File: | jdk/src/hotspot/share/opto/matcher.hpp |
Warning: | line 154, column 22 Access to field '_idx' results in a dereference of a null pointer (loaded from variable 'n') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | ||||
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. | ||||
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | ||||
4 | * | ||||
5 | * This code is free software; you can redistribute it and/or modify it | ||||
6 | * under the terms of the GNU General Public License version 2 only, as | ||||
7 | * published by the Free Software Foundation. | ||||
8 | * | ||||
9 | * This code is distributed in the hope that it will be useful, but WITHOUT | ||||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | ||||
12 | * version 2 for more details (a copy is included in the LICENSE file that | ||||
13 | * accompanied this code). | ||||
14 | * | ||||
15 | * You should have received a copy of the GNU General Public License version | ||||
16 | * 2 along with this work; if not, write to the Free Software Foundation, | ||||
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | ||||
18 | * | ||||
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | ||||
20 | * or visit www.oracle.com if you need additional information or have any | ||||
21 | * questions. | ||||
22 | * | ||||
23 | */ | ||||
24 | |||||
25 | #include "precompiled.hpp" | ||||
26 | #include "gc/shared/barrierSet.hpp" | ||||
27 | #include "gc/shared/c2/barrierSetC2.hpp" | ||||
28 | #include "memory/allocation.inline.hpp" | ||||
29 | #include "memory/resourceArea.hpp" | ||||
30 | #include "oops/compressedOops.hpp" | ||||
31 | #include "opto/ad.hpp" | ||||
32 | #include "opto/addnode.hpp" | ||||
33 | #include "opto/callnode.hpp" | ||||
34 | #include "opto/idealGraphPrinter.hpp" | ||||
35 | #include "opto/matcher.hpp" | ||||
36 | #include "opto/memnode.hpp" | ||||
37 | #include "opto/movenode.hpp" | ||||
38 | #include "opto/opcodes.hpp" | ||||
39 | #include "opto/regmask.hpp" | ||||
40 | #include "opto/rootnode.hpp" | ||||
41 | #include "opto/runtime.hpp" | ||||
42 | #include "opto/type.hpp" | ||||
43 | #include "opto/vectornode.hpp" | ||||
44 | #include "runtime/os.hpp" | ||||
45 | #include "runtime/sharedRuntime.hpp" | ||||
46 | #include "utilities/align.hpp" | ||||
47 | |||||
48 | OptoReg::Name OptoReg::c_frame_pointer; | ||||
49 | |||||
50 | const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; | ||||
51 | RegMask Matcher::mreg2regmask[_last_Mach_Reg]; | ||||
52 | RegMask Matcher::caller_save_regmask; | ||||
53 | RegMask Matcher::caller_save_regmask_exclude_soe; | ||||
54 | RegMask Matcher::mh_caller_save_regmask; | ||||
55 | RegMask Matcher::mh_caller_save_regmask_exclude_soe; | ||||
56 | RegMask Matcher::STACK_ONLY_mask; | ||||
57 | RegMask Matcher::c_frame_ptr_mask; | ||||
58 | const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; | ||||
59 | const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; | ||||
60 | |||||
61 | //---------------------------Matcher------------------------------------------- | ||||
62 | Matcher::Matcher() | ||||
63 | : PhaseTransform( Phase::Ins_Select ), | ||||
64 | _states_arena(Chunk::medium_size, mtCompiler), | ||||
65 | _visited(&_states_arena), | ||||
66 | _shared(&_states_arena), | ||||
67 | _dontcare(&_states_arena), | ||||
68 | _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), | ||||
69 | _swallowed(swallowed), | ||||
70 | _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), | ||||
71 | _end_inst_chain_rule(_END_INST_CHAIN_RULE), | ||||
72 | _must_clone(must_clone), | ||||
73 | _shared_nodes(C->comp_arena()), | ||||
74 | #ifndef PRODUCT | ||||
75 | _old2new_map(C->comp_arena()), | ||||
76 | _new2old_map(C->comp_arena()), | ||||
77 | _reused(C->comp_arena()), | ||||
78 | #endif // !PRODUCT | ||||
79 | _allocation_started(false), | ||||
80 | _ruleName(ruleName), | ||||
81 | _register_save_policy(register_save_policy), | ||||
82 | _c_reg_save_policy(c_reg_save_policy), | ||||
83 | _register_save_type(register_save_type) { | ||||
84 | C->set_matcher(this); | ||||
85 | |||||
86 | idealreg2spillmask [Op_RegI] = NULL__null; | ||||
87 | idealreg2spillmask [Op_RegN] = NULL__null; | ||||
88 | idealreg2spillmask [Op_RegL] = NULL__null; | ||||
89 | idealreg2spillmask [Op_RegF] = NULL__null; | ||||
90 | idealreg2spillmask [Op_RegD] = NULL__null; | ||||
91 | idealreg2spillmask [Op_RegP] = NULL__null; | ||||
92 | idealreg2spillmask [Op_VecA] = NULL__null; | ||||
93 | idealreg2spillmask [Op_VecS] = NULL__null; | ||||
94 | idealreg2spillmask [Op_VecD] = NULL__null; | ||||
95 | idealreg2spillmask [Op_VecX] = NULL__null; | ||||
96 | idealreg2spillmask [Op_VecY] = NULL__null; | ||||
97 | idealreg2spillmask [Op_VecZ] = NULL__null; | ||||
98 | idealreg2spillmask [Op_RegFlags] = NULL__null; | ||||
99 | idealreg2spillmask [Op_RegVectMask] = NULL__null; | ||||
100 | |||||
101 | idealreg2debugmask [Op_RegI] = NULL__null; | ||||
102 | idealreg2debugmask [Op_RegN] = NULL__null; | ||||
103 | idealreg2debugmask [Op_RegL] = NULL__null; | ||||
104 | idealreg2debugmask [Op_RegF] = NULL__null; | ||||
105 | idealreg2debugmask [Op_RegD] = NULL__null; | ||||
106 | idealreg2debugmask [Op_RegP] = NULL__null; | ||||
107 | idealreg2debugmask [Op_VecA] = NULL__null; | ||||
108 | idealreg2debugmask [Op_VecS] = NULL__null; | ||||
109 | idealreg2debugmask [Op_VecD] = NULL__null; | ||||
110 | idealreg2debugmask [Op_VecX] = NULL__null; | ||||
111 | idealreg2debugmask [Op_VecY] = NULL__null; | ||||
112 | idealreg2debugmask [Op_VecZ] = NULL__null; | ||||
113 | idealreg2debugmask [Op_RegFlags] = NULL__null; | ||||
114 | idealreg2debugmask [Op_RegVectMask] = NULL__null; | ||||
115 | |||||
116 | idealreg2mhdebugmask[Op_RegI] = NULL__null; | ||||
117 | idealreg2mhdebugmask[Op_RegN] = NULL__null; | ||||
118 | idealreg2mhdebugmask[Op_RegL] = NULL__null; | ||||
119 | idealreg2mhdebugmask[Op_RegF] = NULL__null; | ||||
120 | idealreg2mhdebugmask[Op_RegD] = NULL__null; | ||||
121 | idealreg2mhdebugmask[Op_RegP] = NULL__null; | ||||
122 | idealreg2mhdebugmask[Op_VecA] = NULL__null; | ||||
123 | idealreg2mhdebugmask[Op_VecS] = NULL__null; | ||||
124 | idealreg2mhdebugmask[Op_VecD] = NULL__null; | ||||
125 | idealreg2mhdebugmask[Op_VecX] = NULL__null; | ||||
126 | idealreg2mhdebugmask[Op_VecY] = NULL__null; | ||||
127 | idealreg2mhdebugmask[Op_VecZ] = NULL__null; | ||||
128 | idealreg2mhdebugmask[Op_RegFlags] = NULL__null; | ||||
129 | idealreg2mhdebugmask[Op_RegVectMask] = NULL__null; | ||||
130 | |||||
131 | debug_only(_mem_node = NULL;)_mem_node = __null; // Ideal memory node consumed by mach node | ||||
132 | } | ||||
133 | |||||
134 | //------------------------------warp_incoming_stk_arg------------------------ | ||||
135 | // This warps a VMReg into an OptoReg::Name | ||||
136 | OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { | ||||
137 | OptoReg::Name warped; | ||||
138 | if( reg->is_stack() ) { // Stack slot argument? | ||||
139 | warped = OptoReg::add(_old_SP, reg->reg2stack() ); | ||||
140 | warped = OptoReg::add(warped, C->out_preserve_stack_slots()); | ||||
141 | if( warped >= _in_arg_limit ) | ||||
142 | _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen | ||||
143 | if (!RegMask::can_represent_arg(warped)) { | ||||
144 | // the compiler cannot represent this method's calling sequence | ||||
145 | C->record_method_not_compilable("unsupported incoming calling sequence"); | ||||
146 | return OptoReg::Bad; | ||||
147 | } | ||||
148 | return warped; | ||||
149 | } | ||||
150 | return OptoReg::as_OptoReg(reg); | ||||
151 | } | ||||
152 | |||||
153 | //---------------------------compute_old_SP------------------------------------ | ||||
154 | OptoReg::Name Compile::compute_old_SP() { | ||||
155 | int fixed = fixed_slots(); | ||||
156 | int preserve = in_preserve_stack_slots(); | ||||
157 | return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots())); | ||||
158 | } | ||||
159 | |||||
160 | |||||
161 | |||||
162 | #ifdef ASSERT1 | ||||
163 | void Matcher::verify_new_nodes_only(Node* xroot) { | ||||
164 | // Make sure that the new graph only references new nodes | ||||
165 | ResourceMark rm; | ||||
166 | Unique_Node_List worklist; | ||||
167 | VectorSet visited; | ||||
168 | worklist.push(xroot); | ||||
169 | while (worklist.size() > 0) { | ||||
170 | Node* n = worklist.pop(); | ||||
171 | visited.set(n->_idx); | ||||
172 | assert(C->node_arena()->contains(n), "dead node")do { if (!(C->node_arena()->contains(n))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 172, "assert(" "C->node_arena()->contains(n)" ") failed" , "dead node"); ::breakpoint(); } } while (0); | ||||
173 | for (uint j = 0; j < n->req(); j++) { | ||||
174 | Node* in = n->in(j); | ||||
175 | if (in != NULL__null) { | ||||
176 | assert(C->node_arena()->contains(in), "dead node")do { if (!(C->node_arena()->contains(in))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 176, "assert(" "C->node_arena()->contains(in)" ") failed" , "dead node"); ::breakpoint(); } } while (0); | ||||
177 | if (!visited.test(in->_idx)) { | ||||
178 | worklist.push(in); | ||||
179 | } | ||||
180 | } | ||||
181 | } | ||||
182 | } | ||||
183 | } | ||||
184 | #endif | ||||
185 | |||||
186 | |||||
187 | //---------------------------match--------------------------------------------- | ||||
188 | void Matcher::match( ) { | ||||
189 | if( MaxLabelRootDepth < 100 ) { // Too small? | ||||
| |||||
190 | assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 190, "assert(" "false" ") failed", "invalid MaxLabelRootDepth, increase it to 100 minimum" ); ::breakpoint(); } } while (0); | ||||
191 | MaxLabelRootDepth = 100; | ||||
192 | } | ||||
193 | // One-time initialization of some register masks. | ||||
194 | init_spill_mask( C->root()->in(1) ); | ||||
195 | _return_addr_mask = return_addr(); | ||||
196 | #ifdef _LP641 | ||||
197 | // Pointers take 2 slots in 64-bit land | ||||
198 | _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); | ||||
199 | #endif | ||||
200 | |||||
201 | // Map a Java-signature return type into return register-value | ||||
202 | // machine registers for 0, 1 and 2 returned values. | ||||
203 | const TypeTuple *range = C->tf()->range(); | ||||
204 | if( range->cnt() > TypeFunc::Parms ) { // If not a void function | ||||
205 | // Get ideal-register return type | ||||
206 | uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); | ||||
207 | // Get machine return register | ||||
208 | uint sop = C->start()->Opcode(); | ||||
209 | OptoRegPair regs = return_value(ireg); | ||||
210 | |||||
211 | // And mask for same | ||||
212 | _return_value_mask = RegMask(regs.first()); | ||||
213 | if( OptoReg::is_valid(regs.second()) ) | ||||
214 | _return_value_mask.Insert(regs.second()); | ||||
215 | } | ||||
216 | |||||
217 | // --------------- | ||||
218 | // Frame Layout | ||||
219 | |||||
220 | // Need the method signature to determine the incoming argument types, | ||||
221 | // because the types determine which registers the incoming arguments are | ||||
222 | // in, and this affects the matched code. | ||||
223 | const TypeTuple *domain = C->tf()->domain(); | ||||
224 | uint argcnt = domain->cnt() - TypeFunc::Parms; | ||||
225 | BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType )); | ||||
226 | VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair )); | ||||
227 | _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt )(OptoRegPair*) resource_allocate_bytes((argcnt) * sizeof(OptoRegPair )); | ||||
228 | _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt )(RegMask*) resource_allocate_bytes((argcnt) * sizeof(RegMask) ); | ||||
229 | uint i; | ||||
230 | for( i = 0; i<argcnt; i++ ) { | ||||
231 | sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); | ||||
232 | } | ||||
233 | |||||
234 | // Pass array of ideal registers and length to USER code (from the AD file) | ||||
235 | // that will convert this to an array of register numbers. | ||||
236 | const StartNode *start = C->start(); | ||||
237 | start->calling_convention( sig_bt, vm_parm_regs, argcnt ); | ||||
238 | #ifdef ASSERT1 | ||||
239 | // Sanity check users' calling convention. Real handy while trying to | ||||
240 | // get the initial port correct. | ||||
241 | { for (uint i = 0; i<argcnt; i++) { | ||||
242 | if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { | ||||
243 | assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" )do { if (!(domain->field_at(i+TypeFunc::Parms)==Type::HALF )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 243, "assert(" "domain->field_at(i+TypeFunc::Parms)==Type::HALF" ") failed", "only allowed on halve"); ::breakpoint(); } } while (0); | ||||
244 | _parm_regs[i].set_bad(); | ||||
245 | continue; | ||||
246 | } | ||||
247 | VMReg parm_reg = vm_parm_regs[i].first(); | ||||
248 | assert(parm_reg->is_valid(), "invalid arg?")do { if (!(parm_reg->is_valid())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 248, "assert(" "parm_reg->is_valid()" ") failed", "invalid arg?" ); ::breakpoint(); } } while (0); | ||||
249 | if (parm_reg->is_reg()) { | ||||
250 | OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); | ||||
251 | assert(can_be_java_arg(opto_parm_reg) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) | ||||
252 | C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) | ||||
253 | opto_parm_reg == inline_cache_reg(),do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0) | ||||
254 | "parameters in register must be preserved by runtime stubs")do { if (!(can_be_java_arg(opto_parm_reg) || C->stub_function () == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 254, "assert(" "can_be_java_arg(opto_parm_reg) || C->stub_function() == ((address)((address_word)(OptoRuntime::rethrow_C))) || opto_parm_reg == inline_cache_reg()" ") failed", "parameters in register must be preserved by runtime stubs" ); ::breakpoint(); } } while (0); | ||||
255 | } | ||||
256 | for (uint j = 0; j < i; j++) { | ||||
257 | assert(parm_reg != vm_parm_regs[j].first(),do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0) | ||||
258 | "calling conv. must produce distinct regs")do { if (!(parm_reg != vm_parm_regs[j].first())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 258, "assert(" "parm_reg != vm_parm_regs[j].first()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0); | ||||
259 | } | ||||
260 | } | ||||
261 | } | ||||
262 | #endif | ||||
263 | |||||
264 | // Do some initial frame layout. | ||||
265 | |||||
266 | // Compute the old incoming SP (may be called FP) as | ||||
267 | // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. | ||||
268 | _old_SP = C->compute_old_SP(); | ||||
269 | assert( is_even(_old_SP), "must be even" )do { if (!(is_even(_old_SP))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 269, "assert(" "is_even(_old_SP)" ") failed", "must be even" ); ::breakpoint(); } } while (0); | ||||
270 | |||||
271 | // Compute highest incoming stack argument as | ||||
272 | // _old_SP + out_preserve_stack_slots + incoming argument size. | ||||
273 | _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); | ||||
274 | assert( is_even(_in_arg_limit), "out_preserve must be even" )do { if (!(is_even(_in_arg_limit))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 274, "assert(" "is_even(_in_arg_limit)" ") failed", "out_preserve must be even" ); ::breakpoint(); } } while (0); | ||||
275 | for( i = 0; i < argcnt; i++ ) { | ||||
276 | // Permit args to have no register | ||||
277 | _calling_convention_mask[i].Clear(); | ||||
278 | if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { | ||||
279 | continue; | ||||
280 | } | ||||
281 | // calling_convention returns stack arguments as a count of | ||||
282 | // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to | ||||
283 | // the allocators point of view, taking into account all the | ||||
284 | // preserve area, locks & pad2. | ||||
285 | |||||
286 | OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); | ||||
287 | if( OptoReg::is_valid(reg1)) | ||||
288 | _calling_convention_mask[i].Insert(reg1); | ||||
289 | |||||
290 | OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); | ||||
291 | if( OptoReg::is_valid(reg2)) | ||||
292 | _calling_convention_mask[i].Insert(reg2); | ||||
293 | |||||
294 | // Saved biased stack-slot register number | ||||
295 | _parm_regs[i].set_pair(reg2, reg1); | ||||
296 | } | ||||
297 | |||||
298 | // Finally, make sure the incoming arguments take up an even number of | ||||
299 | // words, in case the arguments or locals need to contain doubleword stack | ||||
300 | // slots. The rest of the system assumes that stack slot pairs (in | ||||
301 | // particular, in the spill area) which look aligned will in fact be | ||||
302 | // aligned relative to the stack pointer in the target machine. Double | ||||
303 | // stack slots will always be allocated aligned. | ||||
304 | _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong)); | ||||
305 | |||||
306 | // Compute highest outgoing stack argument as | ||||
307 | // _new_SP + out_preserve_stack_slots + max(outgoing argument size). | ||||
308 | _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); | ||||
309 | assert( is_even(_out_arg_limit), "out_preserve must be even" )do { if (!(is_even(_out_arg_limit))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 309, "assert(" "is_even(_out_arg_limit)" ") failed", "out_preserve must be even" ); ::breakpoint(); } } while (0); | ||||
310 | |||||
311 | if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { | ||||
312 | // the compiler cannot represent this method's calling sequence | ||||
313 | C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); | ||||
314 | } | ||||
315 | |||||
316 | if (C->failing()) return; // bailed out on incoming arg failure | ||||
317 | |||||
318 | // --------------- | ||||
319 | // Collect roots of matcher trees. Every node for which | ||||
320 | // _shared[_idx] is cleared is guaranteed to not be shared, and thus | ||||
321 | // can be a valid interior of some tree. | ||||
322 | find_shared( C->root() ); | ||||
323 | find_shared( C->top() ); | ||||
324 | |||||
325 | C->print_method(PHASE_BEFORE_MATCHING); | ||||
326 | |||||
327 | // Create new ideal node ConP #NULL even if it does exist in old space | ||||
328 | // to avoid false sharing if the corresponding mach node is not used. | ||||
329 | // The corresponding mach node is only used in rare cases for derived | ||||
330 | // pointers. | ||||
331 | Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR); | ||||
332 | |||||
333 | // Swap out to old-space; emptying new-space | ||||
334 | Arena *old = C->node_arena()->move_contents(C->old_arena()); | ||||
335 | |||||
336 | // Save debug and profile information for nodes in old space: | ||||
337 | _old_node_note_array = C->node_note_array(); | ||||
338 | if (_old_node_note_array != NULL__null) { | ||||
339 | C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> | ||||
340 | (C->comp_arena(), _old_node_note_array->length(), | ||||
341 | 0, NULL__null)); | ||||
342 | } | ||||
343 | |||||
344 | // Pre-size the new_node table to avoid the need for range checks. | ||||
345 | grow_new_node_array(C->unique()); | ||||
346 | |||||
347 | // Reset node counter so MachNodes start with _idx at 0 | ||||
348 | int live_nodes = C->live_nodes(); | ||||
349 | C->set_unique(0); | ||||
350 | C->reset_dead_node_list(); | ||||
351 | |||||
352 | // Recursively match trees from old space into new space. | ||||
353 | // Correct leaves of new-space Nodes; they point to old-space. | ||||
354 | _visited.clear(); | ||||
355 | C->set_cached_top_node(xform( C->top(), live_nodes )); | ||||
356 | if (!C->failing()) { | ||||
357 | Node* xroot = xform( C->root(), 1 ); | ||||
358 | if (xroot
| ||||
359 | Matcher::soft_match_failure(); // recursive matching process failed | ||||
360 | C->record_method_not_compilable("instruction match failed"); | ||||
361 | } else { | ||||
362 | // During matching shared constants were attached to C->root() | ||||
363 | // because xroot wasn't available yet, so transfer the uses to | ||||
364 | // the xroot. | ||||
365 | for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { | ||||
366 | Node* n = C->root()->fast_out(j); | ||||
367 | if (C->node_arena()->contains(n)) { | ||||
368 | assert(n->in(0) == C->root(), "should be control user")do { if (!(n->in(0) == C->root())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 368, "assert(" "n->in(0) == C->root()" ") failed", "should be control user" ); ::breakpoint(); } } while (0); | ||||
369 | n->set_req(0, xroot); | ||||
370 | --j; | ||||
371 | --jmax; | ||||
372 | } | ||||
373 | } | ||||
374 | |||||
375 | // Generate new mach node for ConP #NULL | ||||
376 | assert(new_ideal_null != NULL, "sanity")do { if (!(new_ideal_null != __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 376, "assert(" "new_ideal_null != __null" ") failed", "sanity" ); ::breakpoint(); } } while (0); | ||||
377 | _mach_null = match_tree(new_ideal_null); | ||||
378 | // Don't set control, it will confuse GCM since there are no uses. | ||||
379 | // The control will be set when this node is used first time | ||||
380 | // in find_base_for_derived(). | ||||
381 | assert(_mach_null != NULL, "")do { if (!(_mach_null != __null)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 381, "assert(" "_mach_null != __null" ") failed", ""); ::breakpoint (); } } while (0); | ||||
382 | |||||
383 | C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL__null); | ||||
384 | |||||
385 | #ifdef ASSERT1 | ||||
386 | verify_new_nodes_only(xroot); | ||||
387 | #endif | ||||
388 | } | ||||
389 | } | ||||
390 | if (C->top() == NULL__null || C->root() == NULL__null) { | ||||
391 | C->record_method_not_compilable("graph lost"); // %%% cannot happen? | ||||
392 | } | ||||
393 | if (C->failing()) { | ||||
394 | // delete old; | ||||
395 | old->destruct_contents(); | ||||
396 | return; | ||||
397 | } | ||||
398 | assert( C->top(), "" )do { if (!(C->top())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 398, "assert(" "C->top()" ") failed", ""); ::breakpoint( ); } } while (0); | ||||
399 | assert( C->root(), "" )do { if (!(C->root())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 399, "assert(" "C->root()" ") failed", ""); ::breakpoint (); } } while (0); | ||||
400 | validate_null_checks(); | ||||
401 | |||||
402 | // Now smoke old-space | ||||
403 | NOT_DEBUG( old->destruct_contents() ); | ||||
404 | |||||
405 | // ------------------------ | ||||
406 | // Set up save-on-entry registers. | ||||
407 | Fixup_Save_On_Entry( ); | ||||
408 | |||||
409 | { // Cleanup mach IR after selection phase is over. | ||||
410 | Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]); | ||||
411 | do_postselect_cleanup(); | ||||
412 | if (C->failing()) return; | ||||
413 | assert(verify_after_postselect_cleanup(), "")do { if (!(verify_after_postselect_cleanup())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 413, "assert(" "verify_after_postselect_cleanup()" ") failed" , ""); ::breakpoint(); } } while (0); | ||||
414 | } | ||||
415 | } | ||||
416 | |||||
417 | //------------------------------Fixup_Save_On_Entry---------------------------- | ||||
418 | // The stated purpose of this routine is to take care of save-on-entry | ||||
