File: | jdk/src/hotspot/share/opto/addnode.cpp |
Warning: | line 924, column 23 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. | |||
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
4 | * | |||
5 | * This code is free software; you can redistribute it and/or modify it | |||
6 | * under the terms of the GNU General Public License version 2 only, as | |||
7 | * published by the Free Software Foundation. | |||
8 | * | |||
9 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
12 | * version 2 for more details (a copy is included in the LICENSE file that | |||
13 | * accompanied this code). | |||
14 | * | |||
15 | * You should have received a copy of the GNU General Public License version | |||
16 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
18 | * | |||
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
20 | * or visit www.oracle.com if you need additional information or have any | |||
21 | * questions. | |||
22 | * | |||
23 | */ | |||
24 | ||||
25 | #include "precompiled.hpp" | |||
26 | #include "memory/allocation.inline.hpp" | |||
27 | #include "opto/addnode.hpp" | |||
28 | #include "opto/castnode.hpp" | |||
29 | #include "opto/cfgnode.hpp" | |||
30 | #include "opto/connode.hpp" | |||
31 | #include "opto/machnode.hpp" | |||
32 | #include "opto/movenode.hpp" | |||
33 | #include "opto/mulnode.hpp" | |||
34 | #include "opto/phaseX.hpp" | |||
35 | #include "opto/subnode.hpp" | |||
36 | ||||
37 | // Portions of code courtesy of Clifford Click | |||
38 | ||||
39 | // Classic Add functionality. This covers all the usual 'add' behaviors for | |||
40 | // an algebraic ring. Add-integer, add-float, add-double, and binary-or are | |||
41 | // all inherited from this class. The various identity values are supplied | |||
42 | // by virtual functions. | |||
43 | ||||
44 | ||||
45 | //============================================================================= | |||
46 | //------------------------------hash------------------------------------------- | |||
47 | // Hash function over AddNodes. Needs to be commutative; i.e., I swap | |||
48 | // (commute) inputs to AddNodes willy-nilly so the hash function must return | |||
49 | // the same value in the presence of edge swapping. | |||
50 | uint AddNode::hash() const { | |||
51 | return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); | |||
52 | } | |||
53 | ||||
54 | //------------------------------Identity--------------------------------------- | |||
55 | // If either input is a constant 0, return the other input. | |||
56 | Node* AddNode::Identity(PhaseGVN* phase) { | |||
57 | const Type *zero = add_id(); // The additive identity | |||
58 | if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); | |||
59 | if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); | |||
60 | return this; | |||
61 | } | |||
62 | ||||
63 | //------------------------------commute---------------------------------------- | |||
64 | // Commute operands to move loads and constants to the right. | |||
65 | static bool commute(PhaseGVN* phase, Node* add) { | |||
66 | Node *in1 = add->in(1); | |||
67 | Node *in2 = add->in(2); | |||
68 | ||||
69 | // convert "max(a,b) + min(a,b)" into "a+b". | |||
70 | if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode()) | |||
71 | || (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) { | |||
72 | Node *in11 = in1->in(1); | |||
73 | Node *in12 = in1->in(2); | |||
74 | ||||
75 | Node *in21 = in2->in(1); | |||
76 | Node *in22 = in2->in(2); | |||
77 | ||||
78 | if ((in11 == in21 && in12 == in22) || | |||
79 | (in11 == in22 && in12 == in21)) { | |||
80 | add->set_req(1, in11); | |||
81 | add->set_req(2, in12); | |||
82 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
83 | if (igvn) { | |||
84 | igvn->_worklist.push(in1); | |||
85 | igvn->_worklist.push(in2); | |||
86 | } | |||
87 | return true; | |||
88 | } | |||
89 | } | |||
90 | ||||
91 | bool con_left = phase->type(in1)->singleton(); | |||
92 | bool con_right = phase->type(in2)->singleton(); | |||
93 | ||||
94 | // Convert "1+x" into "x+1". | |||
95 | // Right is a constant; leave it | |||
96 | if( con_right ) return false; | |||
97 | // Left is a constant; move it right. | |||
98 | if( con_left ) { | |||
99 | add->swap_edges(1, 2); | |||
100 | return true; | |||
101 | } | |||
102 | ||||
103 | // Convert "Load+x" into "x+Load". | |||
104 | // Now check for loads | |||
105 | if (in2->is_Load()) { | |||
106 | if (!in1->is_Load()) { | |||
107 | // already x+Load to return | |||
108 | return false; | |||
109 | } | |||
110 | // both are loads, so fall through to sort inputs by idx | |||
111 | } else if( in1->is_Load() ) { | |||
112 | // Left is a Load and Right is not; move it right. | |||
113 | add->swap_edges(1, 2); | |||
114 | return true; | |||
115 | } | |||
116 | ||||
117 | PhiNode *phi; | |||
118 | // Check for tight loop increments: Loop-phi of Add of loop-phi | |||
119 | if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) | |||
120 | return false; | |||
121 | if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) { | |||
122 | add->swap_edges(1, 2); | |||
123 | return true; | |||
124 | } | |||
125 | ||||
126 | // Otherwise, sort inputs (commutativity) to help value numbering. | |||
127 | if( in1->_idx > in2->_idx ) { | |||
128 | add->swap_edges(1, 2); | |||
129 | return true; | |||
130 | } | |||
131 | return false; | |||
132 | } | |||
133 | ||||
134 | //------------------------------Idealize--------------------------------------- | |||
135 | // If we get here, we assume we are associative! | |||
136 | Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
137 | const Type *t1 = phase->type(in(1)); | |||
138 | const Type *t2 = phase->type(in(2)); | |||
139 | bool con_left = t1->singleton(); | |||
140 | bool con_right = t2->singleton(); | |||
141 | ||||
142 | // Check for commutative operation desired | |||
143 | if (commute(phase, this)) return this; | |||
144 | ||||
145 | AddNode *progress = NULL__null; // Progress flag | |||
146 | ||||
147 | // Convert "(x+1)+2" into "x+(1+2)". If the right input is a | |||
148 | // constant, and the left input is an add of a constant, flatten the | |||
149 | // expression tree. | |||
150 | Node *add1 = in(1); | |||
151 | Node *add2 = in(2); | |||
152 | int add1_op = add1->Opcode(); | |||
153 | int this_op = Opcode(); | |||
154 | if (con_right && t2 != Type::TOP && // Right input is a constant? | |||
155 | add1_op == this_op) { // Left input is an Add? | |||
156 | ||||
157 | // Type of left _in right input | |||
158 | const Type *t12 = phase->type(add1->in(2)); | |||
159 | if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? | |||
160 | // Check for rare case of closed data cycle which can happen inside | |||
161 | // unreachable loops. In these cases the computation is undefined. | |||
162 | #ifdef ASSERT1 | |||
163 | Node *add11 = add1->in(1); | |||
164 | int add11_op = add11->Opcode(); | |||
165 | if ((add1 == add1->in(1)) | |||
166 | || (add11_op == this_op && add11->in(1) == add1)) { | |||
167 | assert(false, "dead loop in AddNode::Ideal")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 167, "assert(" "false" ") failed", "dead loop in AddNode::Ideal" ); ::breakpoint(); } } while (0); | |||
168 | } | |||
169 | #endif | |||
170 | // The Add of the flattened expression | |||
171 | Node *x1 = add1->in(1); | |||
172 | Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12)); | |||
173 | set_req_X(2, x2, phase); | |||
174 | set_req_X(1, x1, phase); | |||
175 | progress = this; // Made progress | |||
176 | add1 = in(1); | |||
177 | add1_op = add1->Opcode(); | |||
178 | } | |||
179 | } | |||
180 | ||||
181 | // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. | |||
182 | if (add1_op == this_op && !con_right) { | |||
183 | Node *a12 = add1->in(2); | |||
184 | const Type *t12 = phase->type( a12 ); | |||
185 | if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && | |||
186 | !(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) { | |||
187 | assert(add1->in(1) != this, "dead loop in AddNode::Ideal")do { if (!(add1->in(1) != this)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 187, "assert(" "add1->in(1) != this" ") failed", "dead loop in AddNode::Ideal" ); ::breakpoint(); } } while (0); | |||
188 | add2 = add1->clone(); | |||
189 | add2->set_req(2, in(2)); | |||
190 | add2 = phase->transform(add2); | |||
191 | set_req_X(1, add2, phase); | |||
192 | set_req_X(2, a12, phase); | |||
193 | progress = this; | |||
194 | add2 = a12; | |||
195 | } | |||
196 | } | |||
197 | ||||
198 | // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. | |||
199 | int add2_op = add2->Opcode(); | |||
200 | if (add2_op == this_op && !con_left) { | |||
201 | Node *a22 = add2->in(2); | |||
202 | const Type *t22 = phase->type( a22 ); | |||
203 | if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && | |||
204 | !(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) { | |||
205 | assert(add2->in(1) != this, "dead loop in AddNode::Ideal")do { if (!(add2->in(1) != this)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 205, "assert(" "add2->in(1) != this" ") failed", "dead loop in AddNode::Ideal" ); ::breakpoint(); } } while (0); | |||
206 | Node *addx = add2->clone(); | |||
207 | addx->set_req(1, in(1)); | |||
208 | addx->set_req(2, add2->in(1)); | |||
209 | addx = phase->transform(addx); | |||
210 | set_req_X(1, addx, phase); | |||
211 | set_req_X(2, a22, phase); | |||
212 | progress = this; | |||
213 | } | |||
214 | } | |||
215 | ||||
216 | return progress; | |||
217 | } | |||
218 | ||||
219 | //------------------------------Value----------------------------------------- | |||
220 | // An add node sums it's two _in. If one input is an RSD, we must mixin | |||
221 | // the other input's symbols. | |||
222 | const Type* AddNode::Value(PhaseGVN* phase) const { | |||
223 | // Either input is TOP ==> the result is TOP | |||
224 | const Type *t1 = phase->type( in(1) ); | |||
225 | const Type *t2 = phase->type( in(2) ); | |||
226 | if( t1 == Type::TOP ) return Type::TOP; | |||
227 | if( t2 == Type::TOP ) return Type::TOP; | |||
228 | ||||
229 | // Either input is BOTTOM ==> the result is the local BOTTOM | |||
230 | const Type *bot = bottom_type(); | |||
231 | if( (t1 == bot) || (t2 == bot) || | |||
232 | (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) | |||
233 | return bot; | |||
234 | ||||
235 | // Check for an addition involving the additive identity | |||
236 | const Type *tadd = add_of_identity( t1, t2 ); | |||
237 | if( tadd ) return tadd; | |||
238 | ||||
239 | return add_ring(t1,t2); // Local flavor of type addition | |||
240 | } | |||
241 | ||||
242 | //------------------------------add_identity----------------------------------- | |||
243 | // Check for addition of the identity | |||
244 | const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { | |||
245 | const Type *zero = add_id(); // The additive identity | |||
246 | if( t1->higher_equal( zero ) ) return t2; | |||
247 | if( t2->higher_equal( zero ) ) return t1; | |||
