::Parms;
840 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
841
842 // Capture the return input masks into each exit flavor
843 for( i=1; i < root->req(); i++ ) {
844 MachReturnNode *exit = root->in(i)->as_MachReturn();
845 switch( exit->ideal_Opcode() ) {
846 case Op_Return : exit->_in_rms = ret_rms; break;
847 case Op_Rethrow : exit->_in_rms = reth_rms; break;
848 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
849 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
850 case Op_Halt : exit->_in_rms = halt_rms; break;
851 default : ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 851); ::breakpoint(); } while (0)
;
852 }
853 }
854
855 // Next unused projection number from Start.
856 int proj_cnt = C->tf()->domain()->cnt();
857
858 // Do all the save-on-entry registers. Make projections from Start for
859 // them, and give them a use at the exit points. To the allocator, they
860 // look like incoming register arguments.
861 for( i = 0; i < _last_Mach_Reg; i++ ) {
862 if( is_save_on_entry(i) ) {
863
864 // Add the save-on-entry to the mask array
865 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
866 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
867 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
868 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
869 // Halts need the SOE registers, but only in the stack as debug info.
870 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
871 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
872
873 Node *mproj;
874
875 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
876 // into a single RegD.
877 if( (i&1) == 0 &&
878 _register_save_type[i ] == Op_RegF &&
879 _register_save_type[i+1] == Op_RegF &&
880 is_save_on_entry(i+1) ) {
881 // Add other bit for double
882 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
883 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
884 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
885 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
886 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
887 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
888 proj_cnt += 2; // Skip 2 for doubles
889 }
890 else if( (i&1) == 1 && // Else check for high half of double
891 _register_save_type[i-1] == Op_RegF &&
892 _register_save_type[i ] == Op_RegF &&
893 is_save_on_entry(i-1) ) {
894 ret_rms [ ret_edge_cnt] = RegMask::Empty;
895 reth_rms [ reth_edge_cnt] = RegMask::Empty;
896 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
897 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
898 halt_rms [ halt_edge_cnt] = RegMask::Empty;
899 mproj = C->top();
900 }
901 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
902 // into a single RegL.
903 else if( (i&1) == 0 &&
904 _register_save_type[i ] == Op_RegI &&
905 _register_save_type[i+1] == Op_RegI &&
906 is_save_on_entry(i+1) ) {
907 // Add other bit for long
908 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
909 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
910 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
911 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
912 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
913 mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
914 proj_cnt += 2; // Skip 2 for longs
915 }
916 else if( (i&1) == 1 && // Else check for high half of long
917 _register_save_type[i-1] == Op_RegI &&
918 _register_save_type[i ] == Op_RegI &&
919 is_save_on_entry(i-1) ) {
920 ret_rms [ ret_edge_cnt] = RegMask::Empty;
921 reth_rms [ reth_edge_cnt] = RegMask::Empty;
922 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
923 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
924 halt_rms [ halt_edge_cnt] = RegMask::Empty;
925 mproj = C->top();
926 } else {
927 // Make a projection for it off the Start
928 mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
929 }
930
931 ret_edge_cnt ++;
932 reth_edge_cnt ++;
933 tail_call_edge_cnt ++;
934 tail_jump_edge_cnt ++;
935 halt_edge_cnt ++;
936
937 // Add a use of the SOE register to all exit paths
938 for( uint j=1; j < root->req(); j++ )
939 root->in(j)->add_req(mproj);
940 } // End of if a save-on-entry register
941 } // End of for all machine registers
942}
943
944//------------------------------init_spill_mask--------------------------------
945void Matcher::init_spill_mask( Node *ret ) {
946 if( idealreg2regmask[Op_RegI] ) return; // One time only init
947
948 OptoReg::c_frame_pointer = c_frame_pointer();
949 c_frame_ptr_mask = c_frame_pointer();
950#ifdef _LP641
951 // pointers are twice as big
952 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
953#endif
954
955 // Start at OptoReg::stack0()
956 STACK_ONLY_mask.Clear();
957 OptoReg::Name init = OptoReg::stack2reg(0);
958 // STACK_ONLY_mask is all stack bits
959 OptoReg::Name i;
960 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
961 STACK_ONLY_mask.Insert(i);
962 // Also set the "infinite stack" bit.
963 STACK_ONLY_mask.set_AllStack();
964
965 for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) {
966 // Copy the register names over into the shared world.
967 // SharedInfo::regName[i] = regName[i];
968 // Handy RegMasks per machine register
969 mreg2regmask[i].Insert(i);
970
971 // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks.
972 if (_register_save_policy[i] == 'C' ||
973 _register_save_policy[i] == 'A') {
974 caller_save_regmask.Insert(i);
975 mh_caller_save_regmask.Insert(i);
976 }
977 // Exclude save-on-entry registers from debug masks for stub compilations.
978 if (_register_save_policy[i] == 'C' ||
979 _register_save_policy[i] == 'A' ||
980 _register_save_policy[i] == 'E') {
981 caller_save_regmask_exclude_soe.Insert(i);
982 mh_caller_save_regmask_exclude_soe.Insert(i);
983 }
984 }
985
986 // Also exclude the register we use to save the SP for MethodHandle
987 // invokes to from the corresponding MH debug masks
988 const RegMask sp_save_mask = method_handle_invoke_SP_save_mask();
989 mh_caller_save_regmask.OR(sp_save_mask);
990 mh_caller_save_regmask_exclude_soe.OR(sp_save_mask);
991
992 // Grab the Frame Pointer
993 Node *fp = ret->in(TypeFunc::FramePtr);
994 // Share frame pointer while making spill ops
995 set_shared(fp);
996
997// Get the ADLC notion of the right regmask, for each basic type.
998#ifdef _LP641
999 idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret);
1000#endif
1001 idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret);
1002 idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret);
1003 idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret);
1004 idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret);
1005 idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret);
1006 idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret);
1007 idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret);
1008 idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret);
1009 idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret);
1010 idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret);
1011 idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret);
1012 idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret);
1013}
1014
1015#ifdef ASSERT1
1016static void match_alias_type(Compile* C, Node* n, Node* m) {
1017 if (!VerifyAliases) return; // do not go looking for trouble by default
1018 const TypePtr* nat = n->adr_type();
1019 const TypePtr* mat = m->adr_type();
1020 int nidx = C->get_alias_index(nat);
1021 int midx = C->get_alias_index(mat);
1022 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
1023 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
1024 for (uint i = 1; i < n->req(); i++) {
1025 Node* n1 = n->in(i);
1026 const TypePtr* n1at = n1->adr_type();
1027 if (n1at != NULL__null) {
1028 nat = n1at;
1029 nidx = C->get_alias_index(n1at);
1030 }
1031 }
1032 }
1033 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
1034 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
1035 switch (n->Opcode()) {
1036 case Op_PrefetchAllocation:
1037 nidx = Compile::AliasIdxRaw;
1038 nat = TypeRawPtr::BOTTOM;
1039 break;
1040 }
1041 }
1042 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
1043 switch (n->Opcode()) {
1044 case Op_ClearArray:
1045 midx = Compile::AliasIdxRaw;
1046 mat = TypeRawPtr::BOTTOM;
1047 break;
1048 }
1049 }
1050 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
1051 switch (n->Opcode()) {
1052 case Op_Return:
1053 case Op_Rethrow:
1054 case Op_Halt:
1055 case Op_TailCall:
1056 case Op_TailJump:
1057 nidx = Compile::AliasIdxBot;
1058 nat = TypePtr::BOTTOM;
1059 break;
1060 }
1061 }
1062 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
1063 switch (n->Opcode()) {
1064 case Op_StrComp:
1065 case Op_StrEquals:
1066 case Op_StrIndexOf:
1067 case Op_StrIndexOfChar:
1068 case Op_AryEq:
1069 case Op_HasNegatives:
1070 case Op_MemBarVolatile:
1071 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
1072 case Op_StrInflatedCopy:
1073 case Op_StrCompressedCopy:
1074 case Op_OnSpinWait:
1075 case Op_EncodeISOArray:
1076 nidx = Compile::AliasIdxTop;
1077 nat = NULL__null;
1078 break;
1079 }
1080 }
1081 if (nidx != midx) {
1082 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
1083 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
1084 n->dump();
1085 m->dump();
1086 }
1087 assert(C->subsume_loads() && C->must_alias(nat, midx),do { if (!(C->subsume_loads() && C->must_alias(
nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)"
") failed", "must not lose alias info when matching"); ::breakpoint
(); } } while (0)
1088 "must not lose alias info when matching")do { if (!(C->subsume_loads() && C->must_alias(
nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)"
") failed", "must not lose alias info when matching"); ::breakpoint
(); } } while (0)
;
1089 }
1090}
1091#endif
1092
1093//------------------------------xform------------------------------------------
1094// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1095// Node in new-space. Given a new-space Node, recursively walk his children.
1096Node *Matcher::transform( Node *n ) { ShouldNotCallThis()do { (*g_assert_poison) = 'X';; report_should_not_call("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1096); ::breakpoint(); } while (0)
; return n; }
1097Node *Matcher::xform( Node *n, int max_stack ) {
1098 // Use one stack to keep both: child's node/state and parent's node/index
1099 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1100 mstack.push(n, Visit, NULL__null, -1); // set NULL as parent to indicate root
1101 while (mstack.is_nonempty()) {
1102 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1103 if (C->failing()) return NULL__null;
1104 n = mstack.node(); // Leave node on stack
1105 Node_State nstate = mstack.state();
1106 if (nstate == Visit) {
1107 mstack.set_state(Post_Visit);
1108 Node *oldn = n;
1109 // Old-space or new-space check
1110 if (!C->node_arena()->contains(n)) {
1111 // Old space!
1112 Node* m;
1113 if (has_new_node(n)) { // Not yet Label/Reduced
1114 m = new_node(n);
1115 } else {
1116 if (!is_dontcare(n)) { // Matcher can match this guy
1117 // Calls match special. They match alone with no children.
1118 // Their children, the incoming arguments, match normally.
1119 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1120 if (C->failing()) return NULL__null;
1121 if (m == NULL__null) { Matcher::soft_match_failure(); return NULL__null; }
1122 if (n->is_MemBar()) {
1123 m->as_MachMemBar()->set_adr_type(n->adr_type());
1124 }
1125 } else { // Nothing the matcher cares about
1126 if (n->is_Proj() && n->in(0) != NULL__null && n->in(0)->is_Multi()) { // Projections?
1127 // Convert to machine-dependent projection
1128 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1129 NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n);
1130 if (m->in(0) != NULL__null) // m might be top
1131 collect_null_checks(m, n);
1132 } else { // Else just a regular 'ol guy
1133 m = n->clone(); // So just clone into new-space
1134 NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n);
1135 // Def-Use edges will be added incrementally as Uses
1136 // of this node are matched.
1137 assert(m->outcnt() == 0, "no Uses of this clone yet")do { if (!(m->outcnt() == 0)) { (*g_assert_poison) = 'X';;
report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1137, "assert(" "m->outcnt() == 0" ") failed", "no Uses of this clone yet"
); ::breakpoint(); } } while (0)
;
1138 }
1139 }
1140
1141 set_new_node(n, m); // Map old to new
1142 if (_old_node_note_array != NULL__null) {
1143 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1144 n->_idx);
1145 C->set_node_notes_at(m->_idx, nn);
1146 }
1147 debug_only(match_alias_type(C, n, m))match_alias_type(C, n, m);
1148 }
1149 n = m; // n is now a new-space node
1150 mstack.set_node(n);
1151 }
1152
1153 // New space!
1154 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1155
1156 int i;
1157 // Put precedence edges on stack first (match them last).
1158 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1159 Node *m = oldn->in(i);
1160 if (m == NULL__null) break;
1161 // set -1 to call add_prec() instead of set_req() during Step1
1162 mstack.push(m, Visit, n, -1);
1163 }
1164
1165 // Handle precedence edges for interior nodes
1166 for (i = n->len()-1; (uint)i >= n->req(); i--) {
1167 Node *m = n->in(i);
1168 if (m == NULL__null || C->node_arena()->contains(m)) continue;
1169 n->rm_prec(i);
1170 // set -1 to call add_prec() instead of set_req() during Step1
1171 mstack.push(m, Visit, n, -1);
1172 }
1173
1174 // For constant debug info, I'd rather have unmatched constants.
1175 int cnt = n->req();
1176 JVMState* jvms = n->jvms();
1177 int debug_cnt = jvms ? jvms->debug_start() : cnt;
1178
1179 // Now do only debug info. Clone constants rather than matching.
1180 // Constants are represented directly in the debug info without
1181 // the need for executable machine instructions.
1182 // Monitor boxes are also represented directly.
1183 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1184 Node *m = n->in(i); // Get input
1185 int op = m->Opcode();
1186 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites")do { if (!((op == Op_BoxLock) == jvms->is_monitor_use(i)))
{ (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1186, "assert(" "(op == Op_BoxLock) == jvms->is_monitor_use(i)"
") failed", "boxes only at monitor sites"); ::breakpoint(); }
} while (0)
;
1187 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1188 op == Op_ConF || op == Op_ConD || op == Op_ConL
1189 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
1190 ) {
1191 m = m->clone();
1192 NOT_PRODUCT(record_new2old(m, n))record_new2old(m, n);
1193 mstack.push(m, Post_Visit, n, i); // Don't need to visit
1194 mstack.push(m->in(0), Visit, m, 0);
1195 } else {
1196 mstack.push(m, Visit, n, i);
1197 }
1198 }
1199
1200 // And now walk his children, and convert his inputs to new-space.