419 | // registers. However, the overall goal of the Match phase is to convert into | ||||
420 | // machine-specific instructions which have RegMasks to guide allocation. | ||||
421 | // So what this procedure really does is put a valid RegMask on each input | ||||
422 | // to the machine-specific variations of all Return, TailCall and Halt | ||||
423 | // instructions. It also adds edgs to define the save-on-entry values (and of | ||||
424 | // course gives them a mask). | ||||
425 | |||||
426 | static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { | ||||
427 | RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size )(RegMask*) resource_allocate_bytes((size) * sizeof(RegMask)); | ||||
428 | // Do all the pre-defined register masks | ||||
429 | rms[TypeFunc::Control ] = RegMask::Empty; | ||||
430 | rms[TypeFunc::I_O ] = RegMask::Empty; | ||||
431 | rms[TypeFunc::Memory ] = RegMask::Empty; | ||||
432 | rms[TypeFunc::ReturnAdr] = ret_adr; | ||||
433 | rms[TypeFunc::FramePtr ] = fp; | ||||
434 | return rms; | ||||
435 | } | ||||
436 | |||||
437 | const int Matcher::scalable_predicate_reg_slots() { | ||||
438 | assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(),do { if (!(Matcher::has_predicated_vectors() && Matcher ::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()" ") failed", "scalable predicate vector should be supported") ; ::breakpoint(); } } while (0) | ||||
439 | "scalable predicate vector should be supported")do { if (!(Matcher::has_predicated_vectors() && Matcher ::supports_scalable_vector())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 439, "assert(" "Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector()" ") failed", "scalable predicate vector should be supported") ; ::breakpoint(); } } while (0); | ||||
440 | int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte; | ||||
441 | // We assume each predicate register is one-eighth of the size of | ||||
442 | // scalable vector register, one mask bit per vector byte. | ||||
443 | int predicate_reg_bit_size = vector_reg_bit_size >> 3; | ||||
444 | // Compute number of slots which is required when scalable predicate | ||||
445 | // register is spilled. E.g. if scalable vector register is 640 bits, | ||||
446 | // predicate register is 80 bits, which is 2.5 * slots. | ||||
447 | // We will round up the slot number to power of 2, which is required | ||||
448 | // by find_first_set(). | ||||
449 | int slots = predicate_reg_bit_size & (BitsPerInt - 1) | ||||
450 | ? (predicate_reg_bit_size >> LogBitsPerInt) + 1 | ||||
451 | : predicate_reg_bit_size >> LogBitsPerInt; | ||||
452 | return round_up_power_of_2(slots); | ||||
453 | } | ||||
454 | |||||
455 | #define NOF_STACK_MASKS(3*13) (3*13) | ||||
456 | |||||
457 | // Create the initial stack mask used by values spilling to the stack. | ||||
458 | // Disallow any debug info in outgoing argument areas by setting the | ||||
459 | // initial mask accordingly. | ||||
460 | void Matcher::init_first_stack_mask() { | ||||
461 | |||||
462 | // Allocate storage for spill masks as masks for the appropriate load type. | ||||
463 | RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS(3*13)); | ||||
464 | |||||
465 | // Initialize empty placeholder masks into the newly allocated arena | ||||
466 | for (int i = 0; i < NOF_STACK_MASKS(3*13); i++) { | ||||
467 | new (rms + i) RegMask(); | ||||
468 | } | ||||
469 | |||||
470 | idealreg2spillmask [Op_RegN] = &rms[0]; | ||||
471 | idealreg2spillmask [Op_RegI] = &rms[1]; | ||||
472 | idealreg2spillmask [Op_RegL] = &rms[2]; | ||||
473 | idealreg2spillmask [Op_RegF] = &rms[3]; | ||||
474 | idealreg2spillmask [Op_RegD] = &rms[4]; | ||||
475 | idealreg2spillmask [Op_RegP] = &rms[5]; | ||||
476 | |||||
477 | idealreg2debugmask [Op_RegN] = &rms[6]; | ||||
478 | idealreg2debugmask [Op_RegI] = &rms[7]; | ||||
479 | idealreg2debugmask [Op_RegL] = &rms[8]; | ||||
480 | idealreg2debugmask [Op_RegF] = &rms[9]; | ||||
481 | idealreg2debugmask [Op_RegD] = &rms[10]; | ||||
482 | idealreg2debugmask [Op_RegP] = &rms[11]; | ||||
483 | |||||
484 | idealreg2mhdebugmask[Op_RegN] = &rms[12]; | ||||
485 | idealreg2mhdebugmask[Op_RegI] = &rms[13]; | ||||
486 | idealreg2mhdebugmask[Op_RegL] = &rms[14]; | ||||
487 | idealreg2mhdebugmask[Op_RegF] = &rms[15]; | ||||
488 | idealreg2mhdebugmask[Op_RegD] = &rms[16]; | ||||
489 | idealreg2mhdebugmask[Op_RegP] = &rms[17]; | ||||
490 | |||||
491 | idealreg2spillmask [Op_VecA] = &rms[18]; | ||||
492 | idealreg2spillmask [Op_VecS] = &rms[19]; | ||||
493 | idealreg2spillmask [Op_VecD] = &rms[20]; | ||||
494 | idealreg2spillmask [Op_VecX] = &rms[21]; | ||||
495 | idealreg2spillmask [Op_VecY] = &rms[22]; | ||||
496 | idealreg2spillmask [Op_VecZ] = &rms[23]; | ||||
497 | |||||
498 | idealreg2debugmask [Op_VecA] = &rms[24]; | ||||
499 | idealreg2debugmask [Op_VecS] = &rms[25]; | ||||
500 | idealreg2debugmask [Op_VecD] = &rms[26]; | ||||
501 | idealreg2debugmask [Op_VecX] = &rms[27]; | ||||
502 | idealreg2debugmask [Op_VecY] = &rms[28]; | ||||
503 | idealreg2debugmask [Op_VecZ] = &rms[29]; | ||||
504 | |||||
505 | idealreg2mhdebugmask[Op_VecA] = &rms[30]; | ||||
506 | idealreg2mhdebugmask[Op_VecS] = &rms[31]; | ||||
507 | idealreg2mhdebugmask[Op_VecD] = &rms[32]; | ||||
508 | idealreg2mhdebugmask[Op_VecX] = &rms[33]; | ||||
509 | idealreg2mhdebugmask[Op_VecY] = &rms[34]; | ||||
510 | idealreg2mhdebugmask[Op_VecZ] = &rms[35]; | ||||
511 | |||||
512 | idealreg2spillmask [Op_RegVectMask] = &rms[36]; | ||||
513 | idealreg2debugmask [Op_RegVectMask] = &rms[37]; | ||||
514 | idealreg2mhdebugmask[Op_RegVectMask] = &rms[38]; | ||||
515 | |||||
516 | OptoReg::Name i; | ||||
517 | |||||
518 | // At first, start with the empty mask | ||||
519 | C->FIRST_STACK_mask().Clear(); | ||||
520 | |||||
521 | // Add in the incoming argument area | ||||
522 | OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); | ||||
523 | for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { | ||||
524 | C->FIRST_STACK_mask().Insert(i); | ||||
525 | } | ||||
526 | // Add in all bits past the outgoing argument area | ||||
527 | guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit ,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))" ") failed", "must be able to represent all call arguments in reg mask" ); ::breakpoint(); } } while (0) | ||||
528 | "must be able to represent all call arguments in reg mask")do { if (!(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit ,-1)))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 528, "guarantee(" "RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))" ") failed", "must be able to represent all call arguments in reg mask" ); ::breakpoint(); } } while (0); | ||||
529 | OptoReg::Name init = _out_arg_limit; | ||||
530 | for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { | ||||
531 | C->FIRST_STACK_mask().Insert(i); | ||||
532 | } | ||||
533 | // Finally, set the "infinite stack" bit. | ||||
534 | C->FIRST_STACK_mask().set_AllStack(); | ||||
535 | |||||
536 | // Make spill masks. Registers for their class, plus FIRST_STACK_mask. | ||||
537 | RegMask aligned_stack_mask = C->FIRST_STACK_mask(); | ||||
538 | // Keep spill masks aligned. | ||||
539 | aligned_stack_mask.clear_to_pairs(); | ||||
540 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 540, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | ||||
541 | RegMask scalable_stack_mask = aligned_stack_mask; | ||||
542 | |||||
543 | *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; | ||||
544 | #ifdef _LP641 | ||||
545 | *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; | ||||
546 | idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); | ||||
547 | idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); | ||||
548 | #else | ||||
549 | idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); | ||||
550 | #endif | ||||
551 | *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; | ||||
552 | idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); | ||||
553 | *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; | ||||
554 | idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); | ||||
555 | *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; | ||||
556 | idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); | ||||
557 | *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; | ||||
558 | idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); | ||||
559 | |||||
560 | if (Matcher::has_predicated_vectors()) { | ||||
561 | *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; | ||||
562 | idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask); | ||||
563 | } else { | ||||
564 | *idealreg2spillmask[Op_RegVectMask] = RegMask::Empty; | ||||
565 | } | ||||
566 | |||||
567 | if (Matcher::vector_size_supported(T_BYTE,4)) { | ||||
568 | *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; | ||||
569 | idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); | ||||
570 | } else { | ||||
571 | *idealreg2spillmask[Op_VecS] = RegMask::Empty; | ||||
572 | } | ||||
573 | |||||
574 | if (Matcher::vector_size_supported(T_FLOAT,2)) { | ||||
575 | // For VecD we need dual alignment and 8 bytes (2 slots) for spills. | ||||
576 | // RA guarantees such alignment since it is needed for Double and Long values. | ||||
577 | *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; | ||||
578 | idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); | ||||
579 | } else { | ||||
580 | *idealreg2spillmask[Op_VecD] = RegMask::Empty; | ||||
581 | } | ||||
582 | |||||
583 | if (Matcher::vector_size_supported(T_FLOAT,4)) { | ||||
584 | // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. | ||||
585 | // | ||||
586 | // RA can use input arguments stack slots for spills but until RA | ||||
587 | // we don't know frame size and offset of input arg stack slots. | ||||
588 | // | ||||
589 | // Exclude last input arg stack slots to avoid spilling vectors there | ||||
590 | // otherwise vector spills could stomp over stack slots in caller frame. | ||||
591 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | ||||
592 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { | ||||
593 | aligned_stack_mask.Remove(in); | ||||
594 | in = OptoReg::add(in, -1); | ||||
595 | } | ||||
596 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); | ||||
597 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 597, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | ||||
598 | *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; | ||||
599 | idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); | ||||
600 | } else { | ||||
601 | *idealreg2spillmask[Op_VecX] = RegMask::Empty; | ||||
602 | } | ||||
603 | |||||
604 | if (Matcher::vector_size_supported(T_FLOAT,8)) { | ||||
605 | // For VecY we need octo alignment and 32 bytes (8 slots) for spills. | ||||
606 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | ||||
607 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { | ||||
608 | aligned_stack_mask.Remove(in); | ||||
609 | in = OptoReg::add(in, -1); | ||||
610 | } | ||||
611 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); | ||||
612 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 612, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | ||||
613 | *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; | ||||
614 | idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); | ||||
615 | } else { | ||||
616 | *idealreg2spillmask[Op_VecY] = RegMask::Empty; | ||||
617 | } | ||||
618 | |||||
619 | if (Matcher::vector_size_supported(T_FLOAT,16)) { | ||||
620 | // For VecZ we need enough alignment and 64 bytes (16 slots) for spills. | ||||
621 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | ||||
622 | for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) { | ||||
623 | aligned_stack_mask.Remove(in); | ||||
624 | in = OptoReg::add(in, -1); | ||||
625 | } | ||||
626 | aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ); | ||||
627 | assert(aligned_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(aligned_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 627, "assert(" "aligned_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | ||||
628 | *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ]; | ||||
629 | idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask); | ||||
630 | } else { | ||||
631 | *idealreg2spillmask[Op_VecZ] = RegMask::Empty; | ||||
632 | } | ||||
633 | |||||
634 | if (Matcher::supports_scalable_vector()) { | ||||
635 | int k = 1; | ||||
636 | OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); | ||||
637 | if (Matcher::has_predicated_vectors()) { | ||||
638 | // Exclude last input arg stack slots to avoid spilling vector register there, | ||||
639 | // otherwise RegVectMask spills could stomp over stack slots in caller frame. | ||||
640 | for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) { | ||||
641 | scalable_stack_mask.Remove(in); | ||||
642 | in = OptoReg::add(in, -1); | ||||
643 | } | ||||
644 | |||||
645 | // For RegVectMask | ||||
646 | scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots()); | ||||
647 | assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 647, "assert(" "scalable_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | ||||
648 | *idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask]; | ||||
649 | idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask); | ||||
650 | } | ||||
651 | |||||
652 | // Exclude last input arg stack slots to avoid spilling vector register there, | ||||
653 | // otherwise vector spills could stomp over stack slots in caller frame. | ||||
654 | for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) { | ||||
655 | scalable_stack_mask.Remove(in); | ||||
656 | in = OptoReg::add(in, -1); | ||||
657 | } | ||||
658 | |||||
659 | // For VecA | ||||
660 | scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA); | ||||
661 | assert(scalable_stack_mask.is_AllStack(), "should be infinite stack")do { if (!(scalable_stack_mask.is_AllStack())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 661, "assert(" "scalable_stack_mask.is_AllStack()" ") failed" , "should be infinite stack"); ::breakpoint(); } } while (0); | ||||
662 | *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA]; | ||||
663 | idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask); | ||||
664 | } else { | ||||
665 | *idealreg2spillmask[Op_VecA] = RegMask::Empty; | ||||
666 | } | ||||
667 | |||||
668 | if (UseFPUForSpilling) { | ||||
669 | // This mask logic assumes that the spill operations are | ||||
670 | // symmetric and that the registers involved are the same size. | ||||
671 | // On sparc for instance we may have to use 64 bit moves will | ||||
672 | // kill 2 registers when used with F0-F31. | ||||
673 | idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); | ||||
674 | idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); | ||||
675 | #ifdef _LP641 | ||||
676 | idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); | ||||
677 | idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); | ||||
678 | idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); | ||||
679 | idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); | ||||
680 | #else | ||||
681 | idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); | ||||
682 | #ifdef ARM | ||||
683 | // ARM has support for moving 64bit values between a pair of | ||||
684 | // integer registers and a double register | ||||
685 | idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); | ||||
686 | idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); | ||||
687 | #endif | ||||
688 | #endif | ||||
689 | } | ||||
690 | |||||
691 | // Make up debug masks. Any spill slot plus callee-save (SOE) registers. | ||||
692 | // Caller-save (SOC, AS) registers are assumed to be trashable by the various | ||||
693 | // inline-cache fixup routines. | ||||
694 | *idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN]; | ||||
695 | *idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI]; | ||||
696 | *idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL]; | ||||
697 | *idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF]; | ||||
698 | *idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD]; | ||||
699 | *idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP]; | ||||
700 | *idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; | ||||
701 | |||||
702 | *idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA]; | ||||
703 | *idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS]; | ||||
704 | *idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD]; | ||||
705 | *idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX]; | ||||
706 | *idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY]; | ||||
707 | *idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ]; | ||||
708 | |||||
709 | *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN]; | ||||
710 | *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI]; | ||||
711 | *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL]; | ||||
712 | *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF]; | ||||
713 | *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD]; | ||||
714 | *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP]; | ||||
715 | *idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask]; | ||||
716 | |||||
717 | *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA]; | ||||
718 | *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS]; | ||||
719 | *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD]; | ||||
720 | *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX]; | ||||
721 | *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY]; | ||||
722 | *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ]; | ||||
723 | |||||
724 | // Prevent stub compilations from attempting to reference | ||||
725 | // callee-saved (SOE) registers from debug info | ||||
726 | bool exclude_soe = !Compile::current()->is_method_compilation(); | ||||
727 | RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask; | ||||
728 | RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask; | ||||
729 | |||||
730 | idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask); | ||||
731 | idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask); | ||||
732 | idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask); | ||||
733 | idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask); | ||||
734 | idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask); | ||||
735 | idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask); | ||||
736 | idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask); | ||||
737 | |||||
738 | idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask); | ||||
739 | idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask); | ||||
740 | idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask); | ||||
741 | idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask); | ||||
742 | idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask); | ||||
743 | idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask); | ||||
744 | |||||
745 | idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask); | ||||
746 | idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask); | ||||
747 | idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask); | ||||
748 | idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask); | ||||
749 | idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask); | ||||
750 | idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask); | ||||
751 | idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask); | ||||
752 | |||||
753 | idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask); | ||||
754 | idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask); | ||||
755 | idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask); | ||||
756 | idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask); | ||||
757 | idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask); | ||||
758 | idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask); | ||||
759 | } | ||||
760 | |||||
761 | //---------------------------is_save_on_entry---------------------------------- | ||||
762 | bool Matcher::is_save_on_entry(int reg) { | ||||
763 | return | ||||
764 | _register_save_policy[reg] == 'E' || | ||||
765 | _register_save_policy[reg] == 'A'; // Save-on-entry register? | ||||
766 | } | ||||
767 | |||||
768 | //---------------------------Fixup_Save_On_Entry------------------------------- | ||||
769 | void Matcher::Fixup_Save_On_Entry( ) { | ||||
770 | init_first_stack_mask(); | ||||
771 | |||||
772 | Node *root = C->root(); // Short name for root | ||||
773 | // Count number of save-on-entry registers. | ||||
774 | uint soe_cnt = number_of_saved_registers(); | ||||
775 | uint i; | ||||
776 | |||||
777 | // Find the procedure Start Node | ||||
778 | StartNode *start = C->start(); | ||||
779 | assert( start, "Expect a start node" )do { if (!(start)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 779, "assert(" "start" ") failed", "Expect a start node"); :: breakpoint(); } } while (0); | ||||
780 | |||||
781 | // Input RegMask array shared by all Returns. | ||||
782 | // The type for doubles and longs has a count of 2, but | ||||
783 | // there is only 1 returned value | ||||
784 | uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); | ||||
785 | RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | ||||
786 | // Returns have 0 or 1 returned values depending on call signature. | ||||
787 | // Return register is specified by return_value in the AD file. | ||||
788 | if (ret_edge_cnt > TypeFunc::Parms) | ||||
789 | ret_rms[TypeFunc::Parms+0] = _return_value_mask; | ||||
790 | |||||
791 | // Input RegMask array shared by all Rethrows. | ||||
792 | uint reth_edge_cnt = TypeFunc::Parms+1; | ||||
793 | RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | ||||
794 | // Rethrow takes exception oop only, but in the argument 0 slot. | ||||
795 | OptoReg::Name reg = find_receiver(); | ||||
796 | if (reg >= 0) { | ||||
797 | reth_rms[TypeFunc::Parms] = mreg2regmask[reg]; | ||||
798 | #ifdef _LP641 | ||||
799 | // Need two slots for ptrs in 64-bit land | ||||
800 | reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1)); | ||||
801 | #endif | ||||
802 | } | ||||
803 | |||||
804 | // Input RegMask array shared by all TailCalls | ||||
805 | uint tail_call_edge_cnt = TypeFunc::Parms+2; | ||||
806 | RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | ||||
807 | |||||
808 | // Input RegMask array shared by all TailJumps | ||||
809 | uint tail_jump_edge_cnt = TypeFunc::Parms+2; | ||||
810 | RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | ||||
811 | |||||
812 | // TailCalls have 2 returned values (target & moop), whose masks come | ||||
813 | // from the usual MachNode/MachOper mechanism. Find a sample | ||||
814 | // TailCall to extract these masks and put the correct masks into | ||||
815 | // the tail_call_rms array. | ||||
816 | for( i=1; i < root->req(); i++ ) { | ||||
817 | MachReturnNode *m = root->in(i)->as_MachReturn(); | ||||
818 | if( m->ideal_Opcode() == Op_TailCall ) { | ||||
819 | tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); | ||||