248 | ||||
249 | return NULL__null; | |||
250 | } | |||
251 | ||||
252 | AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) { | |||
253 | switch (bt) { | |||
254 | case T_INT: | |||
255 | return new AddINode(in1, in2); | |||
256 | case T_LONG: | |||
257 | return new AddLNode(in1, in2); | |||
258 | default: | |||
259 | fatal("Not implemented for %s", type2name(bt))do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 259, "Not implemented for %s", type2name(bt)); ::breakpoint (); } while (0); | |||
260 | } | |||
261 | return NULL__null; | |||
262 | } | |||
263 | ||||
264 | //============================================================================= | |||
265 | //------------------------------Idealize--------------------------------------- | |||
266 | Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) { | |||
267 | Node* in1 = in(1); | |||
268 | Node* in2 = in(2); | |||
269 | int op1 = in1->Opcode(); | |||
270 | int op2 = in2->Opcode(); | |||
271 | // Fold (con1-x)+con2 into (con1+con2)-x | |||
272 | if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) { | |||
273 | // Swap edges to try optimizations below | |||
274 | in1 = in2; | |||
275 | in2 = in(1); | |||
276 | op1 = op2; | |||
277 | op2 = in2->Opcode(); | |||
278 | } | |||
279 | if (op1 == Op_Sub(bt)) { | |||
280 | const Type* t_sub1 = phase->type(in1->in(1)); | |||
281 | const Type* t_2 = phase->type(in2 ); | |||
282 | if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) { | |||
283 | return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt); | |||
284 | } | |||
285 | // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" | |||
286 | if (op2 == Op_Sub(bt)) { | |||
287 | // Check for dead cycle: d = (a-b)+(c-d) | |||
288 | assert( in1->in(2) != this && in2->in(2) != this,do { if (!(in1->in(2) != this && in2->in(2) != this )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 289, "assert(" "in1->in(2) != this && in2->in(2) != this" ") failed", "dead loop in AddINode::Ideal"); ::breakpoint(); } } while (0) | |||
289 | "dead loop in AddINode::Ideal" )do { if (!(in1->in(2) != this && in2->in(2) != this )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 289, "assert(" "in1->in(2) != this && in2->in(2) != this" ") failed", "dead loop in AddINode::Ideal"); ::breakpoint(); } } while (0); | |||
290 | Node* sub = SubNode::make(NULL__null, NULL__null, bt); | |||
291 | sub->init_req(1, phase->transform(AddNode::make(in1->in(1), in2->in(1), bt))); | |||
292 | sub->init_req(2, phase->transform(AddNode::make(in1->in(2), in2->in(2), bt))); | |||
293 | return sub; | |||
294 | } | |||
295 | // Convert "(a-b)+(b+c)" into "(a+c)" | |||
296 | if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) { | |||
297 | assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal")do { if (!(in1->in(1) != this && in2->in(2) != this )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 297, "assert(" "in1->in(1) != this && in2->in(2) != this" ") failed", "dead loop in AddINode::Ideal/AddLNode::Ideal"); ::breakpoint(); } } while (0); | |||
298 | return AddNode::make(in1->in(1), in2->in(2), bt); | |||
299 | } | |||
300 | // Convert "(a-b)+(c+b)" into "(a+c)" | |||
301 | if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) { | |||
302 | assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal")do { if (!(in1->in(1) != this && in2->in(1) != this )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 302, "assert(" "in1->in(1) != this && in2->in(1) != this" ") failed", "dead loop in AddINode::Ideal/AddLNode::Ideal"); ::breakpoint(); } } while (0); | |||
303 | return AddNode::make(in1->in(1), in2->in(1), bt); | |||
304 | } | |||
305 | } | |||
306 | ||||
307 | // Convert "x+(0-y)" into "(x-y)" | |||
308 | if (op2 == Op_Sub(bt) && phase->type(in2->in(1)) == TypeInteger::zero(bt)) { | |||
309 | return SubNode::make(in1, in2->in(2), bt); | |||
310 | } | |||
311 | ||||
312 | // Convert "(0-y)+x" into "(x-y)" | |||
313 | if (op1 == Op_Sub(bt) && phase->type(in1->in(1)) == TypeInteger::zero(bt)) { | |||
314 | return SubNode::make(in2, in1->in(2), bt); | |||
315 | } | |||
316 | ||||
317 | // Associative | |||
318 | if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) { | |||
319 | Node* add_in1 = NULL__null; | |||
320 | Node* add_in2 = NULL__null; | |||
321 | Node* mul_in = NULL__null; | |||
322 | ||||
323 | if (in1->in(1) == in2->in(1)) { | |||
324 | // Convert "a*b+a*c into a*(b+c) | |||
325 | add_in1 = in1->in(2); | |||
326 | add_in2 = in2->in(2); | |||
327 | mul_in = in1->in(1); | |||
328 | } else if (in1->in(2) == in2->in(1)) { | |||
329 | // Convert a*b+b*c into b*(a+c) | |||
330 | add_in1 = in1->in(1); | |||
331 | add_in2 = in2->in(2); | |||
332 | mul_in = in1->in(2); | |||
333 | } else if (in1->in(2) == in2->in(2)) { | |||
334 | // Convert a*c+b*c into (a+b)*c | |||
335 | add_in1 = in1->in(1); | |||
336 | add_in2 = in2->in(1); | |||
337 | mul_in = in1->in(2); | |||
338 | } else if (in1->in(1) == in2->in(2)) { | |||
339 | // Convert a*b+c*a into a*(b+c) | |||
340 | add_in1 = in1->in(2); | |||
341 | add_in2 = in2->in(1); | |||
342 | mul_in = in1->in(1); | |||
343 | } | |||
344 | ||||
345 | if (mul_in != NULL__null) { | |||
346 | Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt)); | |||
347 | return MulNode::make(mul_in, add, bt); | |||
348 | } | |||
349 | } | |||
350 | ||||
351 | // Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift) | |||
352 | if (Matcher::match_rule_supported(Op_RotateRight) && | |||
353 | ((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) && | |||
354 | in1->in(1) != NULL__null && in1->in(1) == in2->in(1)) { | |||
355 | Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2); | |||
356 | Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2); | |||
357 | if (rshift != NULL__null && lshift != NULL__null) { | |||
358 | const TypeInt* rshift_t = phase->type(rshift)->isa_int(); | |||
359 | const TypeInt* lshift_t = phase->type(lshift)->isa_int(); | |||
360 | int bits = bt == T_INT ? 32 : 64; | |||
361 | int mask = bt == T_INT ? 0x1F : 0x3F; | |||
362 | if (lshift_t != NULL__null && lshift_t->is_con() && | |||
363 | rshift_t != NULL__null && rshift_t->is_con() && | |||
364 | ((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) { | |||
365 | return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt)); | |||
366 | } | |||
367 | } | |||
368 | } | |||
369 | ||||
370 | // Convert (~x+1) into -x. Note there isn't a bitwise not bytecode, | |||
371 | // "~x" would typically represented as "x^(-1)", so (~x+1) will | |||
372 | // be (x^(-1))+1. | |||
373 | if (op1 == Op_Xor(bt) && phase->type(in2) == TypeInteger::one(bt) && | |||
374 | phase->type(in1->in(2)) == TypeInteger::minus_1(bt)) { | |||
375 | return SubNode::make(phase->makecon(TypeInteger::zero(bt)), in1->in(1), bt); | |||
376 | } | |||
377 | return AddNode::Ideal(phase, can_reshape); | |||
378 | } | |||
379 | ||||
380 | ||||
381 | Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
382 | Node* in1 = in(1); | |||
383 | Node* in2 = in(2); | |||
384 | int op1 = in1->Opcode(); | |||
385 | int op2 = in2->Opcode(); | |||
386 | ||||
387 | // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. | |||
388 | // Helps with array allocation math constant folding | |||
389 | // See 4790063: | |||
390 | // Unrestricted transformation is unsafe for some runtime values of 'x' | |||
391 | // ( x == 0, z == 1, y == -1 ) fails | |||
392 | // ( x == -5, z == 1, y == 1 ) fails | |||
393 | // Transform works for small z and small negative y when the addition | |||
394 | // (x + (y << z)) does not cross zero. | |||
395 | // Implement support for negative y and (x >= -(y << z)) | |||
396 | // Have not observed cases where type information exists to support | |||
397 | // positive y and (x <= -(y << z)) | |||
398 | if (op1 == Op_URShiftI && op2 == Op_ConI && | |||
399 | in1->in(2)->Opcode() == Op_ConI) { | |||
400 | jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter | |||
401 | jint y = phase->type(in2)->is_int()->get_con(); | |||
402 | ||||
403 | if (z < 5 && -5 < y && y < 0) { | |||
404 | const Type* t_in11 = phase->type(in1->in(1)); | |||
405 | if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) { | |||
406 | Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z))); | |||
407 | return new URShiftINode(a, in1->in(2)); | |||
408 | } | |||
409 | } | |||
410 | } | |||
411 | ||||
412 | return AddNode::IdealIL(phase, can_reshape, T_INT); | |||
413 | } | |||
414 | ||||
415 | ||||
416 | //------------------------------Identity--------------------------------------- | |||
417 | // Fold (x-y)+y OR y+(x-y) into x | |||
418 | Node* AddINode::Identity(PhaseGVN* phase) { | |||
419 | if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) { | |||
420 | return in(1)->in(1); | |||
421 | } else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) { | |||
422 | return in(2)->in(1); | |||
423 | } | |||
424 | return AddNode::Identity(phase); | |||
425 | } | |||
426 | ||||
427 | ||||
428 | //------------------------------add_ring--------------------------------------- | |||
429 | // Supplied function returns the sum of the inputs. Guaranteed never | |||
430 | // to be passed a TOP or BOTTOM type, these are filtered out by | |||
431 | // pre-check. | |||
432 | const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { | |||
433 | const TypeInt *r0 = t0->is_int(); // Handy access | |||
434 | const TypeInt *r1 = t1->is_int(); | |||
435 | int lo = java_add(r0->_lo, r1->_lo); | |||
436 | int hi = java_add(r0->_hi, r1->_hi); | |||
437 | if( !(r0->is_con() && r1->is_con()) ) { | |||
438 | // Not both constants, compute approximate result | |||
439 | if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { | |||
440 | lo = min_jint; hi = max_jint; // Underflow on the low side | |||
441 | } | |||
442 | if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { | |||
443 | lo = min_jint; hi = max_jint; // Overflow on the high side | |||
444 | } | |||
445 | if( lo > hi ) { // Handle overflow | |||
446 | lo = min_jint; hi = max_jint; | |||
447 | } | |||
448 | } else { | |||
449 | // both constants, compute precise result using 'lo' and 'hi' | |||
450 | // Semantics define overflow and underflow for integer addition | |||
451 | // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 | |||
452 | } | |||
453 | return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); | |||
454 | } | |||
455 | ||||
456 | ||||
457 | //============================================================================= | |||
458 | //------------------------------Idealize--------------------------------------- | |||
459 | Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
460 | return AddNode::IdealIL(phase, can_reshape, T_LONG); | |||
461 | } | |||
462 | ||||
463 | ||||
464 | //------------------------------Identity--------------------------------------- | |||
465 | // Fold (x-y)+y OR y+(x-y) into x | |||
466 | Node* AddLNode::Identity(PhaseGVN* phase) { | |||
467 | if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) { | |||