1201 for( ; i >= 0; --i ) { // For all normal inputs do
1202 Node *m = n->in(i); // Get input
1203 if(m != NULL__null)
1204 mstack.push(m, Visit, n, i);
1205 }
1206
1207 }
1208 else if (nstate == Post_Visit) {
1209 // Set xformed input
1210 Node *p = mstack.parent();
1211 if (p != NULL__null) { // root doesn't have parent
1212 int i = (int)mstack.index();
1213 if (i >= 0)
1214 p->set_req(i, n); // required input
1215 else if (i == -1)
1216 p->add_prec(n); // precedence input
1217 else
1218 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1218); ::breakpoint(); } while (0)
;
1219 }
1220 mstack.pop(); // remove processed node from stack
1221 }
1222 else {
1223 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1223); ::breakpoint(); } while (0)
;
1224 }
1225 } // while (mstack.is_nonempty())
1226 return n; // Return new-space Node
1227}
1228
1229//------------------------------warp_outgoing_stk_arg------------------------
1230OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1231 // Convert outgoing argument location to a pre-biased stack offset
1232 if (reg->is_stack()) {
1233 OptoReg::Name warped = reg->reg2stack();
1234 // Adjust the stack slot offset to be the register number used
1235 // by the allocator.
1236 warped = OptoReg::add(begin_out_arg_area, warped);
1237 // Keep track of the largest numbered stack slot used for an arg.
1238 // Largest used slot per call-site indicates the amount of stack
1239 // that is killed by the call.
1240 if( warped >= out_arg_limit_per_call )
1241 out_arg_limit_per_call = OptoReg::add(warped,1);
1242 if (!RegMask::can_represent_arg(warped)) {
1243 C->record_method_not_compilable("unsupported calling sequence");
1244 return OptoReg::Bad;
1245 }
1246 return warped;
1247 }
1248 return OptoReg::as_OptoReg(reg);
1249}
1250
1251
1252//------------------------------match_sfpt-------------------------------------
1253// Helper function to match call instructions. Calls match special.
1254// They match alone with no children. Their children, the incoming
1255// arguments, match normally.
1256MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1257 MachSafePointNode *msfpt = NULL__null;
1258 MachCallNode *mcall = NULL__null;
1259 uint cnt;
1260 // Split out case for SafePoint vs Call
1261 CallNode *call;
1262 const TypeTuple *domain;
1263 ciMethod* method = NULL__null;
1264 bool is_method_handle_invoke = false; // for special kill effects
1265 if( sfpt->is_Call() ) {
1266 call = sfpt->as_Call();
1267 domain = call->tf()->domain();
1268 cnt = domain->cnt();
1269
1270 // Match just the call, nothing else
1271 MachNode *m = match_tree(call);
1272 if (C->failing()) return NULL__null;
1273 if( m == NULL__null ) { Matcher::soft_match_failure(); return NULL__null; }
1274
1275 // Copy data from the Ideal SafePoint to the machine version
1276 mcall = m->as_MachCall();
1277
1278 mcall->set_tf( call->tf());
1279 mcall->set_entry_point( call->entry_point());
1280 mcall->set_cnt( call->cnt());
1281 mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1282
1283 if( mcall->is_MachCallJava() ) {
1284 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
1285 const CallJavaNode *call_java = call->as_CallJava();
1286 assert(call_java->validate_symbolic_info(), "inconsistent info")do { if (!(call_java->validate_symbolic_info())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1286, "assert(" "call_java->validate_symbolic_info()" ") failed"
, "inconsistent info"); ::breakpoint(); } } while (0)
;
1287 method = call_java->method();
1288 mcall_java->_method = method;
1289 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1290 is_method_handle_invoke = call_java->is_method_handle_invoke();
1291 mcall_java->_method_handle_invoke = is_method_handle_invoke;
1292 mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1293 mcall_java->_arg_escape = call_java->arg_escape();
1294 if (is_method_handle_invoke) {
1295 C->set_has_method_handle_invokes(true);
1296 }
1297 if( mcall_java->is_MachCallStaticJava() )
1298 mcall_java->as_MachCallStaticJava()->_name =
1299 call_java->as_CallStaticJava()->_name;
1300 if( mcall_java->is_MachCallDynamicJava() )
1301 mcall_java->as_MachCallDynamicJava()->_vtable_index =
1302 call_java->as_CallDynamicJava()->_vtable_index;
1303 }
1304 else if( mcall->is_MachCallRuntime() ) {
1305 MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime();
1306 mach_call_rt->_name = call->as_CallRuntime()->_name;
1307 mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP();
1308 }
1309 else if( mcall->is_MachCallNative() ) {
1310 MachCallNativeNode* mach_call_native = mcall->as_MachCallNative();
1311 CallNativeNode* call_native = call->as_CallNative();
1312 mach_call_native->_name = call_native->_name;
1313 mach_call_native->_arg_regs = call_native->_arg_regs;
1314 mach_call_native->_ret_regs = call_native->_ret_regs;
1315 }
1316 msfpt = mcall;
1317 }
1318 // This is a non-call safepoint
1319 else {
1320 call = NULL__null;
1321 domain = NULL__null;
1322 MachNode *mn = match_tree(sfpt);
1323 if (C->failing()) return NULL__null;
1324 msfpt = mn->as_MachSafePoint();
1325 cnt = TypeFunc::Parms;
1326 }
1327 msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope();
1328
1329 // Advertise the correct memory effects (for anti-dependence computation).
1330 msfpt->set_adr_type(sfpt->adr_type());
1331
1332 // Allocate a private array of RegMasks. These RegMasks are not shared.
1333 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt )(RegMask*) resource_allocate_bytes((cnt) * sizeof(RegMask));
1334 // Empty them all.
1335 for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1336
1337 // Do all the pre-defined non-Empty register masks
1338 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1339 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1340
1341 // Place first outgoing argument can possibly be put.
1342 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1343 assert( is_even(begin_out_arg_area), "" )do { if (!(is_even(begin_out_arg_area))) { (*g_assert_poison)
= 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1343, "assert(" "is_even(begin_out_arg_area)" ") failed", ""
); ::breakpoint(); } } while (0)
;
1344 // Compute max outgoing register number per call site.
1345 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1346 // Calls to C may hammer extra stack slots above and beyond any arguments.
1347 // These are usually backing store for register arguments for varargs.
1348 if( call != NULL__null && call->is_CallRuntime() )
1349 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1350 if( call != NULL__null && call->is_CallNative() )
1351 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call, call->as_CallNative()->_shadow_space_bytes);
1352
1353
1354 // Do the normal argument list (parameters) register masks
1355 int argcnt = cnt - TypeFunc::Parms;
1356 if( argcnt > 0 ) { // Skip it all if we have no args
1357 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType
))
;
1358 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair
))
;
1359 int i;
1360 for( i = 0; i < argcnt; i++ ) {
1361 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1362 }
1363 // V-call to pick proper calling convention
1364 call->calling_convention( sig_bt, parm_regs, argcnt );
1365
1366#ifdef ASSERT1
1367 // Sanity check users' calling convention. Really handy during
1368 // the initial porting effort. Fairly expensive otherwise.
1369 { for (int i = 0; i<argcnt; i++) {
1370 if( !parm_regs[i].first()->is_valid() &&
1371 !parm_regs[i].second()->is_valid() ) continue;
1372 VMReg reg1 = parm_regs[i].first();
1373 VMReg reg2 = parm_regs[i].second();
1374 for (int j = 0; j < i; j++) {
1375 if( !parm_regs[j].first()->is_valid() &&
1376 !parm_regs[j].second()->is_valid() ) continue;
1377 VMReg reg3 = parm_regs[j].first();
1378 VMReg reg4 = parm_regs[j].second();
1379 if( !reg1->is_valid() ) {
1380 assert( !reg2->is_valid(), "valid halvsies" )do { if (!(!reg2->is_valid())) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1380, "assert(" "!reg2->is_valid()" ") failed", "valid halvsies"
); ::breakpoint(); } } while (0)
;
1381 } else if( !reg3->is_valid() ) {
1382 assert( !reg4->is_valid(), "valid halvsies" )do { if (!(!reg4->is_valid())) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1382, "assert(" "!reg4->is_valid()" ") failed", "valid halvsies"
); ::breakpoint(); } } while (0)
;
1383 } else {
1384 assert( reg1 != reg2, "calling conv. must produce distinct regs")do { if (!(reg1 != reg2)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1384, "assert(" "reg1 != reg2" ") failed", "calling conv. must produce distinct regs"
); ::breakpoint(); } } while (0)
;
1385 assert( reg1 != reg3, "calling conv. must produce distinct regs")do { if (!(reg1 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1385, "assert(" "reg1 != reg3" ") failed", "calling conv. must produce distinct regs"
); ::breakpoint(); } } while (0)
;
1386 assert( reg1 != reg4, "calling conv. must produce distinct regs")do { if (!(reg1 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1386, "assert(" "reg1 != reg4" ") failed", "calling conv. must produce distinct regs"
); ::breakpoint(); } } while (0)
;
1387 assert( reg2 != reg3, "calling conv. must produce distinct regs")do { if (!(reg2 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1387, "assert(" "reg2 != reg3" ") failed", "calling conv. must produce distinct regs"
); ::breakpoint(); } } while (0)
;
1388 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs")do { if (!(reg2 != reg4 || !reg2->is_valid())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1388, "assert(" "reg2 != reg4 || !reg2->is_valid()" ") failed"
, "calling conv. must produce distinct regs"); ::breakpoint()
; } } while (0)
;
1389 assert( reg3 != reg4, "calling conv. must produce distinct regs")do { if (!(reg3 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1389, "assert(" "reg3 != reg4" ") failed", "calling conv. must produce distinct regs"
); ::breakpoint(); } } while (0)
;
1390 }
1391 }
1392 }
1393 }
1394#endif
1395
1396 // Visit each argument. Compute its outgoing register mask.
1397 // Return results now can have 2 bits returned.
1398 // Compute max over all outgoing arguments both per call-site
1399 // and over the entire method.
1400 for( i = 0; i < argcnt; i++ ) {
1401 // Address of incoming argument mask to fill in
1402 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1403 VMReg first = parm_regs[i].first();
1404 VMReg second = parm_regs[i].second();
1405 if(!first->is_valid() &&
1406 !second->is_valid()) {
1407 continue; // Avoid Halves
1408 }
1409 // Handle case where arguments are in vector registers.
1410 if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
1411 OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
1412 OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
1413 assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd)do { if (!(reg_fst <= reg_snd)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1413, "assert(" "reg_fst <= reg_snd" ") failed", "fst=%d snd=%d"
, reg_fst, reg_snd); ::breakpoint(); } } while (0)
;
1414 for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
1415 rm->Insert(r);
1416 }
1417 }
1418 // Grab first register, adjust stack slots and insert in mask.
1419 OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
1420 if (OptoReg::is_valid(reg1))
1421 rm->Insert( reg1 );
1422 // Grab second register (if any), adjust stack slots and insert in mask.
1423 OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
1424 if (OptoReg::is_valid(reg2))
1425 rm->Insert( reg2 );
1426 } // End of for all arguments
1427 }
1428
1429 // Compute the max stack slot killed by any call. These will not be
1430 // available for debug info, and will be used to adjust FIRST_STACK_mask
1431 // after all call sites have been visited.
1432 if( _out_arg_limit < out_arg_limit_per_call)
1433 _out_arg_limit = out_arg_limit_per_call;
1434
1435 if (mcall) {
1436 // Kill the outgoing argument area, including any non-argument holes and
1437 // any legacy C-killed slots. Use Fat-Projections to do the killing.
1438 // Since the max-per-method covers the max-per-call-site and debug info
1439 // is excluded on the max-per-method basis, debug info cannot land in
1440 // this killed area.
1441 uint r_cnt = mcall->tf()->range()->cnt();
1442 MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1443 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1444 C->record_method_not_compilable("unsupported outgoing calling sequence");
1445 } else {
1446 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1447 proj->_rout.Insert(OptoReg::Name(i));
1448 }
1449 if (proj->_rout.is_NotEmpty()) {
1450 push_projection(proj);
1451 }
1452 }
1453 // Transfer the safepoint information from the call to the mcall
1454 // Move the JVMState list
1455 msfpt->set_jvms(sfpt->jvms());
1456 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1457 jvms->set_map(sfpt);
1458 }
1459
1460 // Debug inputs begin just after the last incoming parameter
1461 assert((mcall == NULL) || (mcall->jvms() == NULL) ||do { if (!((mcall == __null) || (mcall->jvms() == __null) ||
(mcall->jvms()->debug_start() + mcall->_jvmadj == mcall
->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())"
") failed", ""); ::breakpoint(); } } while (0)
1462 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "")do { if (!((mcall == __null) || (mcall->jvms() == __null) ||
(mcall->jvms()->debug_start() + mcall->_jvmadj == mcall
->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())"
") failed", ""); ::breakpoint(); } } while (0)
;
1463
1464 // Add additional edges.
1465 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1466 // For these calls we can not add MachConstantBase in expand(), as the
1467 // ins are not complete then.
1468 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1469 if (msfpt->jvms() &&
1470 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1471 // We added an edge before jvms, so we must adapt the position of the ins.
1472 msfpt->jvms()->adapt_position(+1);
1473 }
1474 }
1475
1476 // Registers killed by the call are set in the local scheduling pass
1477 // of Global Code Motion.
1478 return msfpt;
1479}
1480
1481//---------------------------match_tree----------------------------------------
1482// Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
1483// of the whole-sale conversion from Ideal to Mach Nodes. Also used for
1484// making GotoNodes while building the CFG and in init_spill_mask() to identify
1485// a Load's result RegMask for memoization in idealreg2regmask[]
1486MachNode *Matcher::match_tree( const Node *n ) {
1487 assert( n->Opcode() != Op_Phi, "cannot match" )do { if (!(n->Opcode() != Op_Phi)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1487, "assert(" "n->Opcode() != Op_Phi" ") failed", "cannot match"
); ::breakpoint(); } } while (0)
;
1488 assert( !n->is_block_start(), "cannot match" )do { if (!(!n->is_block_start())) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1488, "assert(" "!n->is_block_start()" ") failed", "cannot match"
); ::breakpoint(); } } while (0)
;
1489 // Set the mark for all locally allocated State objects.