820 | tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); | ||||
821 | break; | ||||
822 | } | ||||
823 | } | ||||
824 | |||||
825 | // TailJumps have 2 returned values (target & ex_oop), whose masks come | ||||
826 | // from the usual MachNode/MachOper mechanism. Find a sample | ||||
827 | // TailJump to extract these masks and put the correct masks into | ||||
828 | // the tail_jump_rms array. | ||||
829 | for( i=1; i < root->req(); i++ ) { | ||||
830 | MachReturnNode *m = root->in(i)->as_MachReturn(); | ||||
831 | if( m->ideal_Opcode() == Op_TailJump ) { | ||||
832 | tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); | ||||
833 | tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); | ||||
834 | break; | ||||
835 | } | ||||
836 | } | ||||
837 | |||||
838 | // Input RegMask array shared by all Halts | ||||
839 | uint halt_edge_cnt = TypeFunc::Parms; | ||||
840 | RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); | ||||
841 | |||||
842 | // Capture the return input masks into each exit flavor | ||||
843 | for( i=1; i < root->req(); i++ ) { | ||||
844 | MachReturnNode *exit = root->in(i)->as_MachReturn(); | ||||
845 | switch( exit->ideal_Opcode() ) { | ||||
846 | case Op_Return : exit->_in_rms = ret_rms; break; | ||||
847 | case Op_Rethrow : exit->_in_rms = reth_rms; break; | ||||
848 | case Op_TailCall : exit->_in_rms = tail_call_rms; break; | ||||
849 | case Op_TailJump : exit->_in_rms = tail_jump_rms; break; | ||||
850 | case Op_Halt : exit->_in_rms = halt_rms; break; | ||||
851 | default : ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 851); ::breakpoint(); } while (0); | ||||
852 | } | ||||
853 | } | ||||
854 | |||||
855 | // Next unused projection number from Start. | ||||
856 | int proj_cnt = C->tf()->domain()->cnt(); | ||||
857 | |||||
858 | // Do all the save-on-entry registers. Make projections from Start for | ||||
859 | // them, and give them a use at the exit points. To the allocator, they | ||||
860 | // look like incoming register arguments. | ||||
861 | for( i = 0; i < _last_Mach_Reg; i++ ) { | ||||
862 | if( is_save_on_entry(i) ) { | ||||
863 | |||||
864 | // Add the save-on-entry to the mask array | ||||
865 | ret_rms [ ret_edge_cnt] = mreg2regmask[i]; | ||||
866 | reth_rms [ reth_edge_cnt] = mreg2regmask[i]; | ||||
867 | tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; | ||||
868 | tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; | ||||
869 | // Halts need the SOE registers, but only in the stack as debug info. | ||||
870 | // A just-prior uncommon-trap or deoptimization will use the SOE regs. | ||||
871 | halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; | ||||
872 | |||||
873 | Node *mproj; | ||||
874 | |||||
875 | // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's | ||||
876 | // into a single RegD. | ||||
877 | if( (i&1) == 0 && | ||||
878 | _register_save_type[i ] == Op_RegF && | ||||
879 | _register_save_type[i+1] == Op_RegF && | ||||
880 | is_save_on_entry(i+1) ) { | ||||
881 | // Add other bit for double | ||||
882 | ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
883 | reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
884 | tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
885 | tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
886 | halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
887 | mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); | ||||
888 | proj_cnt += 2; // Skip 2 for doubles | ||||
889 | } | ||||
890 | else if( (i&1) == 1 && // Else check for high half of double | ||||
891 | _register_save_type[i-1] == Op_RegF && | ||||
892 | _register_save_type[i ] == Op_RegF && | ||||
893 | is_save_on_entry(i-1) ) { | ||||
894 | ret_rms [ ret_edge_cnt] = RegMask::Empty; | ||||
895 | reth_rms [ reth_edge_cnt] = RegMask::Empty; | ||||
896 | tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; | ||||
897 | tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; | ||||
898 | halt_rms [ halt_edge_cnt] = RegMask::Empty; | ||||
899 | mproj = C->top(); | ||||
900 | } | ||||
901 | // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's | ||||
902 | // into a single RegL. | ||||
903 | else if( (i&1) == 0 && | ||||
904 | _register_save_type[i ] == Op_RegI && | ||||
905 | _register_save_type[i+1] == Op_RegI && | ||||
906 | is_save_on_entry(i+1) ) { | ||||
907 | // Add other bit for long | ||||
908 | ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
909 | reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
910 | tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
911 | tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
912 | halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); | ||||
913 | mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); | ||||
914 | proj_cnt += 2; // Skip 2 for longs | ||||
915 | } | ||||
916 | else if( (i&1) == 1 && // Else check for high half of long | ||||
917 | _register_save_type[i-1] == Op_RegI && | ||||
918 | _register_save_type[i ] == Op_RegI && | ||||
919 | is_save_on_entry(i-1) ) { | ||||
920 | ret_rms [ ret_edge_cnt] = RegMask::Empty; | ||||
921 | reth_rms [ reth_edge_cnt] = RegMask::Empty; | ||||
922 | tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; | ||||
923 | tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; | ||||
924 | halt_rms [ halt_edge_cnt] = RegMask::Empty; | ||||
925 | mproj = C->top(); | ||||
926 | } else { | ||||
927 | // Make a projection for it off the Start | ||||
928 | mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); | ||||
929 | } | ||||
930 | |||||
931 | ret_edge_cnt ++; | ||||
932 | reth_edge_cnt ++; | ||||
933 | tail_call_edge_cnt ++; | ||||
934 | tail_jump_edge_cnt ++; | ||||
935 | halt_edge_cnt ++; | ||||
936 | |||||
937 | // Add a use of the SOE register to all exit paths | ||||
938 | for( uint j=1; j < root->req(); j++ ) | ||||
939 | root->in(j)->add_req(mproj); | ||||
940 | } // End of if a save-on-entry register | ||||
941 | } // End of for all machine registers | ||||
942 | } | ||||
943 | |||||
944 | //------------------------------init_spill_mask-------------------------------- | ||||
945 | void Matcher::init_spill_mask( Node *ret ) { | ||||
946 | if( idealreg2regmask[Op_RegI] ) return; // One time only init | ||||
947 | |||||
948 | OptoReg::c_frame_pointer = c_frame_pointer(); | ||||
949 | c_frame_ptr_mask = c_frame_pointer(); | ||||
950 | #ifdef _LP641 | ||||
951 | // pointers are twice as big | ||||
952 | c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); | ||||
953 | #endif | ||||
954 | |||||
955 | // Start at OptoReg::stack0() | ||||
956 | STACK_ONLY_mask.Clear(); | ||||
957 | OptoReg::Name init = OptoReg::stack2reg(0); | ||||
958 | // STACK_ONLY_mask is all stack bits | ||||
959 | OptoReg::Name i; | ||||
960 | for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) | ||||
961 | STACK_ONLY_mask.Insert(i); | ||||
962 | // Also set the "infinite stack" bit. | ||||
963 | STACK_ONLY_mask.set_AllStack(); | ||||
964 | |||||
965 | for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) { | ||||
966 | // Copy the register names over into the shared world. | ||||
967 | // SharedInfo::regName[i] = regName[i]; | ||||
968 | // Handy RegMasks per machine register | ||||
969 | mreg2regmask[i].Insert(i); | ||||
970 | |||||
971 | // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks. | ||||
972 | if (_register_save_policy[i] == 'C' || | ||||
973 | _register_save_policy[i] == 'A') { | ||||
974 | caller_save_regmask.Insert(i); | ||||
975 | mh_caller_save_regmask.Insert(i); | ||||
976 | } | ||||
977 | // Exclude save-on-entry registers from debug masks for stub compilations. | ||||
978 | if (_register_save_policy[i] == 'C' || | ||||
979 | _register_save_policy[i] == 'A' || | ||||
980 | _register_save_policy[i] == 'E') { | ||||
981 | caller_save_regmask_exclude_soe.Insert(i); | ||||
982 | mh_caller_save_regmask_exclude_soe.Insert(i); | ||||
983 | } | ||||
984 | } | ||||
985 | |||||
986 | // Also exclude the register we use to save the SP for MethodHandle | ||||
987 | // invokes to from the corresponding MH debug masks | ||||
988 | const RegMask sp_save_mask = method_handle_invoke_SP_save_mask(); | ||||
989 | mh_caller_save_regmask.OR(sp_save_mask); | ||||
990 | mh_caller_save_regmask_exclude_soe.OR(sp_save_mask); | ||||
991 | |||||
992 | // Grab the Frame Pointer | ||||
993 | Node *fp = ret->in(TypeFunc::FramePtr); | ||||
994 | // Share frame pointer while making spill ops | ||||
995 | set_shared(fp); | ||||
996 | |||||
997 | // Get the ADLC notion of the right regmask, for each basic type. | ||||
998 | #ifdef _LP641 | ||||
999 | idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret); | ||||
1000 | #endif | ||||
1001 | idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret); | ||||
1002 | idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret); | ||||
1003 | idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret); | ||||
1004 | idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret); | ||||
1005 | idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret); | ||||
1006 | idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret); | ||||
1007 | idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret); | ||||
1008 | idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret); | ||||
1009 | idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret); | ||||
1010 | idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret); | ||||
1011 | idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret); | ||||
1012 | idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret); | ||||
1013 | } | ||||
1014 | |||||
1015 | #ifdef ASSERT1 | ||||
1016 | static void match_alias_type(Compile* C, Node* n, Node* m) { | ||||
1017 | if (!VerifyAliases) return; // do not go looking for trouble by default | ||||
1018 | const TypePtr* nat = n->adr_type(); | ||||
1019 | const TypePtr* mat = m->adr_type(); | ||||
1020 | int nidx = C->get_alias_index(nat); | ||||
1021 | int midx = C->get_alias_index(mat); | ||||
1022 | // Detune the assert for cases like (AndI 0xFF (LoadB p)). | ||||
1023 | if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { | ||||
1024 | for (uint i = 1; i < n->req(); i++) { | ||||
1025 | Node* n1 = n->in(i); | ||||
1026 | const TypePtr* n1at = n1->adr_type(); | ||||
1027 | if (n1at != NULL__null) { | ||||
1028 | nat = n1at; | ||||
1029 | nidx = C->get_alias_index(n1at); | ||||
1030 | } | ||||
1031 | } | ||||
1032 | } | ||||
1033 | // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: | ||||
1034 | if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { | ||||
1035 | switch (n->Opcode()) { | ||||
1036 | case Op_PrefetchAllocation: | ||||
1037 | nidx = Compile::AliasIdxRaw; | ||||
1038 | nat = TypeRawPtr::BOTTOM; | ||||
1039 | break; | ||||
1040 | } | ||||
1041 | } | ||||
1042 | if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { | ||||
1043 | switch (n->Opcode()) { | ||||
1044 | case Op_ClearArray: | ||||
1045 | midx = Compile::AliasIdxRaw; | ||||
1046 | mat = TypeRawPtr::BOTTOM; | ||||
1047 | break; | ||||
1048 | } | ||||
1049 | } | ||||
1050 | if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { | ||||
1051 | switch (n->Opcode()) { | ||||
1052 | case Op_Return: | ||||
1053 | case Op_Rethrow: | ||||
1054 | case Op_Halt: | ||||
1055 | case Op_TailCall: | ||||
1056 | case Op_TailJump: | ||||
1057 | nidx = Compile::AliasIdxBot; | ||||
1058 | nat = TypePtr::BOTTOM; | ||||
1059 | break; | ||||
1060 | } | ||||
1061 | } | ||||
1062 | if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { | ||||
1063 | switch (n->Opcode()) { | ||||
1064 | case Op_StrComp: | ||||
1065 | case Op_StrEquals: | ||||
1066 | case Op_StrIndexOf: | ||||
1067 | case Op_StrIndexOfChar: | ||||
1068 | case Op_AryEq: | ||||
1069 | case Op_HasNegatives: | ||||
1070 | case Op_MemBarVolatile: | ||||
1071 | case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? | ||||
1072 | case Op_StrInflatedCopy: | ||||
1073 | case Op_StrCompressedCopy: | ||||
1074 | case Op_OnSpinWait: | ||||
1075 | case Op_EncodeISOArray: | ||||
1076 | nidx = Compile::AliasIdxTop; | ||||
1077 | nat = NULL__null; | ||||
1078 | break; | ||||
1079 | } | ||||
1080 | } | ||||
1081 | if (nidx != midx) { | ||||
1082 | if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { | ||||
1083 | tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); | ||||
1084 | n->dump(); | ||||
1085 | m->dump(); | ||||
1086 | } | ||||
1087 | assert(C->subsume_loads() && C->must_alias(nat, midx),do { if (!(C->subsume_loads() && C->must_alias( nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)" ") failed", "must not lose alias info when matching"); ::breakpoint (); } } while (0) | ||||
1088 | "must not lose alias info when matching")do { if (!(C->subsume_loads() && C->must_alias( nat, midx))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1088, "assert(" "C->subsume_loads() && C->must_alias(nat, midx)" ") failed", "must not lose alias info when matching"); ::breakpoint (); } } while (0); | ||||
1089 | } | ||||
1090 | } | ||||
1091 | #endif | ||||
1092 | |||||
1093 | //------------------------------xform------------------------------------------ | ||||
1094 | // Given a Node in old-space, Match him (Label/Reduce) to produce a machine | ||||
1095 | // Node in new-space. Given a new-space Node, recursively walk his children. | ||||
1096 | Node *Matcher::transform( Node *n ) { ShouldNotCallThis()do { (*g_assert_poison) = 'X';; report_should_not_call("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1096); ::breakpoint(); } while (0); return n; } | ||||
1097 | Node *Matcher::xform( Node *n, int max_stack ) { | ||||
1098 | // Use one stack to keep both: child's node/state and parent's node/index | ||||
1099 | MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 | ||||
1100 | mstack.push(n, Visit, NULL__null, -1); // set NULL as parent to indicate root | ||||
1101 | while (mstack.is_nonempty()) { | ||||
1102 | C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); | ||||
1103 | if (C->failing()) return NULL__null; | ||||
1104 | n = mstack.node(); // Leave node on stack | ||||
1105 | Node_State nstate = mstack.state(); | ||||
1106 | if (nstate == Visit) { | ||||
1107 | mstack.set_state(Post_Visit); | ||||
1108 | Node *oldn = n; | ||||
1109 | // Old-space or new-space check | ||||
1110 | if (!C->node_arena()->contains(n)) { | ||||
1111 | // Old space! | ||||
1112 | Node* m; | ||||
1113 | if (has_new_node(n)) { // Not yet Label/Reduced | ||||
1114 | m = new_node(n); | ||||
1115 | } else { | ||||
1116 | if (!is_dontcare(n)) { // Matcher can match this guy | ||||
1117 | // Calls match special. They match alone with no children. | ||||
1118 | // Their children, the incoming arguments, match normally. | ||||
1119 | m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); | ||||
1120 | if (C->failing()) return NULL__null; | ||||
1121 | if (m == NULL__null) { Matcher::soft_match_failure(); return NULL__null; } | ||||
1122 | if (n->is_MemBar()) { | ||||
1123 | m->as_MachMemBar()->set_adr_type(n->adr_type()); | ||||
1124 | } | ||||
1125 | } else { // Nothing the matcher cares about | ||||
1126 | if (n->is_Proj() && n->in(0) != NULL__null && n->in(0)->is_Multi()) { // Projections? | ||||
1127 | // Convert to machine-dependent projection | ||||
1128 | m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); | ||||
1129 | NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n); | ||||
1130 | if (m->in(0) != NULL__null) // m might be top | ||||
1131 | collect_null_checks(m, n); | ||||
1132 | } else { // Else just a regular 'ol guy | ||||
1133 | m = n->clone(); // So just clone into new-space | ||||
1134 | NOT_PRODUCT(record_new2old(m, n);)record_new2old(m, n); | ||||
1135 | // Def-Use edges will be added incrementally as Uses | ||||
1136 | // of this node are matched. | ||||
1137 | assert(m->outcnt() == 0, "no Uses of this clone yet")do { if (!(m->outcnt() == 0)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1137, "assert(" "m->outcnt() == 0" ") failed", "no Uses of this clone yet" ); ::breakpoint(); } } while (0); | ||||
1138 | } | ||||
1139 | } | ||||
1140 | |||||
1141 | set_new_node(n, m); // Map old to new | ||||
1142 | if (_old_node_note_array != NULL__null) { | ||||
1143 | Node_Notes* nn = C->locate_node_notes(_old_node_note_array, | ||||
1144 | n->_idx); | ||||
1145 | C->set_node_notes_at(m->_idx, nn); | ||||
1146 | } | ||||
1147 | debug_only(match_alias_type(C, n, m))match_alias_type(C, n, m); | ||||
1148 | } | ||||
1149 | n = m; // n is now a new-space node | ||||
1150 | mstack.set_node(n); | ||||
1151 | } | ||||
1152 | |||||
1153 | // New space! | ||||
1154 | if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) | ||||
1155 | |||||
1156 | int i; | ||||
1157 | // Put precedence edges on stack first (match them last). | ||||
1158 | for (i = oldn->req(); (uint)i < oldn->len(); i++) { | ||||
1159 | Node *m = oldn->in(i); | ||||
1160 | if (m == NULL__null) break; | ||||
1161 | // set -1 to call add_prec() instead of set_req() during Step1 | ||||
1162 | mstack.push(m, Visit, n, -1); | ||||
1163 | } | ||||
1164 | |||||
1165 | // Handle precedence edges for interior nodes | ||||
1166 | for (i = n->len()-1; (uint)i >= n->req(); i--) { | ||||
1167 | Node *m = n->in(i); | ||||
1168 | if (m == NULL__null || C->node_arena()->contains(m)) continue; | ||||
1169 | n->rm_prec(i); | ||||
1170 | // set -1 to call add_prec() instead of set_req() during Step1 | ||||
1171 | mstack.push(m, Visit, n, -1); | ||||
1172 | } | ||||
1173 | |||||
1174 | // For constant debug info, I'd rather have unmatched constants. | ||||
1175 | int cnt = n->req(); | ||||
1176 | JVMState* jvms = n->jvms(); | ||||
1177 | int debug_cnt = jvms ? jvms->debug_start() : cnt; | ||||
1178 | |||||
1179 | // Now do only debug info. Clone constants rather than matching. | ||||
1180 | // Constants are represented directly in the debug info without | ||||
1181 | // the need for executable machine instructions. | ||||
1182 | // Monitor boxes are also represented directly. | ||||
1183 | for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do | ||||
1184 | Node *m = n->in(i); // Get input | ||||
1185 | int op = m->Opcode(); | ||||
1186 | assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites")do { if (!((op == Op_BoxLock) == jvms->is_monitor_use(i))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1186, "assert(" "(op == Op_BoxLock) == jvms->is_monitor_use(i)" ") failed", "boxes only at monitor sites"); ::breakpoint(); } } while (0); | ||||
1187 | if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || | ||||
1188 | op == Op_ConF || op == Op_ConD || op == Op_ConL | ||||
1189 | // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp | ||||
1190 | ) { | ||||
1191 | m = m->clone(); | ||||
1192 | NOT_PRODUCT(record_new2old(m, n))record_new2old(m, n); | ||||
1193 | mstack.push(m, Post_Visit, n, i); // Don't need to visit | ||||
1194 | mstack.push(m->in(0), Visit, m, 0); | ||||
1195 | } else { | ||||
1196 | mstack.push(m, Visit, n, i); | ||||
1197 | } | ||||
1198 | } | ||||
1199 | |||||
1200 | // And now walk his children, and convert his inputs to new-space. | ||||
1201 | for( ; i >= 0; --i ) { // For all normal inputs do | ||||
1202 | Node *m = n->in(i); // Get input | ||||
1203 | if(m != NULL__null) | ||||
1204 | mstack.push(m, Visit, n, i); | ||||
1205 | } | ||||
1206 | |||||
1207 | } | ||||
1208 | else if (nstate == Post_Visit) { | ||||
1209 | // Set xformed input | ||||
1210 | Node *p = mstack.parent(); | ||||
1211 | if (p != NULL__null) { // root doesn't have parent | ||||
1212 | int i = (int)mstack.index(); | ||||
1213 | if (i >= 0) | ||||
1214 | p->set_req(i, n); // required input | ||||
1215 | else if (i == -1) | ||||
1216 | p->add_prec(n); // precedence input | ||||
1217 | else | ||||
1218 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1218); ::breakpoint(); } while (0); | ||||
1219 | } | ||||
1220 | mstack.pop(); // remove processed node from stack | ||||
1221 | } | ||||
1222 | else { | ||||
1223 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1223); ::breakpoint(); } while (0); | ||||
1224 | } | ||||
1225 | } // while (mstack.is_nonempty()) | ||||
1226 | return n; // Return new-space Node | ||||
1227 | } | ||||
1228 | |||||
1229 | //------------------------------warp_outgoing_stk_arg------------------------ | ||||
1230 | OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { | ||||
1231 | // Convert outgoing argument location to a pre-biased stack offset | ||||
1232 | if (reg->is_stack()) { | ||||
1233 | OptoReg::Name warped = reg->reg2stack(); | ||||
1234 | // Adjust the stack slot offset to be the register number used | ||||
1235 | // by the allocator. | ||||
1236 | warped = OptoReg::add(begin_out_arg_area, warped); | ||||
1237 | // Keep track of the largest numbered stack slot used for an arg. | ||||
1238 | // Largest used slot per call-site indicates the amount of stack | ||||
1239 | // that is killed by the call. | ||||
1240 | if( warped >= out_arg_limit_per_call ) | ||||
1241 | out_arg_limit_per_call = OptoReg::add(warped,1); | ||||
1242 | if (!RegMask::can_represent_arg(warped)) { | ||||
1243 | C->record_method_not_compilable("unsupported calling sequence"); | ||||
1244 | return OptoReg::Bad; | ||||
1245 | } | ||||
1246 | return warped; | ||||
1247 | } | ||||
1248 | return OptoReg::as_OptoReg(reg); | ||||
1249 | } | ||||
1250 | |||||
1251 | |||||
1252 | //------------------------------match_sfpt------------------------------------- | ||||
1253 | // Helper function to match call instructions. Calls match special. | ||||
1254 | // They match alone with no children. Their children, the incoming | ||||
1255 | // arguments, match normally. | ||||
1256 | MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { | ||||
1257 | MachSafePointNode *msfpt = NULL__null; | ||||
1258 | MachCallNode *mcall = NULL__null; | ||||
1259 | uint cnt; | ||||
1260 | // Split out case for SafePoint vs Call | ||||
1261 | CallNode *call; | ||||
1262 | const TypeTuple *domain; | ||||
1263 | ciMethod* method = NULL__null; | ||||
1264 | bool is_method_handle_invoke = false; // for special kill effects | ||||
1265 | if( sfpt->is_Call() ) { | ||||
1266 | call = sfpt->as_Call(); | ||||
1267 | domain = call->tf()->domain(); | ||||
1268 | cnt = domain->cnt(); | ||||
1269 | |||||
1270 | // Match just the call, nothing else | ||||
1271 | MachNode *m = match_tree(call); | ||||
1272 | if (C->failing()) return NULL__null; | ||||
1273 | if( m == NULL__null ) { Matcher::soft_match_failure(); return NULL__null; } | ||||
1274 | |||||
1275 | // Copy data from the Ideal SafePoint to the machine version | ||||
1276 | mcall = m->as_MachCall(); | ||||
1277 | |||||
1278 | mcall->set_tf( call->tf()); | ||||
1279 | mcall->set_entry_point( call->entry_point()); | ||||
1280 | mcall->set_cnt( call->cnt()); | ||||
1281 | mcall->set_guaranteed_safepoint(call->guaranteed_safepoint()); | ||||
1282 | |||||
1283 | if( mcall->is_MachCallJava() ) { | ||||
1284 | MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); | ||||
1285 | const CallJavaNode *call_java = call->as_CallJava(); | ||||
1286 | assert(call_java->validate_symbolic_info(), "inconsistent info")do { if (!(call_java->validate_symbolic_info())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1286, "assert(" "call_java->validate_symbolic_info()" ") failed" , "inconsistent info"); ::breakpoint(); } } while (0); | ||||