468 | return in(1)->in(1); | |||
469 | } else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) { | |||
470 | return in(2)->in(1); | |||
471 | } | |||
472 | return AddNode::Identity(phase); | |||
473 | } | |||
474 | ||||
475 | ||||
476 | //------------------------------add_ring--------------------------------------- | |||
477 | // Supplied function returns the sum of the inputs. Guaranteed never | |||
478 | // to be passed a TOP or BOTTOM type, these are filtered out by | |||
479 | // pre-check. | |||
480 | const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
481 | const TypeLong *r0 = t0->is_long(); // Handy access | |||
482 | const TypeLong *r1 = t1->is_long(); | |||
483 | jlong lo = java_add(r0->_lo, r1->_lo); | |||
484 | jlong hi = java_add(r0->_hi, r1->_hi); | |||
485 | if( !(r0->is_con() && r1->is_con()) ) { | |||
486 | // Not both constants, compute approximate result | |||
487 | if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { | |||
488 | lo =min_jlong; hi = max_jlong; // Underflow on the low side | |||
489 | } | |||
490 | if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { | |||
491 | lo = min_jlong; hi = max_jlong; // Overflow on the high side | |||
492 | } | |||
493 | if( lo > hi ) { // Handle overflow | |||
494 | lo = min_jlong; hi = max_jlong; | |||
495 | } | |||
496 | } else { | |||
497 | // both constants, compute precise result using 'lo' and 'hi' | |||
498 | // Semantics define overflow and underflow for integer addition | |||
499 | // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 | |||
500 | } | |||
501 | return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); | |||
502 | } | |||
503 | ||||
504 | ||||
505 | //============================================================================= | |||
506 | //------------------------------add_of_identity-------------------------------- | |||
507 | // Check for addition of the identity | |||
508 | const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { | |||
509 | // x ADD 0 should return x unless 'x' is a -zero | |||
510 | // | |||
511 | // const Type *zero = add_id(); // The additive identity | |||
512 | // jfloat f1 = t1->getf(); | |||
513 | // jfloat f2 = t2->getf(); | |||
514 | // | |||
515 | // if( t1->higher_equal( zero ) ) return t2; | |||
516 | // if( t2->higher_equal( zero ) ) return t1; | |||
517 | ||||
518 | return NULL__null; | |||
519 | } | |||
520 | ||||
521 | //------------------------------add_ring--------------------------------------- | |||
522 | // Supplied function returns the sum of the inputs. | |||
523 | // This also type-checks the inputs for sanity. Guaranteed never to | |||
524 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. | |||
525 | const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
526 | // We must be adding 2 float constants. | |||
527 | return TypeF::make( t0->getf() + t1->getf() ); | |||
528 | } | |||
529 | ||||
530 | //------------------------------Ideal------------------------------------------ | |||
531 | Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
532 | // Floating point additions are not associative because of boundary conditions (infinity) | |||
533 | return commute(phase, this) ? this : NULL__null; | |||
534 | } | |||
535 | ||||
536 | ||||
537 | //============================================================================= | |||
538 | //------------------------------add_of_identity-------------------------------- | |||
539 | // Check for addition of the identity | |||
540 | const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { | |||
541 | // x ADD 0 should return x unless 'x' is a -zero | |||
542 | // | |||
543 | // const Type *zero = add_id(); // The additive identity | |||
544 | // jfloat f1 = t1->getf(); | |||
545 | // jfloat f2 = t2->getf(); | |||
546 | // | |||
547 | // if( t1->higher_equal( zero ) ) return t2; | |||
548 | // if( t2->higher_equal( zero ) ) return t1; | |||
549 | ||||
550 | return NULL__null; | |||
551 | } | |||
552 | //------------------------------add_ring--------------------------------------- | |||
553 | // Supplied function returns the sum of the inputs. | |||
554 | // This also type-checks the inputs for sanity. Guaranteed never to | |||
555 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. | |||
556 | const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
557 | // We must be adding 2 double constants. | |||
558 | return TypeD::make( t0->getd() + t1->getd() ); | |||
559 | } | |||
560 | ||||
561 | //------------------------------Ideal------------------------------------------ | |||
562 | Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
563 | // Floating point additions are not associative because of boundary conditions (infinity) | |||
564 | return commute(phase, this) ? this : NULL__null; | |||
565 | } | |||
566 | ||||
567 | ||||
568 | //============================================================================= | |||
569 | //------------------------------Identity--------------------------------------- | |||
570 | // If one input is a constant 0, return the other input. | |||
571 | Node* AddPNode::Identity(PhaseGVN* phase) { | |||
572 | return ( phase->type( in(Offset) )->higher_equal( TypeX_ZEROTypeLong::ZERO ) ) ? in(Address) : this; | |||
573 | } | |||
574 | ||||
575 | //------------------------------Idealize--------------------------------------- | |||
576 | Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
577 | // Bail out if dead inputs | |||
578 | if( phase->type( in(Address) ) == Type::TOP ) return NULL__null; | |||
579 | ||||
580 | // If the left input is an add of a constant, flatten the expression tree. | |||
581 | const Node *n = in(Address); | |||
582 | if (n->is_AddP() && n->in(Base) == in(Base)) { | |||
583 | const AddPNode *addp = n->as_AddP(); // Left input is an AddP | |||
584 | assert( !addp->in(Address)->is_AddP() ||do { if (!(!addp->in(Address)->is_AddP() || addp->in (Address)->as_AddP() != addp)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 586, "assert(" "!addp->in(Address)->is_AddP() || addp->in(Address)->as_AddP() != addp" ") failed", "dead loop in AddPNode::Ideal"); ::breakpoint(); } } while (0) | |||
585 | addp->in(Address)->as_AddP() != addp,do { if (!(!addp->in(Address)->is_AddP() || addp->in (Address)->as_AddP() != addp)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 586, "assert(" "!addp->in(Address)->is_AddP() || addp->in(Address)->as_AddP() != addp" ") failed", "dead loop in AddPNode::Ideal"); ::breakpoint(); } } while (0) | |||
586 | "dead loop in AddPNode::Ideal" )do { if (!(!addp->in(Address)->is_AddP() || addp->in (Address)->as_AddP() != addp)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 586, "assert(" "!addp->in(Address)->is_AddP() || addp->in(Address)->as_AddP() != addp" ") failed", "dead loop in AddPNode::Ideal"); ::breakpoint(); } } while (0); | |||
587 | // Type of left input's right input | |||
588 | const Type *t = phase->type( addp->in(Offset) ); | |||
589 | if( t == Type::TOP ) return NULL__null; | |||
590 | const TypeXTypeLong *t12 = t->is_intptr_tis_long(); | |||
591 | if( t12->is_con() ) { // Left input is an add of a constant? | |||
592 | // If the right input is a constant, combine constants | |||
593 | const Type *temp_t2 = phase->type( in(Offset) ); | |||
594 | if( temp_t2 == Type::TOP ) return NULL__null; | |||
595 | const TypeXTypeLong *t2 = temp_t2->is_intptr_tis_long(); | |||
596 | Node* address; | |||
597 | Node* offset; | |||
598 | if( t2->is_con() ) { | |||
599 | // The Add of the flattened expression | |||
600 | address = addp->in(Address); | |||
601 | offset = phase->MakeConXlongcon(t2->get_con() + t12->get_con()); | |||
602 | } else { | |||
603 | // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) | |||
604 | address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); | |||
605 | offset = addp->in(Offset); | |||
606 | } | |||
607 | set_req_X(Address, address, phase); | |||
608 | set_req_X(Offset, offset, phase); | |||
609 | return this; | |||
610 | } | |||
611 | } | |||
612 | ||||
613 | // Raw pointers? | |||
614 | if( in(Base)->bottom_type() == Type::TOP ) { | |||
615 | // If this is a NULL+long form (from unsafe accesses), switch to a rawptr. | |||
616 | if (phase->type(in(Address)) == TypePtr::NULL_PTR) { | |||
617 | Node* offset = in(Offset); | |||
618 | return new CastX2PNode(offset); | |||
619 | } | |||
620 | } | |||
621 | ||||
622 | // If the right is an add of a constant, push the offset down. | |||
623 | // Convert: (ptr + (offset+con)) into (ptr+offset)+con. | |||
624 | // The idea is to merge array_base+scaled_index groups together, | |||
625 | // and only have different constant offsets from the same base. | |||
626 | const Node *add = in(Offset); | |||
627 | if( add->Opcode() == Op_AddXOp_AddL && add->in(1) != add ) { | |||
628 | const Type *t22 = phase->type( add->in(2) ); | |||
629 | if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? | |||
630 | set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); | |||
631 | set_req(Offset, add->in(2)); | |||
632 | PhaseIterGVN* igvn = phase->is_IterGVN(); | |||
633 | if (add->outcnt() == 0 && igvn) { | |||
634 | // add disconnected. | |||
635 | igvn->_worklist.push((Node*)add); | |||
636 | } | |||
637 | return this; // Made progress | |||
638 | } | |||
639 | } | |||
640 | ||||
641 | return NULL__null; // No progress | |||
642 | } | |||
643 | ||||
644 | //------------------------------bottom_type------------------------------------ | |||
645 | // Bottom-type is the pointer-type with unknown offset. | |||
646 | const Type *AddPNode::bottom_type() const { | |||
647 | if (in(Address) == NULL__null) return TypePtr::BOTTOM; | |||
648 | const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); | |||
649 | if( !tp ) return Type::TOP; // TOP input means TOP output | |||
650 | assert( in(Offset)->Opcode() != Op_ConP, "" )do { if (!(in(Offset)->Opcode() != Op_ConP)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 650, "assert(" "in(Offset)->Opcode() != Op_ConP" ") failed" , ""); ::breakpoint(); } } while (0); | |||
651 | const Type *t = in(Offset)->bottom_type(); | |||
652 | if( t == Type::TOP ) | |||
653 | return tp->add_offset(Type::OffsetTop); | |||
654 | const TypeXTypeLong *tx = t->is_intptr_tis_long(); | |||
655 | intptr_t txoffset = Type::OffsetBot; | |||
656 | if (tx->is_con()) { // Left input is an add of a constant? | |||
657 | txoffset = tx->get_con(); | |||
658 | } | |||
659 | return tp->add_offset(txoffset); | |||
660 | } | |||
661 | ||||
662 | //------------------------------Value------------------------------------------ | |||
663 | const Type* AddPNode::Value(PhaseGVN* phase) const { | |||
664 | // Either input is TOP ==> the result is TOP | |||
665 | const Type *t1 = phase->type( in(Address) ); | |||
666 | const Type *t2 = phase->type( in(Offset) ); | |||
667 | if( t1 == Type::TOP ) return Type::TOP; | |||
668 | if( t2 == Type::TOP ) return Type::TOP; | |||
669 | ||||
670 | // Left input is a pointer | |||
671 | const TypePtr *p1 = t1->isa_ptr(); | |||