1490 // When this call returns, the _states_arena arena will be reset
1491 // freeing all State objects.
1492 ResourceMark rm( &_states_arena );
1493
1494 LabelRootDepth = 0;
1495
1496 // StoreNodes require their Memory input to match any LoadNodes
1497 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1498#ifdef ASSERT1
1499 Node* save_mem_node = _mem_node;
1500 _mem_node = n->is_Store() ? (Node*)n : NULL__null;
1501#endif
1502 // State object for root node of match tree
1503 // Allocate it on _states_arena - stack allocation can cause stack overflow.
1504 State *s = new (&_states_arena) State;
1505 s->_kids[0] = NULL__null;
1506 s->_kids[1] = NULL__null;
1507 s->_leaf = (Node*)n;
1508 // Label the input tree, allocating labels from top-level arena
1509 Node* root_mem = mem;
1510 Label_Root(n, s, n->in(0), root_mem);
1511 if (C->failing()) return NULL__null;
1512
1513 // The minimum cost match for the whole tree is found at the root State
1514 uint mincost = max_juint;
1515 uint cost = max_juint;
1516 uint i;
1517 for (i = 0; i < NUM_OPERANDS139; i++) {
1518 if (s->valid(i) && // valid entry and
1519 s->cost(i) < cost && // low cost and
1520 s->rule(i) >= NUM_OPERANDS139) {// not an operand
1521 mincost = i;
1522 cost = s->cost(i);
1523 }
1524 }
1525 if (mincost == max_juint) {
1526#ifndef PRODUCT
1527 tty->print("No matching rule for:");
1528 s->dump();
1529#endif
1530 Matcher::soft_match_failure();
1531 return NULL__null;
1532 }
1533 // Reduce input tree based upon the state labels to machine Nodes
1534 MachNode *m = ReduceInst(s, s->rule(mincost), mem);
1535 // New-to-old mapping is done in ReduceInst, to cover complex instructions.
1536 NOT_PRODUCT(_old2new_map.map(n->_idx, m);)_old2new_map.map(n->_idx, m);
1537
1538 // Add any Matcher-ignored edges
1539 uint cnt = n->req();
1540 uint start = 1;
1541 if( mem != (Node*)1 ) start = MemNode::Memory+1;
1542 if( n->is_AddP() ) {
1543 assert( mem == (Node*)1, "" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1543, "assert(" "mem == (Node*)1" ") failed", ""); ::breakpoint
(); } } while (0)
;
1544 start = AddPNode::Base+1;
1545 }
1546 for( i = start; i < cnt; i++ ) {
1547 if( !n->match_edge(i) ) {
1548 if( i < m->req() )
1549 m->ins_req( i, n->in(i) );
1550 else
1551 m->add_req( n->in(i) );
1552 }
1553 }
1554
1555 debug_only( _mem_node = save_mem_node; )_mem_node = save_mem_node;
1556 return m;
1557}
1558
1559
1560//------------------------------match_into_reg---------------------------------
1561// Choose to either match this Node in a register or part of the current
1562// match tree. Return true for requiring a register and false for matching
1563// as part of the current match tree.
1564static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1565
1566 const Type *t = m->bottom_type();
1567
1568 if (t->singleton()) {
1569 // Never force constants into registers. Allow them to match as
1570 // constants or registers. Copies of the same value will share
1571 // the same register. See find_shared_node.
1572 return false;
1573 } else { // Not a constant
1574 // Stop recursion if they have different Controls.
1575 Node* m_control = m->in(0);
1576 // Control of load's memory can post-dominates load's control.
1577 // So use it since load can't float above its memory.
1578 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL__null;
1579 if (control && m_control && control != m_control && control != mem_control) {
1580
1581 // Actually, we can live with the most conservative control we
1582 // find, if it post-dominates the others. This allows us to
1583 // pick up load/op/store trees where the load can float a little
1584 // above the store.
1585 Node *x = control;
1586 const uint max_scan = 6; // Arbitrary scan cutoff
1587 uint j;
1588 for (j=0; j<max_scan; j++) {
1589 if (x->is_Region()) // Bail out at merge points
1590 return true;
1591 x = x->in(0);
1592 if (x == m_control) // Does 'control' post-dominate
1593 break; // m->in(0)? If so, we can use it
1594 if (x == mem_control) // Does 'control' post-dominate
1595 break; // mem_control? If so, we can use it
1596 }
1597 if (j == max_scan) // No post-domination before scan end?
1598 return true; // Then break the match tree up
1599 }
1600 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1601 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1602 // These are commonly used in address expressions and can
1603 // efficiently fold into them on X64 in some cases.
1604 return false;
1605 }
1606 }
1607
1608 // Not forceable cloning. If shared, put it into a register.
1609 return shared;
1610}
1611
1612
1613//------------------------------Instruction Selection--------------------------
1614// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1615// ideal nodes to machine instructions. Trees are delimited by shared Nodes,
1616// things the Matcher does not match (e.g., Memory), and things with different
1617// Controls (hence forced into different blocks). We pass in the Control
1618// selected for this entire State tree.
1619
1620// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1621// Store and the Load must have identical Memories (as well as identical
1622// pointers). Since the Matcher does not have anything for Memory (and
1623// does not handle DAGs), I have to match the Memory input myself. If the
1624// Tree root is a Store or if there are multiple Loads in the tree, I require
1625// all Loads to have the identical memory.
1626Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) {
1627 // Since Label_Root is a recursive function, its possible that we might run
1628 // out of stack space. See bugs 6272980 & 6227033 for more info.
1629 LabelRootDepth++;
1630 if (LabelRootDepth > MaxLabelRootDepth) {
1631 C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1632 return NULL__null;
1633 }
1634 uint care = 0; // Edges matcher cares about
1635 uint cnt = n->req();
1636 uint i = 0;
1637
1638 // Examine children for memory state
1639 // Can only subsume a child into your match-tree if that child's memory state
1640 // is not modified along the path to another input.
1641 // It is unsafe even if the other inputs are separate roots.
1642 Node *input_mem = NULL__null;
1643 for( i = 1; i < cnt; i++ ) {
1644 if( !n->match_edge(i) ) continue;
1645 Node *m = n->in(i); // Get ith input
1646 assert( m, "expect non-null children" )do { if (!(m)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1646, "assert(" "m" ") failed", "expect non-null children")
; ::breakpoint(); } } while (0)
;
1647 if( m->is_Load() ) {
1648 if( input_mem == NULL__null ) {
1649 input_mem = m->in(MemNode::Memory);
1650 if (mem == (Node*)1) {
1651 // Save this memory to bail out if there's another memory access
1652 // to a different memory location in the same tree.
1653 mem = input_mem;
1654 }
1655 } else if( input_mem != m->in(MemNode::Memory) ) {
1656 input_mem = NodeSentinel(Node*)-1;
1657 }
1658 }
1659 }
1660
1661 for( i = 1; i < cnt; i++ ){// For my children
1662 if( !n->match_edge(i) ) continue;
1663 Node *m = n->in(i); // Get ith input
1664 // Allocate states out of a private arena
1665 State *s = new (&_states_arena) State;
1666 svec->_kids[care++] = s;
1667 assert( care <= 2, "binary only for now" )do { if (!(care <= 2)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1667, "assert(" "care <= 2" ") failed", "binary only for now"
); ::breakpoint(); } } while (0)
;
1668
1669 // Recursively label the State tree.
1670 s->_kids[0] = NULL__null;
1671 s->_kids[1] = NULL__null;
1672 s->_leaf = m;
1673
1674 // Check for leaves of the State Tree; things that cannot be a part of
1675 // the current tree. If it finds any, that value is matched as a
1676 // register operand. If not, then the normal matching is used.
1677 if( match_into_reg(n, m, control, i, is_shared(m)) ||
1678 // Stop recursion if this is a LoadNode and there is another memory access
1679 // to a different memory location in the same tree (for example, a StoreNode
1680 // at the root of this tree or another LoadNode in one of the children).
1681 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1682 // Can NOT include the match of a subtree when its memory state
1683 // is used by any of the other subtrees
1684 (input_mem == NodeSentinel(Node*)-1) ) {
1685 // Print when we exclude matching due to different memory states at input-loads
1686 if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel(Node*)-1)
1687 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1688 tty->print_cr("invalid input_mem");
1689 }
1690 // Switch to a register-only opcode; this value must be in a register
1691 // and cannot be subsumed as part of a larger instruction.
1692 s->DFA( m->ideal_reg(), m );
1693
1694 } else {
1695 // If match tree has no control and we do, adopt it for entire tree
1696 if( control == NULL__null && m->in(0) != NULL__null && m->req() > 1 )
1697 control = m->in(0); // Pick up control
1698 // Else match as a normal part of the match tree.
1699 control = Label_Root(m, s, control, mem);
1700 if (C->failing()) return NULL__null;
1701 }
1702 }
1703
1704 // Call DFA to match this node, and return
1705 svec->DFA( n->Opcode(), n );
1706
1707#ifdef ASSERT1
1708 uint x;
1709 for( x = 0; x < _LAST_MACH_OPER; x++ )
1710 if( svec->valid(x) )
1711 break;
1712
1713 if (x >= _LAST_MACH_OPER) {
1714 n->dump();
1715 svec->dump();
1716 assert( false, "bad AD file" )do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1716, "assert(" "false" ") failed", "bad AD file"); ::breakpoint
(); } } while (0)
;
1717 }
1718#endif
1719 return control;
1720}
1721
1722
1723// Con nodes reduced using the same rule can share their MachNode
1724// which reduces the number of copies of a constant in the final
1725// program. The register allocator is free to split uses later to
1726// split live ranges.
1727MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1728 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL__null;
1729
1730 // See if this Con has already been reduced using this rule.
1731 if (_shared_nodes.Size() <= leaf->_idx) return NULL__null;
1732 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1733 if (last != NULL__null && rule == last->rule()) {
1734 // Don't expect control change for DecodeN
1735 if (leaf->is_DecodeNarrowPtr())
1736 return last;
1737 // Get the new space root.
1738 Node* xroot = new_node(C->root());
1739 if (xroot == NULL__null) {
1740 // This shouldn't happen give the order of matching.
1741 return NULL__null;
1742 }
1743
1744 // Shared constants need to have their control be root so they
1745 // can be scheduled properly.
1746 Node* control = last->in(0);
1747 if (control != xroot) {
1748 if (control == NULL__null || control == C->root()) {
1749 last->set_req(0, xroot);
1750 } else {
1751 assert(false, "unexpected control")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1751, "assert(" "false" ") failed", "unexpected control"); ::
breakpoint(); } } while (0)
;
1752 return NULL__null;
1753 }
1754 }
1755 return last;
1756 }
1757 return NULL__null;
1758}
1759
1760
1761//------------------------------ReduceInst-------------------------------------
1762// Reduce a State tree (with given Control) into a tree of MachNodes.
1763// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1764// complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
1765// Each MachNode has a number of complicated MachOper operands; each
1766// MachOper also covers a further tree of Ideal Nodes.
1767
1768// The root of the Ideal match tree is always an instruction, so we enter
1769// the recursion here. After building the MachNode, we need to recurse
1770// the tree checking for these cases:
1771// (1) Child is an instruction -
1772// Build the instruction (recursively), add it as an edge.
1773// Build a simple operand (register) to hold the result of the instruction.
1774// (2) Child is an interior part of an instruction -
1775// Skip over it (do nothing)
1776// (3) Child is the start of a operand -
1777// Build the operand, place it inside the instruction
1778// Call ReduceOper.
1779MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1780 assert( rule >= NUM_OPERANDS, "called with operand rule" )do { if (!(rule >= 139)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1780, "assert(" "rule >= 139" ") failed", "called with operand rule"
); ::breakpoint(); } } while (0)
;
1781
1782 MachNode* shared_node = find_shared_node(s->_leaf, rule);
1783 if (shared_node != NULL__null) {
1784 return shared_node;
1785 }
1786
1787 // Build the object to represent this state & prepare for recursive calls
1788 MachNode *mach = s->MachNodeGenerator(rule);
1789 guarantee(mach != NULL, "Missing MachNode")do { if (!(mach != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1789, "guarantee(" "mach != NULL" ") failed", "Missing MachNode"
); ::breakpoint(); } } while (0)
;
1790 mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1791 assert( mach->_opnds[0] != NULL, "Missing result operand" )do { if (!(mach->_opnds[0] != __null)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1791, "assert(" "mach->_opnds[0] != __null" ") failed", "Missing result operand"
); ::breakpoint(); } } while (0)
;
1792 Node *leaf = s->_leaf;
1793 NOT_PRODUCT(record_new2old(mach, leaf);)record_new2old(mach, leaf);
1794 // Check for instruction or instruction chain rule
1795 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1796 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node
(s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)"
") failed", "duplicating node that's already been matched");
::breakpoint(); } } while (0)
1797 "duplicating node that's already been matched")do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node
(s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)"
") failed", "duplicating node that's already been matched");
::breakpoint(); } } while (0)
;
1798 // Instruction
1799 mach->add_req( leaf->in(0) ); // Set initial control
1800 // Reduce interior of complex instruction
1801 ReduceInst_Interior( s, rule, mem, mach, 1 );
1802 } else {
1803 // Instruction chain rules are data-dependent on their inputs
1804 mach->add_req(0); // Set initial control to none
1805 ReduceInst_Chain_Rule( s, rule, mem, mach );
1806 }
1807
1808 // If a Memory was used, insert a Memory edge
1809 if( mem != (Node*)1 ) {
1810 mach->ins_req(MemNode::Memory,mem);
1811#ifdef ASSERT1
1812 // Verify adr type after matching memory operation
1813 const MachOper* oper = mach->memory_operand();
1814 if (oper != NULL__null && oper != (MachOper*)-1) {
1815 // It has a unique memory operand. Find corresponding ideal mem node.