1287 | method = call_java->method(); | ||||
1288 | mcall_java->_method = method; | ||||
1289 | mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); | ||||
1290 | is_method_handle_invoke = call_java->is_method_handle_invoke(); | ||||
1291 | mcall_java->_method_handle_invoke = is_method_handle_invoke; | ||||
1292 | mcall_java->_override_symbolic_info = call_java->override_symbolic_info(); | ||||
1293 | mcall_java->_arg_escape = call_java->arg_escape(); | ||||
1294 | if (is_method_handle_invoke) { | ||||
1295 | C->set_has_method_handle_invokes(true); | ||||
1296 | } | ||||
1297 | if( mcall_java->is_MachCallStaticJava() ) | ||||
1298 | mcall_java->as_MachCallStaticJava()->_name = | ||||
1299 | call_java->as_CallStaticJava()->_name; | ||||
1300 | if( mcall_java->is_MachCallDynamicJava() ) | ||||
1301 | mcall_java->as_MachCallDynamicJava()->_vtable_index = | ||||
1302 | call_java->as_CallDynamicJava()->_vtable_index; | ||||
1303 | } | ||||
1304 | else if( mcall->is_MachCallRuntime() ) { | ||||
1305 | MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime(); | ||||
1306 | mach_call_rt->_name = call->as_CallRuntime()->_name; | ||||
1307 | mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP(); | ||||
1308 | } | ||||
1309 | else if( mcall->is_MachCallNative() ) { | ||||
1310 | MachCallNativeNode* mach_call_native = mcall->as_MachCallNative(); | ||||
1311 | CallNativeNode* call_native = call->as_CallNative(); | ||||
1312 | mach_call_native->_name = call_native->_name; | ||||
1313 | mach_call_native->_arg_regs = call_native->_arg_regs; | ||||
1314 | mach_call_native->_ret_regs = call_native->_ret_regs; | ||||
1315 | } | ||||
1316 | msfpt = mcall; | ||||
1317 | } | ||||
1318 | // This is a non-call safepoint | ||||
1319 | else { | ||||
1320 | call = NULL__null; | ||||
1321 | domain = NULL__null; | ||||
1322 | MachNode *mn = match_tree(sfpt); | ||||
1323 | if (C->failing()) return NULL__null; | ||||
1324 | msfpt = mn->as_MachSafePoint(); | ||||
1325 | cnt = TypeFunc::Parms; | ||||
1326 | } | ||||
1327 | msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope(); | ||||
1328 | |||||
1329 | // Advertise the correct memory effects (for anti-dependence computation). | ||||
1330 | msfpt->set_adr_type(sfpt->adr_type()); | ||||
1331 | |||||
1332 | // Allocate a private array of RegMasks. These RegMasks are not shared. | ||||
1333 | msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt )(RegMask*) resource_allocate_bytes((cnt) * sizeof(RegMask)); | ||||
1334 | // Empty them all. | ||||
1335 | for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask(); | ||||
1336 | |||||
1337 | // Do all the pre-defined non-Empty register masks | ||||
1338 | msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; | ||||
1339 | msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; | ||||
1340 | |||||
1341 | // Place first outgoing argument can possibly be put. | ||||
1342 | OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); | ||||
1343 | assert( is_even(begin_out_arg_area), "" )do { if (!(is_even(begin_out_arg_area))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1343, "assert(" "is_even(begin_out_arg_area)" ") failed", "" ); ::breakpoint(); } } while (0); | ||||
1344 | // Compute max outgoing register number per call site. | ||||
1345 | OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; | ||||
1346 | // Calls to C may hammer extra stack slots above and beyond any arguments. | ||||
1347 | // These are usually backing store for register arguments for varargs. | ||||
1348 | if( call != NULL__null && call->is_CallRuntime() ) | ||||
1349 | out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); | ||||
1350 | if( call != NULL__null && call->is_CallNative() ) | ||||
1351 | out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call, call->as_CallNative()->_shadow_space_bytes); | ||||
1352 | |||||
1353 | |||||
1354 | // Do the normal argument list (parameters) register masks | ||||
1355 | int argcnt = cnt - TypeFunc::Parms; | ||||
1356 | if( argcnt > 0 ) { // Skip it all if we have no args | ||||
1357 | BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt )(BasicType*) resource_allocate_bytes((argcnt) * sizeof(BasicType )); | ||||
1358 | VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt )(VMRegPair*) resource_allocate_bytes((argcnt) * sizeof(VMRegPair )); | ||||
1359 | int i; | ||||
1360 | for( i = 0; i < argcnt; i++ ) { | ||||
1361 | sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); | ||||
1362 | } | ||||
1363 | // V-call to pick proper calling convention | ||||
1364 | call->calling_convention( sig_bt, parm_regs, argcnt ); | ||||
1365 | |||||
1366 | #ifdef ASSERT1 | ||||
1367 | // Sanity check users' calling convention. Really handy during | ||||
1368 | // the initial porting effort. Fairly expensive otherwise. | ||||
1369 | { for (int i = 0; i<argcnt; i++) { | ||||
1370 | if( !parm_regs[i].first()->is_valid() && | ||||
1371 | !parm_regs[i].second()->is_valid() ) continue; | ||||
1372 | VMReg reg1 = parm_regs[i].first(); | ||||
1373 | VMReg reg2 = parm_regs[i].second(); | ||||
1374 | for (int j = 0; j < i; j++) { | ||||
1375 | if( !parm_regs[j].first()->is_valid() && | ||||
1376 | !parm_regs[j].second()->is_valid() ) continue; | ||||
1377 | VMReg reg3 = parm_regs[j].first(); | ||||
1378 | VMReg reg4 = parm_regs[j].second(); | ||||
1379 | if( !reg1->is_valid() ) { | ||||
1380 | assert( !reg2->is_valid(), "valid halvsies" )do { if (!(!reg2->is_valid())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1380, "assert(" "!reg2->is_valid()" ") failed", "valid halvsies" ); ::breakpoint(); } } while (0); | ||||
1381 | } else if( !reg3->is_valid() ) { | ||||
1382 | assert( !reg4->is_valid(), "valid halvsies" )do { if (!(!reg4->is_valid())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1382, "assert(" "!reg4->is_valid()" ") failed", "valid halvsies" ); ::breakpoint(); } } while (0); | ||||
1383 | } else { | ||||
1384 | assert( reg1 != reg2, "calling conv. must produce distinct regs")do { if (!(reg1 != reg2)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1384, "assert(" "reg1 != reg2" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | ||||
1385 | assert( reg1 != reg3, "calling conv. must produce distinct regs")do { if (!(reg1 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1385, "assert(" "reg1 != reg3" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | ||||
1386 | assert( reg1 != reg4, "calling conv. must produce distinct regs")do { if (!(reg1 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1386, "assert(" "reg1 != reg4" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | ||||
1387 | assert( reg2 != reg3, "calling conv. must produce distinct regs")do { if (!(reg2 != reg3)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1387, "assert(" "reg2 != reg3" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | ||||
1388 | assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs")do { if (!(reg2 != reg4 || !reg2->is_valid())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1388, "assert(" "reg2 != reg4 || !reg2->is_valid()" ") failed" , "calling conv. must produce distinct regs"); ::breakpoint() ; } } while (0); | ||||
1389 | assert( reg3 != reg4, "calling conv. must produce distinct regs")do { if (!(reg3 != reg4)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1389, "assert(" "reg3 != reg4" ") failed", "calling conv. must produce distinct regs" ); ::breakpoint(); } } while (0); | ||||
1390 | } | ||||
1391 | } | ||||
1392 | } | ||||
1393 | } | ||||
1394 | #endif | ||||
1395 | |||||
1396 | // Visit each argument. Compute its outgoing register mask. | ||||
1397 | // Return results now can have 2 bits returned. | ||||
1398 | // Compute max over all outgoing arguments both per call-site | ||||
1399 | // and over the entire method. | ||||
1400 | for( i = 0; i < argcnt; i++ ) { | ||||
1401 | // Address of incoming argument mask to fill in | ||||
1402 | RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; | ||||
1403 | VMReg first = parm_regs[i].first(); | ||||
1404 | VMReg second = parm_regs[i].second(); | ||||
1405 | if(!first->is_valid() && | ||||
1406 | !second->is_valid()) { | ||||
1407 | continue; // Avoid Halves | ||||
1408 | } | ||||
1409 | // Handle case where arguments are in vector registers. | ||||
1410 | if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) { | ||||
1411 | OptoReg::Name reg_fst = OptoReg::as_OptoReg(first); | ||||
1412 | OptoReg::Name reg_snd = OptoReg::as_OptoReg(second); | ||||
1413 | assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd)do { if (!(reg_fst <= reg_snd)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1413, "assert(" "reg_fst <= reg_snd" ") failed", "fst=%d snd=%d" , reg_fst, reg_snd); ::breakpoint(); } } while (0); | ||||
1414 | for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) { | ||||
1415 | rm->Insert(r); | ||||
1416 | } | ||||
1417 | } | ||||
1418 | // Grab first register, adjust stack slots and insert in mask. | ||||
1419 | OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call ); | ||||
1420 | if (OptoReg::is_valid(reg1)) | ||||
1421 | rm->Insert( reg1 ); | ||||
1422 | // Grab second register (if any), adjust stack slots and insert in mask. | ||||
1423 | OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call ); | ||||
1424 | if (OptoReg::is_valid(reg2)) | ||||
1425 | rm->Insert( reg2 ); | ||||
1426 | } // End of for all arguments | ||||
1427 | } | ||||
1428 | |||||
1429 | // Compute the max stack slot killed by any call. These will not be | ||||
1430 | // available for debug info, and will be used to adjust FIRST_STACK_mask | ||||
1431 | // after all call sites have been visited. | ||||
1432 | if( _out_arg_limit < out_arg_limit_per_call) | ||||
1433 | _out_arg_limit = out_arg_limit_per_call; | ||||
1434 | |||||
1435 | if (mcall) { | ||||
1436 | // Kill the outgoing argument area, including any non-argument holes and | ||||
1437 | // any legacy C-killed slots. Use Fat-Projections to do the killing. | ||||
1438 | // Since the max-per-method covers the max-per-call-site and debug info | ||||
1439 | // is excluded on the max-per-method basis, debug info cannot land in | ||||
1440 | // this killed area. | ||||
1441 | uint r_cnt = mcall->tf()->range()->cnt(); | ||||
1442 | MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); | ||||
1443 | if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { | ||||
1444 | C->record_method_not_compilable("unsupported outgoing calling sequence"); | ||||
1445 | } else { | ||||
1446 | for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) | ||||
1447 | proj->_rout.Insert(OptoReg::Name(i)); | ||||
1448 | } | ||||
1449 | if (proj->_rout.is_NotEmpty()) { | ||||
1450 | push_projection(proj); | ||||
1451 | } | ||||
1452 | } | ||||
1453 | // Transfer the safepoint information from the call to the mcall | ||||
1454 | // Move the JVMState list | ||||
1455 | msfpt->set_jvms(sfpt->jvms()); | ||||
1456 | for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { | ||||
1457 | jvms->set_map(sfpt); | ||||
1458 | } | ||||
1459 | |||||
1460 | // Debug inputs begin just after the last incoming parameter | ||||
1461 | assert((mcall == NULL) || (mcall->jvms() == NULL) ||do { if (!((mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall ->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())" ") failed", ""); ::breakpoint(); } } while (0) | ||||
1462 | (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "")do { if (!((mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall ->tf()->domain()->cnt()))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1462, "assert(" "(mcall == __null) || (mcall->jvms() == __null) || (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt())" ") failed", ""); ::breakpoint(); } } while (0); | ||||
1463 | |||||
1464 | // Add additional edges. | ||||
1465 | if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { | ||||
1466 | // For these calls we can not add MachConstantBase in expand(), as the | ||||
1467 | // ins are not complete then. | ||||
1468 | msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); | ||||
1469 | if (msfpt->jvms() && | ||||
1470 | msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { | ||||
1471 | // We added an edge before jvms, so we must adapt the position of the ins. | ||||
1472 | msfpt->jvms()->adapt_position(+1); | ||||
1473 | } | ||||
1474 | } | ||||
1475 | |||||
1476 | // Registers killed by the call are set in the local scheduling pass | ||||
1477 | // of Global Code Motion. | ||||
1478 | return msfpt; | ||||
1479 | } | ||||
1480 | |||||
1481 | //---------------------------match_tree---------------------------------------- | ||||
1482 | // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part | ||||
1483 | // of the whole-sale conversion from Ideal to Mach Nodes. Also used for | ||||
1484 | // making GotoNodes while building the CFG and in init_spill_mask() to identify | ||||
1485 | // a Load's result RegMask for memoization in idealreg2regmask[] | ||||
1486 | MachNode *Matcher::match_tree( const Node *n ) { | ||||
1487 | assert( n->Opcode() != Op_Phi, "cannot match" )do { if (!(n->Opcode() != Op_Phi)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1487, "assert(" "n->Opcode() != Op_Phi" ") failed", "cannot match" ); ::breakpoint(); } } while (0); | ||||
1488 | assert( !n->is_block_start(), "cannot match" )do { if (!(!n->is_block_start())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1488, "assert(" "!n->is_block_start()" ") failed", "cannot match" ); ::breakpoint(); } } while (0); | ||||
1489 | // Set the mark for all locally allocated State objects. | ||||
1490 | // When this call returns, the _states_arena arena will be reset | ||||
1491 | // freeing all State objects. | ||||
1492 | ResourceMark rm( &_states_arena ); | ||||
1493 | |||||
1494 | LabelRootDepth = 0; | ||||
1495 | |||||
1496 | // StoreNodes require their Memory input to match any LoadNodes | ||||
1497 | Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; | ||||
1498 | #ifdef ASSERT1 | ||||
1499 | Node* save_mem_node = _mem_node; | ||||
1500 | _mem_node = n->is_Store() ? (Node*)n : NULL__null; | ||||
1501 | #endif | ||||
1502 | // State object for root node of match tree | ||||
1503 | // Allocate it on _states_arena - stack allocation can cause stack overflow. | ||||
1504 | State *s = new (&_states_arena) State; | ||||
1505 | s->_kids[0] = NULL__null; | ||||
1506 | s->_kids[1] = NULL__null; | ||||
1507 | s->_leaf = (Node*)n; | ||||
1508 | // Label the input tree, allocating labels from top-level arena | ||||
1509 | Node* root_mem = mem; | ||||
1510 | Label_Root(n, s, n->in(0), root_mem); | ||||
1511 | if (C->failing()) return NULL__null; | ||||
1512 | |||||
1513 | // The minimum cost match for the whole tree is found at the root State | ||||
1514 | uint mincost = max_juint; | ||||
1515 | uint cost = max_juint; | ||||
1516 | uint i; | ||||
1517 | for (i = 0; i < NUM_OPERANDS139; i++) { | ||||
1518 | if (s->valid(i) && // valid entry and | ||||
1519 | s->cost(i) < cost && // low cost and | ||||
1520 | s->rule(i) >= NUM_OPERANDS139) {// not an operand | ||||
1521 | mincost = i; | ||||
1522 | cost = s->cost(i); | ||||
1523 | } | ||||
1524 | } | ||||
1525 | if (mincost == max_juint) { | ||||
1526 | #ifndef PRODUCT | ||||
1527 | tty->print("No matching rule for:"); | ||||
1528 | s->dump(); | ||||
1529 | #endif | ||||
1530 | Matcher::soft_match_failure(); | ||||
1531 | return NULL__null; | ||||
1532 | } | ||||
1533 | // Reduce input tree based upon the state labels to machine Nodes | ||||
1534 | MachNode *m = ReduceInst(s, s->rule(mincost), mem); | ||||
1535 | // New-to-old mapping is done in ReduceInst, to cover complex instructions. | ||||
1536 | NOT_PRODUCT(_old2new_map.map(n->_idx, m);)_old2new_map.map(n->_idx, m); | ||||
1537 | |||||
1538 | // Add any Matcher-ignored edges | ||||
1539 | uint cnt = n->req(); | ||||
1540 | uint start = 1; | ||||
1541 | if( mem != (Node*)1 ) start = MemNode::Memory+1; | ||||
1542 | if( n->is_AddP() ) { | ||||
1543 | assert( mem == (Node*)1, "" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1543, "assert(" "mem == (Node*)1" ") failed", ""); ::breakpoint (); } } while (0); | ||||
1544 | start = AddPNode::Base+1; | ||||
1545 | } | ||||
1546 | for( i = start; i < cnt; i++ ) { | ||||
1547 | if( !n->match_edge(i) ) { | ||||
1548 | if( i < m->req() ) | ||||
1549 | m->ins_req( i, n->in(i) ); | ||||
1550 | else | ||||
1551 | m->add_req( n->in(i) ); | ||||
1552 | } | ||||
1553 | } | ||||
1554 | |||||
1555 | debug_only( _mem_node = save_mem_node; )_mem_node = save_mem_node; | ||||
1556 | return m; | ||||
1557 | } | ||||
1558 | |||||
1559 | |||||
1560 | //------------------------------match_into_reg--------------------------------- | ||||
1561 | // Choose to either match this Node in a register or part of the current | ||||
1562 | // match tree. Return true for requiring a register and false for matching | ||||
1563 | // as part of the current match tree. | ||||
1564 | static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { | ||||
1565 | |||||
1566 | const Type *t = m->bottom_type(); | ||||
1567 | |||||
1568 | if (t->singleton()) { | ||||
1569 | // Never force constants into registers. Allow them to match as | ||||
1570 | // constants or registers. Copies of the same value will share | ||||
1571 | // the same register. See find_shared_node. | ||||
1572 | return false; | ||||
1573 | } else { // Not a constant | ||||
1574 | // Stop recursion if they have different Controls. | ||||
1575 | Node* m_control = m->in(0); | ||||
1576 | // Control of load's memory can post-dominates load's control. | ||||
1577 | // So use it since load can't float above its memory. | ||||
1578 | Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL__null; | ||||
1579 | if (control && m_control && control != m_control && control != mem_control) { | ||||
1580 | |||||
1581 | // Actually, we can live with the most conservative control we | ||||
1582 | // find, if it post-dominates the others. This allows us to | ||||
1583 | // pick up load/op/store trees where the load can float a little | ||||
1584 | // above the store. | ||||
1585 | Node *x = control; | ||||
1586 | const uint max_scan = 6; // Arbitrary scan cutoff | ||||
1587 | uint j; | ||||
1588 | for (j=0; j<max_scan; j++) { | ||||
1589 | if (x->is_Region()) // Bail out at merge points | ||||
1590 | return true; | ||||
1591 | x = x->in(0); | ||||
1592 | if (x == m_control) // Does 'control' post-dominate | ||||
1593 | break; // m->in(0)? If so, we can use it | ||||
1594 | if (x == mem_control) // Does 'control' post-dominate | ||||
1595 | break; // mem_control? If so, we can use it | ||||
1596 | } | ||||
1597 | if (j == max_scan) // No post-domination before scan end? | ||||
1598 | return true; // Then break the match tree up | ||||
1599 | } | ||||
1600 | if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || | ||||
1601 | (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { | ||||
1602 | // These are commonly used in address expressions and can | ||||
1603 | // efficiently fold into them on X64 in some cases. | ||||
1604 | return false; | ||||
1605 | } | ||||
1606 | } | ||||
1607 | |||||
1608 | // Not forceable cloning. If shared, put it into a register. | ||||
1609 | return shared; | ||||
1610 | } | ||||
1611 | |||||
1612 | |||||
1613 | //------------------------------Instruction Selection-------------------------- | ||||
1614 | // Label method walks a "tree" of nodes, using the ADLC generated DFA to match | ||||
1615 | // ideal nodes to machine instructions. Trees are delimited by shared Nodes, | ||||
1616 | // things the Matcher does not match (e.g., Memory), and things with different | ||||
1617 | // Controls (hence forced into different blocks). We pass in the Control | ||||
1618 | // selected for this entire State tree. | ||||
1619 | |||||
1620 | // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the | ||||
1621 | // Store and the Load must have identical Memories (as well as identical | ||||
1622 | // pointers). Since the Matcher does not have anything for Memory (and | ||||
1623 | // does not handle DAGs), I have to match the Memory input myself. If the | ||||
1624 | // Tree root is a Store or if there are multiple Loads in the tree, I require | ||||
1625 | // all Loads to have the identical memory. | ||||
1626 | Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) { | ||||
1627 | // Since Label_Root is a recursive function, its possible that we might run | ||||
1628 | // out of stack space. See bugs 6272980 & 6227033 for more info. | ||||
1629 | LabelRootDepth++; | ||||
1630 | if (LabelRootDepth > MaxLabelRootDepth) { | ||||
1631 | C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth"); | ||||
1632 | return NULL__null; | ||||
1633 | } | ||||
1634 | uint care = 0; // Edges matcher cares about | ||||
1635 | uint cnt = n->req(); | ||||
1636 | uint i = 0; | ||||
1637 | |||||
1638 | // Examine children for memory state | ||||
1639 | // Can only subsume a child into your match-tree if that child's memory state | ||||
1640 | // is not modified along the path to another input. | ||||
1641 | // It is unsafe even if the other inputs are separate roots. | ||||
1642 | Node *input_mem = NULL__null; | ||||
1643 | for( i = 1; i < cnt; i++ ) { | ||||
1644 | if( !n->match_edge(i) ) continue; | ||||
1645 | Node *m = n->in(i); // Get ith input | ||||
1646 | assert( m, "expect non-null children" )do { if (!(m)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1646, "assert(" "m" ") failed", "expect non-null children") ; ::breakpoint(); } } while (0); | ||||
1647 | if( m->is_Load() ) { | ||||
1648 | if( input_mem == NULL__null ) { | ||||
1649 | input_mem = m->in(MemNode::Memory); | ||||
1650 | if (mem == (Node*)1) { | ||||
1651 | // Save this memory to bail out if there's another memory access | ||||
1652 | // to a different memory location in the same tree. | ||||
1653 | mem = input_mem; | ||||
1654 | } | ||||
1655 | } else if( input_mem != m->in(MemNode::Memory) ) { | ||||
1656 | input_mem = NodeSentinel(Node*)-1; | ||||
1657 | } | ||||
1658 | } | ||||
1659 | } | ||||
1660 | |||||
1661 | for( i = 1; i < cnt; i++ ){// For my children | ||||
1662 | if( !n->match_edge(i) ) continue; | ||||
1663 | Node *m = n->in(i); // Get ith input | ||||
1664 | // Allocate states out of a private arena | ||||
1665 | State *s = new (&_states_arena) State; | ||||
1666 | svec->_kids[care++] = s; | ||||
1667 | assert( care <= 2, "binary only for now" )do { if (!(care <= 2)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1667, "assert(" "care <= 2" ") failed", "binary only for now" ); ::breakpoint(); } } while (0); | ||||
1668 | |||||
1669 | // Recursively label the State tree. | ||||
1670 | s->_kids[0] = NULL__null; | ||||
1671 | s->_kids[1] = NULL__null; | ||||
1672 | s->_leaf = m; | ||||
1673 | |||||
1674 | // Check for leaves of the State Tree; things that cannot be a part of | ||||
1675 | // the current tree. If it finds any, that value is matched as a | ||||
1676 | // register operand. If not, then the normal matching is used. | ||||
1677 | if( match_into_reg(n, m, control, i, is_shared(m)) || | ||||