672 | // Right input is an int | |||
673 | const TypeXTypeLong *p2 = t2->is_intptr_tis_long(); | |||
674 | // Add 'em | |||
675 | intptr_t p2offset = Type::OffsetBot; | |||
676 | if (p2->is_con()) { // Left input is an add of a constant? | |||
677 | p2offset = p2->get_con(); | |||
678 | } | |||
679 | return p1->add_offset(p2offset); | |||
680 | } | |||
681 | ||||
682 | //------------------------Ideal_base_and_offset-------------------------------- | |||
683 | // Split an oop pointer into a base and offset. | |||
684 | // (The offset might be Type::OffsetBot in the case of an array.) | |||
685 | // Return the base, or NULL if failure. | |||
686 | Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase, | |||
687 | // second return value: | |||
688 | intptr_t& offset) { | |||
689 | if (ptr->is_AddP()) { | |||
690 | Node* base = ptr->in(AddPNode::Base); | |||
691 | Node* addr = ptr->in(AddPNode::Address); | |||
692 | Node* offs = ptr->in(AddPNode::Offset); | |||
693 | if (base == addr || base->is_top()) { | |||
694 | offset = phase->find_intptr_t_confind_long_con(offs, Type::OffsetBot); | |||
695 | if (offset != Type::OffsetBot) { | |||
696 | return addr; | |||
697 | } | |||
698 | } | |||
699 | } | |||
700 | offset = Type::OffsetBot; | |||
701 | return NULL__null; | |||
702 | } | |||
703 | ||||
704 | //------------------------------unpack_offsets---------------------------------- | |||
705 | // Collect the AddP offset values into the elements array, giving up | |||
706 | // if there are more than length. | |||
707 | int AddPNode::unpack_offsets(Node* elements[], int length) { | |||
708 | int count = 0; | |||
709 | Node* addr = this; | |||
710 | Node* base = addr->in(AddPNode::Base); | |||
711 | while (addr->is_AddP()) { | |||
712 | if (addr->in(AddPNode::Base) != base) { | |||
713 | // give up | |||
714 | return -1; | |||
715 | } | |||
716 | elements[count++] = addr->in(AddPNode::Offset); | |||
717 | if (count == length) { | |||
718 | // give up | |||
719 | return -1; | |||
720 | } | |||
721 | addr = addr->in(AddPNode::Address); | |||
722 | } | |||
723 | if (addr != base) { | |||
724 | return -1; | |||
725 | } | |||
726 | return count; | |||
727 | } | |||
728 | ||||
729 | //------------------------------match_edge------------------------------------- | |||
730 | // Do we Match on this edge index or not? Do not match base pointer edge | |||
731 | uint AddPNode::match_edge(uint idx) const { | |||
732 | return idx > Base; | |||
733 | } | |||
734 | ||||
735 | //============================================================================= | |||
736 | //------------------------------Identity--------------------------------------- | |||
737 | Node* OrINode::Identity(PhaseGVN* phase) { | |||
738 | // x | x => x | |||
739 | if (in(1) == in(2)) { | |||
740 | return in(1); | |||
741 | } | |||
742 | ||||
743 | return AddNode::Identity(phase); | |||
744 | } | |||
745 | ||||
746 | // Find shift value for Integer or Long OR. | |||
747 | Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) { | |||
748 | // val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift | |||
749 | const TypeInt* lshift_t = phase->type(lshift)->isa_int(); | |||
750 | const TypeInt* rshift_t = phase->type(rshift)->isa_int(); | |||
751 | if (lshift_t != NULL__null && lshift_t->is_con() && | |||
752 | rshift_t != NULL__null && rshift_t->is_con() && | |||
753 | ((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) { | |||
754 | return phase->intcon(lshift_t->get_con() & mask); | |||
755 | } | |||
756 | // val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift | |||
757 | if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){ | |||
758 | const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int(); | |||
759 | if (shift_t != NULL__null && shift_t->is_con() && | |||
760 | (shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) { | |||
761 | return lshift; | |||
762 | } | |||
763 | } | |||
764 | return NULL__null; | |||
765 | } | |||
766 | ||||
767 | Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
768 | int lopcode = in(1)->Opcode(); | |||
769 | int ropcode = in(2)->Opcode(); | |||
770 | if (Matcher::match_rule_supported(Op_RotateLeft) && | |||
771 | lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) { | |||
772 | Node* lshift = in(1)->in(2); | |||
773 | Node* rshift = in(2)->in(2); | |||
774 | Node* shift = rotate_shift(phase, lshift, rshift, 0x1F); | |||
775 | if (shift != NULL__null) { | |||
776 | return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT); | |||
777 | } | |||
778 | return NULL__null; | |||
779 | } | |||
780 | if (Matcher::match_rule_supported(Op_RotateRight) && | |||
781 | lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) { | |||
782 | Node* rshift = in(1)->in(2); | |||
783 | Node* lshift = in(2)->in(2); | |||
784 | Node* shift = rotate_shift(phase, rshift, lshift, 0x1F); | |||
785 | if (shift != NULL__null) { | |||
786 | return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT); | |||
787 | } | |||
788 | } | |||
789 | return NULL__null; | |||
790 | } | |||
791 | ||||
792 | //------------------------------add_ring--------------------------------------- | |||
793 | // Supplied function returns the sum of the inputs IN THE CURRENT RING. For | |||
794 | // the logical operations the ring's ADD is really a logical OR function. | |||
795 | // This also type-checks the inputs for sanity. Guaranteed never to | |||
796 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. | |||
797 | const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { | |||
798 | const TypeInt *r0 = t0->is_int(); // Handy access | |||
799 | const TypeInt *r1 = t1->is_int(); | |||
800 | ||||
801 | // If both args are bool, can figure out better types | |||
802 | if ( r0 == TypeInt::BOOL ) { | |||
803 | if ( r1 == TypeInt::ONE) { | |||
804 | return TypeInt::ONE; | |||
805 | } else if ( r1 == TypeInt::BOOL ) { | |||
806 | return TypeInt::BOOL; | |||
807 | } | |||
808 | } else if ( r0 == TypeInt::ONE ) { | |||
809 | if ( r1 == TypeInt::BOOL ) { | |||
810 | return TypeInt::ONE; | |||
811 | } | |||
812 | } | |||
813 | ||||
814 | // If either input is not a constant, just return all integers. | |||
815 | if( !r0->is_con() || !r1->is_con() ) | |||
816 | return TypeInt::INT; // Any integer, but still no symbols. | |||
817 | ||||
818 | // Otherwise just OR them bits. | |||
819 | return TypeInt::make( r0->get_con() | r1->get_con() ); | |||
820 | } | |||
821 | ||||
822 | //============================================================================= | |||
823 | //------------------------------Identity--------------------------------------- | |||
824 | Node* OrLNode::Identity(PhaseGVN* phase) { | |||
825 | // x | x => x | |||
826 | if (in(1) == in(2)) { | |||
827 | return in(1); | |||
828 | } | |||
829 | ||||
830 | return AddNode::Identity(phase); | |||
831 | } | |||
832 | ||||
833 | Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
834 | int lopcode = in(1)->Opcode(); | |||
835 | int ropcode = in(2)->Opcode(); | |||
836 | if (Matcher::match_rule_supported(Op_RotateLeft) && | |||
837 | lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) { | |||
838 | Node* lshift = in(1)->in(2); | |||
839 | Node* rshift = in(2)->in(2); | |||
840 | Node* shift = rotate_shift(phase, lshift, rshift, 0x3F); | |||
841 | if (shift != NULL__null) { | |||
842 | return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG); | |||
843 | } | |||
844 | return NULL__null; | |||
845 | } | |||
846 | if (Matcher::match_rule_supported(Op_RotateRight) && | |||
847 | lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) { | |||
848 | Node* rshift = in(1)->in(2); | |||
849 | Node* lshift = in(2)->in(2); | |||
850 | Node* shift = rotate_shift(phase, rshift, lshift, 0x3F); | |||
851 | if (shift != NULL__null) { | |||
852 | return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG); | |||
853 | } | |||
854 | } | |||
855 | return NULL__null; | |||
856 | } | |||
857 | ||||
858 | //------------------------------add_ring--------------------------------------- | |||
859 | const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
860 | const TypeLong *r0 = t0->is_long(); // Handy access | |||
861 | const TypeLong *r1 = t1->is_long(); | |||
862 | ||||
863 | // If either input is not a constant, just return all integers. | |||
864 | if( !r0->is_con() || !r1->is_con() ) | |||
865 | return TypeLong::LONG; // Any integer, but still no symbols. | |||
866 | ||||
867 | // Otherwise just OR them bits. | |||
868 | return TypeLong::make( r0->get_con() | r1->get_con() ); | |||
869 | } | |||
870 | ||||
871 | //============================================================================= | |||
872 | //------------------------------Idealize--------------------------------------- | |||
873 | Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
874 | Node* in1 = in(1); | |||
875 | Node* in2 = in(2); | |||
876 | int op1 = in1->Opcode(); | |||
877 | // Convert ~(x-1) into -x. Note there isn't a bitwise not bytecode, | |||
878 | // "~x" would typically represented as "x^(-1)", and "x-c0" would | |||
879 | // convert into "x+ -c0" in SubXNode::Ideal. So ~(x-1) will eventually | |||
880 | // be (x+(-1))^-1. | |||
881 | if (op1 == Op_AddI && phase->type(in2) == TypeInt::MINUS_1 && | |||
882 | phase->type(in1->in(2)) == TypeInt::MINUS_1) { | |||
883 | return new SubINode(phase->makecon(TypeInt::ZERO), in1->in(1)); | |||
884 | } | |||
885 | return AddNode::Ideal(phase, can_reshape); | |||
886 | } | |||
887 | ||||
888 | const Type* XorINode::Value(PhaseGVN* phase) const { | |||
889 | Node* in1 = in(1); | |||
890 | Node* in2 = in(2); | |||
891 | const Type* t1 = phase->type(in1); | |||
892 | const Type* t2 = phase->type(in2); | |||
893 | if (t1 == Type::TOP || t2 == Type::TOP) { | |||
| ||||
894 | return Type::TOP; | |||
895 | } | |||
896 | // x ^ x ==> 0 | |||
897 | if (in1->eqv_uncast(in2)) { | |||
898 | return add_id(); | |||
899 | } | |||
900 | // result of xor can only have bits sets where any of the | |||
901 | // inputs have bits set. lo can always become 0. | |||
902 | const TypeInt* t1i = t1->is_int(); | |||
903 | const TypeInt* t2i = t2->is_int(); | |||
904 | if ((t1i->_lo >= 0) && | |||
905 | (t1i->_hi > 0) && | |||
906 | (t2i->_lo >= 0) && | |||
907 | (t2i->_hi > 0)) { | |||
908 | // hi - set all bits below the highest bit. Using round_down to avoid overflow. | |||
909 | const TypeInt* t1x = TypeInt::make(0, round_down_power_of_2(t1i->_hi) + (round_down_power_of_2(t1i->_hi) - 1), t1i->_widen); | |||
910 | const TypeInt* t2x = TypeInt::make(0, round_down_power_of_2(t2i->_hi) + (round_down_power_of_2(t2i->_hi) - 1), t2i->_widen); | |||
911 | return t1x->meet(t2x); | |||
912 | } | |||
913 | return AddNode::Value(phase); | |||
914 | } | |||
915 | ||||
916 | ||||
917 | //------------------------------add_ring--------------------------------------- | |||
918 | // Supplied function returns the sum of the inputs IN THE CURRENT RING. For | |||
919 | // the logical operations the ring's ADD is really a logical OR function. | |||