1816 Node* m = NULL__null;
1817 if (leaf->is_Mem()) {
1818 m = leaf;
1819 } else {
1820 m = _mem_node;
1821 assert(m != NULL && m->is_Mem(), "expecting memory node")do { if (!(m != __null && m->is_Mem())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1821, "assert(" "m != __null && m->is_Mem()" ") failed"
, "expecting memory node"); ::breakpoint(); } } while (0)
;
1822 }
1823 const Type* mach_at = mach->adr_type();
1824 // DecodeN node consumed by an address may have different type
1825 // than its input. Don't compare types for such case.
1826 if (m->adr_type() != mach_at &&
1827 (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1828 (m->in(MemNode::Address)->is_AddP() &&
1829 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
1830 (m->in(MemNode::Address)->is_AddP() &&
1831 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1832 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
1833 mach_at = m->adr_type();
1834 }
1835 if (m->adr_type() != mach_at) {
1836 m->dump();
1837 tty->print_cr("mach:");
1838 mach->dump(1);
1839 }
1840 assert(m->adr_type() == mach_at, "matcher should not change adr type")do { if (!(m->adr_type() == mach_at)) { (*g_assert_poison)
= 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1840, "assert(" "m->adr_type() == mach_at" ") failed", "matcher should not change adr type"
); ::breakpoint(); } } while (0)
;
1841 }
1842#endif
1843 }
1844
1845 // If the _leaf is an AddP, insert the base edge
1846 if (leaf->is_AddP()) {
1847 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1848 }
1849
1850 uint number_of_projections_prior = number_of_projections();
1851
1852 // Perform any 1-to-many expansions required
1853 MachNode *ex = mach->Expand(s, _projection_list, mem);
1854 if (ex != mach) {
1855 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match")do { if (!(ex->ideal_reg() == mach->ideal_reg())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1855, "assert(" "ex->ideal_reg() == mach->ideal_reg()"
") failed", "ideal types should match"); ::breakpoint(); } }
while (0)
;
1856 if( ex->in(1)->is_Con() )
1857 ex->in(1)->set_req(0, C->root());
1858 // Remove old node from the graph
1859 for( uint i=0; i<mach->req(); i++ ) {
1860 mach->set_req(i,NULL__null);
1861 }
1862 NOT_PRODUCT(record_new2old(ex, s->_leaf);)record_new2old(ex, s->_leaf);
1863 }
1864
1865 // PhaseChaitin::fixup_spills will sometimes generate spill code
1866 // via the matcher. By the time, nodes have been wired into the CFG,
1867 // and any further nodes generated by expand rules will be left hanging
1868 // in space, and will not get emitted as output code. Catch this.
1869 // Also, catch any new register allocation constraints ("projections")
1870 // generated belatedly during spill code generation.
1871 if (_allocation_started) {
1872 guarantee(ex == mach, "no expand rules during spill generation")do { if (!(ex == mach)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1872, "guarantee(" "ex == mach" ") failed", "no expand rules during spill generation"
); ::breakpoint(); } } while (0)
;
1873 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation")do { if (!(number_of_projections_prior == number_of_projections
())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1873, "guarantee(" "number_of_projections_prior == number_of_projections()"
") failed", "no allocation during spill generation"); ::breakpoint
(); } } while (0)
;
1874 }
1875
1876 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1877 // Record the con for sharing
1878 _shared_nodes.map(leaf->_idx, ex);
1879 }
1880
1881 // Have mach nodes inherit GC barrier data
1882 if (leaf->is_LoadStore()) {
1883 mach->set_barrier_data(leaf->as_LoadStore()->barrier_data());
1884 } else if (leaf->is_Mem()) {
1885 mach->set_barrier_data(leaf->as_Mem()->barrier_data());
1886 }
1887
1888 return ex;
1889}
1890
1891void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1892 for (uint i = n->req(); i < n->len(); i++) {
1893 if (n->in(i) != NULL__null) {
1894 mach->add_prec(n->in(i));
1895 }
1896 }
1897}
1898
1899void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) {
1900 // 'op' is what I am expecting to receive
1901 int op = _leftOp[rule];
1902 // Operand type to catch childs result
1903 // This is what my child will give me.
1904 unsigned int opnd_class_instance = s->rule(op);
1905 // Choose between operand class or not.
1906 // This is what I will receive.
1907 int catch_op = (FIRST_OPERAND_CLASS138 <= op && op < NUM_OPERANDS139) ? opnd_class_instance : op;
1908 // New rule for child. Chase operand classes to get the actual rule.
1909 unsigned int newrule = s->rule(catch_op);
1910
1911 if (newrule < NUM_OPERANDS139) {
1912 // Chain from operand or operand class, may be output of shared node
1913 assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand")do { if (!(opnd_class_instance < 139)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1913, "assert(" "opnd_class_instance < 139" ") failed", "Bad AD file: Instruction chain rule must chain from operand"
); ::breakpoint(); } } while (0)
;
1914 // Insert operand into array of operands for this instruction
1915 mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1916
1917 ReduceOper(s, newrule, mem, mach);
1918 } else {
1919 // Chain from the result of an instruction
1920 assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand")do { if (!(newrule >= _LAST_MACH_OPER)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1920, "assert(" "newrule >= _LAST_MACH_OPER" ") failed",
"Do NOT chain from internal operand"); ::breakpoint(); } } while
(0)
;
1921 mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1922 Node *mem1 = (Node*)1;
1923 debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node;
1924 mach->add_req( ReduceInst(s, newrule, mem1) );
1925 debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node;
1926 }
1927 return;
1928}
1929
1930
1931uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1932 handle_precedence_edges(s->_leaf, mach);
1933
1934 if( s->_leaf->is_Load() ) {
1935 Node *mem2 = s->_leaf->in(MemNode::Memory);
1936 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1 || mem == mem2)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1936, "assert(" "mem == (Node*)1 || mem == mem2" ") failed"
, "multiple Memories being matched at once?"); ::breakpoint()
; } } while (0)
;
1937 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)if( mem == (Node*)1 ) _mem_node = s->_leaf;
1938 mem = mem2;
1939 }
1940 if( s->_leaf->in(0) != NULL__null && s->_leaf->req() > 1) {
1941 if( mach->in(0) == NULL__null )
1942 mach->set_req(0, s->_leaf->in(0));
1943 }
1944
1945 // Now recursively walk the state tree & add operand list.
1946 for( uint i=0; i<2; i++ ) { // binary tree
1947 State *newstate = s->_kids[i];
1948 if( newstate == NULL__null ) break; // Might only have 1 child
1949 // 'op' is what I am expecting to receive
1950 int op;
1951 if( i == 0 ) {
1952 op = _leftOp[rule];
1953 } else {
1954 op = _rightOp[rule];
1955 }
1956 // Operand type to catch childs result
1957 // This is what my child will give me.
1958 int opnd_class_instance = newstate->rule(op);
1959 // Choose between operand class or not.
1960 // This is what I will receive.
1961 int catch_op = (op >= FIRST_OPERAND_CLASS138 && op < NUM_OPERANDS139) ? opnd_class_instance : op;
1962 // New rule for child. Chase operand classes to get the actual rule.
1963 int newrule = newstate->rule(catch_op);
1964
1965 if (newrule < NUM_OPERANDS139) { // Operand/operandClass or internalOp/instruction?
1966 // Operand/operandClass
1967 // Insert operand into array of operands for this instruction
1968 mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1969 ReduceOper(newstate, newrule, mem, mach);
1970
1971 } else { // Child is internal operand or new instruction
1972 if (newrule < _LAST_MACH_OPER) { // internal operand or instruction?
1973 // internal operand --> call ReduceInst_Interior
1974 // Interior of complex instruction. Do nothing but recurse.
1975 num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds);
1976 } else {
1977 // instruction --> call build operand( ) to catch result
1978 // --> ReduceInst( newrule )
1979 mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1980 Node *mem1 = (Node*)1;
1981 debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node;
1982 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1983 debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node;
1984 }
1985 }
1986 assert( mach->_opnds[num_opnds-1], "" )do { if (!(mach->_opnds[num_opnds-1])) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 1986, "assert(" "mach->_opnds[num_opnds-1]" ") failed", ""
); ::breakpoint(); } } while (0)
;
1987 }
1988 return num_opnds;
1989}
1990
1991// This routine walks the interior of possible complex operands.
1992// At each point we check our children in the match tree:
1993// (1) No children -
1994// We are a leaf; add _leaf field as an input to the MachNode
1995// (2) Child is an internal operand -
1996// Skip over it ( do nothing )
1997// (3) Child is an instruction -
1998// Call ReduceInst recursively and
1999// and instruction as an input to the MachNode
2000void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
2001 assert( rule < _LAST_MACH_OPER, "called with operand rule" )do { if (!(rule < _LAST_MACH_OPER)) { (*g_assert_poison) =
'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2001, "assert(" "rule < _LAST_MACH_OPER" ") failed", "called with operand rule"
); ::breakpoint(); } } while (0)
;
2002 State *kid = s->_kids[0];
2003 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" )do { if (!(kid == __null || s->_leaf->in(0) == __null))
{ (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2003, "assert(" "kid == __null || s->_leaf->in(0) == __null"
") failed", "internal operands have no control"); ::breakpoint
(); } } while (0)
;
2004
2005 // Leaf? And not subsumed?
2006 if( kid == NULL__null && !_swallowed[rule] ) {
2007 mach->add_req( s->_leaf ); // Add leaf pointer
2008 return; // Bail out
2009 }
2010
2011 if( s->_leaf->is_Load() ) {
2012 assert( mem == (Node*)1, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2012, "assert(" "mem == (Node*)1" ") failed", "multiple Memories being matched at once?"
); ::breakpoint(); } } while (0)
;
2013 mem = s->_leaf->in(MemNode::Memory);
2014 debug_only(_mem_node = s->_leaf;)_mem_node = s->_leaf;
2015 }
2016
2017 handle_precedence_edges(s->_leaf, mach);
2018
2019 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
2020 if( !mach->in(0) )
2021 mach->set_req(0,s->_leaf->in(0));
2022 else {
2023 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" )do { if (!(s->_leaf->in(0) == mach->in(0))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2023, "assert(" "s->_leaf->in(0) == mach->in(0)" ") failed"
, "same instruction, differing controls?"); ::breakpoint(); }
} while (0)
;
2024 }
2025 }
2026
2027 for (uint i = 0; kid != NULL__null && i < 2; kid = s->_kids[1], i++) { // binary tree
2028 int newrule;
2029 if( i == 0) {
2030 newrule = kid->rule(_leftOp[rule]);
2031 } else {
2032 newrule = kid->rule(_rightOp[rule]);
2033 }
2034
2035 if (newrule < _LAST_MACH_OPER) { // Operand or instruction?
2036 // Internal operand; recurse but do nothing else
2037 ReduceOper(kid, newrule, mem, mach);
2038
2039 } else { // Child is a new instruction
2040 // Reduce the instruction, and add a direct pointer from this
2041 // machine instruction to the newly reduced one.
2042 Node *mem1 = (Node*)1;
2043 debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node;
2044 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
2045 debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node;
2046 }
2047 }
2048}
2049
2050
2051// -------------------------------------------------------------------------
2052// Java-Java calling convention
2053// (what you use when Java calls Java)
2054
2055//------------------------------find_receiver----------------------------------
2056// For a given signature, return the OptoReg for parameter 0.
2057OptoReg::Name Matcher::find_receiver() {
2058 VMRegPair regs;
2059 BasicType sig_bt = T_OBJECT;
2060 SharedRuntime::java_calling_convention(&sig_bt, &regs, 1);
2061 // Return argument 0 register. In the LP64 build pointers
2062 // take 2 registers, but the VM wants only the 'main' name.
2063 return OptoReg::as_OptoReg(regs.first());
2064}
2065
2066bool Matcher::is_vshift_con_pattern(Node* n, Node* m) {
2067 if (n != NULL__null && m != NULL__null) {
2068 return VectorNode::is_vector_shift(n) &&
2069 VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con();
2070 }
2071 return false;
2072}
2073
2074bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
2075 // Must clone all producers of flags, or we will not match correctly.
2076 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2077 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
2078 // are also there, so we may match a float-branch to int-flags and
2079 // expect the allocator to haul the flags from the int-side to the
2080 // fp-side. No can do.
2081 if (_must_clone[m->Opcode()]) {
2082 mstack.push(m, Visit);
2083 return true;
2084 }
2085 return pd_clone_node(n, m, mstack);
2086}
2087
2088bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2089 Node *off = m->in(AddPNode::Offset);
2090 if (off->is_Con()) {
2091 address_visited.test_set(m->_idx); // Flag as address_visited
2092 mstack.push(m->in(AddPNode::Address), Pre_Visit);
2093 // Clone X+offset as it also folds into most addressing expressions
2094 mstack.push(off, Visit);
2095 mstack.push(m->in(AddPNode::Base), Pre_Visit);
2096 return true;
2097 }
2098 return false;
2099}
2100
2101// A method-klass-holder may be passed in the inline_cache_reg
2102// and then expanded into the inline_cache_reg and a method_ptr register
2103// defined in ad_<arch>.cpp
2104
2105//------------------------------find_shared------------------------------------
2106// Set bits if Node is shared or otherwise a root
2107void Matcher::find_shared(Node* n) {
2108 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2109 MStack mstack(C->live_nodes() * 2);
2110 // Mark nodes as address_visited if they are inputs to an address expression
2111 VectorSet address_visited;
2112 mstack.push(n, Visit); // Don't need to pre-visit root node
2113 while (mstack.is_nonempty()) {
2114 n = mstack.node(); // Leave node on stack
2115 Node_State nstate = mstack.state();
2116 uint nop = n->Opcode();
2117 if (nstate == Pre_Visit) {
2118 if (address_visited.test(n->_idx)) { // Visited in address already?
2119 // Flag as visited and shared now.
2120 set_visited(n);
2121 }
2122 if (is_visited(n)) { // Visited already?
2123 // Node is shared and has no reason to clone. Flag it as shared.
2124 // This causes it to match into a register for the sharing.