1678 | // Stop recursion if this is a LoadNode and there is another memory access | ||||
1679 | // to a different memory location in the same tree (for example, a StoreNode | ||||
1680 | // at the root of this tree or another LoadNode in one of the children). | ||||
1681 | ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || | ||||
1682 | // Can NOT include the match of a subtree when its memory state | ||||
1683 | // is used by any of the other subtrees | ||||
1684 | (input_mem == NodeSentinel(Node*)-1) ) { | ||||
1685 | // Print when we exclude matching due to different memory states at input-loads | ||||
1686 | if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel(Node*)-1) | ||||
1687 | && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) { | ||||
1688 | tty->print_cr("invalid input_mem"); | ||||
1689 | } | ||||
1690 | // Switch to a register-only opcode; this value must be in a register | ||||
1691 | // and cannot be subsumed as part of a larger instruction. | ||||
1692 | s->DFA( m->ideal_reg(), m ); | ||||
1693 | |||||
1694 | } else { | ||||
1695 | // If match tree has no control and we do, adopt it for entire tree | ||||
1696 | if( control == NULL__null && m->in(0) != NULL__null && m->req() > 1 ) | ||||
1697 | control = m->in(0); // Pick up control | ||||
1698 | // Else match as a normal part of the match tree. | ||||
1699 | control = Label_Root(m, s, control, mem); | ||||
1700 | if (C->failing()) return NULL__null; | ||||
1701 | } | ||||
1702 | } | ||||
1703 | |||||
1704 | // Call DFA to match this node, and return | ||||
1705 | svec->DFA( n->Opcode(), n ); | ||||
1706 | |||||
1707 | #ifdef ASSERT1 | ||||
1708 | uint x; | ||||
1709 | for( x = 0; x < _LAST_MACH_OPER; x++ ) | ||||
1710 | if( svec->valid(x) ) | ||||
1711 | break; | ||||
1712 | |||||
1713 | if (x >= _LAST_MACH_OPER) { | ||||
1714 | n->dump(); | ||||
1715 | svec->dump(); | ||||
1716 | assert( false, "bad AD file" )do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1716, "assert(" "false" ") failed", "bad AD file"); ::breakpoint (); } } while (0); | ||||
1717 | } | ||||
1718 | #endif | ||||
1719 | return control; | ||||
1720 | } | ||||
1721 | |||||
1722 | |||||
1723 | // Con nodes reduced using the same rule can share their MachNode | ||||
1724 | // which reduces the number of copies of a constant in the final | ||||
1725 | // program. The register allocator is free to split uses later to | ||||
1726 | // split live ranges. | ||||
1727 | MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { | ||||
1728 | if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL__null; | ||||
1729 | |||||
1730 | // See if this Con has already been reduced using this rule. | ||||
1731 | if (_shared_nodes.Size() <= leaf->_idx) return NULL__null; | ||||
1732 | MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); | ||||
1733 | if (last != NULL__null && rule == last->rule()) { | ||||
1734 | // Don't expect control change for DecodeN | ||||
1735 | if (leaf->is_DecodeNarrowPtr()) | ||||
1736 | return last; | ||||
1737 | // Get the new space root. | ||||
1738 | Node* xroot = new_node(C->root()); | ||||
1739 | if (xroot == NULL__null) { | ||||
1740 | // This shouldn't happen give the order of matching. | ||||
1741 | return NULL__null; | ||||
1742 | } | ||||
1743 | |||||
1744 | // Shared constants need to have their control be root so they | ||||
1745 | // can be scheduled properly. | ||||
1746 | Node* control = last->in(0); | ||||
1747 | if (control != xroot) { | ||||
1748 | if (control == NULL__null || control == C->root()) { | ||||
1749 | last->set_req(0, xroot); | ||||
1750 | } else { | ||||
1751 | assert(false, "unexpected control")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1751, "assert(" "false" ") failed", "unexpected control"); :: breakpoint(); } } while (0); | ||||
1752 | return NULL__null; | ||||
1753 | } | ||||
1754 | } | ||||
1755 | return last; | ||||
1756 | } | ||||
1757 | return NULL__null; | ||||
1758 | } | ||||
1759 | |||||
1760 | |||||
1761 | //------------------------------ReduceInst------------------------------------- | ||||
1762 | // Reduce a State tree (with given Control) into a tree of MachNodes. | ||||
1763 | // This routine (and it's cohort ReduceOper) convert Ideal Nodes into | ||||
1764 | // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. | ||||
1765 | // Each MachNode has a number of complicated MachOper operands; each | ||||
1766 | // MachOper also covers a further tree of Ideal Nodes. | ||||
1767 | |||||
1768 | // The root of the Ideal match tree is always an instruction, so we enter | ||||
1769 | // the recursion here. After building the MachNode, we need to recurse | ||||
1770 | // the tree checking for these cases: | ||||
1771 | // (1) Child is an instruction - | ||||
1772 | // Build the instruction (recursively), add it as an edge. | ||||
1773 | // Build a simple operand (register) to hold the result of the instruction. | ||||
1774 | // (2) Child is an interior part of an instruction - | ||||
1775 | // Skip over it (do nothing) | ||||
1776 | // (3) Child is the start of a operand - | ||||
1777 | // Build the operand, place it inside the instruction | ||||
1778 | // Call ReduceOper. | ||||
1779 | MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { | ||||
1780 | assert( rule >= NUM_OPERANDS, "called with operand rule" )do { if (!(rule >= 139)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1780, "assert(" "rule >= 139" ") failed", "called with operand rule" ); ::breakpoint(); } } while (0); | ||||
1781 | |||||
1782 | MachNode* shared_node = find_shared_node(s->_leaf, rule); | ||||
1783 | if (shared_node != NULL__null) { | ||||
1784 | return shared_node; | ||||
1785 | } | ||||
1786 | |||||
1787 | // Build the object to represent this state & prepare for recursive calls | ||||
1788 | MachNode *mach = s->MachNodeGenerator(rule); | ||||
1789 | guarantee(mach != NULL, "Missing MachNode")do { if (!(mach != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1789, "guarantee(" "mach != NULL" ") failed", "Missing MachNode" ); ::breakpoint(); } } while (0); | ||||
1790 | mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]); | ||||
1791 | assert( mach->_opnds[0] != NULL, "Missing result operand" )do { if (!(mach->_opnds[0] != __null)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1791, "assert(" "mach->_opnds[0] != __null" ") failed", "Missing result operand" ); ::breakpoint(); } } while (0); | ||||
1792 | Node *leaf = s->_leaf; | ||||
1793 | NOT_PRODUCT(record_new2old(mach, leaf);)record_new2old(mach, leaf); | ||||
1794 | // Check for instruction or instruction chain rule | ||||
1795 | if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { | ||||
1796 | assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node (s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)" ") failed", "duplicating node that's already been matched"); ::breakpoint(); } } while (0) | ||||
1797 | "duplicating node that's already been matched")do { if (!(C->node_arena()->contains(s->_leaf) || !has_new_node (s->_leaf))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1797, "assert(" "C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf)" ") failed", "duplicating node that's already been matched"); ::breakpoint(); } } while (0); | ||||
1798 | // Instruction | ||||
1799 | mach->add_req( leaf->in(0) ); // Set initial control | ||||
1800 | // Reduce interior of complex instruction | ||||
1801 | ReduceInst_Interior( s, rule, mem, mach, 1 ); | ||||
1802 | } else { | ||||
1803 | // Instruction chain rules are data-dependent on their inputs | ||||
1804 | mach->add_req(0); // Set initial control to none | ||||
1805 | ReduceInst_Chain_Rule( s, rule, mem, mach ); | ||||
1806 | } | ||||
1807 | |||||
1808 | // If a Memory was used, insert a Memory edge | ||||
1809 | if( mem != (Node*)1 ) { | ||||
1810 | mach->ins_req(MemNode::Memory,mem); | ||||
1811 | #ifdef ASSERT1 | ||||
1812 | // Verify adr type after matching memory operation | ||||
1813 | const MachOper* oper = mach->memory_operand(); | ||||
1814 | if (oper != NULL__null && oper != (MachOper*)-1) { | ||||
1815 | // It has a unique memory operand. Find corresponding ideal mem node. | ||||
1816 | Node* m = NULL__null; | ||||
1817 | if (leaf->is_Mem()) { | ||||
1818 | m = leaf; | ||||
1819 | } else { | ||||
1820 | m = _mem_node; | ||||
1821 | assert(m != NULL && m->is_Mem(), "expecting memory node")do { if (!(m != __null && m->is_Mem())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1821, "assert(" "m != __null && m->is_Mem()" ") failed" , "expecting memory node"); ::breakpoint(); } } while (0); | ||||
1822 | } | ||||
1823 | const Type* mach_at = mach->adr_type(); | ||||
1824 | // DecodeN node consumed by an address may have different type | ||||
1825 | // than its input. Don't compare types for such case. | ||||
1826 | if (m->adr_type() != mach_at && | ||||
1827 | (m->in(MemNode::Address)->is_DecodeNarrowPtr() || | ||||
1828 | (m->in(MemNode::Address)->is_AddP() && | ||||
1829 | m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) || | ||||
1830 | (m->in(MemNode::Address)->is_AddP() && | ||||
1831 | m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && | ||||
1832 | m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) { | ||||
1833 | mach_at = m->adr_type(); | ||||
1834 | } | ||||
1835 | if (m->adr_type() != mach_at) { | ||||
1836 | m->dump(); | ||||
1837 | tty->print_cr("mach:"); | ||||
1838 | mach->dump(1); | ||||
1839 | } | ||||
1840 | assert(m->adr_type() == mach_at, "matcher should not change adr type")do { if (!(m->adr_type() == mach_at)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1840, "assert(" "m->adr_type() == mach_at" ") failed", "matcher should not change adr type" ); ::breakpoint(); } } while (0); | ||||
1841 | } | ||||
1842 | #endif | ||||
1843 | } | ||||
1844 | |||||
1845 | // If the _leaf is an AddP, insert the base edge | ||||
1846 | if (leaf->is_AddP()) { | ||||
1847 | mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); | ||||
1848 | } | ||||
1849 | |||||
1850 | uint number_of_projections_prior = number_of_projections(); | ||||
1851 | |||||
1852 | // Perform any 1-to-many expansions required | ||||
1853 | MachNode *ex = mach->Expand(s, _projection_list, mem); | ||||
1854 | if (ex != mach) { | ||||
1855 | assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match")do { if (!(ex->ideal_reg() == mach->ideal_reg())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1855, "assert(" "ex->ideal_reg() == mach->ideal_reg()" ") failed", "ideal types should match"); ::breakpoint(); } } while (0); | ||||
1856 | if( ex->in(1)->is_Con() ) | ||||
1857 | ex->in(1)->set_req(0, C->root()); | ||||
1858 | // Remove old node from the graph | ||||
1859 | for( uint i=0; i<mach->req(); i++ ) { | ||||
1860 | mach->set_req(i,NULL__null); | ||||
1861 | } | ||||
1862 | NOT_PRODUCT(record_new2old(ex, s->_leaf);)record_new2old(ex, s->_leaf); | ||||
1863 | } | ||||
1864 | |||||
1865 | // PhaseChaitin::fixup_spills will sometimes generate spill code | ||||
1866 | // via the matcher. By the time, nodes have been wired into the CFG, | ||||
1867 | // and any further nodes generated by expand rules will be left hanging | ||||
1868 | // in space, and will not get emitted as output code. Catch this. | ||||
1869 | // Also, catch any new register allocation constraints ("projections") | ||||
1870 | // generated belatedly during spill code generation. | ||||
1871 | if (_allocation_started) { | ||||
1872 | guarantee(ex == mach, "no expand rules during spill generation")do { if (!(ex == mach)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1872, "guarantee(" "ex == mach" ") failed", "no expand rules during spill generation" ); ::breakpoint(); } } while (0); | ||||
1873 | guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation")do { if (!(number_of_projections_prior == number_of_projections ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1873, "guarantee(" "number_of_projections_prior == number_of_projections()" ") failed", "no allocation during spill generation"); ::breakpoint (); } } while (0); | ||||
1874 | } | ||||
1875 | |||||
1876 | if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { | ||||
1877 | // Record the con for sharing | ||||
1878 | _shared_nodes.map(leaf->_idx, ex); | ||||
1879 | } | ||||
1880 | |||||
1881 | // Have mach nodes inherit GC barrier data | ||||
1882 | if (leaf->is_LoadStore()) { | ||||
1883 | mach->set_barrier_data(leaf->as_LoadStore()->barrier_data()); | ||||
1884 | } else if (leaf->is_Mem()) { | ||||
1885 | mach->set_barrier_data(leaf->as_Mem()->barrier_data()); | ||||
1886 | } | ||||
1887 | |||||
1888 | return ex; | ||||
1889 | } | ||||
1890 | |||||
1891 | void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { | ||||
1892 | for (uint i = n->req(); i < n->len(); i++) { | ||||
1893 | if (n->in(i) != NULL__null) { | ||||
1894 | mach->add_prec(n->in(i)); | ||||
1895 | } | ||||
1896 | } | ||||
1897 | } | ||||
1898 | |||||
1899 | void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) { | ||||
1900 | // 'op' is what I am expecting to receive | ||||
1901 | int op = _leftOp[rule]; | ||||
1902 | // Operand type to catch childs result | ||||
1903 | // This is what my child will give me. | ||||
1904 | unsigned int opnd_class_instance = s->rule(op); | ||||
1905 | // Choose between operand class or not. | ||||
1906 | // This is what I will receive. | ||||
1907 | int catch_op = (FIRST_OPERAND_CLASS138 <= op && op < NUM_OPERANDS139) ? opnd_class_instance : op; | ||||
1908 | // New rule for child. Chase operand classes to get the actual rule. | ||||
1909 | unsigned int newrule = s->rule(catch_op); | ||||
1910 | |||||
1911 | if (newrule < NUM_OPERANDS139) { | ||||
1912 | // Chain from operand or operand class, may be output of shared node | ||||
1913 | assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand")do { if (!(opnd_class_instance < 139)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1913, "assert(" "opnd_class_instance < 139" ") failed", "Bad AD file: Instruction chain rule must chain from operand" ); ::breakpoint(); } } while (0); | ||||
1914 | // Insert operand into array of operands for this instruction | ||||
1915 | mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance); | ||||
1916 | |||||
1917 | ReduceOper(s, newrule, mem, mach); | ||||
1918 | } else { | ||||
1919 | // Chain from the result of an instruction | ||||
1920 | assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand")do { if (!(newrule >= _LAST_MACH_OPER)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1920, "assert(" "newrule >= _LAST_MACH_OPER" ") failed", "Do NOT chain from internal operand"); ::breakpoint(); } } while (0); | ||||
1921 | mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]); | ||||
1922 | Node *mem1 = (Node*)1; | ||||
1923 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; | ||||
1924 | mach->add_req( ReduceInst(s, newrule, mem1) ); | ||||
1925 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; | ||||
1926 | } | ||||
1927 | return; | ||||
1928 | } | ||||
1929 | |||||
1930 | |||||
1931 | uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { | ||||
1932 | handle_precedence_edges(s->_leaf, mach); | ||||
1933 | |||||
1934 | if( s->_leaf->is_Load() ) { | ||||
1935 | Node *mem2 = s->_leaf->in(MemNode::Memory); | ||||
1936 | assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1 || mem == mem2)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1936, "assert(" "mem == (Node*)1 || mem == mem2" ") failed" , "multiple Memories being matched at once?"); ::breakpoint() ; } } while (0); | ||||
1937 | debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)if( mem == (Node*)1 ) _mem_node = s->_leaf; | ||||
1938 | mem = mem2; | ||||
1939 | } | ||||
1940 | if( s->_leaf->in(0) != NULL__null && s->_leaf->req() > 1) { | ||||
1941 | if( mach->in(0) == NULL__null ) | ||||
1942 | mach->set_req(0, s->_leaf->in(0)); | ||||
1943 | } | ||||
1944 | |||||
1945 | // Now recursively walk the state tree & add operand list. | ||||
1946 | for( uint i=0; i<2; i++ ) { // binary tree | ||||
1947 | State *newstate = s->_kids[i]; | ||||
1948 | if( newstate == NULL__null ) break; // Might only have 1 child | ||||
1949 | // 'op' is what I am expecting to receive | ||||
1950 | int op; | ||||
1951 | if( i == 0 ) { | ||||
1952 | op = _leftOp[rule]; | ||||
1953 | } else { | ||||
1954 | op = _rightOp[rule]; | ||||
1955 | } | ||||
1956 | // Operand type to catch childs result | ||||
1957 | // This is what my child will give me. | ||||
1958 | int opnd_class_instance = newstate->rule(op); | ||||
1959 | // Choose between operand class or not. | ||||
1960 | // This is what I will receive. | ||||
1961 | int catch_op = (op >= FIRST_OPERAND_CLASS138 && op < NUM_OPERANDS139) ? opnd_class_instance : op; | ||||
1962 | // New rule for child. Chase operand classes to get the actual rule. | ||||
1963 | int newrule = newstate->rule(catch_op); | ||||
1964 | |||||
1965 | if (newrule < NUM_OPERANDS139) { // Operand/operandClass or internalOp/instruction? | ||||
1966 | // Operand/operandClass | ||||
1967 | // Insert operand into array of operands for this instruction | ||||
1968 | mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance); | ||||
1969 | ReduceOper(newstate, newrule, mem, mach); | ||||
1970 | |||||
1971 | } else { // Child is internal operand or new instruction | ||||
1972 | if (newrule < _LAST_MACH_OPER) { // internal operand or instruction? | ||||
1973 | // internal operand --> call ReduceInst_Interior | ||||
1974 | // Interior of complex instruction. Do nothing but recurse. | ||||
1975 | num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds); | ||||
1976 | } else { | ||||
1977 | // instruction --> call build operand( ) to catch result | ||||
1978 | // --> ReduceInst( newrule ) | ||||
1979 | mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]); | ||||
1980 | Node *mem1 = (Node*)1; | ||||
1981 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; | ||||
1982 | mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); | ||||
1983 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; | ||||
1984 | } | ||||
1985 | } | ||||
1986 | assert( mach->_opnds[num_opnds-1], "" )do { if (!(mach->_opnds[num_opnds-1])) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 1986, "assert(" "mach->_opnds[num_opnds-1]" ") failed", "" ); ::breakpoint(); } } while (0); | ||||
1987 | } | ||||
1988 | return num_opnds; | ||||
1989 | } | ||||
1990 | |||||
1991 | // This routine walks the interior of possible complex operands. | ||||
1992 | // At each point we check our children in the match tree: | ||||
1993 | // (1) No children - | ||||
1994 | // We are a leaf; add _leaf field as an input to the MachNode | ||||
1995 | // (2) Child is an internal operand - | ||||
1996 | // Skip over it ( do nothing ) | ||||
1997 | // (3) Child is an instruction - | ||||
1998 | // Call ReduceInst recursively and | ||||
1999 | // and instruction as an input to the MachNode | ||||
2000 | void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { | ||||
2001 | assert( rule < _LAST_MACH_OPER, "called with operand rule" )do { if (!(rule < _LAST_MACH_OPER)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2001, "assert(" "rule < _LAST_MACH_OPER" ") failed", "called with operand rule" ); ::breakpoint(); } } while (0); | ||||
2002 | State *kid = s->_kids[0]; | ||||
2003 | assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" )do { if (!(kid == __null || s->_leaf->in(0) == __null)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2003, "assert(" "kid == __null || s->_leaf->in(0) == __null" ") failed", "internal operands have no control"); ::breakpoint (); } } while (0); | ||||
2004 | |||||
2005 | // Leaf? And not subsumed? | ||||
2006 | if( kid == NULL__null && !_swallowed[rule] ) { | ||||
2007 | mach->add_req( s->_leaf ); // Add leaf pointer | ||||
2008 | return; // Bail out | ||||
2009 | } | ||||
2010 | |||||
2011 | if( s->_leaf->is_Load() ) { | ||||
2012 | assert( mem == (Node*)1, "multiple Memories being matched at once?" )do { if (!(mem == (Node*)1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2012, "assert(" "mem == (Node*)1" ") failed", "multiple Memories being matched at once?" ); ::breakpoint(); } } while (0); | ||||
2013 | mem = s->_leaf->in(MemNode::Memory); | ||||
2014 | debug_only(_mem_node = s->_leaf;)_mem_node = s->_leaf; | ||||
2015 | } | ||||
2016 | |||||
2017 | handle_precedence_edges(s->_leaf, mach); | ||||
2018 | |||||
2019 | if( s->_leaf->in(0) && s->_leaf->req() > 1) { | ||||
2020 | if( !mach->in(0) ) | ||||
2021 | mach->set_req(0,s->_leaf->in(0)); | ||||
2022 | else { | ||||
2023 | assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" )do { if (!(s->_leaf->in(0) == mach->in(0))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2023, "assert(" "s->_leaf->in(0) == mach->in(0)" ") failed" , "same instruction, differing controls?"); ::breakpoint(); } } while (0); | ||||
2024 | } | ||||
2025 | } | ||||
2026 | |||||
2027 | for (uint i = 0; kid != NULL__null && i < 2; kid = s->_kids[1], i++) { // binary tree | ||||
2028 | int newrule; | ||||
2029 | if( i == 0) { | ||||
2030 | newrule = kid->rule(_leftOp[rule]); | ||||
2031 | } else { | ||||
2032 | newrule = kid->rule(_rightOp[rule]); | ||||
2033 | } | ||||
2034 | |||||
2035 | if (newrule < _LAST_MACH_OPER) { // Operand or instruction? | ||||
2036 | // Internal operand; recurse but do nothing else | ||||
2037 | ReduceOper(kid, newrule, mem, mach); | ||||
2038 | |||||
2039 | } else { // Child is a new instruction | ||||
2040 | // Reduce the instruction, and add a direct pointer from this | ||||
2041 | // machine instruction to the newly reduced one. | ||||
2042 | Node *mem1 = (Node*)1; | ||||
2043 | debug_only(Node *save_mem_node = _mem_node;)Node *save_mem_node = _mem_node; | ||||
2044 | mach->add_req( ReduceInst( kid, newrule, mem1 ) ); | ||||
2045 | debug_only(_mem_node = save_mem_node;)_mem_node = save_mem_node; | ||||
2046 | } | ||||
2047 | } | ||||
2048 | } | ||||
2049 | |||||
2050 | |||||
2051 | // ------------------------------------------------------------------------- | ||||
2052 | // Java-Java calling convention | ||||
2053 | // (what you use when Java calls Java) | ||||
2054 | |||||
2055 | //------------------------------find_receiver---------------------------------- | ||||
2056 | // For a given signature, return the OptoReg for parameter 0. | ||||
2057 | OptoReg::Name Matcher::find_receiver() { | ||||
2058 | VMRegPair regs; | ||||
2059 | BasicType sig_bt = T_OBJECT; | ||||
2060 | SharedRuntime::java_calling_convention(&sig_bt, ®s, 1); | ||||
2061 | // Return argument 0 register. In the LP64 build pointers | ||||
2062 | // take 2 registers, but the VM wants only the 'main' name. | ||||
2063 | return OptoReg::as_OptoReg(regs.first()); | ||||
2064 | } | ||||
2065 | |||||
2066 | bool Matcher::is_vshift_con_pattern(Node* n, Node* m) { | ||||
2067 | if (n != NULL__null && m != NULL__null) { | ||||
2068 | return VectorNode::is_vector_shift(n) && | ||||
2069 | VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con(); | ||||
2070 | } | ||||
2071 | return false; | ||||
2072 | } | ||||
2073 | |||||
2074 | bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) { | ||||