920 | // This also type-checks the inputs for sanity. Guaranteed never to | |||
921 | // be passed a TOP or BOTTOM type, these are filtered out by pre-check. | |||
922 | const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { | |||
923 | const TypeInt *r0 = t0->is_int(); // Handy access | |||
924 | const TypeInt *r1 = t1->is_int(); | |||
| ||||
925 | ||||
926 | // Complementing a boolean? | |||
927 | if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE | |||
928 | || r1 == TypeInt::BOOL)) | |||
929 | return TypeInt::BOOL; | |||
930 | ||||
931 | if( !r0->is_con() || !r1->is_con() ) // Not constants | |||
932 | return TypeInt::INT; // Any integer, but still no symbols. | |||
933 | ||||
934 | // Otherwise just XOR them bits. | |||
935 | return TypeInt::make( r0->get_con() ^ r1->get_con() ); | |||
936 | } | |||
937 | ||||
938 | //============================================================================= | |||
939 | //------------------------------add_ring--------------------------------------- | |||
940 | const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
941 | const TypeLong *r0 = t0->is_long(); // Handy access | |||
942 | const TypeLong *r1 = t1->is_long(); | |||
943 | ||||
944 | // If either input is not a constant, just return all integers. | |||
945 | if( !r0->is_con() || !r1->is_con() ) | |||
946 | return TypeLong::LONG; // Any integer, but still no symbols. | |||
947 | ||||
948 | // Otherwise just OR them bits. | |||
949 | return TypeLong::make( r0->get_con() ^ r1->get_con() ); | |||
950 | } | |||
951 | ||||
952 | Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) { | |||
953 | Node* in1 = in(1); | |||
954 | Node* in2 = in(2); | |||
955 | int op1 = in1->Opcode(); | |||
956 | // Convert ~(x-1) into -x. Note there isn't a bitwise not bytecode, | |||
957 | // "~x" would typically represented as "x^(-1)", and "x-c0" would | |||
958 | // convert into "x+ -c0" in SubXNode::Ideal. So ~(x-1) will eventually | |||
959 | // be (x+(-1))^-1. | |||
960 | if (op1 == Op_AddL && phase->type(in2) == TypeLong::MINUS_1 && | |||
961 | phase->type(in1->in(2)) == TypeLong::MINUS_1) { | |||
962 | return new SubLNode(phase->makecon(TypeLong::ZERO), in1->in(1)); | |||
963 | } | |||
964 | return AddNode::Ideal(phase, can_reshape); | |||
965 | } | |||
966 | ||||
967 | const Type* XorLNode::Value(PhaseGVN* phase) const { | |||
968 | Node* in1 = in(1); | |||
969 | Node* in2 = in(2); | |||
970 | const Type* t1 = phase->type(in1); | |||
971 | const Type* t2 = phase->type(in2); | |||
972 | if (t1 == Type::TOP || t2 == Type::TOP) { | |||
973 | return Type::TOP; | |||
974 | } | |||
975 | // x ^ x ==> 0 | |||
976 | if (in1->eqv_uncast(in2)) { | |||
977 | return add_id(); | |||
978 | } | |||
979 | // result of xor can only have bits sets where any of the | |||
980 | // inputs have bits set. lo can always become 0. | |||
981 | const TypeLong* t1l = t1->is_long(); | |||
982 | const TypeLong* t2l = t2->is_long(); | |||
983 | if ((t1l->_lo >= 0) && | |||
984 | (t1l->_hi > 0) && | |||
985 | (t2l->_lo >= 0) && | |||
986 | (t2l->_hi > 0)) { | |||
987 | // hi - set all bits below the highest bit. Using round_down to avoid overflow. | |||
988 | const TypeLong* t1x = TypeLong::make(0, round_down_power_of_2(t1l->_hi) + (round_down_power_of_2(t1l->_hi) - 1), t1l->_widen); | |||
989 | const TypeLong* t2x = TypeLong::make(0, round_down_power_of_2(t2l->_hi) + (round_down_power_of_2(t2l->_hi) - 1), t2l->_widen); | |||
990 | return t1x->meet(t2x); | |||
991 | } | |||
992 | return AddNode::Value(phase); | |||
993 | } | |||
994 | ||||
995 | Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) { | |||
996 | bool is_int = gvn.type(a)->isa_int(); | |||
997 | assert(is_int || gvn.type(a)->isa_long(), "int or long inputs")do { if (!(is_int || gvn.type(a)->isa_long())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 997, "assert(" "is_int || gvn.type(a)->isa_long()" ") failed" , "int or long inputs"); ::breakpoint(); } } while (0); | |||
998 | assert(is_int == (gvn.type(b)->isa_int() != NULL), "inconsistent inputs")do { if (!(is_int == (gvn.type(b)->isa_int() != __null))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 998, "assert(" "is_int == (gvn.type(b)->isa_int() != __null)" ") failed", "inconsistent inputs"); ::breakpoint(); } } while (0); | |||
999 | BasicType bt = is_int ? T_INT: T_LONG; | |||
1000 | Node* hook = NULL__null; | |||
1001 | if (gvn.is_IterGVN()) { | |||
1002 | // Make sure a and b are not destroyed | |||
1003 | hook = new Node(2); | |||
1004 | hook->init_req(0, a); | |||
1005 | hook->init_req(1, b); | |||
1006 | } | |||
1007 | Node* res = NULL__null; | |||
1008 | if (is_int && !is_unsigned) { | |||
1009 | if (is_max) { | |||
1010 | res = gvn.transform(new MaxINode(a, b)); | |||
1011 | assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match")do { if (!(gvn.type(res)->is_int()->_lo >= t->is_int ()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 1011, "assert(" "gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi" ") failed", "type doesn't match"); ::breakpoint(); } } while (0); | |||
1012 | } else { | |||
1013 | Node* res = gvn.transform(new MinINode(a, b)); | |||
1014 | assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match")do { if (!(gvn.type(res)->is_int()->_lo >= t->is_int ()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 1014, "assert(" "gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi" ") failed", "type doesn't match"); ::breakpoint(); } } while (0); | |||
1015 | } | |||
1016 | } else { | |||
1017 | Node* cmp = NULL__null; | |||
1018 | if (is_max) { | |||
1019 | cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned)); | |||
1020 | } else { | |||
1021 | cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned)); | |||
1022 | } | |||
1023 | Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); | |||
1024 | res = gvn.transform(CMoveNode::make(NULL__null, bol, a, b, t)); | |||
1025 | } | |||
1026 | if (hook != NULL__null) { | |||
1027 | hook->destruct(&gvn); | |||
1028 | } | |||
1029 | return res; | |||
1030 | } | |||
1031 | ||||
1032 | Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) { | |||
1033 | bool is_int = gvn.type(a)->isa_int(); | |||
1034 | assert(is_int || gvn.type(a)->isa_long(), "int or long inputs")do { if (!(is_int || gvn.type(a)->isa_long())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 1034, "assert(" "is_int || gvn.type(a)->isa_long()" ") failed" , "int or long inputs"); ::breakpoint(); } } while (0); | |||
1035 | assert(is_int == (gvn.type(b)->isa_int() != NULL), "inconsistent inputs")do { if (!(is_int == (gvn.type(b)->isa_int() != __null))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 1035, "assert(" "is_int == (gvn.type(b)->isa_int() != __null)" ") failed", "inconsistent inputs"); ::breakpoint(); } } while (0); | |||
1036 | BasicType bt = is_int ? T_INT: T_LONG; | |||
1037 | Node* zero = gvn.integercon(0, bt); | |||
1038 | Node* hook = NULL__null; | |||
1039 | if (gvn.is_IterGVN()) { | |||
1040 | // Make sure a and b are not destroyed | |||
1041 | hook = new Node(2); | |||
1042 | hook->init_req(0, a); | |||
1043 | hook->init_req(1, b); | |||
1044 | } | |||
1045 | Node* cmp = NULL__null; | |||
1046 | if (is_max) { | |||
1047 | cmp = gvn.transform(CmpNode::make(a, b, bt, false)); | |||
1048 | } else { | |||
1049 | cmp = gvn.transform(CmpNode::make(b, a, bt, false)); | |||
1050 | } | |||
1051 | Node* sub = gvn.transform(SubNode::make(a, b, bt)); | |||
1052 | Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); | |||
1053 | Node* res = gvn.transform(CMoveNode::make(NULL__null, bol, sub, zero, t)); | |||
1054 | if (hook != NULL__null) { | |||
1055 | hook->destruct(&gvn); | |||
1056 | } | |||
1057 | return res; | |||
1058 | } | |||
1059 | ||||
1060 | //============================================================================= | |||
1061 | //------------------------------add_ring--------------------------------------- | |||
1062 | // Supplied function returns the sum of the inputs. | |||
1063 | const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { | |||
1064 | const TypeInt *r0 = t0->is_int(); // Handy access | |||
1065 | const TypeInt *r1 = t1->is_int(); | |||
1066 | ||||
1067 | // Otherwise just MAX them bits. | |||
1068 | return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); | |||
1069 | } | |||
1070 | ||||
1071 | // Check if addition of an integer with type 't' and a constant 'c' can overflow | |||
1072 | static bool can_overflow(const TypeInt* t, jint c) { | |||
1073 | jint t_lo = t->_lo; | |||
1074 | jint t_hi = t->_hi; | |||
1075 | return ((c < 0 && (java_add(t_lo, c) > t_lo)) || | |||
1076 | (c > 0 && (java_add(t_hi, c) < t_hi))); | |||
1077 | } | |||
1078 | ||||
1079 | //============================================================================= | |||
1080 | //------------------------------Idealize--------------------------------------- | |||
1081 | // MINs show up in range-check loop limit calculations. Look for | |||
1082 | // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" | |||
1083 | Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) { | |||
1084 | Node *progress = NULL__null; | |||
1085 | // Force a right-spline graph | |||
1086 | Node *l = in(1); | |||
1087 | Node *r = in(2); | |||
1088 | // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) ) | |||
1089 | // to force a right-spline graph for the rest of MinINode::Ideal(). | |||
1090 | if( l->Opcode() == Op_MinI ) { | |||
1091 | assert( l != l->in(1), "dead loop in MinINode::Ideal" )do { if (!(l != l->in(1))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 1091, "assert(" "l != l->in(1)" ") failed", "dead loop in MinINode::Ideal" ); ::breakpoint(); } } while (0); | |||
1092 | r = phase->transform(new MinINode(l->in(2),r)); | |||
1093 | l = l->in(1); | |||
1094 | set_req_X(1, l, phase); | |||
1095 | set_req_X(2, r, phase); | |||
1096 | return this; | |||
1097 | } | |||
1098 | ||||
1099 | // Get left input & constant | |||
1100 | Node *x = l; | |||
1101 | jint x_off = 0; | |||
1102 | if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant | |||
1103 | x->in(2)->is_Con() ) { | |||
1104 | const Type *t = x->in(2)->bottom_type(); | |||
1105 | if( t == Type::TOP ) return NULL__null; // No progress | |||
1106 | x_off = t->is_int()->get_con(); | |||
1107 | x = x->in(1); | |||
1108 | } | |||
1109 | ||||
1110 | // Scan a right-spline-tree for MINs | |||
1111 | Node *y = r; | |||
1112 | jint y_off = 0; | |||
1113 | // Check final part of MIN tree | |||
1114 | if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant | |||
1115 | y->in(2)->is_Con() ) { | |||
1116 | const Type *t = y->in(2)->bottom_type(); | |||
1117 | if( t == Type::TOP ) return NULL__null; // No progress | |||
1118 | y_off = t->is_int()->get_con(); | |||
1119 | y = y->in(1); | |||
1120 | } | |||
1121 | if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) { | |||
1122 | swap_edges(1, 2); | |||
1123 | return this; | |||
1124 | } | |||
1125 | ||||
1126 | const TypeInt* tx = phase->type(x)->isa_int(); | |||