2125 set_shared(n); // Flag as shared and
2126 if (n->is_DecodeNarrowPtr()) {
2127 // Oop field/array element loads must be shared but since
2128 // they are shared through a DecodeN they may appear to have
2129 // a single use so force sharing here.
2130 set_shared(n->in(1));
2131 }
2132 mstack.pop(); // remove node from stack
2133 continue;
2134 }
2135 nstate = Visit; // Not already visited; so visit now
2136 }
2137 if (nstate == Visit) {
2138 mstack.set_state(Post_Visit);
2139 set_visited(n); // Flag as visited now
2140 bool mem_op = false;
2141 int mem_addr_idx = MemNode::Address;
2142 if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2143 continue;
2144 }
2145 for (int i = n->req() - 1; i >= 0; --i) { // For my children
2146 Node* m = n->in(i); // Get ith input
2147 if (m == NULL__null) {
2148 continue; // Ignore NULLs
2149 }
2150 if (clone_node(n, m, mstack)) {
2151 continue;
2152 }
2153
2154 // Clone addressing expressions as they are "free" in memory access instructions
2155 if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2156 // When there are other uses besides address expressions
2157 // put it on stack and mark as shared.
2158 !is_visited(m)) {
2159 // Some inputs for address expression are not put on stack
2160 // to avoid marking them as shared and forcing them into register
2161 // if they are used only in address expressions.
2162 // But they should be marked as shared if there are other uses
2163 // besides address expressions.
2164
2165 if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2166 continue;
2167 }
2168 } // if( mem_op &&
2169 mstack.push(m, Pre_Visit);
2170 } // for(int i = ...)
2171 }
2172 else if (nstate == Alt_Post_Visit) {
2173 mstack.pop(); // Remove node from stack
2174 // We cannot remove the Cmp input from the Bool here, as the Bool may be
2175 // shared and all users of the Bool need to move the Cmp in parallel.
2176 // This leaves both the Bool and the If pointing at the Cmp. To
2177 // prevent the Matcher from trying to Match the Cmp along both paths
2178 // BoolNode::match_edge always returns a zero.
2179
2180 // We reorder the Op_If in a pre-order manner, so we can visit without
2181 // accidentally sharing the Cmp (the Bool and the If make 2 users).
2182 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2183 }
2184 else if (nstate == Post_Visit) {
2185 mstack.pop(); // Remove node from stack
2186
2187 // Now hack a few special opcodes
2188 uint opcode = n->Opcode();
2189 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode);
2190 if (!gc_handled) {
2191 find_shared_post_visit(n, opcode);
2192 }
2193 }
2194 else {
2195 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2195); ::breakpoint(); } while (0)
;
2196 }
2197 } // end of while (mstack.is_nonempty())
2198}
2199
2200bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) {
2201 switch(opcode) { // Handle some opcodes special
2202 case Op_Phi: // Treat Phis as shared roots
2203 case Op_Parm:
2204 case Op_Proj: // All handled specially during matching
2205 case Op_SafePointScalarObject:
2206 set_shared(n);
2207 set_dontcare(n);
2208 break;
2209 case Op_If:
2210 case Op_CountedLoopEnd:
2211 mstack.set_state(Alt_Post_Visit); // Alternative way
2212 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
2213 // with matching cmp/branch in 1 instruction. The Matcher needs the
2214 // Bool and CmpX side-by-side, because it can only get at constants
2215 // that are at the leaves of Match trees, and the Bool's condition acts
2216 // as a constant here.
2217 mstack.push(n->in(1), Visit); // Clone the Bool
2218 mstack.push(n->in(0), Pre_Visit); // Visit control input
2219 return true; // while (mstack.is_nonempty())
2220 case Op_ConvI2D: // These forms efficiently match with a prior
2221 case Op_ConvI2F: // Load but not a following Store
2222 if( n->in(1)->is_Load() && // Prior load
2223 n->outcnt() == 1 && // Not already shared
2224 n->unique_out()->is_Store() ) // Following store
2225 set_shared(n); // Force it to be a root
2226 break;
2227 case Op_ReverseBytesI:
2228 case Op_ReverseBytesL:
2229 if( n->in(1)->is_Load() && // Prior load
2230 n->outcnt() == 1 ) // Not already shared
2231 set_shared(n); // Force it to be a root
2232 break;
2233 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
2234 case Op_IfFalse:
2235 case Op_IfTrue:
2236 case Op_MachProj:
2237 case Op_MergeMem:
2238 case Op_Catch:
2239 case Op_CatchProj:
2240 case Op_CProj:
2241 case Op_JumpProj:
2242 case Op_JProj:
2243 case Op_NeverBranch:
2244 set_dontcare(n);
2245 break;
2246 case Op_Jump:
2247 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared)
2248 mstack.push(n->in(0), Pre_Visit); // Visit Control input
2249 return true; // while (mstack.is_nonempty())
2250 case Op_StrComp:
2251 case Op_StrEquals:
2252 case Op_StrIndexOf:
2253 case Op_StrIndexOfChar:
2254 case Op_AryEq:
2255 case Op_HasNegatives:
2256 case Op_StrInflatedCopy:
2257 case Op_StrCompressedCopy:
2258 case Op_EncodeISOArray:
2259 case Op_FmaD:
2260 case Op_FmaF:
2261 case Op_FmaVD:
2262 case Op_FmaVF:
2263 case Op_MacroLogicV:
2264 case Op_LoadVectorMasked:
2265 case Op_VectorCmpMasked:
2266 case Op_VectorLoadMask:
2267 set_shared(n); // Force result into register (it will be anyways)
2268 break;
2269 case Op_ConP: { // Convert pointers above the centerline to NUL
2270 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2271 const TypePtr* tp = tn->type()->is_ptr();
2272 if (tp->_ptr == TypePtr::AnyNull) {
2273 tn->set_type(TypePtr::NULL_PTR);
2274 }
2275 break;
2276 }
2277 case Op_ConN: { // Convert narrow pointers above the centerline to NUL
2278 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2279 const TypePtr* tp = tn->type()->make_ptr();
2280 if (tp && tp->_ptr == TypePtr::AnyNull) {
2281 tn->set_type(TypeNarrowOop::NULL_PTR);
2282 }
2283 break;
2284 }
2285 case Op_Binary: // These are introduced in the Post_Visit state.
2286 ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2286); ::breakpoint(); } while (0)
;
2287 break;
2288 case Op_ClearArray:
2289 case Op_SafePoint:
2290 mem_op = true;
2291 break;
2292 default:
2293 if( n->is_Store() ) {
2294 // Do match stores, despite no ideal reg
2295 mem_op = true;
2296 break;
2297 }
2298 if( n->is_Mem() ) { // Loads and LoadStores
2299 mem_op = true;
2300 // Loads must be root of match tree due to prior load conflict
2301 if( C->subsume_loads() == false )
2302 set_shared(n);
2303 }
2304 // Fall into default case
2305 if( !n->ideal_reg() )
2306 set_dontcare(n); // Unmatchable Nodes
2307 } // end_switch
2308 return false;
2309}
2310
2311void Matcher::find_shared_post_visit(Node* n, uint opcode) {
2312 if (n->is_predicated_vector()) {
2313 // Restructure into binary trees for Matching.
2314 if (n->req() == 4) {
2315 n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2316 n->set_req(2, n->in(3));
2317 n->del_req(3);
2318 } else if (n->req() == 5) {
2319 n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2320 n->set_req(2, new BinaryNode(n->in(3), n->in(4)));
2321 n->del_req(4);
2322 n->del_req(3);
2323 }
2324 return;
2325 }
2326
2327 switch(opcode) { // Handle some opcodes special
2328 case Op_StorePConditional:
2329 case Op_StoreIConditional:
2330 case Op_StoreLConditional:
2331 case Op_CompareAndExchangeB:
2332 case Op_CompareAndExchangeS:
2333 case Op_CompareAndExchangeI:
2334 case Op_CompareAndExchangeL:
2335 case Op_CompareAndExchangeP:
2336 case Op_CompareAndExchangeN:
2337 case Op_WeakCompareAndSwapB:
2338 case Op_WeakCompareAndSwapS:
2339 case Op_WeakCompareAndSwapI:
2340 case Op_WeakCompareAndSwapL:
2341 case Op_WeakCompareAndSwapP:
2342 case Op_WeakCompareAndSwapN:
2343 case Op_CompareAndSwapB:
2344 case Op_CompareAndSwapS:
2345 case Op_CompareAndSwapI:
2346 case Op_CompareAndSwapL:
2347 case Op_CompareAndSwapP:
2348 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
2349 Node* newval = n->in(MemNode::ValueIn);
2350 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
2351 Node* pair = new BinaryNode(oldval, newval);
2352 n->set_req(MemNode::ValueIn, pair);
2353 n->del_req(LoadStoreConditionalNode::ExpectedIn);
2354 break;
2355 }
2356 case Op_CMoveD: // Convert trinary to binary-tree
2357 case Op_CMoveF:
2358 case Op_CMoveI:
2359 case Op_CMoveL:
2360 case Op_CMoveN:
2361 case Op_CMoveP:
2362 case Op_CMoveVF:
2363 case Op_CMoveVD: {
2364 // Restructure into a binary tree for Matching. It's possible that
2365 // we could move this code up next to the graph reshaping for IfNodes
2366 // or vice-versa, but I do not want to debug this for Ladybird.
2367 // 10/2/2000 CNC.
2368 Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1));
2369 n->set_req(1, pair1);
2370 Node* pair2 = new BinaryNode(n->in(2), n->in(3));
2371 n->set_req(2, pair2);
2372 n->del_req(3);
2373 break;
2374 }
2375 case Op_VectorCmpMasked: {
2376 Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2377 n->set_req(2, pair1);
2378 n->del_req(3);
2379 break;
2380 }
2381 case Op_MacroLogicV: {
2382 Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2383 Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2384 n->set_req(1, pair1);
2385 n->set_req(2, pair2);
2386 n->del_req(4);
2387 n->del_req(3);
2388 break;
2389 }
2390 case Op_StoreVectorMasked: {
2391 Node* pair = new BinaryNode(n->in(3), n->in(4));
2392 n->set_req(3, pair);
2393 n->del_req(4);
2394 break;
2395 }
2396 case Op_LoopLimit: {
2397 Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2398 n->set_req(1, pair1);
2399 n->set_req(2, n->in(3));
2400 n->del_req(3);
2401 break;
2402 }
2403 case Op_StrEquals:
2404 case Op_StrIndexOfChar: {
2405 Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2406 n->set_req(2, pair1);
2407 n->set_req(3, n->in(4));
2408 n->del_req(4);
2409 break;
2410 }
2411 case Op_StrComp:
2412 case Op_StrIndexOf: {
2413 Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2414 n->set_req(2, pair1);
2415 Node* pair2 = new BinaryNode(n->in(4),n->in(5));
2416 n->set_req(3, pair2);
2417 n->del_req(5);
2418 n->del_req(4);
2419 break;
2420 }
2421 case Op_StrCompressedCopy:
2422 case Op_StrInflatedCopy:
2423 case Op_EncodeISOArray: {
2424 // Restructure into a binary tree for Matching.
2425 Node* pair = new BinaryNode(n->in(3), n->in(4));
2426 n->set_req(3, pair);
2427 n->del_req(4);
2428 break;
2429 }
2430 case Op_FmaD:
2431 case Op_FmaF:
2432 case Op_FmaVD:
2433 case Op_FmaVF: {
2434 // Restructure into a binary tree for Matching.
2435 Node* pair = new BinaryNode(n->in(1), n->in(2));
2436 n->set_req(2, pair);
2437 n->set_req(1, n->in(3));
2438 n->del_req(3);
2439 break;
2440 }
2441 case Op_MulAddS2I: {
2442 Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2443 Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2444 n->set_req(1, pair1);
2445 n->set_req(2, pair2);
2446 n->del_req(4);
2447 n->del_req(3);
2448 break;
2449 }
2450 case Op_CopySignD:
2451 case Op_SignumF:
2452 case Op_SignumD: {
2453 Node* pair = new BinaryNode(n->in(2), n->in(3));
2454 n->set_req(2, pair);
2455 n->del_req(3);
2456 break;
2457 }
2458 case Op_VectorBlend:
2459 case Op_VectorInsert: {
2460 Node* pair = new BinaryNode(n->in(1), n->in(2));
2461 n->set_req(1, pair);
2462 n->set_req(2, n->in(3));
2463 n->del_req(3);
2464 break;
2465 }
2466 case Op_LoadVectorGatherMasked:
2467 case Op_StoreVectorScatter: {
2468 Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2469 n->set_req(MemNode::ValueIn, pair);
2470 n->del_req(MemNode::ValueIn+1);
2471 break;
2472 }
2473 case Op_StoreVectorScatterMasked: {
2474 Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2));
2475 n->set_req(MemNode::ValueIn+1, pair);
2476 n->del_req(MemNode::ValueIn+2);
2477 pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2478 n->set_req(MemNode::ValueIn, pair);
2479 n->del_req(MemNode::ValueIn+1);
2480 break;
2481 }
2482 case Op_VectorMaskCmp: {
2483 n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2484 n->set_req(2, n->in(3));
2485 n->del_req(3);
2486 break;
2487 }
2488 default:
2489 break;
2490 }
2491}
2492
2493#ifndef PRODUCT
2494void Matcher::record_new2old(Node* newn, Node* old) {
2495 _new2old_map.map(newn->_idx, old);
2496 if (!_reused.test_set(old->_igv_idx)) {
2497 // Reuse the Ideal-level IGV identifier so that the node can be tracked
2498 // across matching. If there are multiple machine nodes expanded from the
2499 // same Ideal node, only one will reuse its IGV identifier.
2500 newn->_igv_idx = old->_igv_idx;
2501 }
2502}
2503
2504// machine-independent root to machine-dependent root
2505void Matcher::dump_old2new_map() {
2506 _old2new_map.dump();
2507}
2508#endif // !PRODUCT
2509
2510//---------------------------collect_null_checks-------------------------------
2511// Find null checks in the ideal graph; write a machine-specific node for
2512// it. Used by later implicit-null-check handling. Actually collects
2513// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2514// value being tested.