2075 | // Must clone all producers of flags, or we will not match correctly. | ||||
2076 | // Suppose a compare setting int-flags is shared (e.g., a switch-tree) | ||||
2077 | // then it will match into an ideal Op_RegFlags. Alas, the fp-flags | ||||
2078 | // are also there, so we may match a float-branch to int-flags and | ||||
2079 | // expect the allocator to haul the flags from the int-side to the | ||||
2080 | // fp-side. No can do. | ||||
2081 | if (_must_clone[m->Opcode()]) { | ||||
2082 | mstack.push(m, Visit); | ||||
2083 | return true; | ||||
2084 | } | ||||
2085 | return pd_clone_node(n, m, mstack); | ||||
2086 | } | ||||
2087 | |||||
2088 | bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { | ||||
2089 | Node *off = m->in(AddPNode::Offset); | ||||
2090 | if (off->is_Con()) { | ||||
2091 | address_visited.test_set(m->_idx); // Flag as address_visited | ||||
2092 | mstack.push(m->in(AddPNode::Address), Pre_Visit); | ||||
2093 | // Clone X+offset as it also folds into most addressing expressions | ||||
2094 | mstack.push(off, Visit); | ||||
2095 | mstack.push(m->in(AddPNode::Base), Pre_Visit); | ||||
2096 | return true; | ||||
2097 | } | ||||
2098 | return false; | ||||
2099 | } | ||||
2100 | |||||
2101 | // A method-klass-holder may be passed in the inline_cache_reg | ||||
2102 | // and then expanded into the inline_cache_reg and a method_ptr register | ||||
2103 | // defined in ad_<arch>.cpp | ||||
2104 | |||||
2105 | //------------------------------find_shared------------------------------------ | ||||
2106 | // Set bits if Node is shared or otherwise a root | ||||
2107 | void Matcher::find_shared(Node* n) { | ||||
2108 | // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc | ||||
2109 | MStack mstack(C->live_nodes() * 2); | ||||
2110 | // Mark nodes as address_visited if they are inputs to an address expression | ||||
2111 | VectorSet address_visited; | ||||
2112 | mstack.push(n, Visit); // Don't need to pre-visit root node | ||||
2113 | while (mstack.is_nonempty()) { | ||||
2114 | n = mstack.node(); // Leave node on stack | ||||
2115 | Node_State nstate = mstack.state(); | ||||
2116 | uint nop = n->Opcode(); | ||||
2117 | if (nstate == Pre_Visit) { | ||||
2118 | if (address_visited.test(n->_idx)) { // Visited in address already? | ||||
2119 | // Flag as visited and shared now. | ||||
2120 | set_visited(n); | ||||
2121 | } | ||||
2122 | if (is_visited(n)) { // Visited already? | ||||
2123 | // Node is shared and has no reason to clone. Flag it as shared. | ||||
2124 | // This causes it to match into a register for the sharing. | ||||
2125 | set_shared(n); // Flag as shared and | ||||
2126 | if (n->is_DecodeNarrowPtr()) { | ||||
2127 | // Oop field/array element loads must be shared but since | ||||
2128 | // they are shared through a DecodeN they may appear to have | ||||
2129 | // a single use so force sharing here. | ||||
2130 | set_shared(n->in(1)); | ||||
2131 | } | ||||
2132 | mstack.pop(); // remove node from stack | ||||
2133 | continue; | ||||
2134 | } | ||||
2135 | nstate = Visit; // Not already visited; so visit now | ||||
2136 | } | ||||
2137 | if (nstate == Visit) { | ||||
2138 | mstack.set_state(Post_Visit); | ||||
2139 | set_visited(n); // Flag as visited now | ||||
2140 | bool mem_op = false; | ||||
2141 | int mem_addr_idx = MemNode::Address; | ||||
2142 | if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) { | ||||
2143 | continue; | ||||
2144 | } | ||||
2145 | for (int i = n->req() - 1; i >= 0; --i) { // For my children | ||||
2146 | Node* m = n->in(i); // Get ith input | ||||
2147 | if (m == NULL__null) { | ||||
2148 | continue; // Ignore NULLs | ||||
2149 | } | ||||
2150 | if (clone_node(n, m, mstack)) { | ||||
2151 | continue; | ||||
2152 | } | ||||
2153 | |||||
2154 | // Clone addressing expressions as they are "free" in memory access instructions | ||||
2155 | if (mem_op && i == mem_addr_idx && m->is_AddP() && | ||||
2156 | // When there are other uses besides address expressions | ||||
2157 | // put it on stack and mark as shared. | ||||
2158 | !is_visited(m)) { | ||||
2159 | // Some inputs for address expression are not put on stack | ||||
2160 | // to avoid marking them as shared and forcing them into register | ||||
2161 | // if they are used only in address expressions. | ||||
2162 | // But they should be marked as shared if there are other uses | ||||
2163 | // besides address expressions. | ||||
2164 | |||||
2165 | if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) { | ||||
2166 | continue; | ||||
2167 | } | ||||
2168 | } // if( mem_op && | ||||
2169 | mstack.push(m, Pre_Visit); | ||||
2170 | } // for(int i = ...) | ||||
2171 | } | ||||
2172 | else if (nstate == Alt_Post_Visit) { | ||||
2173 | mstack.pop(); // Remove node from stack | ||||
2174 | // We cannot remove the Cmp input from the Bool here, as the Bool may be | ||||
2175 | // shared and all users of the Bool need to move the Cmp in parallel. | ||||
2176 | // This leaves both the Bool and the If pointing at the Cmp. To | ||||
2177 | // prevent the Matcher from trying to Match the Cmp along both paths | ||||
2178 | // BoolNode::match_edge always returns a zero. | ||||
2179 | |||||
2180 | // We reorder the Op_If in a pre-order manner, so we can visit without | ||||
2181 | // accidentally sharing the Cmp (the Bool and the If make 2 users). | ||||
2182 | n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool | ||||
2183 | } | ||||
2184 | else if (nstate == Post_Visit) { | ||||
2185 | mstack.pop(); // Remove node from stack | ||||
2186 | |||||
2187 | // Now hack a few special opcodes | ||||
2188 | uint opcode = n->Opcode(); | ||||
2189 | bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode); | ||||
2190 | if (!gc_handled) { | ||||
2191 | find_shared_post_visit(n, opcode); | ||||
2192 | } | ||||
2193 | } | ||||
2194 | else { | ||||
2195 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2195); ::breakpoint(); } while (0); | ||||
2196 | } | ||||
2197 | } // end of while (mstack.is_nonempty()) | ||||
2198 | } | ||||
2199 | |||||
2200 | bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) { | ||||
2201 | switch(opcode) { // Handle some opcodes special | ||||
2202 | case Op_Phi: // Treat Phis as shared roots | ||||
2203 | case Op_Parm: | ||||
2204 | case Op_Proj: // All handled specially during matching | ||||
2205 | case Op_SafePointScalarObject: | ||||
2206 | set_shared(n); | ||||
2207 | set_dontcare(n); | ||||
2208 | break; | ||||
2209 | case Op_If: | ||||
2210 | case Op_CountedLoopEnd: | ||||
2211 | mstack.set_state(Alt_Post_Visit); // Alternative way | ||||
2212 | // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps | ||||
2213 | // with matching cmp/branch in 1 instruction. The Matcher needs the | ||||
2214 | // Bool and CmpX side-by-side, because it can only get at constants | ||||
2215 | // that are at the leaves of Match trees, and the Bool's condition acts | ||||
2216 | // as a constant here. | ||||
2217 | mstack.push(n->in(1), Visit); // Clone the Bool | ||||
2218 | mstack.push(n->in(0), Pre_Visit); // Visit control input | ||||
2219 | return true; // while (mstack.is_nonempty()) | ||||
2220 | case Op_ConvI2D: // These forms efficiently match with a prior | ||||
2221 | case Op_ConvI2F: // Load but not a following Store | ||||
2222 | if( n->in(1)->is_Load() && // Prior load | ||||
2223 | n->outcnt() == 1 && // Not already shared | ||||
2224 | n->unique_out()->is_Store() ) // Following store | ||||
2225 | set_shared(n); // Force it to be a root | ||||
2226 | break; | ||||
2227 | case Op_ReverseBytesI: | ||||
2228 | case Op_ReverseBytesL: | ||||
2229 | if( n->in(1)->is_Load() && // Prior load | ||||
2230 | n->outcnt() == 1 ) // Not already shared | ||||
2231 | set_shared(n); // Force it to be a root | ||||
2232 | break; | ||||
2233 | case Op_BoxLock: // Cant match until we get stack-regs in ADLC | ||||
2234 | case Op_IfFalse: | ||||
2235 | case Op_IfTrue: | ||||
2236 | case Op_MachProj: | ||||
2237 | case Op_MergeMem: | ||||
2238 | case Op_Catch: | ||||
2239 | case Op_CatchProj: | ||||
2240 | case Op_CProj: | ||||
2241 | case Op_JumpProj: | ||||
2242 | case Op_JProj: | ||||
2243 | case Op_NeverBranch: | ||||
2244 | set_dontcare(n); | ||||
2245 | break; | ||||
2246 | case Op_Jump: | ||||
2247 | mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) | ||||
2248 | mstack.push(n->in(0), Pre_Visit); // Visit Control input | ||||
2249 | return true; // while (mstack.is_nonempty()) | ||||
2250 | case Op_StrComp: | ||||
2251 | case Op_StrEquals: | ||||
2252 | case Op_StrIndexOf: | ||||
2253 | case Op_StrIndexOfChar: | ||||
2254 | case Op_AryEq: | ||||
2255 | case Op_HasNegatives: | ||||
2256 | case Op_StrInflatedCopy: | ||||
2257 | case Op_StrCompressedCopy: | ||||
2258 | case Op_EncodeISOArray: | ||||
2259 | case Op_FmaD: | ||||
2260 | case Op_FmaF: | ||||
2261 | case Op_FmaVD: | ||||
2262 | case Op_FmaVF: | ||||
2263 | case Op_MacroLogicV: | ||||
2264 | case Op_LoadVectorMasked: | ||||
2265 | case Op_VectorCmpMasked: | ||||
2266 | case Op_VectorLoadMask: | ||||
2267 | set_shared(n); // Force result into register (it will be anyways) | ||||
2268 | break; | ||||
2269 | case Op_ConP: { // Convert pointers above the centerline to NUL | ||||
2270 | TypeNode *tn = n->as_Type(); // Constants derive from type nodes | ||||
2271 | const TypePtr* tp = tn->type()->is_ptr(); | ||||
2272 | if (tp->_ptr == TypePtr::AnyNull) { | ||||
2273 | tn->set_type(TypePtr::NULL_PTR); | ||||
2274 | } | ||||
2275 | break; | ||||
2276 | } | ||||
2277 | case Op_ConN: { // Convert narrow pointers above the centerline to NUL | ||||
2278 | TypeNode *tn = n->as_Type(); // Constants derive from type nodes | ||||
2279 | const TypePtr* tp = tn->type()->make_ptr(); | ||||
2280 | if (tp && tp->_ptr == TypePtr::AnyNull) { | ||||
2281 | tn->set_type(TypeNarrowOop::NULL_PTR); | ||||
2282 | } | ||||
2283 | break; | ||||
2284 | } | ||||
2285 | case Op_Binary: // These are introduced in the Post_Visit state. | ||||
2286 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2286); ::breakpoint(); } while (0); | ||||
2287 | break; | ||||
2288 | case Op_ClearArray: | ||||
2289 | case Op_SafePoint: | ||||
2290 | mem_op = true; | ||||
2291 | break; | ||||
2292 | default: | ||||
2293 | if( n->is_Store() ) { | ||||
2294 | // Do match stores, despite no ideal reg | ||||
2295 | mem_op = true; | ||||
2296 | break; | ||||
2297 | } | ||||
2298 | if( n->is_Mem() ) { // Loads and LoadStores | ||||
2299 | mem_op = true; | ||||
2300 | // Loads must be root of match tree due to prior load conflict | ||||
2301 | if( C->subsume_loads() == false ) | ||||
2302 | set_shared(n); | ||||
2303 | } | ||||
2304 | // Fall into default case | ||||
2305 | if( !n->ideal_reg() ) | ||||
2306 | set_dontcare(n); // Unmatchable Nodes | ||||
2307 | } // end_switch | ||||
2308 | return false; | ||||
2309 | } | ||||
2310 | |||||
2311 | void Matcher::find_shared_post_visit(Node* n, uint opcode) { | ||||
2312 | if (n->is_predicated_vector()) { | ||||
2313 | // Restructure into binary trees for Matching. | ||||
2314 | if (n->req() == 4) { | ||||
2315 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); | ||||
2316 | n->set_req(2, n->in(3)); | ||||
2317 | n->del_req(3); | ||||
2318 | } else if (n->req() == 5) { | ||||
2319 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); | ||||
2320 | n->set_req(2, new BinaryNode(n->in(3), n->in(4))); | ||||
2321 | n->del_req(4); | ||||
2322 | n->del_req(3); | ||||
2323 | } | ||||
2324 | return; | ||||
2325 | } | ||||
2326 | |||||
2327 | switch(opcode) { // Handle some opcodes special | ||||
2328 | case Op_StorePConditional: | ||||
2329 | case Op_StoreIConditional: | ||||
2330 | case Op_StoreLConditional: | ||||
2331 | case Op_CompareAndExchangeB: | ||||
2332 | case Op_CompareAndExchangeS: | ||||
2333 | case Op_CompareAndExchangeI: | ||||
2334 | case Op_CompareAndExchangeL: | ||||
2335 | case Op_CompareAndExchangeP: | ||||
2336 | case Op_CompareAndExchangeN: | ||||
2337 | case Op_WeakCompareAndSwapB: | ||||
2338 | case Op_WeakCompareAndSwapS: | ||||
2339 | case Op_WeakCompareAndSwapI: | ||||
2340 | case Op_WeakCompareAndSwapL: | ||||
2341 | case Op_WeakCompareAndSwapP: | ||||
2342 | case Op_WeakCompareAndSwapN: | ||||
2343 | case Op_CompareAndSwapB: | ||||
2344 | case Op_CompareAndSwapS: | ||||
2345 | case Op_CompareAndSwapI: | ||||
2346 | case Op_CompareAndSwapL: | ||||
2347 | case Op_CompareAndSwapP: | ||||
2348 | case Op_CompareAndSwapN: { // Convert trinary to binary-tree | ||||
2349 | Node* newval = n->in(MemNode::ValueIn); | ||||
2350 | Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); | ||||
2351 | Node* pair = new BinaryNode(oldval, newval); | ||||
2352 | n->set_req(MemNode::ValueIn, pair); | ||||
2353 | n->del_req(LoadStoreConditionalNode::ExpectedIn); | ||||
2354 | break; | ||||
2355 | } | ||||
2356 | case Op_CMoveD: // Convert trinary to binary-tree | ||||
2357 | case Op_CMoveF: | ||||
2358 | case Op_CMoveI: | ||||
2359 | case Op_CMoveL: | ||||
2360 | case Op_CMoveN: | ||||
2361 | case Op_CMoveP: | ||||
2362 | case Op_CMoveVF: | ||||
2363 | case Op_CMoveVD: { | ||||
2364 | // Restructure into a binary tree for Matching. It's possible that | ||||
2365 | // we could move this code up next to the graph reshaping for IfNodes | ||||
2366 | // or vice-versa, but I do not want to debug this for Ladybird. | ||||
2367 | // 10/2/2000 CNC. | ||||
2368 | Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1)); | ||||
2369 | n->set_req(1, pair1); | ||||
2370 | Node* pair2 = new BinaryNode(n->in(2), n->in(3)); | ||||
2371 | n->set_req(2, pair2); | ||||
2372 | n->del_req(3); | ||||
2373 | break; | ||||
2374 | } | ||||
2375 | case Op_VectorCmpMasked: { | ||||
2376 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); | ||||
2377 | n->set_req(2, pair1); | ||||
2378 | n->del_req(3); | ||||
2379 | break; | ||||
2380 | } | ||||
2381 | case Op_MacroLogicV: { | ||||
2382 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); | ||||
2383 | Node* pair2 = new BinaryNode(n->in(3), n->in(4)); | ||||
2384 | n->set_req(1, pair1); | ||||
2385 | n->set_req(2, pair2); | ||||
2386 | n->del_req(4); | ||||
2387 | n->del_req(3); | ||||
2388 | break; | ||||
2389 | } | ||||
2390 | case Op_StoreVectorMasked: { | ||||
2391 | Node* pair = new BinaryNode(n->in(3), n->in(4)); | ||||
2392 | n->set_req(3, pair); | ||||
2393 | n->del_req(4); | ||||
2394 | break; | ||||
2395 | } | ||||
2396 | case Op_LoopLimit: { | ||||
2397 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); | ||||
2398 | n->set_req(1, pair1); | ||||
2399 | n->set_req(2, n->in(3)); | ||||
2400 | n->del_req(3); | ||||
2401 | break; | ||||
2402 | } | ||||
2403 | case Op_StrEquals: | ||||
2404 | case Op_StrIndexOfChar: { | ||||
2405 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); | ||||
2406 | n->set_req(2, pair1); | ||||
2407 | n->set_req(3, n->in(4)); | ||||
2408 | n->del_req(4); | ||||
2409 | break; | ||||
2410 | } | ||||
2411 | case Op_StrComp: | ||||
2412 | case Op_StrIndexOf: { | ||||
2413 | Node* pair1 = new BinaryNode(n->in(2), n->in(3)); | ||||
2414 | n->set_req(2, pair1); | ||||
2415 | Node* pair2 = new BinaryNode(n->in(4),n->in(5)); | ||||
2416 | n->set_req(3, pair2); | ||||
2417 | n->del_req(5); | ||||
2418 | n->del_req(4); | ||||
2419 | break; | ||||
2420 | } | ||||
2421 | case Op_StrCompressedCopy: | ||||
2422 | case Op_StrInflatedCopy: | ||||
2423 | case Op_EncodeISOArray: { | ||||
2424 | // Restructure into a binary tree for Matching. | ||||
2425 | Node* pair = new BinaryNode(n->in(3), n->in(4)); | ||||
2426 | n->set_req(3, pair); | ||||
2427 | n->del_req(4); | ||||
2428 | break; | ||||
2429 | } | ||||
2430 | case Op_FmaD: | ||||
2431 | case Op_FmaF: | ||||
2432 | case Op_FmaVD: | ||||
2433 | case Op_FmaVF: { | ||||
2434 | // Restructure into a binary tree for Matching. | ||||
2435 | Node* pair = new BinaryNode(n->in(1), n->in(2)); | ||||
2436 | n->set_req(2, pair); | ||||
2437 | n->set_req(1, n->in(3)); | ||||
2438 | n->del_req(3); | ||||
2439 | break; | ||||
2440 | } | ||||
2441 | case Op_MulAddS2I: { | ||||
2442 | Node* pair1 = new BinaryNode(n->in(1), n->in(2)); | ||||
2443 | Node* pair2 = new BinaryNode(n->in(3), n->in(4)); | ||||
2444 | n->set_req(1, pair1); | ||||
2445 | n->set_req(2, pair2); | ||||
2446 | n->del_req(4); | ||||
2447 | n->del_req(3); | ||||
2448 | break; | ||||
2449 | } | ||||
2450 | case Op_CopySignD: | ||||
2451 | case Op_SignumF: | ||||
2452 | case Op_SignumD: { | ||||
2453 | Node* pair = new BinaryNode(n->in(2), n->in(3)); | ||||
2454 | n->set_req(2, pair); | ||||
2455 | n->del_req(3); | ||||
2456 | break; | ||||
2457 | } | ||||
2458 | case Op_VectorBlend: | ||||
2459 | case Op_VectorInsert: { | ||||
2460 | Node* pair = new BinaryNode(n->in(1), n->in(2)); | ||||
2461 | n->set_req(1, pair); | ||||
2462 | n->set_req(2, n->in(3)); | ||||
2463 | n->del_req(3); | ||||
2464 | break; | ||||
2465 | } | ||||
2466 | case Op_LoadVectorGatherMasked: | ||||
2467 | case Op_StoreVectorScatter: { | ||||
2468 | Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); | ||||
2469 | n->set_req(MemNode::ValueIn, pair); | ||||
2470 | n->del_req(MemNode::ValueIn+1); | ||||
2471 | break; | ||||
2472 | } | ||||
2473 | case Op_StoreVectorScatterMasked: { | ||||
2474 | Node* pair = new BinaryNode(n->in(MemNode::ValueIn+1), n->in(MemNode::ValueIn+2)); | ||||
2475 | n->set_req(MemNode::ValueIn+1, pair); | ||||
2476 | n->del_req(MemNode::ValueIn+2); | ||||
2477 | pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1)); | ||||
2478 | n->set_req(MemNode::ValueIn, pair); | ||||
2479 | n->del_req(MemNode::ValueIn+1); | ||||
2480 | break; | ||||
2481 | } | ||||
2482 | case Op_VectorMaskCmp: { | ||||
2483 | n->set_req(1, new BinaryNode(n->in(1), n->in(2))); | ||||
2484 | n->set_req(2, n->in(3)); | ||||
2485 | n->del_req(3); | ||||
2486 | break; | ||||
2487 | } | ||||
2488 | default: | ||||
2489 | break; | ||||
2490 | } | ||||
2491 | } | ||||
2492 | |||||
2493 | #ifndef PRODUCT | ||||
2494 | void Matcher::record_new2old(Node* newn, Node* old) { | ||||
2495 | _new2old_map.map(newn->_idx, old); | ||||
2496 | if (!_reused.test_set(old->_igv_idx)) { | ||||
2497 | // Reuse the Ideal-level IGV identifier so that the node can be tracked | ||||
2498 | // across matching. If there are multiple machine nodes expanded from the | ||||
2499 | // same Ideal node, only one will reuse its IGV identifier. | ||||
2500 | newn->_igv_idx = old->_igv_idx; | ||||
2501 | } | ||||
2502 | } | ||||
2503 | |||||
2504 | // machine-independent root to machine-dependent root | ||||
2505 | void Matcher::dump_old2new_map() { | ||||
2506 | _old2new_map.dump(); | ||||
2507 | } | ||||
2508 | #endif // !PRODUCT | ||||
2509 | |||||
2510 | //---------------------------collect_null_checks------------------------------- | ||||
2511 | // Find null checks in the ideal graph; write a machine-specific node for | ||||
2512 | // it. Used by later implicit-null-check handling. Actually collects | ||||
2513 | // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal | ||||
2514 | // value being tested. | ||||
2515 | void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { | ||||
2516 | Node *iff = proj->in(0); | ||||
2517 | if( iff->Opcode() == Op_If ) { | ||||
2518 | // During matching If's have Bool & Cmp side-by-side | ||||
2519 | BoolNode *b = iff->in(1)->as_Bool(); | ||||
2520 | Node *cmp = iff->in(2); | ||||
2521 | int opc = cmp->Opcode(); | ||||
2522 | if (opc != Op_CmpP && opc != Op_CmpN) return; | ||||
2523 | |||||
2524 | const Type* ct = cmp->in(2)->bottom_type(); | ||||
2525 | if (ct == TypePtr::NULL_PTR || | ||||
2526 | (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { | ||||
2527 | |||||
2528 | bool push_it = false; | ||||
2529 | if( proj->Opcode() == Op_IfTrue ) { | ||||
2530 | #ifndef PRODUCT | ||||
2531 | extern int all_null_checks_found; | ||||
2532 | all_null_checks_found++; | ||||
2533 | #endif | ||||
2534 | if( b->_test._test == BoolTest::ne ) { | ||||
2535 | push_it = true; | ||||
2536 | } | ||||
2537 | } else { | ||||
2538 | assert( proj->Opcode() == Op_IfFalse, "" )do { if (!(proj->Opcode() == Op_IfFalse)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2538, "assert(" "proj->Opcode() == Op_IfFalse" ") failed" , ""); ::breakpoint(); } } while (0); | ||||
2539 | if( b->_test._test == BoolTest::eq ) { | ||||
2540 | push_it = true; | ||||
2541 | } | ||||
2542 | } | ||||
2543 | if( push_it ) { | ||||
2544 | _null_check_tests.push(proj); | ||||
2545 | Node* val = cmp->in(1); | ||||
2546 | #ifdef _LP641 | ||||
2547 | if (val->bottom_type()->isa_narrowoop() && | ||||
2548 | !Matcher::narrow_oop_use_complex_address()) { | ||||
2549 | // | ||||
2550 | // Look for DecodeN node which should be pinned to orig_proj. | ||||
2551 | // On platforms (Sparc) which can not handle 2 adds | ||||
2552 | // in addressing mode we have to keep a DecodeN node and | ||||
2553 | // use it to do implicit NULL check in address. | ||||
2554 | // | ||||
2555 | // DecodeN node was pinned to non-null path (orig_proj) during | ||||
2556 | // CastPP transformation in final_graph_reshaping_impl(). | ||||
2557 | // | ||||
2558 | uint cnt = orig_proj->outcnt(); | ||||
2559 | for (uint i = 0; i < orig_proj->outcnt(); i++) { | ||||
2560 | Node* d = orig_proj->raw_out(i); | ||||
2561 | if (d->is_DecodeN() && d->in(1) == val) { | ||||
2562 | val = d; | ||||
2563 | val->set_req(0, NULL__null); // Unpin now. | ||||
2564 | // Mark this as special case to distinguish from | ||||
2565 | // a regular case: CmpP(DecodeN, NULL). | ||||
2566 | val = (Node*)(((intptr_t)val) | 1); | ||||
2567 | break; | ||||
2568 | } | ||||
2569 | } | ||||
2570 | } | ||||
2571 | #endif | ||||
2572 | _null_check_tests.push(val); | ||||
2573 | } | ||||
2574 | } | ||||
2575 | } | ||||
2576 | } | ||||
2577 | |||||
2578 | //---------------------------validate_null_checks------------------------------ | ||||
2579 | // Its possible that the value being NULL checked is not the root of a match | ||||
2580 | // tree. If so, I cannot use the value in an implicit null check. | ||||
2581 | void Matcher::validate_null_checks( ) { | ||||
2582 | uint cnt = _null_check_tests.size(); | ||||
2583 | for( uint i=0; i < cnt; i+=2 ) { | ||||
2584 | Node *test = _null_check_tests[i]; | ||||
2585 | Node *val = _null_check_tests[i+1]; | ||||
2586 | bool is_decoden = ((intptr_t)val) & 1; | ||||
2587 | val = (Node*)(((intptr_t)val) & ~1); | ||||
2588 | if (has_new_node(val)) { | ||||
2589 | Node* new_val = new_node(val); | ||||
2590 | if (is_decoden) { | ||||
2591 | assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity")do { if (!(val->is_DecodeNarrowPtr() && val->in (0) == __null)) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2591, "assert(" "val->is_DecodeNarrowPtr() && val->in(0) == __null" ") failed", "sanity"); ::breakpoint(); } } while (0); | ||||
2592 | // Note: new_val may have a control edge if | ||||
2593 | // the original ideal node DecodeN was matched before | ||||
2594 | // it was unpinned in Matcher::collect_null_checks(). | ||||
2595 | // Unpin the mach node and mark it. | ||||
2596 | new_val->set_req(0, NULL__null); | ||||
2597 | new_val = (Node*)(((intptr_t)new_val) | 1); | ||||
2598 | } | ||||
2599 | // Is a match-tree root, so replace with the matched value | ||||
2600 | _null_check_tests.map(i+1, new_val); | ||||