1127 | ||||
1128 | if( r->Opcode() == Op_MinI ) { | |||
1129 | assert( r != r->in(2), "dead loop in MinINode::Ideal" )do { if (!(r != r->in(2))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/addnode.cpp" , 1129, "assert(" "r != r->in(2)" ") failed", "dead loop in MinINode::Ideal" ); ::breakpoint(); } } while (0); | |||
1130 | y = r->in(1); | |||
1131 | // Check final part of MIN tree | |||
1132 | if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant | |||
1133 | y->in(2)->is_Con() ) { | |||
1134 | const Type *t = y->in(2)->bottom_type(); | |||
1135 | if( t == Type::TOP ) return NULL__null; // No progress | |||
1136 | y_off = t->is_int()->get_con(); | |||
1137 | y = y->in(1); | |||
1138 | } | |||
1139 | ||||
1140 | if( x->_idx > y->_idx ) | |||
1141 | return new MinINode(r->in(1),phase->transform(new MinINode(l,r->in(2)))); | |||
1142 | ||||
1143 | // Transform MIN2(x + c0, MIN2(x + c1, z)) into MIN2(x + MIN2(c0, c1), z) | |||
1144 | // if x == y and the additions can't overflow. | |||
1145 | if (x == y && tx != NULL__null && | |||
1146 | !can_overflow(tx, x_off) && | |||
1147 | !can_overflow(tx, y_off)) { | |||
1148 | return new MinINode(phase->transform(new AddINode(x, phase->intcon(MIN2(x_off, y_off)))), r->in(2)); | |||
1149 | } | |||
1150 | } else { | |||
1151 | // Transform MIN2(x + c0, y + c1) into x + MIN2(c0, c1) | |||
1152 | // if x == y and the additions can't overflow. | |||
1153 | if (x == y && tx != NULL__null && | |||
1154 | !can_overflow(tx, x_off) && | |||
1155 | !can_overflow(tx, y_off)) { | |||
1156 | return new AddINode(x,phase->intcon(MIN2(x_off,y_off))); | |||
1157 | } | |||
1158 | } | |||
1159 | return NULL__null; | |||
1160 | } | |||
1161 | ||||
1162 | //------------------------------add_ring--------------------------------------- | |||
1163 | // Supplied function returns the sum of the inputs. | |||
1164 | const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { | |||
1165 | const TypeInt *r0 = t0->is_int(); // Handy access | |||
1166 | const TypeInt *r1 = t1->is_int(); | |||
1167 | ||||
1168 | // Otherwise just MIN them bits. | |||
1169 | return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); | |||
1170 | } | |||
1171 | ||||
1172 | //------------------------------add_ring--------------------------------------- | |||
1173 | const Type *MinFNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
1174 | const TypeF *r0 = t0->is_float_constant(); | |||
1175 | const TypeF *r1 = t1->is_float_constant(); | |||
1176 | ||||
1177 | if (r0->is_nan()) { | |||
1178 | return r0; | |||
1179 | } | |||
1180 | if (r1->is_nan()) { | |||
1181 | return r1; | |||
1182 | } | |||
1183 | ||||
1184 | float f0 = r0->getf(); | |||
1185 | float f1 = r1->getf(); | |||
1186 | if (f0 != 0.0f || f1 != 0.0f) { | |||
1187 | return f0 < f1 ? r0 : r1; | |||
1188 | } | |||
1189 | ||||
1190 | // handle min of 0.0, -0.0 case. | |||
1191 | return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; | |||
1192 | } | |||
1193 | ||||
1194 | //------------------------------add_ring--------------------------------------- | |||
1195 | const Type *MinDNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
1196 | const TypeD *r0 = t0->is_double_constant(); | |||
1197 | const TypeD *r1 = t1->is_double_constant(); | |||
1198 | ||||
1199 | if (r0->is_nan()) { | |||
1200 | return r0; | |||
1201 | } | |||
1202 | if (r1->is_nan()) { | |||
1203 | return r1; | |||
1204 | } | |||
1205 | ||||
1206 | double d0 = r0->getd(); | |||
1207 | double d1 = r1->getd(); | |||
1208 | if (d0 != 0.0 || d1 != 0.0) { | |||
1209 | return d0 < d1 ? r0 : r1; | |||
1210 | } | |||
1211 | ||||
1212 | // handle min of 0.0, -0.0 case. | |||
1213 | return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; | |||
1214 | } | |||
1215 | ||||
1216 | //------------------------------add_ring--------------------------------------- | |||
1217 | const Type *MaxFNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
1218 | const TypeF *r0 = t0->is_float_constant(); | |||
1219 | const TypeF *r1 = t1->is_float_constant(); | |||
1220 | ||||
1221 | if (r0->is_nan()) { | |||
1222 | return r0; | |||
1223 | } | |||
1224 | if (r1->is_nan()) { | |||
1225 | return r1; | |||
1226 | } | |||
1227 | ||||
1228 | float f0 = r0->getf(); | |||
1229 | float f1 = r1->getf(); | |||
1230 | if (f0 != 0.0f || f1 != 0.0f) { | |||
1231 | return f0 > f1 ? r0 : r1; | |||
1232 | } | |||
1233 | ||||
1234 | // handle max of 0.0,-0.0 case. | |||
1235 | return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; | |||
1236 | } | |||
1237 | ||||
1238 | //------------------------------add_ring--------------------------------------- | |||
1239 | const Type *MaxDNode::add_ring( const Type *t0, const Type *t1 ) const { | |||
1240 | const TypeD *r0 = t0->is_double_constant(); | |||
1241 | const TypeD *r1 = t1->is_double_constant(); | |||
1242 | ||||
1243 | if (r0->is_nan()) { | |||
1244 | return r0; | |||
1245 | } | |||
1246 | if (r1->is_nan()) { | |||
1247 | return r1; | |||
1248 | } | |||
1249 | ||||
1250 | double d0 = r0->getd(); | |||
1251 | double d1 = r1->getd(); | |||
1252 | if (d0 != 0.0 || d1 != 0.0) { | |||
1253 | return d0 > d1 ? r0 : r1; | |||
1254 | } | |||
1255 | ||||
1256 | // handle max of 0.0, -0.0 case. | |||
1257 | return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; | |||
1258 | } |
1 | /* |
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_OPTO_TYPE_HPP |
26 | #define SHARE_OPTO_TYPE_HPP |
27 | |
28 | #include "opto/adlcVMDeps.hpp" |
29 | #include "runtime/handles.hpp" |
30 | |
31 | // Portions of code courtesy of Clifford Click |
32 | |
33 | // Optimization - Graph Style |
34 | |
35 | |
36 | // This class defines a Type lattice. The lattice is used in the constant |
37 | // propagation algorithms, and for some type-checking of the iloc code. |
38 | // Basic types include RSD's (lower bound, upper bound, stride for integers), |
39 | // float & double precision constants, sets of data-labels and code-labels. |
40 | // The complete lattice is described below. Subtypes have no relationship to |
41 | // up or down in the lattice; that is entirely determined by the behavior of |
42 | // the MEET/JOIN functions. |
43 | |
44 | class Dict; |
45 | class Type; |
46 | class TypeD; |
47 | class TypeF; |
48 | class TypeInteger; |
49 | class TypeInt; |
50 | class TypeLong; |
51 | class TypeNarrowPtr; |
52 | class TypeNarrowOop; |
53 | class TypeNarrowKlass; |
54 | class TypeAry; |
55 | class TypeTuple; |
56 | class TypeVect; |
57 | class TypeVectA; |
58 | class TypeVectS; |
59 | class TypeVectD; |
60 | class TypeVectX; |
61 | class TypeVectY; |
62 | class TypeVectZ; |
63 | class TypeVectMask; |
64 | class TypePtr; |
65 | class TypeRawPtr; |
66 | class TypeOopPtr; |
67 | class TypeInstPtr; |
68 | class TypeAryPtr; |
69 | class TypeKlassPtr; |
70 | class TypeInstKlassPtr; |
71 | class TypeAryKlassPtr; |
72 | class TypeMetadataPtr; |
73 | |
74 | //------------------------------Type------------------------------------------- |
75 | // Basic Type object, represents a set of primitive Values. |
76 | // Types are hash-cons'd into a private class dictionary, so only one of each |
77 | // different kind of Type exists. Types are never modified after creation, so |
78 | // all their interesting fields are constant. |
79 | class Type { |
80 | friend class VMStructs; |
81 | |
82 | public: |
83 | enum TYPES { |
84 | Bad=0, // Type check |
85 | Control, // Control of code (not in lattice) |
86 | Top, // Top of the lattice |
87 | Int, // Integer range (lo-hi) |
88 | Long, // Long integer range (lo-hi) |
89 | Half, // Placeholder half of doubleword |
90 | NarrowOop, // Compressed oop pointer |
91 | NarrowKlass, // Compressed klass pointer |
92 | |
93 | Tuple, // Method signature or object layout |
94 | Array, // Array types |
95 | |
96 | VectorMask, // Vector predicate/mask type |
97 | VectorA, // (Scalable) Vector types for vector length agnostic |
98 | VectorS, // 32bit Vector types |
99 | VectorD, // 64bit Vector types |
100 | VectorX, // 128bit Vector types |
101 | VectorY, // 256bit Vector types |
102 | VectorZ, // 512bit Vector types |
103 | |
104 | AnyPtr, // Any old raw, klass, inst, or array pointer |
105 | RawPtr, // Raw (non-oop) pointers |
106 | OopPtr, // Any and all Java heap entities |
107 | InstPtr, // Instance pointers (non-array objects) |
108 | AryPtr, // Array pointers |
109 | // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.) |
110 | |
111 | MetadataPtr, // Generic metadata |
112 | KlassPtr, // Klass pointers |
113 | InstKlassPtr, |
114 | AryKlassPtr, |
115 | |
116 | Function, // Function signature |
117 | Abio, // Abstract I/O |
118 | Return_Address, // Subroutine return address |
119 | Memory, // Abstract store |
120 | FloatTop, // No float value |
121 | FloatCon, // Floating point constant |
122 | FloatBot, // Any float value |
123 | DoubleTop, // No double value |
124 | DoubleCon, // Double precision constant |
125 | DoubleBot, // Any double value |
126 | Bottom, // Bottom of lattice |
127 | lastype // Bogus ending type (not in lattice) |
128 | }; |
129 | |
130 | // Signal values for offsets from a base pointer |
131 | enum OFFSET_SIGNALS { |
132 | OffsetTop = -2000000000, // undefined offset |
133 | OffsetBot = -2000000001 // any possible offset |
134 | }; |
135 | |
136 | // Min and max WIDEN values. |
137 | enum WIDEN { |
138 | WidenMin = 0, |
139 | WidenMax = 3 |
140 | }; |
141 | |
142 | private: |
143 | typedef struct { |
144 | TYPES dual_type; |
145 | BasicType basic_type; |
146 | const char* msg; |
147 | bool isa_oop; |
148 | uint ideal_reg; |
149 | relocInfo::relocType reloc; |
150 | } TypeInfo; |
151 | |
152 | // Dictionary of types shared among compilations. |
153 | static Dict* _shared_type_dict; |
154 | static const TypeInfo _type_info[]; |
155 | |
156 | static int uhash( const Type *const t ); |
157 | // Structural equality check. Assumes that cmp() has already compared |
158 | // the _base types and thus knows it can cast 't' appropriately. |
159 | virtual bool eq( const Type *t ) const; |
160 | |
161 | // Top-level hash-table of types |
162 | static Dict *type_dict() { |
163 | return Compile::current()->type_dict(); |
164 | } |
165 | |
166 | // DUAL operation: reflect around lattice centerline. Used instead of |
167 | // join to ensure my lattice is symmetric up and down. Dual is computed |
168 | // lazily, on demand, and cached in _dual. |
169 | const Type *_dual; // Cached dual value |
170 | |
171 | #ifdef ASSERT1 |
172 | // One type is interface, the other is oop |
173 | virtual bool interface_vs_oop_helper(const Type *t) const; |
174 | #endif |
175 | |
176 | const Type *meet_helper(const Type *t, bool include_speculative) const; |
177 | void check_symmetrical(const Type *t, const Type *mt) const; |
178 | |
179 | protected: |
180 | // Each class of type is also identified by its base. |
181 | const TYPES _base; // Enum of Types type |
182 | |
183 | Type( TYPES t ) : _dual(NULL__null), _base(t) {} // Simple types |