2515void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2516 Node *iff = proj->in(0);
2517 if( iff->Opcode() == Op_If ) {
2518 // During matching If's have Bool & Cmp side-by-side
2519 BoolNode *b = iff->in(1)->as_Bool();
2520 Node *cmp = iff->in(2);
2521 int opc = cmp->Opcode();
2522 if (opc != Op_CmpP && opc != Op_CmpN) return;
2523
2524 const Type* ct = cmp->in(2)->bottom_type();
2525 if (ct == TypePtr::NULL_PTR ||
2526 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2527
2528 bool push_it = false;
2529 if( proj->Opcode() == Op_IfTrue ) {
2530#ifndef PRODUCT
2531 extern int all_null_checks_found;
2532 all_null_checks_found++;
2533#endif
2534 if( b->_test._test == BoolTest::ne ) {
2535 push_it = true;
2536 }
2537 } else {
2538 assert( proj->Opcode() == Op_IfFalse, "" )do { if (!(proj->Opcode() == Op_IfFalse)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2538, "assert(" "proj->Opcode() == Op_IfFalse" ") failed"
, ""); ::breakpoint(); } } while (0)
;
2539 if( b->_test._test == BoolTest::eq ) {
2540 push_it = true;
2541 }
2542 }
2543 if( push_it ) {
2544 _null_check_tests.push(proj);
2545 Node* val = cmp->in(1);
2546#ifdef _LP641
2547 if (val->bottom_type()->isa_narrowoop() &&
2548 !Matcher::narrow_oop_use_complex_address()) {
2549 //
2550 // Look for DecodeN node which should be pinned to orig_proj.
2551 // On platforms (Sparc) which can not handle 2 adds
2552 // in addressing mode we have to keep a DecodeN node and
2553 // use it to do implicit NULL check in address.
2554 //
2555 // DecodeN node was pinned to non-null path (orig_proj) during
2556 // CastPP transformation in final_graph_reshaping_impl().
2557 //
2558 uint cnt = orig_proj->outcnt();
2559 for (uint i = 0; i < orig_proj->outcnt(); i++) {
2560 Node* d = orig_proj->raw_out(i);
2561 if (d->is_DecodeN() && d->in(1) == val) {
2562 val = d;
2563 val->set_req(0, NULL__null); // Unpin now.
2564 // Mark this as special case to distinguish from
2565 // a regular case: CmpP(DecodeN, NULL).
2566 val = (Node*)(((intptr_t)val) | 1);
2567 break;
2568 }
2569 }
2570 }
2571#endif
2572 _null_check_tests.push(val);
2573 }
2574 }
2575 }
2576}
2577
2578//---------------------------validate_null_checks------------------------------
2579// Its possible that the value being NULL checked is not the root of a match
2580// tree. If so, I cannot use the value in an implicit null check.
2581void Matcher::validate_null_checks( ) {
2582 uint cnt = _null_check_tests.size();
2583 for( uint i=0; i < cnt; i+=2 ) {
30
Assuming 'i' is < 'cnt'
31
Loop condition is true. Entering loop body
2584 Node *test = _null_check_tests[i];
2585 Node *val = _null_check_tests[i+1];
2586 bool is_decoden = ((intptr_t)val) & 1;
2587 val = (Node*)(((intptr_t)val) & ~1);
32
Null pointer value stored to 'val'
2588 if (has_new_node(val)) {
33
Passing null pointer value via 1st parameter 'n'
34
Calling 'Matcher::has_new_node'
2589 Node* new_val = new_node(val);
2590 if (is_decoden) {
2591 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity")do { if (!(val->is_DecodeNarrowPtr() && val->in
(0) == __null)) { (*g_assert_poison) = 'X';; report_vm_error(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2591, "assert(" "val->is_DecodeNarrowPtr() && val->in(0) == __null"
") failed", "sanity"); ::breakpoint(); } } while (0)
;
2592 // Note: new_val may have a control edge if
2593 // the original ideal node DecodeN was matched before
2594 // it was unpinned in Matcher::collect_null_checks().
2595 // Unpin the mach node and mark it.
2596 new_val->set_req(0, NULL__null);
2597 new_val = (Node*)(((intptr_t)new_val) | 1);
2598 }
2599 // Is a match-tree root, so replace with the matched value
2600 _null_check_tests.map(i+1, new_val);
2601 } else {
2602 // Yank from candidate list
2603 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2604 _null_check_tests.map(i,_null_check_tests[--cnt]);
2605 _null_check_tests.pop();
2606 _null_check_tests.pop();
2607 i-=2;
2608 }
2609 }
2610}
2611
2612bool Matcher::gen_narrow_oop_implicit_null_checks() {
2613 // Advice matcher to perform null checks on the narrow oop side.
2614 // Implicit checks are not possible on the uncompressed oop side anyway
2615 // (at least not for read accesses).
2616 // Performs significantly better (especially on Power 6).
2617 if (!os::zero_page_read_protected()) {
2618 return true;
2619 }
2620 return CompressedOops::use_implicit_null_checks() &&
2621 (narrow_oop_use_complex_address() ||
2622 CompressedOops::base() != NULL__null);
2623}
2624
2625// Compute RegMask for an ideal register.
2626const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) {
2627 const Type* t = Type::mreg2type[ideal_reg];
2628 if (t == NULL__null) {
2629 assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg)do { if (!(ideal_reg >= Op_VecA && ideal_reg <=
Op_VecZ)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2629, "assert(" "ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ"
") failed", "not a vector: %d", ideal_reg); ::breakpoint(); }
} while (0)
;
2630 return NULL__null; // not supported
2631 }
2632 Node* fp = ret->in(TypeFunc::FramePtr);
2633 Node* mem = ret->in(TypeFunc::Memory);
2634 const TypePtr* atp = TypePtr::BOTTOM;
2635 MemNode::MemOrd mo = MemNode::unordered;
2636
2637 Node* spill;
2638 switch (ideal_reg) {
2639 case Op_RegN: spill = new LoadNNode(NULL__null, mem, fp, atp, t->is_narrowoop(), mo); break;
2640 case Op_RegI: spill = new LoadINode(NULL__null, mem, fp, atp, t->is_int(), mo); break;
2641 case Op_RegP: spill = new LoadPNode(NULL__null, mem, fp, atp, t->is_ptr(), mo); break;
2642 case Op_RegF: spill = new LoadFNode(NULL__null, mem, fp, atp, t, mo); break;
2643 case Op_RegD: spill = new LoadDNode(NULL__null, mem, fp, atp, t, mo); break;
2644 case Op_RegL: spill = new LoadLNode(NULL__null, mem, fp, atp, t->is_long(), mo); break;
2645
2646 case Op_VecA: // fall-through
2647 case Op_VecS: // fall-through
2648 case Op_VecD: // fall-through
2649 case Op_VecX: // fall-through
2650 case Op_VecY: // fall-through
2651 case Op_VecZ: spill = new LoadVectorNode(NULL__null, mem, fp, atp, t->is_vect()); break;
2652 case Op_RegVectMask: return Matcher::predicate_reg_mask();
2653
2654 default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here(
"/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2654); ::breakpoint(); } while (0)
;
2655 }
2656 MachNode* mspill = match_tree(spill);
2657 assert(mspill != NULL, "matching failed: %d", ideal_reg)do { if (!(mspill != __null)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2657, "assert(" "mspill != __null" ") failed", "matching failed: %d"
, ideal_reg); ::breakpoint(); } } while (0)
;
2658 // Handle generic vector operand case
2659 if (Matcher::supports_generic_vector_operands && t->isa_vect()) {
2660 specialize_mach_node(mspill);
2661 }
2662 return &mspill->out_RegMask();
2663}
2664
2665// Process Mach IR right after selection phase is over.
2666void Matcher::do_postselect_cleanup() {
2667 if (supports_generic_vector_operands) {
2668 specialize_generic_vector_operands();
2669 if (C->failing()) return;
2670 }
2671}
2672
2673//----------------------------------------------------------------------
2674// Generic machine operands elision.
2675//----------------------------------------------------------------------
2676
2677// Compute concrete vector operand for a generic TEMP vector mach node based on its user info.
2678void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) {
2679 assert(use->in(idx) == tmp, "not a user")do { if (!(use->in(idx) == tmp)) { (*g_assert_poison) = 'X'
;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2679, "assert(" "use->in(idx) == tmp" ") failed", "not a user"
); ::breakpoint(); } } while (0)
;
2680 assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet")do { if (!(!Matcher::is_generic_vector(use->_opnds[0]))) {
(*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2680, "assert(" "!Matcher::is_generic_vector(use->_opnds[0])"
") failed", "use not processed yet"); ::breakpoint(); } } while
(0)
;
2681
2682 if ((uint)idx == use->two_adr()) { // DEF_TEMP case
2683 tmp->_opnds[0] = use->_opnds[0]->clone();
2684 } else {
2685 uint ideal_vreg = vector_ideal_reg(C->max_vector_size());
2686 tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/);
2687 }
2688}
2689
2690// Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx).
2691MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) {
2692 assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates")do { if (!(Matcher::is_generic_vector(m->_opnds[opnd_idx])
)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2692, "assert(" "Matcher::is_generic_vector(m->_opnds[opnd_idx])"
") failed", "repeated updates"); ::breakpoint(); } } while (
0)
;
2693 Node* def = NULL__null;
2694 if (opnd_idx == 0) { // DEF
2695 def = m; // use mach node itself to compute vector operand type
2696 } else {
2697 int base_idx = m->operand_index(opnd_idx);
2698 def = m->in(base_idx);
2699 if (def->is_Mach()) {
2700 if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) {
2701 specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site
2702 } else if (is_reg2reg_move(def->as_Mach())) {
2703 def = def->in(1); // skip over generic reg-to-reg moves
2704 }
2705 }
2706 }
2707 assert(def->bottom_type()->isa_vect(), "not a vector")do { if (!(def->bottom_type()->isa_vect())) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2707, "assert(" "def->bottom_type()->isa_vect()" ") failed"
, "not a vector"); ::breakpoint(); } } while (0)
;
2708 uint ideal_vreg = def->bottom_type()->ideal_reg();
2709 return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/);
2710}
2711
2712void Matcher::specialize_mach_node(MachNode* m) {
2713 assert(!m->is_MachTemp(), "processed along with its user")do { if (!(!m->is_MachTemp())) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2713, "assert(" "!m->is_MachTemp()" ") failed", "processed along with its user"
); ::breakpoint(); } } while (0)
;
2714 // For generic use operands pull specific register class operands from
2715 // its def instruction's output operand (def operand).
2716 for (uint i = 0; i < m->num_opnds(); i++) {
2717 if (Matcher::is_generic_vector(m->_opnds[i])) {
2718 m->_opnds[i] = specialize_vector_operand(m, i);
2719 }
2720 }
2721}
2722
2723// Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph.
2724void Matcher::specialize_generic_vector_operands() {
2725 assert(supports_generic_vector_operands, "sanity")do { if (!(supports_generic_vector_operands)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2725, "assert(" "supports_generic_vector_operands" ") failed"
, "sanity"); ::breakpoint(); } } while (0)
;
2726 ResourceMark rm;
2727
2728 // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ])
2729 // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec).
2730 Unique_Node_List live_nodes;
2731 C->identify_useful_nodes(live_nodes);
2732
2733 while (live_nodes.size() > 0) {
2734 MachNode* m = live_nodes.pop()->isa_Mach();
2735 if (m != NULL__null) {
2736 if (Matcher::is_reg2reg_move(m)) {
2737 // Register allocator properly handles vec <=> leg moves using register masks.
2738 int opnd_idx = m->operand_index(1);
2739 Node* def = m->in(opnd_idx);
2740 m->subsume_by(def, C);
2741 } else if (m->is_MachTemp()) {
2742 // process MachTemp nodes at use site (see Matcher::specialize_vector_operand)
2743 } else {
2744 specialize_mach_node(m);
2745 }
2746 }
2747 }
2748}
2749
2750uint Matcher::vector_length(const Node* n) {
2751 const TypeVect* vt = n->bottom_type()->is_vect();
2752 return vt->length();
2753}
2754
2755uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) {
2756 int def_idx = use->operand_index(opnd);
2757 Node* def = use->in(def_idx);
2758 return def->bottom_type()->is_vect()->length();
2759}
2760
2761uint Matcher::vector_length_in_bytes(const Node* n) {
2762 const TypeVect* vt = n->bottom_type()->is_vect();
2763 return vt->length_in_bytes();
2764}
2765
2766uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) {
2767 uint def_idx = use->operand_index(opnd);
2768 Node* def = use->in(def_idx);
2769 return def->bottom_type()->is_vect()->length_in_bytes();
2770}
2771
2772BasicType Matcher::vector_element_basic_type(const Node* n) {
2773 const TypeVect* vt = n->bottom_type()->is_vect();
2774 return vt->element_basic_type();
2775}
2776
2777BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) {
2778 int def_idx = use->operand_index(opnd);
2779 Node* def = use->in(def_idx);
2780 return def->bottom_type()->is_vect()->element_basic_type();
2781}
2782
2783#ifdef ASSERT1
2784bool Matcher::verify_after_postselect_cleanup() {
2785 assert(!C->failing(), "sanity")do { if (!(!C->failing())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2785, "assert(" "!C->failing()" ") failed", "sanity"); ::
breakpoint(); } } while (0)
;
2786 if (supports_generic_vector_operands) {
2787 Unique_Node_List useful;
2788 C->identify_useful_nodes(useful);
2789 for (uint i = 0; i < useful.size(); i++) {
2790 MachNode* m = useful.at(i)->isa_Mach();
2791 if (m != NULL__null) {
2792 assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed")do { if (!(!Matcher::is_reg2reg_move(m))) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2792, "assert(" "!Matcher::is_reg2reg_move(m)" ") failed", "no MoveVec nodes allowed"
); ::breakpoint(); } } while (0)
;
2793 for (uint j = 0; j < m->num_opnds(); j++) {
2794 assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed")do { if (!(!Matcher::is_generic_vector(m->_opnds[j]))) { (
*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2794, "assert(" "!Matcher::is_generic_vector(m->_opnds[j])"
") failed", "no generic vector operands allowed"); ::breakpoint
(); } } while (0)
;
2795 }
2796 }
2797 }
2798 }
2799 return true;
2800}
2801#endif // ASSERT
2802
2803// Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
2804// atomic instruction acting as a store_load barrier without any
2805// intervening volatile load, and thus we don't need a barrier here.