2601 | } else { | ||||
2602 | // Yank from candidate list | ||||
2603 | _null_check_tests.map(i+1,_null_check_tests[--cnt]); | ||||
2604 | _null_check_tests.map(i,_null_check_tests[--cnt]); | ||||
2605 | _null_check_tests.pop(); | ||||
2606 | _null_check_tests.pop(); | ||||
2607 | i-=2; | ||||
2608 | } | ||||
2609 | } | ||||
2610 | } | ||||
2611 | |||||
2612 | bool Matcher::gen_narrow_oop_implicit_null_checks() { | ||||
2613 | // Advice matcher to perform null checks on the narrow oop side. | ||||
2614 | // Implicit checks are not possible on the uncompressed oop side anyway | ||||
2615 | // (at least not for read accesses). | ||||
2616 | // Performs significantly better (especially on Power 6). | ||||
2617 | if (!os::zero_page_read_protected()) { | ||||
2618 | return true; | ||||
2619 | } | ||||
2620 | return CompressedOops::use_implicit_null_checks() && | ||||
2621 | (narrow_oop_use_complex_address() || | ||||
2622 | CompressedOops::base() != NULL__null); | ||||
2623 | } | ||||
2624 | |||||
2625 | // Compute RegMask for an ideal register. | ||||
2626 | const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) { | ||||
2627 | const Type* t = Type::mreg2type[ideal_reg]; | ||||
2628 | if (t == NULL__null) { | ||||
2629 | assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg)do { if (!(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2629, "assert(" "ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ" ") failed", "not a vector: %d", ideal_reg); ::breakpoint(); } } while (0); | ||||
2630 | return NULL__null; // not supported | ||||
2631 | } | ||||
2632 | Node* fp = ret->in(TypeFunc::FramePtr); | ||||
2633 | Node* mem = ret->in(TypeFunc::Memory); | ||||
2634 | const TypePtr* atp = TypePtr::BOTTOM; | ||||
2635 | MemNode::MemOrd mo = MemNode::unordered; | ||||
2636 | |||||
2637 | Node* spill; | ||||
2638 | switch (ideal_reg) { | ||||
2639 | case Op_RegN: spill = new LoadNNode(NULL__null, mem, fp, atp, t->is_narrowoop(), mo); break; | ||||
2640 | case Op_RegI: spill = new LoadINode(NULL__null, mem, fp, atp, t->is_int(), mo); break; | ||||
2641 | case Op_RegP: spill = new LoadPNode(NULL__null, mem, fp, atp, t->is_ptr(), mo); break; | ||||
2642 | case Op_RegF: spill = new LoadFNode(NULL__null, mem, fp, atp, t, mo); break; | ||||
2643 | case Op_RegD: spill = new LoadDNode(NULL__null, mem, fp, atp, t, mo); break; | ||||
2644 | case Op_RegL: spill = new LoadLNode(NULL__null, mem, fp, atp, t->is_long(), mo); break; | ||||
2645 | |||||
2646 | case Op_VecA: // fall-through | ||||
2647 | case Op_VecS: // fall-through | ||||
2648 | case Op_VecD: // fall-through | ||||
2649 | case Op_VecX: // fall-through | ||||
2650 | case Op_VecY: // fall-through | ||||
2651 | case Op_VecZ: spill = new LoadVectorNode(NULL__null, mem, fp, atp, t->is_vect()); break; | ||||
2652 | case Op_RegVectMask: return Matcher::predicate_reg_mask(); | ||||
2653 | |||||
2654 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2654); ::breakpoint(); } while (0); | ||||
2655 | } | ||||
2656 | MachNode* mspill = match_tree(spill); | ||||
2657 | assert(mspill != NULL, "matching failed: %d", ideal_reg)do { if (!(mspill != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2657, "assert(" "mspill != __null" ") failed", "matching failed: %d" , ideal_reg); ::breakpoint(); } } while (0); | ||||
2658 | // Handle generic vector operand case | ||||
2659 | if (Matcher::supports_generic_vector_operands && t->isa_vect()) { | ||||
2660 | specialize_mach_node(mspill); | ||||
2661 | } | ||||
2662 | return &mspill->out_RegMask(); | ||||
2663 | } | ||||
2664 | |||||
2665 | // Process Mach IR right after selection phase is over. | ||||
2666 | void Matcher::do_postselect_cleanup() { | ||||
2667 | if (supports_generic_vector_operands) { | ||||
2668 | specialize_generic_vector_operands(); | ||||
2669 | if (C->failing()) return; | ||||
2670 | } | ||||
2671 | } | ||||
2672 | |||||
2673 | //---------------------------------------------------------------------- | ||||
2674 | // Generic machine operands elision. | ||||
2675 | //---------------------------------------------------------------------- | ||||
2676 | |||||
2677 | // Compute concrete vector operand for a generic TEMP vector mach node based on its user info. | ||||
2678 | void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) { | ||||
2679 | assert(use->in(idx) == tmp, "not a user")do { if (!(use->in(idx) == tmp)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2679, "assert(" "use->in(idx) == tmp" ") failed", "not a user" ); ::breakpoint(); } } while (0); | ||||
2680 | assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet")do { if (!(!Matcher::is_generic_vector(use->_opnds[0]))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2680, "assert(" "!Matcher::is_generic_vector(use->_opnds[0])" ") failed", "use not processed yet"); ::breakpoint(); } } while (0); | ||||
2681 | |||||
2682 | if ((uint)idx == use->two_adr()) { // DEF_TEMP case | ||||
2683 | tmp->_opnds[0] = use->_opnds[0]->clone(); | ||||
2684 | } else { | ||||
2685 | uint ideal_vreg = vector_ideal_reg(C->max_vector_size()); | ||||
2686 | tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/); | ||||
2687 | } | ||||
2688 | } | ||||
2689 | |||||
2690 | // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx). | ||||
2691 | MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) { | ||||
2692 | assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates")do { if (!(Matcher::is_generic_vector(m->_opnds[opnd_idx]) )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2692, "assert(" "Matcher::is_generic_vector(m->_opnds[opnd_idx])" ") failed", "repeated updates"); ::breakpoint(); } } while ( 0); | ||||
2693 | Node* def = NULL__null; | ||||
2694 | if (opnd_idx == 0) { // DEF | ||||
2695 | def = m; // use mach node itself to compute vector operand type | ||||
2696 | } else { | ||||
2697 | int base_idx = m->operand_index(opnd_idx); | ||||
2698 | def = m->in(base_idx); | ||||
2699 | if (def->is_Mach()) { | ||||
2700 | if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) { | ||||
2701 | specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site | ||||
2702 | } else if (is_reg2reg_move(def->as_Mach())) { | ||||
2703 | def = def->in(1); // skip over generic reg-to-reg moves | ||||
2704 | } | ||||
2705 | } | ||||
2706 | } | ||||
2707 | assert(def->bottom_type()->isa_vect(), "not a vector")do { if (!(def->bottom_type()->isa_vect())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2707, "assert(" "def->bottom_type()->isa_vect()" ") failed" , "not a vector"); ::breakpoint(); } } while (0); | ||||
2708 | uint ideal_vreg = def->bottom_type()->ideal_reg(); | ||||
2709 | return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/); | ||||
2710 | } | ||||
2711 | |||||
2712 | void Matcher::specialize_mach_node(MachNode* m) { | ||||
2713 | assert(!m->is_MachTemp(), "processed along with its user")do { if (!(!m->is_MachTemp())) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2713, "assert(" "!m->is_MachTemp()" ") failed", "processed along with its user" ); ::breakpoint(); } } while (0); | ||||
2714 | // For generic use operands pull specific register class operands from | ||||
2715 | // its def instruction's output operand (def operand). | ||||
2716 | for (uint i = 0; i < m->num_opnds(); i++) { | ||||
2717 | if (Matcher::is_generic_vector(m->_opnds[i])) { | ||||
2718 | m->_opnds[i] = specialize_vector_operand(m, i); | ||||
2719 | } | ||||
2720 | } | ||||
2721 | } | ||||
2722 | |||||
2723 | // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph. | ||||
2724 | void Matcher::specialize_generic_vector_operands() { | ||||
2725 | assert(supports_generic_vector_operands, "sanity")do { if (!(supports_generic_vector_operands)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2725, "assert(" "supports_generic_vector_operands" ") failed" , "sanity"); ::breakpoint(); } } while (0); | ||||
2726 | ResourceMark rm; | ||||
2727 | |||||
2728 | // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ]) | ||||
2729 | // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec). | ||||
2730 | Unique_Node_List live_nodes; | ||||
2731 | C->identify_useful_nodes(live_nodes); | ||||
2732 | |||||
2733 | while (live_nodes.size() > 0) { | ||||
2734 | MachNode* m = live_nodes.pop()->isa_Mach(); | ||||
2735 | if (m != NULL__null) { | ||||
2736 | if (Matcher::is_reg2reg_move(m)) { | ||||
2737 | // Register allocator properly handles vec <=> leg moves using register masks. | ||||
2738 | int opnd_idx = m->operand_index(1); | ||||
2739 | Node* def = m->in(opnd_idx); | ||||
2740 | m->subsume_by(def, C); | ||||
2741 | } else if (m->is_MachTemp()) { | ||||
2742 | // process MachTemp nodes at use site (see Matcher::specialize_vector_operand) | ||||
2743 | } else { | ||||
2744 | specialize_mach_node(m); | ||||
2745 | } | ||||
2746 | } | ||||
2747 | } | ||||
2748 | } | ||||
2749 | |||||
2750 | uint Matcher::vector_length(const Node* n) { | ||||
2751 | const TypeVect* vt = n->bottom_type()->is_vect(); | ||||
2752 | return vt->length(); | ||||
2753 | } | ||||
2754 | |||||
2755 | uint Matcher::vector_length(const MachNode* use, const MachOper* opnd) { | ||||
2756 | int def_idx = use->operand_index(opnd); | ||||
2757 | Node* def = use->in(def_idx); | ||||
2758 | return def->bottom_type()->is_vect()->length(); | ||||
2759 | } | ||||
2760 | |||||
2761 | uint Matcher::vector_length_in_bytes(const Node* n) { | ||||
2762 | const TypeVect* vt = n->bottom_type()->is_vect(); | ||||
2763 | return vt->length_in_bytes(); | ||||
2764 | } | ||||
2765 | |||||
2766 | uint Matcher::vector_length_in_bytes(const MachNode* use, const MachOper* opnd) { | ||||
2767 | uint def_idx = use->operand_index(opnd); | ||||
2768 | Node* def = use->in(def_idx); | ||||
2769 | return def->bottom_type()->is_vect()->length_in_bytes(); | ||||
2770 | } | ||||
2771 | |||||
2772 | BasicType Matcher::vector_element_basic_type(const Node* n) { | ||||
2773 | const TypeVect* vt = n->bottom_type()->is_vect(); | ||||
2774 | return vt->element_basic_type(); | ||||
2775 | } | ||||
2776 | |||||
2777 | BasicType Matcher::vector_element_basic_type(const MachNode* use, const MachOper* opnd) { | ||||
2778 | int def_idx = use->operand_index(opnd); | ||||
2779 | Node* def = use->in(def_idx); | ||||
2780 | return def->bottom_type()->is_vect()->element_basic_type(); | ||||
2781 | } | ||||
2782 | |||||
2783 | #ifdef ASSERT1 | ||||
2784 | bool Matcher::verify_after_postselect_cleanup() { | ||||
2785 | assert(!C->failing(), "sanity")do { if (!(!C->failing())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2785, "assert(" "!C->failing()" ") failed", "sanity"); :: breakpoint(); } } while (0); | ||||
2786 | if (supports_generic_vector_operands) { | ||||
2787 | Unique_Node_List useful; | ||||
2788 | C->identify_useful_nodes(useful); | ||||
2789 | for (uint i = 0; i < useful.size(); i++) { | ||||
2790 | MachNode* m = useful.at(i)->isa_Mach(); | ||||
2791 | if (m != NULL__null) { | ||||
2792 | assert(!Matcher::is_reg2reg_move(m), "no MoveVec nodes allowed")do { if (!(!Matcher::is_reg2reg_move(m))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2792, "assert(" "!Matcher::is_reg2reg_move(m)" ") failed", "no MoveVec nodes allowed" ); ::breakpoint(); } } while (0); | ||||
2793 | for (uint j = 0; j < m->num_opnds(); j++) { | ||||
2794 | assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed")do { if (!(!Matcher::is_generic_vector(m->_opnds[j]))) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2794, "assert(" "!Matcher::is_generic_vector(m->_opnds[j])" ") failed", "no generic vector operands allowed"); ::breakpoint (); } } while (0); | ||||
2795 | } | ||||
2796 | } | ||||
2797 | } | ||||
2798 | } | ||||
2799 | return true; | ||||
2800 | } | ||||
2801 | #endif // ASSERT | ||||
2802 | |||||
2803 | // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or | ||||
2804 | // atomic instruction acting as a store_load barrier without any | ||||
2805 | // intervening volatile load, and thus we don't need a barrier here. | ||||
2806 | // We retain the Node to act as a compiler ordering barrier. | ||||
2807 | bool Matcher::post_store_load_barrier(const Node* vmb) { | ||||
2808 | Compile* C = Compile::current(); | ||||
2809 | assert(vmb->is_MemBar(), "")do { if (!(vmb->is_MemBar())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2809, "assert(" "vmb->is_MemBar()" ") failed", ""); ::breakpoint (); } } while (0); | ||||
2810 | assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "")do { if (!(vmb->Opcode() != Op_MemBarAcquire && vmb ->Opcode() != Op_LoadFence)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2810, "assert(" "vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence" ") failed", ""); ::breakpoint(); } } while (0); | ||||
2811 | const MemBarNode* membar = vmb->as_MemBar(); | ||||
2812 | |||||
2813 | // Get the Ideal Proj node, ctrl, that can be used to iterate forward | ||||
2814 | Node* ctrl = NULL__null; | ||||
2815 | for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { | ||||
2816 | Node* p = membar->fast_out(i); | ||||
2817 | assert(p->is_Proj(), "only projections here")do { if (!(p->is_Proj())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2817, "assert(" "p->is_Proj()" ") failed", "only projections here" ); ::breakpoint(); } } while (0); | ||||
2818 | if ((p->as_Proj()->_con == TypeFunc::Control) && | ||||
2819 | !C->node_arena()->contains(p)) { // Unmatched old-space only | ||||
2820 | ctrl = p; | ||||
2821 | break; | ||||
2822 | } | ||||
2823 | } | ||||
2824 | assert((ctrl != NULL), "missing control projection")do { if (!((ctrl != __null))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2824, "assert(" "(ctrl != __null)" ") failed", "missing control projection" ); ::breakpoint(); } } while (0); | ||||
2825 | |||||
2826 | for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { | ||||
2827 | Node *x = ctrl->fast_out(j); | ||||
2828 | int xop = x->Opcode(); | ||||
2829 | |||||
2830 | // We don't need current barrier if we see another or a lock | ||||
2831 | // before seeing volatile load. | ||||
2832 | // | ||||
2833 | // Op_Fastunlock previously appeared in the Op_* list below. | ||||
2834 | // With the advent of 1-0 lock operations we're no longer guaranteed | ||||
2835 | // that a monitor exit operation contains a serializing instruction. | ||||
2836 | |||||
2837 | if (xop == Op_MemBarVolatile || | ||||
2838 | xop == Op_CompareAndExchangeB || | ||||
2839 | xop == Op_CompareAndExchangeS || | ||||
2840 | xop == Op_CompareAndExchangeI || | ||||
2841 | xop == Op_CompareAndExchangeL || | ||||
2842 | xop == Op_CompareAndExchangeP || | ||||
2843 | xop == Op_CompareAndExchangeN || | ||||
2844 | xop == Op_WeakCompareAndSwapB || | ||||
2845 | xop == Op_WeakCompareAndSwapS || | ||||
2846 | xop == Op_WeakCompareAndSwapL || | ||||
2847 | xop == Op_WeakCompareAndSwapP || | ||||
2848 | xop == Op_WeakCompareAndSwapN || | ||||
2849 | xop == Op_WeakCompareAndSwapI || | ||||
2850 | xop == Op_CompareAndSwapB || | ||||
2851 | xop == Op_CompareAndSwapS || | ||||
2852 | xop == Op_CompareAndSwapL || | ||||
2853 | xop == Op_CompareAndSwapP || | ||||
2854 | xop == Op_CompareAndSwapN || | ||||
2855 | xop == Op_CompareAndSwapI || | ||||
2856 | BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) { | ||||
2857 | return true; | ||||
2858 | } | ||||
2859 | |||||
2860 | // Op_FastLock previously appeared in the Op_* list above. | ||||
2861 | if (xop == Op_FastLock) { | ||||
2862 | return true; | ||||
2863 | } | ||||
2864 | |||||
2865 | if (x->is_MemBar()) { | ||||
2866 | // We must retain this membar if there is an upcoming volatile | ||||
2867 | // load, which will be followed by acquire membar. | ||||
2868 | if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { | ||||
2869 | return false; | ||||
2870 | } else { | ||||
2871 | // For other kinds of barriers, check by pretending we | ||||
2872 | // are them, and seeing if we can be removed. | ||||
2873 | return post_store_load_barrier(x->as_MemBar()); | ||||
2874 | } | ||||
2875 | } | ||||
2876 | |||||
2877 | // probably not necessary to check for these | ||||
2878 | if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { | ||||
2879 | return false; | ||||
2880 | } | ||||
2881 | } | ||||
2882 | return false; | ||||
2883 | } | ||||
2884 | |||||
2885 | // Check whether node n is a branch to an uncommon trap that we could | ||||
2886 | // optimize as test with very high branch costs in case of going to | ||||
2887 | // the uncommon trap. The code must be able to be recompiled to use | ||||
2888 | // a cheaper test. | ||||
2889 | bool Matcher::branches_to_uncommon_trap(const Node *n) { | ||||
2890 | // Don't do it for natives, adapters, or runtime stubs | ||||
2891 | Compile *C = Compile::current(); | ||||
2892 | if (!C->is_method_compilation()) return false; | ||||
2893 | |||||
2894 | assert(n->is_If(), "You should only call this on if nodes.")do { if (!(n->is_If())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2894, "assert(" "n->is_If()" ") failed", "You should only call this on if nodes." ); ::breakpoint(); } } while (0); | ||||
2895 | IfNode *ifn = n->as_If(); | ||||
2896 | |||||
2897 | Node *ifFalse = NULL__null; | ||||
2898 | for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { | ||||
2899 | if (ifn->fast_out(i)->is_IfFalse()) { | ||||
2900 | ifFalse = ifn->fast_out(i); | ||||
2901 | break; | ||||
2902 | } | ||||
2903 | } | ||||
2904 | assert(ifFalse, "An If should have an ifFalse. Graph is broken.")do { if (!(ifFalse)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2904, "assert(" "ifFalse" ") failed", "An If should have an ifFalse. Graph is broken." ); ::breakpoint(); } } while (0); | ||||
2905 | |||||
2906 | Node *reg = ifFalse; | ||||
2907 | int cnt = 4; // We must protect against cycles. Limit to 4 iterations. | ||||
2908 | // Alternatively use visited set? Seems too expensive. | ||||
2909 | while (reg != NULL__null && cnt > 0) { | ||||
2910 | CallNode *call = NULL__null; | ||||
2911 | RegionNode *nxt_reg = NULL__null; | ||||
2912 | for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { | ||||
2913 | Node *o = reg->fast_out(i); | ||||
2914 | if (o->is_Call()) { | ||||
2915 | call = o->as_Call(); | ||||
2916 | } | ||||
2917 | if (o->is_Region()) { | ||||
2918 | nxt_reg = o->as_Region(); | ||||
2919 | } | ||||
2920 | } | ||||
2921 | |||||
2922 | if (call && | ||||
2923 | call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { | ||||
2924 | const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); | ||||
2925 | if (trtype->isa_int() && trtype->is_int()->is_con()) { | ||||
2926 | jint tr_con = trtype->is_int()->get_con(); | ||||
2927 | Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); | ||||
2928 | Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); | ||||
2929 | assert((int)reason < (int)BitsPerInt, "recode bit map")do { if (!((int)reason < (int)BitsPerInt)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2929, "assert(" "(int)reason < (int)BitsPerInt" ") failed" , "recode bit map"); ::breakpoint(); } } while (0); | ||||
2930 | |||||
2931 | if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) | ||||
2932 | && action != Deoptimization::Action_none) { | ||||
2933 | // This uncommon trap is sure to recompile, eventually. | ||||
2934 | // When that happens, C->too_many_traps will prevent | ||||
2935 | // this transformation from happening again. | ||||
2936 | return true; | ||||
2937 | } | ||||
2938 | } | ||||
2939 | } | ||||
2940 | |||||
2941 | reg = nxt_reg; | ||||
2942 | cnt--; | ||||
2943 | } | ||||
2944 | |||||
2945 | return false; | ||||
2946 | } | ||||
2947 | |||||
2948 | //============================================================================= | ||||
2949 | //---------------------------State--------------------------------------------- | ||||
2950 | State::State(void) : _rule() { | ||||
2951 | #ifdef ASSERT1 | ||||
2952 | _id = 0; | ||||
2953 | _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL); | ||||
2954 | _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL); | ||||
2955 | #endif | ||||
2956 | } | ||||
2957 | |||||
2958 | #ifdef ASSERT1 | ||||
2959 | State::~State() { | ||||
2960 | _id = 99; | ||||
2961 | _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe)(0xcafebabecafebabeLL); | ||||
2962 | _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d)(0xbaadf00dbaadf00dLL); | ||||
2963 | memset(_cost, -3, sizeof(_cost)); | ||||
2964 | memset(_rule, -3, sizeof(_rule)); | ||||
2965 | } | ||||
2966 | #endif | ||||
2967 | |||||
2968 | #ifndef PRODUCT | ||||
2969 | //---------------------------dump---------------------------------------------- | ||||
2970 | void State::dump() { | ||||
2971 | tty->print("\n"); | ||||
2972 | dump(0); | ||||
2973 | } | ||||
2974 | |||||
2975 | void State::dump(int depth) { | ||||
2976 | for (int j = 0; j < depth; j++) { | ||||
2977 | tty->print(" "); | ||||
2978 | } | ||||
2979 | tty->print("--N: "); | ||||
2980 | _leaf->dump(); | ||||
2981 | uint i; | ||||
2982 | for (i = 0; i < _LAST_MACH_OPER; i++) { | ||||
2983 | // Check for valid entry | ||||
2984 | if (valid(i)) { | ||||
2985 | for (int j = 0; j < depth; j++) { | ||||
2986 | tty->print(" "); | ||||
2987 | } | ||||
2988 | assert(cost(i) != max_juint, "cost must be a valid value")do { if (!(cost(i) != max_juint)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2988, "assert(" "cost(i) != max_juint" ") failed", "cost must be a valid value" ); ::breakpoint(); } } while (0); | ||||
2989 | assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule")do { if (!(rule(i) < _last_Mach_Node)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.cpp" , 2989, "assert(" "rule(i) < _last_Mach_Node" ") failed", "rule[i] must be valid rule" ); ::breakpoint(); } } while (0); | ||||
2990 | tty->print_cr("%s %d %s", | ||||
2991 | ruleName[i], cost(i), ruleName[rule(i)] ); | ||||
2992 | } | ||||
2993 | } | ||||
2994 | tty->cr(); | ||||
2995 | |||||
2996 | for (i = 0; i < 2; i++) { | ||||
2997 | if (_kids[i]) { | ||||
2998 | _kids[i]->dump(depth + 1); | ||||
2999 | } | ||||
3000 | } | ||||
3001 | } | ||||
3002 | #endif |
1 | /* | |||
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. | |||
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
4 | * | |||
5 | * This code is free software; you can redistribute it and/or modify it | |||
6 | * under the terms of the GNU General Public License version 2 only, as | |||
7 | * published by the Free Software Foundation. | |||
8 | * | |||
9 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
12 | * version 2 for more details (a copy is included in the LICENSE file that | |||
13 | * accompanied this code). | |||
14 | * | |||
15 | * You should have received a copy of the GNU General Public License version | |||
16 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
18 | * | |||
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
20 | * or visit www.oracle.com if you need additional information or have any | |||
21 | * questions. | |||
22 | * | |||
23 | */ | |||
24 | ||||
25 | #ifndef SHARE_OPTO_MATCHER_HPP | |||
26 | #define SHARE_OPTO_MATCHER_HPP | |||
27 | ||||
28 | #include "libadt/vectset.hpp" | |||
29 | #include "memory/resourceArea.hpp" | |||
30 | #include "oops/compressedOops.hpp" | |||
31 | #include "opto/node.hpp" | |||