184 | // ~Type(); // Use fast deallocation |
185 | const Type *hashcons(); // Hash-cons the type |
186 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
187 | const Type *join_helper(const Type *t, bool include_speculative) const { |
188 | return dual()->meet_helper(t->dual(), include_speculative)->dual(); |
189 | } |
190 | |
191 | public: |
192 | |
193 | inline void* operator new( size_t x ) throw() { |
194 | Compile* compile = Compile::current(); |
195 | compile->set_type_last_size(x); |
196 | return compile->type_arena()->AmallocWords(x); |
197 | } |
198 | inline void operator delete( void* ptr ) { |
199 | Compile* compile = Compile::current(); |
200 | compile->type_arena()->Afree(ptr,compile->type_last_size()); |
201 | } |
202 | |
203 | // Initialize the type system for a particular compilation. |
204 | static void Initialize(Compile* compile); |
205 | |
206 | // Initialize the types shared by all compilations. |
207 | static void Initialize_shared(Compile* compile); |
208 | |
209 | TYPES base() const { |
210 | assert(_base > Bad && _base < lastype, "sanity")do { if (!(_base > Bad && _base < lastype)) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 210, "assert(" "_base > Bad && _base < lastype" ") failed", "sanity"); ::breakpoint(); } } while (0); |
211 | return _base; |
212 | } |
213 | |
214 | // Create a new hash-consd type |
215 | static const Type *make(enum TYPES); |
216 | // Test for equivalence of types |
217 | static int cmp( const Type *const t1, const Type *const t2 ); |
218 | // Test for higher or equal in lattice |
219 | // Variant that drops the speculative part of the types |
220 | bool higher_equal(const Type *t) const { |
221 | return !cmp(meet(t),t->remove_speculative()); |
222 | } |
223 | // Variant that keeps the speculative part of the types |
224 | bool higher_equal_speculative(const Type *t) const { |
225 | return !cmp(meet_speculative(t),t); |
226 | } |
227 | |
228 | // MEET operation; lower in lattice. |
229 | // Variant that drops the speculative part of the types |
230 | const Type *meet(const Type *t) const { |
231 | return meet_helper(t, false); |
232 | } |
233 | // Variant that keeps the speculative part of the types |
234 | const Type *meet_speculative(const Type *t) const { |
235 | return meet_helper(t, true)->cleanup_speculative(); |
236 | } |
237 | // WIDEN: 'widens' for Ints and other range types |
238 | virtual const Type *widen( const Type *old, const Type* limit ) const { return this; } |
239 | // NARROW: complement for widen, used by pessimistic phases |
240 | virtual const Type *narrow( const Type *old ) const { return this; } |
241 | |
242 | // DUAL operation: reflect around lattice centerline. Used instead of |
243 | // join to ensure my lattice is symmetric up and down. |
244 | const Type *dual() const { return _dual; } |
245 | |
246 | // Compute meet dependent on base type |
247 | virtual const Type *xmeet( const Type *t ) const; |
248 | virtual const Type *xdual() const; // Compute dual right now. |
249 | |
250 | // JOIN operation; higher in lattice. Done by finding the dual of the |
251 | // meet of the dual of the 2 inputs. |
252 | // Variant that drops the speculative part of the types |
253 | const Type *join(const Type *t) const { |
254 | return join_helper(t, false); |
255 | } |
256 | // Variant that keeps the speculative part of the types |
257 | const Type *join_speculative(const Type *t) const { |
258 | return join_helper(t, true)->cleanup_speculative(); |
259 | } |
260 | |
261 | // Modified version of JOIN adapted to the needs Node::Value. |
262 | // Normalizes all empty values to TOP. Does not kill _widen bits. |
263 | // Currently, it also works around limitations involving interface types. |
264 | // Variant that drops the speculative part of the types |
265 | const Type *filter(const Type *kills) const { |
266 | return filter_helper(kills, false); |
267 | } |
268 | // Variant that keeps the speculative part of the types |
269 | const Type *filter_speculative(const Type *kills) const { |
270 | return filter_helper(kills, true)->cleanup_speculative(); |
271 | } |
272 | |
273 | #ifdef ASSERT1 |
274 | // One type is interface, the other is oop |
275 | virtual bool interface_vs_oop(const Type *t) const; |
276 | #endif |
277 | |
278 | // Returns true if this pointer points at memory which contains a |
279 | // compressed oop references. |
280 | bool is_ptr_to_narrowoop() const; |
281 | bool is_ptr_to_narrowklass() const; |
282 | |
283 | bool is_ptr_to_boxing_obj() const; |
284 | |
285 | |
286 | // Convenience access |
287 | float getf() const; |
288 | double getd() const; |
289 | |
290 | const TypeInt *is_int() const; |
291 | const TypeInt *isa_int() const; // Returns NULL if not an Int |
292 | const TypeInteger* is_integer(BasicType bt) const; |
293 | const TypeInteger* isa_integer(BasicType bt) const; |
294 | const TypeLong *is_long() const; |
295 | const TypeLong *isa_long() const; // Returns NULL if not a Long |
296 | const TypeD *isa_double() const; // Returns NULL if not a Double{Top,Con,Bot} |
297 | const TypeD *is_double_constant() const; // Asserts it is a DoubleCon |
298 | const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon |
299 | const TypeF *isa_float() const; // Returns NULL if not a Float{Top,Con,Bot} |
300 | const TypeF *is_float_constant() const; // Asserts it is a FloatCon |
301 | const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon |
302 | const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer |
303 | const TypeAry *is_ary() const; // Array, NOT array pointer |
304 | const TypeAry *isa_ary() const; // Returns NULL of not ary |
305 | const TypeVect *is_vect() const; // Vector |
306 | const TypeVect *isa_vect() const; // Returns NULL if not a Vector |
307 | const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector |
308 | const TypeVectMask *isa_vectmask() const; // Returns NULL if not a Vector Predicate/Mask |
309 | const TypePtr *is_ptr() const; // Asserts it is a ptr type |
310 | const TypePtr *isa_ptr() const; // Returns NULL if not ptr type |
311 | const TypeRawPtr *isa_rawptr() const; // NOT Java oop |
312 | const TypeRawPtr *is_rawptr() const; // Asserts is rawptr |
313 | const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer |
314 | const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type |
315 | const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer |
316 | const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type |
317 | const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type |
318 | const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer |
319 | const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr |
320 | const TypeInstPtr *is_instptr() const; // Instance |
321 | const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr |
322 | const TypeAryPtr *is_aryptr() const; // Array oop |
323 | |
324 | const TypeMetadataPtr *isa_metadataptr() const; // Returns NULL if not oop ptr type |
325 | const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer |
326 | const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr |
327 | const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr |
328 | const TypeInstKlassPtr *isa_instklassptr() const; // Returns NULL if not IntKlassPtr |
329 | const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr |
330 | const TypeAryKlassPtr *isa_aryklassptr() const; // Returns NULL if not AryKlassPtr |
331 | const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr |
332 | |
333 | virtual bool is_finite() const; // Has a finite value |
334 | virtual bool is_nan() const; // Is not a number (NaN) |
335 | |
336 | // Returns this ptr type or the equivalent ptr type for this compressed pointer. |
337 | const TypePtr* make_ptr() const; |
338 | |
339 | // Returns this oopptr type or the equivalent oopptr type for this compressed pointer. |
340 | // Asserts if the underlying type is not an oopptr or narrowoop. |
341 | const TypeOopPtr* make_oopptr() const; |
342 | |
343 | // Returns this compressed pointer or the equivalent compressed version |
344 | // of this pointer type. |
345 | const TypeNarrowOop* make_narrowoop() const; |
346 | |
347 | // Returns this compressed klass pointer or the equivalent |
348 | // compressed version of this pointer type. |
349 | const TypeNarrowKlass* make_narrowklass() const; |
350 | |
351 | // Special test for register pressure heuristic |
352 | bool is_floatingpoint() const; // True if Float or Double base type |
353 | |
354 | // Do you have memory, directly or through a tuple? |
355 | bool has_memory( ) const; |
356 | |
357 | // TRUE if type is a singleton |
358 | virtual bool singleton(void) const; |
359 | |
360 | // TRUE if type is above the lattice centerline, and is therefore vacuous |
361 | virtual bool empty(void) const; |
362 | |
363 | // Return a hash for this type. The hash function is public so ConNode |
364 | // (constants) can hash on their constant, which is represented by a Type. |
365 | virtual int hash() const; |
366 | |
367 | // Map ideal registers (machine types) to ideal types |
368 | static const Type *mreg2type[]; |
369 | |
370 | // Printing, statistics |
371 | #ifndef PRODUCT |
372 | void dump_on(outputStream *st) const; |
373 | void dump() const { |
374 | dump_on(tty); |
375 | } |
376 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
377 | static void dump_stats(); |
378 | // Groups of types, for debugging and visualization only. |
379 | enum class Category { |
380 | Data, |
381 | Memory, |
382 | Mixed, // Tuples with types of different categories. |
383 | Control, |
384 | Other, // {Type::Top, Type::Abio, Type::Bottom}. |
385 | Undef // {Type::Bad, Type::lastype}, for completeness. |
386 | }; |
387 | // Return the category of this type. |
388 | Category category() const; |
389 | |
390 | static const char* str(const Type* t); |
391 | #endif // !PRODUCT |
392 | void typerr(const Type *t) const; // Mixing types error |
393 | |
394 | // Create basic type |
395 | static const Type* get_const_basic_type(BasicType type) { |
396 | assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type")do { if (!((uint)type <= T_CONFLICT && _const_basic_type [type] != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 396, "assert(" "(uint)type <= T_CONFLICT && _const_basic_type[type] != __null" ") failed", "bad type"); ::breakpoint(); } } while (0); |
397 | return _const_basic_type[type]; |
398 | } |
399 | |
400 | // For two instance arrays of same dimension, return the base element types. |
401 | // Otherwise or if the arrays have different dimensions, return NULL. |
402 | static void get_arrays_base_elements(const Type *a1, const Type *a2, |
403 | const TypeInstPtr **e1, const TypeInstPtr **e2); |
404 | |
405 | // Mapping to the array element's basic type. |
406 | BasicType array_element_basic_type() const; |
407 | |
408 | // Create standard type for a ciType: |
409 | static const Type* get_const_type(ciType* type); |
410 | |
411 | // Create standard zero value: |
412 | static const Type* get_zero_type(BasicType type) { |