2806// We retain the Node to act as a compiler ordering barrier.
2807bool Matcher::post_store_load_barrier(const Node* vmb) {
2808 Compile* C = Compile::current();
2809 assert(vmb->is_MemBar(), "")do { if (!(vmb->is_MemBar())) { (*g_assert_poison) = 'X';;
report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2809, "assert(" "vmb->is_MemBar()" ") failed", ""); ::breakpoint
(); } } while (0)
;
2810 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "")do { if (!(vmb->Opcode() != Op_MemBarAcquire && vmb
->Opcode() != Op_LoadFence)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2810, "assert(" "vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence"
") failed", ""); ::breakpoint(); } } while (0)
;
2811 const MemBarNode* membar = vmb->as_MemBar();
2812
2813 // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2814 Node* ctrl = NULL__null;
2815 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2816 Node* p = membar->fast_out(i);
2817 assert(p->is_Proj(), "only projections here")do { if (!(p->is_Proj())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2817, "assert(" "p->is_Proj()" ") failed", "only projections here"
); ::breakpoint(); } } while (0)
;
2818 if ((p->as_Proj()->_con == TypeFunc::Control) &&
2819 !C->node_arena()->contains(p)) { // Unmatched old-space only
2820 ctrl = p;
2821 break;
2822 }
2823 }
2824 assert((ctrl != NULL), "missing control projection")do { if (!((ctrl != __null))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2824, "assert(" "(ctrl != __null)" ") failed", "missing control projection"
); ::breakpoint(); } } while (0)
;
2825
2826 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2827 Node *x = ctrl->fast_out(j);
2828 int xop = x->Opcode();
2829
2830 // We don't need current barrier if we see another or a lock
2831 // before seeing volatile load.
2832 //
2833 // Op_Fastunlock previously appeared in the Op_* list below.
2834 // With the advent of 1-0 lock operations we're no longer guaranteed
2835 // that a monitor exit operation contains a serializing instruction.
2836
2837 if (xop == Op_MemBarVolatile ||
2838 xop == Op_CompareAndExchangeB ||
2839 xop == Op_CompareAndExchangeS ||
2840 xop == Op_CompareAndExchangeI ||
2841 xop == Op_CompareAndExchangeL ||
2842 xop == Op_CompareAndExchangeP ||
2843 xop == Op_CompareAndExchangeN ||
2844 xop == Op_WeakCompareAndSwapB ||
2845 xop == Op_WeakCompareAndSwapS ||
2846 xop == Op_WeakCompareAndSwapL ||
2847 xop == Op_WeakCompareAndSwapP ||
2848 xop == Op_WeakCompareAndSwapN ||
2849 xop == Op_WeakCompareAndSwapI ||
2850 xop == Op_CompareAndSwapB ||
2851 xop == Op_CompareAndSwapS ||
2852 xop == Op_CompareAndSwapL ||
2853 xop == Op_CompareAndSwapP ||
2854 xop == Op_CompareAndSwapN ||
2855 xop == Op_CompareAndSwapI ||
2856 BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) {
2857 return true;
2858 }
2859
2860 // Op_FastLock previously appeared in the Op_* list above.
2861 if (xop == Op_FastLock) {
2862 return true;
2863 }
2864
2865 if (x->is_MemBar()) {
2866 // We must retain this membar if there is an upcoming volatile
2867 // load, which will be followed by acquire membar.
2868 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2869 return false;
2870 } else {
2871 // For other kinds of barriers, check by pretending we
2872 // are them, and seeing if we can be removed.
2873 return post_store_load_barrier(x->as_MemBar());
2874 }
2875 }
2876
2877 // probably not necessary to check for these
2878 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2879 return false;
2880 }
2881 }
2882 return false;
2883}
2884
2885// Check whether node n is a branch to an uncommon trap that we could
2886// optimize as test with very high branch costs in case of going to
2887// the uncommon trap. The code must be able to be recompiled to use
2888// a cheaper test.
2889bool Matcher::branches_to_uncommon_trap(const Node *n) {
2890 // Don't do it for natives, adapters, or runtime stubs
2891 Compile *C = Compile::current();
2892 if (!C->is_method_compilation()) return false;
2893
2894 assert(n->is_If(), "You should only call this on if nodes.")do { if (!(n->is_If())) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2894, "assert(" "n->is_If()" ") failed", "You should only call this on if nodes."
); ::breakpoint(); } } while (0)
;
2895 IfNode *ifn = n->as_If();
2896
2897 Node *ifFalse = NULL__null;
2898 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2899 if (ifn->fast_out(i)->is_IfFalse()) {
2900 ifFalse = ifn->fast_out(i);
2901 break;
2902 }
2903 }
2904 assert(ifFalse, "An If should have an ifFalse. Graph is broken.")do { if (!(ifFalse)) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2904, "assert(" "ifFalse" ") failed", "An If should have an ifFalse. Graph is broken."
); ::breakpoint(); } } while (0)
;
2905
2906 Node *reg = ifFalse;
2907 int cnt = 4; // We must protect against cycles. Limit to 4 iterations.
2908 // Alternatively use visited set? Seems too expensive.
2909 while (reg != NULL__null && cnt > 0) {
2910 CallNode *call = NULL__null;
2911 RegionNode *nxt_reg = NULL__null;
2912 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2913 Node *o = reg->fast_out(i);
2914 if (o->is_Call()) {
2915 call = o->as_Call();
2916 }
2917 if (o->is_Region()) {
2918 nxt_reg = o->as_Region();
2919 }
2920 }
2921
2922 if (call &&
2923 call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2924 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2925 if (trtype->isa_int() && trtype->is_int()->is_con()) {
2926 jint tr_con = trtype->is_int()->get_con();
2927 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2928 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2929 assert((int)reason < (int)BitsPerInt, "recode bit map")do { if (!((int)reason < (int)BitsPerInt)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2929, "assert(" "(int)reason < (int)BitsPerInt" ") failed"
, "recode bit map"); ::breakpoint(); } } while (0)
;
2930
2931 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2932 && action != Deoptimization::Action_none) {
2933 // This uncommon trap is sure to recompile, eventually.
2934 // When that happens, C->too_many_traps will prevent
2935 // this transformation from happening again.
2936 return true;
2937 }
2938 }
2939 }
2940
2941 reg = nxt_reg;
2942 cnt--;
2943 }
2944
2945 return false;
2946}
2947
2948//=============================================================================
2949//---------------------------State---------------------------------------------
2950State::State(void) : _rule() {
2951#ifdef ASSERT1
2952 _id = 0;
2953 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL);
2954 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL);
2955#endif
2956}
2957
2958#ifdef ASSERT1
2959State::~State() {
2960 _id = 99;
2961 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL);
2962 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL);
2963 memset(_cost, -3, sizeof(_cost));
2964 memset(_rule, -3, sizeof(_rule));
2965}
2966#endif
2967
2968#ifndef PRODUCT
2969//---------------------------dump----------------------------------------------
2970void State::dump() {
2971 tty->print("\n");
2972 dump(0);
2973}
2974
2975void State::dump(int depth) {
2976 for (int j = 0; j < depth; j++) {
2977 tty->print(" ");
2978 }
2979 tty->print("--N: ");
2980 _leaf->dump();
2981 uint i;
2982 for (i = 0; i < _LAST_MACH_OPER; i++) {
2983 // Check for valid entry
2984 if (valid(i)) {
2985 for (int j = 0; j < depth; j++) {
2986 tty->print(" ");
2987 }
2988 assert(cost(i) != max_juint, "cost must be a valid value")do { if (!(cost(i) != max_juint)) { (*g_assert_poison) = 'X';
; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2988, "assert(" "cost(i) != max_juint" ") failed", "cost must be a valid value"
); ::breakpoint(); } } while (0)
;
2989 assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule")do { if (!(rule(i) < _last_Mach_Node)) { (*g_assert_poison
) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp"
, 2989, "assert(" "rule(i) < _last_Mach_Node" ") failed", "rule[i] must be valid rule"
); ::breakpoint(); } } while (0)
;
2990 tty->print_cr("%s %d %s",
2991 ruleName[i], cost(i), ruleName[rule(i)] );
2992 }
2993 }
2994 tty->cr();
2995
2996 for (i = 0; i < 2; i++) {
2997 if (_kids[i]) {
2998 _kids[i]->dump(depth + 1);
2999 }
3000 }
3001}
3002#endif

/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.hpp

1/*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OPTO_MATCHER_HPP
26#define SHARE_OPTO_MATCHER_HPP
27
28#include "libadt/vectset.hpp"
29#include "memory/resourceArea.hpp"
30#include "oops/compressedOops.hpp"
31#include "opto/node.hpp"
32#include "opto/phaseX.hpp"
33#include "opto/regmask.hpp"
34#include "runtime/vm_version.hpp"
35
36class Compile;
37class Node;
38class MachNode;
39class MachTypeNode;
40class MachOper;
41
42//---------------------------Matcher-------------------------------------------
43class Matcher : public PhaseTransform {
44 friend class VMStructs;
45
46public:
47
48 // Machine-dependent definitions
49#include CPU_HEADER(matcher)"matcher_x86.hpp"
50
51 // State and MStack class used in xform() and find_shared() iterative methods.
52 enum Node_State { Pre_Visit, // node has to be pre-visited
53 Visit, // visit node
54 Post_Visit, // post-visit node
55 Alt_Post_Visit // alternative post-visit path
56 };
57
58 class MStack: public Node_Stack {
59 public:
60 MStack(int size) : Node_Stack(size) { }
61
62 void push(Node *n, Node_State ns) {
63 Node_Stack::push(n, (uint)ns);
64 }
65 void push(Node *n, Node_State ns, Node *parent, int indx) {
66 ++_inode_top;
67 if ((_inode_top + 1) >= _inode_max) grow();
68 _inode_top->node = parent;
69 _inode_top->indx = (uint)indx;
70 ++_inode_top;
71 _inode_top->node = n;
72 _inode_top->indx = (uint)ns;
73 }
74 Node *parent() {
75 pop();
76 return node();
77 }
78 Node_State state() const {
79 return (Node_State)index();
80 }
81 void set_state(Node_State ns) {
82 set_index((uint)ns);
83 }
84 };
85
86private:
87 // Private arena of State objects
88 ResourceArea _states_arena;
89
90 VectorSet _visited; // Visit bits
91
92 // Used to control the Label pass
93 VectorSet _shared; // Shared Ideal Node
94 VectorSet _dontcare; // Nothing the matcher cares about
95
96 // Private methods which perform the actual matching and reduction
97 // Walks the label tree, generating machine nodes
98 MachNode *ReduceInst( State *s, int rule, Node *&mem);
99 void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
100 uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
101 void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
102
103 // If this node already matched using "rule", return the MachNode for it.
104 MachNode* find_shared_node(Node* n, uint rule);
105
106 // Convert a dense opcode number to an expanded rule number
107 const int *_reduceOp;
108 const int *_leftOp;
109 const int *_rightOp;
110
111 // Map dense opcode number to info on when rule is swallowed constant.
112 const bool *_swallowed;
113
114 // Map dense rule number to determine if this is an instruction chain rule
115 const uint _begin_inst_chain_rule;
116 const uint _end_inst_chain_rule;
117
118 // We want to clone constants and possible CmpI-variants.
119 // If we do not clone CmpI, then we can have many instances of
120 // condition codes alive at once. This is OK on some chips and
121 // bad on others. Hence the machine-dependent table lookup.
122 const char *_must_clone;
123
124 // Find shared Nodes, or Nodes that otherwise are Matcher roots
125 void find_shared( Node *n );
126 bool find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx);
127 void find_shared_post_visit(Node* n, uint opcode);
128
129 bool is_vshift_con_pattern(Node* n, Node* m);
130
131 // Debug and profile information for nodes in old space:
132 GrowableArray<Node_Notes*>* _old_node_note_array;
133
134 // Node labeling iterator for instruction selection
135 Node* Label_Root(const Node* n, State* svec, Node* control, Node*& mem);
136
137 Node *transform( Node *dummy );
138
139 Node_List _projection_list; // For Machine nodes killing many values
140
141 Node_Array _shared_nodes;
142
143#ifndef PRODUCT
144 Node_Array _old2new_map; // Map roots of ideal-trees to machine-roots
145 Node_Array _new2old_map; // Maps machine nodes back to ideal
146 VectorSet _reused; // Ideal IGV identifiers reused by machine nodes
147#endif // !PRODUCT
148
149 // Accessors for the inherited field PhaseTransform::_nodes:
150 void grow_new_node_array(uint idx_limit) {
151 _nodes.map(idx_limit-1, NULL__null);
152 }
153 bool has_new_node(const Node* n) const {
154 return _nodes.at(n->_idx) != NULL__null;
35
Access to field '_idx' results in a dereference of a null pointer (loaded from variable 'n')
155 }
156 Node* new_node(const Node* n) const {
157 assert(has_new_node(n), "set before get")do { if (!(has_new_node(n))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.hpp"
, 157, "assert(" "has_new_node(n)" ") failed", "set before get"
); ::breakpoint(); } } while (0)
;
158 return _nodes.at(n->_idx);
159 }
160 void set_new_node(const Node* n, Node *nn) {
161 assert(!has_new_node(n), "set only once")do { if (!(!has_new_node(n))) { (*g_assert_poison) = 'X';; report_vm_error
("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.hpp"
, 161, "assert(" "!has_new_node(n)" ") failed", "set only once"
); ::breakpoint(); } } while (0)
;
162 _nodes.map(n->_idx, nn);
163 }
164
165#ifdef ASSERT1
166 // Make sure only new nodes are reachable from this node
167 void verify_new_nodes_only(Node* root);
168
169 Node* _mem_node; // Ideal memory node consumed by mach node
170#endif
171
172 // Mach node for ConP #NULL
173 MachNode* _mach_null;
174
175 void handle_precedence_edges(Node* n, MachNode *mach);
176
177public:
178 int LabelRootDepth;
179 // Convert ideal machine register to a register mask for spill-loads
180 static const RegMask *idealreg2regmask[];
181 RegMask *idealreg2spillmask [_last_machine_leaf];
182 RegMask *idealreg2debugmask [_last_machine_leaf];
183 RegMask *idealreg2mhdebugmask[_last_machine_leaf];
184 void init_spill_mask( Node *ret );
185 // Convert machine register number to register mask
186 static uint mreg2regmask_max;
187 static RegMask mreg2regmask[];
188 static RegMask STACK_ONLY_mask;
189 static RegMask caller_save_regmask;
190 static RegMask caller_save_regmask_exclude_soe;
191 static RegMask mh_caller_save_regmask;
192 static RegMask mh_caller_save_regmask_exclude_soe;
193
194 MachNode* mach_null() const { return _mach_null; }
195
196 bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
197 void set_shared( Node *n ) { _shared.set(n->_idx); }
198 bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
199 void set_visited( Node *n ) { _visited.set(n->_idx); }
200 bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
201 void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
202
203 // Mode bit to tell DFA and expand rules whether we are running after
204 // (or during) register selection. Usually, the matcher runs before,
205 // but it will also get called to generate post-allocation spill code.