32 | #include "opto/phaseX.hpp" | |||
33 | #include "opto/regmask.hpp" | |||
34 | #include "runtime/vm_version.hpp" | |||
35 | ||||
36 | class Compile; | |||
37 | class Node; | |||
38 | class MachNode; | |||
39 | class MachTypeNode; | |||
40 | class MachOper; | |||
41 | ||||
42 | //---------------------------Matcher------------------------------------------- | |||
43 | class Matcher : public PhaseTransform { | |||
44 | friend class VMStructs; | |||
45 | ||||
46 | public: | |||
47 | ||||
48 | // Machine-dependent definitions | |||
49 | #include CPU_HEADER(matcher)"matcher_x86.hpp" | |||
50 | ||||
51 | // State and MStack class used in xform() and find_shared() iterative methods. | |||
52 | enum Node_State { Pre_Visit, // node has to be pre-visited | |||
53 | Visit, // visit node | |||
54 | Post_Visit, // post-visit node | |||
55 | Alt_Post_Visit // alternative post-visit path | |||
56 | }; | |||
57 | ||||
58 | class MStack: public Node_Stack { | |||
59 | public: | |||
60 | MStack(int size) : Node_Stack(size) { } | |||
61 | ||||
62 | void push(Node *n, Node_State ns) { | |||
63 | Node_Stack::push(n, (uint)ns); | |||
64 | } | |||
65 | void push(Node *n, Node_State ns, Node *parent, int indx) { | |||
66 | ++_inode_top; | |||
67 | if ((_inode_top + 1) >= _inode_max) grow(); | |||
68 | _inode_top->node = parent; | |||
69 | _inode_top->indx = (uint)indx; | |||
70 | ++_inode_top; | |||
71 | _inode_top->node = n; | |||
72 | _inode_top->indx = (uint)ns; | |||
73 | } | |||
74 | Node *parent() { | |||
75 | pop(); | |||
76 | return node(); | |||
77 | } | |||
78 | Node_State state() const { | |||
79 | return (Node_State)index(); | |||
80 | } | |||
81 | void set_state(Node_State ns) { | |||
82 | set_index((uint)ns); | |||
83 | } | |||
84 | }; | |||
85 | ||||
86 | private: | |||
87 | // Private arena of State objects | |||
88 | ResourceArea _states_arena; | |||
89 | ||||
90 | VectorSet _visited; // Visit bits | |||
91 | ||||
92 | // Used to control the Label pass | |||
93 | VectorSet _shared; // Shared Ideal Node | |||
94 | VectorSet _dontcare; // Nothing the matcher cares about | |||
95 | ||||
96 | // Private methods which perform the actual matching and reduction | |||
97 | // Walks the label tree, generating machine nodes | |||
98 | MachNode *ReduceInst( State *s, int rule, Node *&mem); | |||
99 | void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach); | |||
100 | uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds); | |||
101 | void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach ); | |||
102 | ||||
103 | // If this node already matched using "rule", return the MachNode for it. | |||
104 | MachNode* find_shared_node(Node* n, uint rule); | |||
105 | ||||
106 | // Convert a dense opcode number to an expanded rule number | |||
107 | const int *_reduceOp; | |||
108 | const int *_leftOp; | |||
109 | const int *_rightOp; | |||
110 | ||||
111 | // Map dense opcode number to info on when rule is swallowed constant. | |||
112 | const bool *_swallowed; | |||
113 | ||||
114 | // Map dense rule number to determine if this is an instruction chain rule | |||
115 | const uint _begin_inst_chain_rule; | |||
116 | const uint _end_inst_chain_rule; | |||
117 | ||||
118 | // We want to clone constants and possible CmpI-variants. | |||
119 | // If we do not clone CmpI, then we can have many instances of | |||
120 | // condition codes alive at once. This is OK on some chips and | |||
121 | // bad on others. Hence the machine-dependent table lookup. | |||
122 | const char *_must_clone; | |||
123 | ||||
124 | // Find shared Nodes, or Nodes that otherwise are Matcher roots | |||
125 | void find_shared( Node *n ); | |||
126 | bool find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx); | |||
127 | void find_shared_post_visit(Node* n, uint opcode); | |||
128 | ||||
129 | bool is_vshift_con_pattern(Node* n, Node* m); | |||
130 | ||||
131 | // Debug and profile information for nodes in old space: | |||
132 | GrowableArray<Node_Notes*>* _old_node_note_array; | |||
133 | ||||
134 | // Node labeling iterator for instruction selection | |||
135 | Node* Label_Root(const Node* n, State* svec, Node* control, Node*& mem); | |||
136 | ||||
137 | Node *transform( Node *dummy ); | |||
138 | ||||
139 | Node_List _projection_list; // For Machine nodes killing many values | |||
140 | ||||
141 | Node_Array _shared_nodes; | |||
142 | ||||
143 | #ifndef PRODUCT | |||
144 | Node_Array _old2new_map; // Map roots of ideal-trees to machine-roots | |||
145 | Node_Array _new2old_map; // Maps machine nodes back to ideal | |||
146 | VectorSet _reused; // Ideal IGV identifiers reused by machine nodes | |||
147 | #endif // !PRODUCT | |||
148 | ||||
149 | // Accessors for the inherited field PhaseTransform::_nodes: | |||
150 | void grow_new_node_array(uint idx_limit) { | |||
151 | _nodes.map(idx_limit-1, NULL__null); | |||
152 | } | |||
153 | bool has_new_node(const Node* n) const { | |||
154 | return _nodes.at(n->_idx) != NULL__null; | |||
| ||||
155 | } | |||
156 | Node* new_node(const Node* n) const { | |||
157 | assert(has_new_node(n), "set before get")do { if (!(has_new_node(n))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.hpp" , 157, "assert(" "has_new_node(n)" ") failed", "set before get" ); ::breakpoint(); } } while (0); | |||
158 | return _nodes.at(n->_idx); | |||
159 | } | |||
160 | void set_new_node(const Node* n, Node *nn) { | |||
161 | assert(!has_new_node(n), "set only once")do { if (!(!has_new_node(n))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.hpp" , 161, "assert(" "!has_new_node(n)" ") failed", "set only once" ); ::breakpoint(); } } while (0); | |||
162 | _nodes.map(n->_idx, nn); | |||
163 | } | |||
164 | ||||
165 | #ifdef ASSERT1 | |||
166 | // Make sure only new nodes are reachable from this node | |||
167 | void verify_new_nodes_only(Node* root); | |||
168 | ||||
169 | Node* _mem_node; // Ideal memory node consumed by mach node | |||
170 | #endif | |||
171 | ||||
172 | // Mach node for ConP #NULL | |||
173 | MachNode* _mach_null; | |||
174 | ||||
175 | void handle_precedence_edges(Node* n, MachNode *mach); | |||
176 | ||||
177 | public: | |||
178 | int LabelRootDepth; | |||
179 | // Convert ideal machine register to a register mask for spill-loads | |||
180 | static const RegMask *idealreg2regmask[]; | |||
181 | RegMask *idealreg2spillmask [_last_machine_leaf]; | |||
182 | RegMask *idealreg2debugmask [_last_machine_leaf]; | |||
183 | RegMask *idealreg2mhdebugmask[_last_machine_leaf]; | |||
184 | void init_spill_mask( Node *ret ); | |||
185 | // Convert machine register number to register mask | |||
186 | static uint mreg2regmask_max; | |||
187 | static RegMask mreg2regmask[]; | |||
188 | static RegMask STACK_ONLY_mask; | |||
189 | static RegMask caller_save_regmask; | |||
190 | static RegMask caller_save_regmask_exclude_soe; | |||
191 | static RegMask mh_caller_save_regmask; | |||
192 | static RegMask mh_caller_save_regmask_exclude_soe; | |||
193 | ||||
194 | MachNode* mach_null() const { return _mach_null; } | |||
195 | ||||
196 | bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; } | |||
197 | void set_shared( Node *n ) { _shared.set(n->_idx); } | |||
198 | bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; } | |||
199 | void set_visited( Node *n ) { _visited.set(n->_idx); } | |||
200 | bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; } | |||
201 | void set_dontcare( Node *n ) { _dontcare.set(n->_idx); } | |||
202 | ||||
203 | // Mode bit to tell DFA and expand rules whether we are running after | |||
204 | // (or during) register selection. Usually, the matcher runs before, | |||
205 | // but it will also get called to generate post-allocation spill code. | |||
206 | // In this situation, it is a deadly error to attempt to allocate more | |||
207 | // temporary registers. | |||
208 | bool _allocation_started; | |||
209 | ||||
210 | // Machine register names | |||
211 | static const char *regName[]; | |||
212 | // Machine register encodings | |||
213 | static const unsigned char _regEncode[]; | |||
214 | // Machine Node names | |||
215 | const char **_ruleName; | |||
216 | // Rules that are cheaper to rematerialize than to spill | |||
217 | static const uint _begin_rematerialize; | |||
218 | static const uint _end_rematerialize; | |||
219 | ||||
220 | // An array of chars, from 0 to _last_Mach_Reg. | |||
221 | // No Save = 'N' (for register windows) | |||
222 | // Save on Entry = 'E' | |||
223 | // Save on Call = 'C' | |||
224 | // Always Save = 'A' (same as SOE + SOC) | |||
225 | const char *_register_save_policy; | |||
226 | const char *_c_reg_save_policy; | |||
227 | // Convert a machine register to a machine register type, so-as to | |||
228 | // properly match spill code. | |||
229 | const int *_register_save_type; | |||
230 | // Maps from machine register to boolean; true if machine register can | |||
231 | // be holding a call argument in some signature. | |||
232 | static bool can_be_java_arg( int reg ); | |||
233 | // Maps from machine register to boolean; true if machine register holds | |||
234 | // a spillable argument. | |||
235 | static bool is_spillable_arg( int reg ); | |||
236 | // Number of integer live ranges that constitute high register pressure | |||
237 | static uint int_pressure_limit(); | |||
238 | // Number of float live ranges that constitute high register pressure | |||
239 | static uint float_pressure_limit(); | |||
240 | ||||
241 | // List of IfFalse or IfTrue Nodes that indicate a taken null test. | |||
242 | // List is valid in the post-matching space. | |||
243 | Node_List _null_check_tests; | |||
244 | void collect_null_checks( Node *proj, Node *orig_proj ); | |||
245 | void validate_null_checks( ); | |||
246 | ||||
247 | Matcher(); | |||
248 | ||||
249 | // Get a projection node at position pos | |||
250 | Node* get_projection(uint pos) { | |||
251 | return _projection_list[pos]; | |||
252 | } | |||
253 | ||||
254 | // Push a projection node onto the projection list | |||
255 | void push_projection(Node* node) { | |||
256 | _projection_list.push(node); | |||
257 | } | |||
258 | ||||
259 | Node* pop_projection() { | |||
260 | return _projection_list.pop(); | |||
261 | } | |||
262 | ||||
263 | // Number of nodes in the projection list | |||
264 | uint number_of_projections() const { | |||
265 | return _projection_list.size(); | |||
266 | } | |||
267 | ||||
268 | // Select instructions for entire method | |||
269 | void match(); | |||
270 | ||||
271 | // Helper for match | |||
272 | OptoReg::Name warp_incoming_stk_arg( VMReg reg ); | |||
273 | ||||
274 | // Transform, then walk. Does implicit DCE while walking. | |||
275 | // Name changed from "transform" to avoid it being virtual. | |||
276 | Node *xform( Node *old_space_node, int Nodes ); | |||
277 | ||||
278 | // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce. | |||
279 | MachNode *match_tree( const Node *n ); | |||
280 | MachNode *match_sfpt( SafePointNode *sfpt ); | |||
281 | // Helper for match_sfpt | |||
282 | OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ); | |||
283 | ||||
284 | // Initialize first stack mask and related masks. | |||
285 | void init_first_stack_mask(); | |||
286 | ||||
287 | // If we should save-on-entry this register | |||
288 | bool is_save_on_entry( int reg ); | |||
289 | ||||
290 | // Fixup the save-on-entry registers | |||
291 | void Fixup_Save_On_Entry( ); | |||
292 | ||||
293 | // --- Frame handling --- | |||
294 | ||||
295 | // Register number of the stack slot corresponding to the incoming SP. | |||
296 | // Per the Big Picture in the AD file, it is: | |||
297 | // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2. | |||
298 | OptoReg::Name _old_SP; | |||
299 | ||||
300 | // Register number of the stack slot corresponding to the highest incoming | |||
301 | // argument on the stack. Per the Big Picture in the AD file, it is: | |||
302 | // _old_SP + out_preserve_stack_slots + incoming argument size. | |||
303 | OptoReg::Name _in_arg_limit; | |||
304 | ||||
305 | // Register number of the stack slot corresponding to the new SP. | |||
306 | // Per the Big Picture in the AD file, it is: | |||
307 | // _in_arg_limit + pad0 | |||
308 | OptoReg::Name _new_SP; | |||
309 | ||||
310 | // Register number of the stack slot corresponding to the highest outgoing | |||
311 | // argument on the stack. Per the Big Picture in the AD file, it is: | |||
312 | // _new_SP + max outgoing arguments of all calls | |||
313 | OptoReg::Name _out_arg_limit; | |||
314 | ||||
315 | OptoRegPair *_parm_regs; // Array of machine registers per argument | |||
316 | RegMask *_calling_convention_mask; // Array of RegMasks per argument | |||
317 | ||||
318 | // Does matcher have a match rule for this ideal node? | |||
319 | static const bool has_match_rule(int opcode); | |||
320 | static const bool _hasMatchRule[_last_opcode]; | |||
321 | ||||
322 | // Does matcher have a match rule for this ideal node and is the | |||
323 | // predicate (if there is one) true? | |||
324 | // NOTE: If this function is used more commonly in the future, ADLC | |||
325 | // should generate this one. | |||
326 | static const bool match_rule_supported(int opcode); | |||
327 | ||||
328 | // identify extra cases that we might want to provide match rules for | |||
329 | // e.g. Op_ vector nodes and other intrinsics while guarding with vlen | |||
330 | static const bool match_rule_supported_vector(int opcode, int vlen, BasicType bt); | |||
331 | ||||
332 | static const bool match_rule_supported_vector_masked(int opcode, int vlen, BasicType bt); | |||
333 | ||||
334 | static const RegMask* predicate_reg_mask(void); | |||
335 | static const TypeVectMask* predicate_reg_type(const Type* elemTy, int length); | |||
336 | ||||
337 | // Vector width in bytes | |||
338 | static const int vector_width_in_bytes(BasicType bt); | |||
339 | ||||
340 | // Limits on vector size (number of elements). | |||
341 | static const int max_vector_size(const BasicType bt); | |||
342 | static const int min_vector_size(const BasicType bt); | |||
343 | static const bool vector_size_supported(const BasicType bt, int size) { | |||
344 | return (Matcher::max_vector_size(bt) >= size && | |||
345 | Matcher::min_vector_size(bt) <= size); | |||
346 | } | |||
347 | ||||
348 | // Actual max scalable vector register length. | |||
349 | static const int scalable_vector_reg_size(const BasicType bt); | |||
350 | // Actual max scalable predicate register length. | |||
351 | static const int scalable_predicate_reg_slots(); | |||
352 | ||||
353 | // Vector ideal reg | |||
354 | static const uint vector_ideal_reg(int len); | |||
355 | ||||
356 | // Vector length | |||
357 | static uint vector_length(const Node* n); | |||
358 | static uint vector_length(const MachNode* use, const MachOper* opnd); | |||
359 | ||||
360 | // Vector length in bytes | |||
361 | static uint vector_length_in_bytes(const Node* n); | |||
362 | static uint vector_length_in_bytes(const MachNode* use, const MachOper* opnd); | |||
363 | ||||
364 | // Vector element basic type | |||
365 | static BasicType vector_element_basic_type(const Node* n); | |||
366 | static BasicType vector_element_basic_type(const MachNode* use, const MachOper* opnd); | |||
367 | ||||
368 | // These calls are all generated by the ADLC | |||
369 | ||||
370 | // Java-Java calling convention | |||
371 | // (what you use when Java calls Java) | |||
372 | ||||
373 | // Alignment of stack in bytes, standard Intel word alignment is 4. | |||
374 | // Sparc probably wants at least double-word (8). | |||
375 | static uint stack_alignment_in_bytes(); | |||
376 | // Alignment of stack, measured in stack slots. | |||
377 | // The size of stack slots is defined by VMRegImpl::stack_slot_size. | |||
378 | static uint stack_alignment_in_slots() { | |||
379 | return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size); | |||
380 | } | |||
381 | ||||
382 | // Convert a sig into a calling convention register layout | |||
383 | // and find interesting things about it. | |||
384 | static OptoReg::Name find_receiver(); | |||
385 | // Return address register. On Intel it is a stack-slot. On PowerPC | |||
386 | // it is the Link register. On Sparc it is r31? | |||
387 | virtual OptoReg::Name return_addr() const; | |||
388 | RegMask _return_addr_mask; | |||
389 | // Return value register. On Intel it is EAX. | |||
390 | static OptoRegPair return_value(uint ideal_reg); | |||
391 | static OptoRegPair c_return_value(uint ideal_reg); | |||
392 | RegMask _return_value_mask; | |||
393 | // Inline Cache Register | |||
394 | static OptoReg::Name inline_cache_reg(); | |||
395 | static int inline_cache_reg_encode(); | |||
396 | ||||
397 | // Register for DIVI projection of divmodI | |||
398 | static RegMask divI_proj_mask(); | |||
399 | // Register for MODI projection of divmodI | |||
400 | static RegMask modI_proj_mask(); | |||
401 | ||||
402 | // Register for DIVL projection of divmodL | |||
403 | static RegMask divL_proj_mask(); | |||
404 | // Register for MODL projection of divmodL | |||
405 | static RegMask modL_proj_mask(); | |||
406 | ||||
407 | // Use hardware DIV instruction when it is faster than | |||
408 | // a code which use multiply for division by constant. | |||
409 | static bool use_asm_for_ldiv_by_con( jlong divisor ); | |||
410 | ||||
411 | static const RegMask method_handle_invoke_SP_save_mask(); | |||
412 | ||||
413 | // Java-Interpreter calling convention | |||
414 | // (what you use when calling between compiled-Java and Interpreted-Java | |||
415 | ||||
416 | // Number of callee-save + always-save registers | |||
417 | // Ignores frame pointer and "special" registers | |||
418 | static int number_of_saved_registers(); | |||
419 | ||||
420 | // The Method-klass-holder may be passed in the inline_cache_reg | |||
421 | // and then expanded into the inline_cache_reg and a method_ptr register | |||
422 | ||||
423 | // Interpreter's Frame Pointer Register | |||
424 | static OptoReg::Name interpreter_frame_pointer_reg(); | |||
425 | ||||
426 | // Java-Native calling convention | |||
427 | // (what you use when intercalling between Java and C++ code) | |||
428 | ||||
429 | // Frame pointer. The frame pointer is kept at the base of the stack | |||
430 | // and so is probably the stack pointer for most machines. On Intel | |||
431 | // it is ESP. On the PowerPC it is R1. On Sparc it is SP. | |||
432 | OptoReg::Name c_frame_pointer() const; | |||
433 | static RegMask c_frame_ptr_mask; | |||
434 | ||||
435 | // Java-Native vector calling convention | |||
436 | static const bool supports_vector_calling_convention(); | |||
437 | static OptoRegPair vector_return_value(uint ideal_reg); | |||
438 | ||||
439 | // Is this branch offset small enough to be addressed by a short branch? | |||
440 | bool is_short_branch_offset(int rule, int br_size, int offset); | |||
441 | ||||
442 | // Should the input 'm' of node 'n' be cloned during matching? | |||
443 | // Reports back whether the node was cloned or not. | |||
444 | bool clone_node(Node* n, Node* m, Matcher::MStack& mstack); | |||
445 | bool pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack); | |||
446 | ||||
447 | // Should the Matcher clone shifts on addressing modes, expecting them to | |||
448 | // be subsumed into complex addressing expressions or compute them into | |||
449 | // registers? True for Intel but false for most RISCs | |||
450 | bool pd_clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited); | |||
451 | // Clone base + offset address expression | |||
452 | bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited); | |||
453 | ||||
454 | // Generate implicit null check for narrow oops if it can fold | |||
455 | // into address expression (x64). | |||
456 | // | |||
457 | // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression | |||
458 | // NullCheck narrow_oop_reg | |||
459 | // | |||
460 | // When narrow oops can't fold into address expression (Sparc) and | |||
461 | // base is not null use decode_not_null and normal implicit null check. | |||
462 | // Note, decode_not_null node can be used here since it is referenced | |||
463 | // only on non null path but it requires special handling, see | |||
464 | // collect_null_checks(): | |||
465 | // | |||
466 | // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base' | |||
467 | // [oop_reg + offset] | |||
468 | // NullCheck oop_reg | |||
469 | // | |||
470 | // With Zero base and when narrow oops can not fold into address | |||
471 | // expression use normal implicit null check since only shift | |||
472 | // is needed to decode narrow oop. | |||
473 | // | |||
474 | // decode narrow_oop_reg, oop_reg // only 'shift' | |||
475 | // [oop_reg + offset] | |||
476 | // NullCheck oop_reg | |||
477 | // | |||
478 | static bool gen_narrow_oop_implicit_null_checks(); | |||
479 | ||||
480 | private: | |||
481 | void do_postselect_cleanup(); | |||
482 | ||||
483 | void specialize_generic_vector_operands(); | |||
484 | void specialize_mach_node(MachNode* m); | |||
485 | void specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx); | |||
486 | MachOper* specialize_vector_operand(MachNode* m, uint opnd_idx); | |||
487 | ||||
488 | static MachOper* pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp); | |||
489 | static bool is_reg2reg_move(MachNode* m); | |||
490 | static bool is_generic_vector(MachOper* opnd); | |||
491 | ||||
492 | const RegMask* regmask_for_ideal_register(uint ideal_reg, Node* ret); | |||
493 | ||||
494 | // Graph verification code | |||
495 | DEBUG_ONLY( bool verify_after_postselect_cleanup(); )bool verify_after_postselect_cleanup(); | |||
496 | ||||
497 | public: | |||
498 | // This routine is run whenever a graph fails to match. | |||
499 | // If it returns, the compiler should bailout to interpreter without error. | |||
500 | // In non-product mode, SoftMatchFailure is false to detect non-canonical | |||
501 | // graphs. Print a message and exit. | |||
502 | static void soft_match_failure() { | |||
503 | if( SoftMatchFailure ) return; | |||
504 | else { fatal("SoftMatchFailure is not allowed except in product")do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/matcher.hpp" , 504, "SoftMatchFailure is not allowed except in product"); :: breakpoint(); } while (0); } | |||
505 | } | |||
506 | ||||
507 | // Check for a following volatile memory barrier without an | |||
508 | // intervening load and thus we don't need a barrier here. We | |||
509 | // retain the Node to act as a compiler ordering barrier. | |||
510 | static bool post_store_load_barrier(const Node* mb); | |||
511 | ||||
512 | // Does n lead to an uncommon trap that can cause deoptimization? | |||
513 | static bool branches_to_uncommon_trap(const Node *n); | |||
514 | ||||
515 | #ifndef PRODUCT | |||
516 | // Record mach-to-Ideal mapping, reusing the Ideal IGV identifier if possible. | |||
517 | void record_new2old(Node* newn, Node* old); | |||
518 | ||||
519 | void dump_old2new_map(); // machine-independent to machine-dependent | |||
520 | ||||
521 | Node* find_old_node(Node* new_node) { | |||
522 | return _new2old_map[new_node->_idx]; | |||
523 | } | |||
524 | #endif // !PRODUCT | |||
525 | }; | |||
526 | ||||
527 | #endif // SHARE_OPTO_MATCHER_HPP |