206 // In this situation, it is a deadly error to attempt to allocate more
207 // temporary registers.
208 bool _allocation_started;
209
210 // Machine register names
211 static const char *regName[];
212 // Machine register encodings
213 static const unsigned char _regEncode[];
214 // Machine Node names
215 const char **_ruleName;
216 // Rules that are cheaper to rematerialize than to spill
217 static const uint _begin_rematerialize;
218 static const uint _end_rematerialize;
219
220 // An array of chars, from 0 to _last_Mach_Reg.
221 // No Save = 'N' (for register windows)
222 // Save on Entry = 'E'
223 // Save on Call = 'C'
224 // Always Save = 'A' (same as SOE + SOC)
225 const char *_register_save_policy;
226 const char *_c_reg_save_policy;
227 // Convert a machine register to a machine register type, so-as to
228 // properly match spill code.
229 const int *_register_save_type;
230 // Maps from machine register to boolean; true if machine register can
231 // be holding a call argument in some signature.
232 static bool can_be_java_arg( int reg );
233 // Maps from machine register to boolean; true if machine register holds
234 // a spillable argument.
235 static bool is_spillable_arg( int reg );
236 // Number of integer live ranges that constitute high register pressure
237 static uint int_pressure_limit();
238 // Number of float live ranges that constitute high register pressure
239 static uint float_pressure_limit();
240
241 // List of IfFalse or IfTrue Nodes that indicate a taken null test.
242 // List is valid in the post-matching space.
243 Node_List _null_check_tests;
244 void collect_null_checks( Node *proj, Node *orig_proj );
245 void validate_null_checks( );
246
247 Matcher();
248
249 // Get a projection node at position pos
250 Node* get_projection(uint pos) {
251 return _projection_list[pos];
252 }
253
254 // Push a projection node onto the projection list
255 void push_projection(Node* node) {
256 _projection_list.push(node);
257 }
258
259 Node* pop_projection() {
260 return _projection_list.pop();
261 }
262
263 // Number of nodes in the projection list
264 uint number_of_projections() const {
265 return _projection_list.size();
266 }
267
268 // Select instructions for entire method
269 void match();
270
271 // Helper for match
272 OptoReg::Name warp_incoming_stk_arg( VMReg reg );
273
274 // Transform, then walk. Does implicit DCE while walking.
275 // Name changed from "transform" to avoid it being virtual.
276 Node *xform( Node *old_space_node, int Nodes );
277
278 // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
279 MachNode *match_tree( const Node *n );
280 MachNode *match_sfpt( SafePointNode *sfpt );
281 // Helper for match_sfpt
282 OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
283
284 // Initialize first stack mask and related masks.
285 void init_first_stack_mask();
286
287 // If we should save-on-entry this register
288 bool is_save_on_entry( int reg );
289
290 // Fixup the save-on-entry registers
291 void Fixup_Save_On_Entry( );
292
293 // --- Frame handling ---
294
295 // Register number of the stack slot corresponding to the incoming SP.
296 // Per the Big Picture in the AD file, it is:
297 // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
298 OptoReg::Name _old_SP;
299
300 // Register number of the stack slot corresponding to the highest incoming
301 // argument on the stack. Per the Big Picture in the AD file, it is:
302 // _old_SP + out_preserve_stack_slots + incoming argument size.
303 OptoReg::Name _in_arg_limit;
304
305 // Register number of the stack slot corresponding to the new SP.
306 // Per the Big Picture in the AD file, it is:
307 // _in_arg_limit + pad0
308 OptoReg::Name _new_SP;
309
310 // Register number of the stack slot corresponding to the highest outgoing
311 // argument on the stack. Per the Big Picture in the AD file, it is:
312 // _new_SP + max outgoing arguments of all calls
313 OptoReg::Name _out_arg_limit;
314
315 OptoRegPair *_parm_regs; // Array of machine registers per argument
316 RegMask *_calling_convention_mask; // Array of RegMasks per argument
317
318 // Does matcher have a match rule for this ideal node?
319 static const bool has_match_rule(int opcode);
320 static const bool _hasMatchRule[_last_opcode];
321
322 // Does matcher have a match rule for this ideal node and is the
323 // predicate (if there is one) true?
324 // NOTE: If this function is used more commonly in the future, ADLC
325 // should generate this one.
326 static const bool match_rule_supported(int opcode);
327
328 // identify extra cases that we might want to provide match rules for
329 // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
330 static const bool match_rule_supported_vector(int opcode, int vlen, BasicType bt);
331
332 static const bool match_rule_supported_vector_masked(int opcode, int vlen, BasicType bt);
333
334 static const RegMask* predicate_reg_mask(void);
335 static const TypeVectMask* predicate_reg_type(const Type* elemTy, int length);
336
337 // Vector width in bytes
338 static const int vector_width_in_bytes(BasicType bt);
339
340 // Limits on vector size (number of elements).
341 static const int max_vector_size(const BasicType bt);
342 static const int min_vector_size(const BasicType bt);
343 static const bool vector_size_supported(const BasicType bt, int size) {
344 return (Matcher::max_vector_size(bt) >= size &&
345 Matcher::min_vector_size(bt) <= size);
346 }
347
348 // Actual max scalable vector register length.
349 static const int scalable_vector_reg_size(const BasicType bt);
350 // Actual max scalable predicate register length.
351 static const int scalable_predicate_reg_slots();
352
353 // Vector ideal reg
354 static const uint vector_ideal_reg(int len);
355
356 // Vector length
357 static uint vector_length(const Node* n);
358 static uint vector_length(const MachNode* use, const MachOper* opnd);
359
360 // Vector length in bytes
361 static uint vector_length_in_bytes(const Node* n);
362 static uint vector_length_in_bytes(const MachNode* use, const MachOper* opnd);
363
364 // Vector element basic type
365 static BasicType vector_element_basic_type(const Node* n);
366 static BasicType vector_element_basic_type(const MachNode* use, const MachOper* opnd);
367
368 // These calls are all generated by the ADLC
369
370 // Java-Java calling convention
371 // (what you use when Java calls Java)
372
373 // Alignment of stack in bytes, standard Intel word alignment is 4.
374 // Sparc probably wants at least double-word (8).
375 static uint stack_alignment_in_bytes();
376 // Alignment of stack, measured in stack slots.
377 // The size of stack slots is defined by VMRegImpl::stack_slot_size.
378 static uint stack_alignment_in_slots() {
379 return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
380 }
381
382 // Convert a sig into a calling convention register layout
383 // and find interesting things about it.
384 static OptoReg::Name find_receiver();
385 // Return address register. On Intel it is a stack-slot. On PowerPC
386 // it is the Link register. On Sparc it is r31?
387 virtual OptoReg::Name return_addr() const;
388 RegMask _return_addr_mask;
389 // Return value register. On Intel it is EAX.
390 static OptoRegPair return_value(uint ideal_reg);
391 static OptoRegPair c_return_value(uint ideal_reg);
392 RegMask _return_value_mask;
393 // Inline Cache Register
394 static OptoReg::Name inline_cache_reg();
395 static int inline_cache_reg_encode();
396
397 // Register for DIVI projection of divmodI
398 static RegMask divI_proj_mask();
399 // Register for MODI projection of divmodI
400 static RegMask modI_proj_mask();
401
402 // Register for DIVL projection of divmodL
403 static RegMask divL_proj_mask();
404 // Register for MODL projection of divmodL
405 static RegMask modL_proj_mask();
406
407 // Use hardware DIV instruction when it is faster than
408 // a code which use multiply for division by constant.
409 static bool use_asm_for_ldiv_by_con( jlong divisor );
410
411 static const RegMask method_handle_invoke_SP_save_mask();
412
413 // Java-Interpreter calling convention
414 // (what you use when calling between compiled-Java and Interpreted-Java
415
416 // Number of callee-save + always-save registers
417 // Ignores frame pointer and "special" registers
418 static int number_of_saved_registers();
419
420 // The Method-klass-holder may be passed in the inline_cache_reg
421 // and then expanded into the inline_cache_reg and a method_ptr register
422
423 // Interpreter's Frame Pointer Register
424 static OptoReg::Name interpreter_frame_pointer_reg();
425
426 // Java-Native calling convention
427 // (what you use when intercalling between Java and C++ code)
428
429 // Frame pointer. The frame pointer is kept at the base of the stack
430 // and so is probably the stack pointer for most machines. On Intel
431 // it is ESP. On the PowerPC it is R1. On Sparc it is SP.
432 OptoReg::Name c_frame_pointer() const;
433 static RegMask c_frame_ptr_mask;
434
435 // Java-Native vector calling convention
436 static const bool supports_vector_calling_convention();
437 static OptoRegPair vector_return_value(uint ideal_reg);
438
439 // Is this branch offset small enough to be addressed by a short branch?
440 bool is_short_branch_offset(int rule, int br_size, int offset);
441
442 // Should the input 'm' of node 'n' be cloned during matching?
443 // Reports back whether the node was cloned or not.
444 bool clone_node(Node* n, Node* m, Matcher::MStack& mstack);
445 bool pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack);
446
447 // Should the Matcher clone shifts on addressing modes, expecting them to
448 // be subsumed into complex addressing expressions or compute them into
449 // registers? True for Intel but false for most RISCs
450 bool pd_clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited);
451 // Clone base + offset address expression
452 bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited);
453
454 // Generate implicit null check for narrow oops if it can fold
455 // into address expression (x64).
456 //
457 // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
458 // NullCheck narrow_oop_reg
459 //
460 // When narrow oops can't fold into address expression (Sparc) and
461 // base is not null use decode_not_null and normal implicit null check.
462 // Note, decode_not_null node can be used here since it is referenced
463 // only on non null path but it requires special handling, see
464 // collect_null_checks():
465 //
466 // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
467 // [oop_reg + offset]
468 // NullCheck oop_reg
469 //
470 // With Zero base and when narrow oops can not fold into address
471 // expression use normal implicit null check since only shift
472 // is needed to decode narrow oop.
473 //
474 // decode narrow_oop_reg, oop_reg // only 'shift'
475 // [oop_reg + offset]
476 // NullCheck oop_reg
477 //
478 static bool gen_narrow_oop_implicit_null_checks();
479
480 private:
481 void do_postselect_cleanup();
482
483 void specialize_generic_vector_operands();
484 void specialize_mach_node(MachNode* m);
485 void specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx);
486 MachOper* specialize_vector_operand(MachNode* m, uint opnd_idx);
487
488 static MachOper* pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp);
489 static bool is_reg2reg_move(MachNode* m);
490 static bool is_generic_vector(MachOper* opnd);
491
492 const RegMask* regmask_for_ideal_register(uint ideal_reg, Node* ret);
493
494 // Graph verification code
495 DEBUG_ONLY( bool verify_after_postselect_cleanup(); )bool verify_after_postselect_cleanup();
496
497 public:
498 // This routine is run whenever a graph fails to match.
499 // If it returns, the compiler should bailout to interpreter without error.
500 // In non-product mode, SoftMatchFailure is false to detect non-canonical
501 // graphs. Print a message and exit.
502 static void soft_match_failure() {
503 if( SoftMatchFailure ) return;
504 else { fatal("SoftMatchFailure is not allowed except in product")do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.hpp"
, 504, "SoftMatchFailure is not allowed except in product"); ::
breakpoint(); } while (0)
; }
505 }
506
507 // Check for a following volatile memory barrier without an
508 // intervening load and thus we don't need a barrier here. We
509 // retain the Node to act as a compiler ordering barrier.
510 static bool post_store_load_barrier(const Node* mb);
511
512 // Does n lead to an uncommon trap that can cause deoptimization?
513 static bool branches_to_uncommon_trap(const Node *n);
514
515#ifndef PRODUCT
516 // Record mach-to-Ideal mapping, reusing the Ideal IGV identifier if possible.
517 void record_new2old(Node* newn, Node* old);
518
519 void dump_old2new_map(); // machine-independent to machine-dependent
520
521 Node* find_old_node(Node* new_node) {
522 return _new2old_map[new_node->_idx];
523 }
524#endif // !PRODUCT
525};
526
527#endif // SHARE_OPTO_MATCHER_HPP