413 | assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type")do { if (!((uint)type <= T_CONFLICT && _zero_type[ type] != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 413, "assert(" "(uint)type <= T_CONFLICT && _zero_type[type] != __null" ") failed", "bad type"); ::breakpoint(); } } while (0); |
414 | return _zero_type[type]; |
415 | } |
416 | |
417 | // Report if this is a zero value (not top). |
418 | bool is_zero_type() const { |
419 | BasicType type = basic_type(); |
420 | if (type == T_VOID || type >= T_CONFLICT) |
421 | return false; |
422 | else |
423 | return (this == _zero_type[type]); |
424 | } |
425 | |
426 | // Convenience common pre-built types. |
427 | static const Type *ABIO; |
428 | static const Type *BOTTOM; |
429 | static const Type *CONTROL; |
430 | static const Type *DOUBLE; |
431 | static const Type *FLOAT; |
432 | static const Type *HALF; |
433 | static const Type *MEMORY; |
434 | static const Type *MULTI; |
435 | static const Type *RETURN_ADDRESS; |
436 | static const Type *TOP; |
437 | |
438 | // Mapping from compiler type to VM BasicType |
439 | BasicType basic_type() const { return _type_info[_base].basic_type; } |
440 | uint ideal_reg() const { return _type_info[_base].ideal_reg; } |
441 | const char* msg() const { return _type_info[_base].msg; } |
442 | bool isa_oop_ptr() const { return _type_info[_base].isa_oop; } |
443 | relocInfo::relocType reloc() const { return _type_info[_base].reloc; } |
444 | |
445 | // Mapping from CI type system to compiler type: |
446 | static const Type* get_typeflow_type(ciType* type); |
447 | |
448 | static const Type* make_from_constant(ciConstant constant, |
449 | bool require_constant = false, |
450 | int stable_dimension = 0, |
451 | bool is_narrow = false, |
452 | bool is_autobox_cache = false); |
453 | |
454 | static const Type* make_constant_from_field(ciInstance* holder, |
455 | int off, |
456 | bool is_unsigned_load, |
457 | BasicType loadbt); |
458 | |
459 | static const Type* make_constant_from_field(ciField* field, |
460 | ciInstance* holder, |
461 | BasicType loadbt, |
462 | bool is_unsigned_load); |
463 | |
464 | static const Type* make_constant_from_array_element(ciArray* array, |
465 | int off, |
466 | int stable_dimension, |
467 | BasicType loadbt, |
468 | bool is_unsigned_load); |
469 | |
470 | // Speculative type helper methods. See TypePtr. |
471 | virtual const TypePtr* speculative() const { return NULL__null; } |
472 | virtual ciKlass* speculative_type() const { return NULL__null; } |
473 | virtual ciKlass* speculative_type_not_null() const { return NULL__null; } |
474 | virtual bool speculative_maybe_null() const { return true; } |
475 | virtual bool speculative_always_null() const { return true; } |
476 | virtual const Type* remove_speculative() const { return this; } |
477 | virtual const Type* cleanup_speculative() const { return this; } |
478 | virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL__null; } |
479 | virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; } |
480 | const Type* maybe_remove_speculative(bool include_speculative) const; |
481 | |
482 | virtual bool maybe_null() const { return true; } |
483 | virtual bool is_known_instance() const { return false; } |
484 | |
485 | private: |
486 | // support arrays |
487 | static const Type* _zero_type[T_CONFLICT+1]; |
488 | static const Type* _const_basic_type[T_CONFLICT+1]; |
489 | }; |
490 | |
491 | //------------------------------TypeF------------------------------------------ |
492 | // Class of Float-Constant Types. |
493 | class TypeF : public Type { |
494 | TypeF( float f ) : Type(FloatCon), _f(f) {}; |
495 | public: |
496 | virtual bool eq( const Type *t ) const; |
497 | virtual int hash() const; // Type specific hashing |
498 | virtual bool singleton(void) const; // TRUE if type is a singleton |
499 | virtual bool empty(void) const; // TRUE if type is vacuous |
500 | public: |
501 | const float _f; // Float constant |
502 | |
503 | static const TypeF *make(float f); |
504 | |
505 | virtual bool is_finite() const; // Has a finite value |
506 | virtual bool is_nan() const; // Is not a number (NaN) |
507 | |
508 | virtual const Type *xmeet( const Type *t ) const; |
509 | virtual const Type *xdual() const; // Compute dual right now. |
510 | // Convenience common pre-built types. |
511 | static const TypeF *MAX; |
512 | static const TypeF *MIN; |
513 | static const TypeF *ZERO; // positive zero only |
514 | static const TypeF *ONE; |
515 | static const TypeF *POS_INF; |
516 | static const TypeF *NEG_INF; |
517 | #ifndef PRODUCT |
518 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
519 | #endif |
520 | }; |
521 | |
522 | //------------------------------TypeD------------------------------------------ |
523 | // Class of Double-Constant Types. |
524 | class TypeD : public Type { |
525 | TypeD( double d ) : Type(DoubleCon), _d(d) {}; |
526 | public: |
527 | virtual bool eq( const Type *t ) const; |
528 | virtual int hash() const; // Type specific hashing |
529 | virtual bool singleton(void) const; // TRUE if type is a singleton |
530 | virtual bool empty(void) const; // TRUE if type is vacuous |
531 | public: |
532 | const double _d; // Double constant |
533 | |
534 | static const TypeD *make(double d); |
535 | |
536 | virtual bool is_finite() const; // Has a finite value |
537 | virtual bool is_nan() const; // Is not a number (NaN) |
538 | |
539 | virtual const Type *xmeet( const Type *t ) const; |
540 | virtual const Type *xdual() const; // Compute dual right now. |
541 | // Convenience common pre-built types. |
542 | static const TypeD *MAX; |
543 | static const TypeD *MIN; |
544 | static const TypeD *ZERO; // positive zero only |
545 | static const TypeD *ONE; |
546 | static const TypeD *POS_INF; |
547 | static const TypeD *NEG_INF; |
548 | #ifndef PRODUCT |
549 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
550 | #endif |
551 | }; |
552 | |
553 | class TypeInteger : public Type { |
554 | protected: |
555 | TypeInteger(TYPES t) : Type(t) {} |
556 | |
557 | public: |
558 | virtual jlong hi_as_long() const = 0; |
559 | virtual jlong lo_as_long() const = 0; |
560 | jlong get_con_as_long(BasicType bt) const; |
561 | bool is_con() const { return lo_as_long() == hi_as_long(); } |
562 | |
563 | static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt); |
564 | |
565 | static const TypeInteger* bottom(BasicType type); |
566 | static const TypeInteger* zero(BasicType type); |
567 | static const TypeInteger* one(BasicType type); |
568 | static const TypeInteger* minus_1(BasicType type); |
569 | }; |
570 | |
571 | |
572 | |
573 | //------------------------------TypeInt---------------------------------------- |
574 | // Class of integer ranges, the set of integers between a lower bound and an |
575 | // upper bound, inclusive. |
576 | class TypeInt : public TypeInteger { |
577 | TypeInt( jint lo, jint hi, int w ); |
578 | protected: |
579 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
580 | |
581 | public: |
582 | typedef jint NativeType; |
583 | virtual bool eq( const Type *t ) const; |
584 | virtual int hash() const; // Type specific hashing |
585 | virtual bool singleton(void) const; // TRUE if type is a singleton |
586 | virtual bool empty(void) const; // TRUE if type is vacuous |
587 | const jint _lo, _hi; // Lower bound, upper bound |
588 | const short _widen; // Limit on times we widen this sucker |
589 | |
590 | static const TypeInt *make(jint lo); |
591 | // must always specify w |
592 | static const TypeInt *make(jint lo, jint hi, int w); |
593 | |
594 | // Check for single integer |
595 | bool is_con() const { return _lo==_hi; } |
596 | bool is_con(int i) const { return is_con() && _lo == i; } |
597 | jint get_con() const { assert(is_con(), "" )do { if (!(is_con())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 597, "assert(" "is_con()" ") failed", ""); ::breakpoint(); } } while (0); return _lo; } |
598 | |
599 | virtual bool is_finite() const; // Has a finite value |
600 | |
601 | virtual const Type *xmeet( const Type *t ) const; |
602 | virtual const Type *xdual() const; // Compute dual right now. |
603 | virtual const Type *widen( const Type *t, const Type* limit_type ) const; |
604 | virtual const Type *narrow( const Type *t ) const; |
605 | |
606 | virtual jlong hi_as_long() const { return _hi; } |
607 | virtual jlong lo_as_long() const { return _lo; } |
608 | |
609 | // Do not kill _widen bits. |
610 | // Convenience common pre-built types. |
611 | static const TypeInt *MAX; |
612 | static const TypeInt *MIN; |
613 | static const TypeInt *MINUS_1; |
614 | static const TypeInt *ZERO; |
615 | static const TypeInt *ONE; |
616 | static const TypeInt *BOOL; |
617 | static const TypeInt *CC; |
618 | static const TypeInt *CC_LT; // [-1] == MINUS_1 |
619 | static const TypeInt *CC_GT; // [1] == ONE |
620 | static const TypeInt *CC_EQ; // [0] == ZERO |
621 | static const TypeInt *CC_LE; // [-1,0] |
622 | static const TypeInt *CC_GE; // [0,1] == BOOL (!) |
623 | static const TypeInt *BYTE; |
624 | static const TypeInt *UBYTE; |
625 | static const TypeInt *CHAR; |
626 | static const TypeInt *SHORT; |
627 | static const TypeInt *POS; |
628 | static const TypeInt *POS1; |
629 | static const TypeInt *INT; |
630 | static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint] |
631 | static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT |
632 | |
633 | static const TypeInt *as_self(const Type *t) { return t->is_int(); } |
634 | #ifndef PRODUCT |
635 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
636 | #endif |
637 | }; |
638 | |
639 | |
640 | //------------------------------TypeLong--------------------------------------- |
641 | // Class of long integer ranges, the set of integers between a lower bound and |
642 | // an upper bound, inclusive. |
643 | class TypeLong : public TypeInteger { |
644 | TypeLong( jlong lo, jlong hi, int w ); |
645 | protected: |
646 | // Do not kill _widen bits. |
647 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
648 | public: |
649 | typedef jlong NativeType; |
650 | virtual bool eq( const Type *t ) const; |
651 | virtual int hash() const; // Type specific hashing |
652 | virtual bool singleton(void) const; // TRUE if type is a singleton |
653 | virtual bool empty(void) const; // TRUE if type is vacuous |
654 | public: |
655 | const jlong _lo, _hi; // Lower bound, upper bound |
656 | const short _widen; // Limit on times we widen this sucker |
657 | |
658 | static const TypeLong *make(jlong lo); |
659 | // must always specify w |
660 | static const TypeLong *make(jlong lo, jlong hi, int w); |
661 | |
662 | // Check for single integer |
663 | bool is_con() const { return _lo==_hi; } |
664 | bool is_con(int i) const { return is_con() && _lo == i; } |
665 | jlong get_con() const { assert(is_con(), "" )do { if (!(is_con())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 665, "assert(" "is_con()" ") failed", ""); ::breakpoint(); } } while (0); return _lo; } |
666 | |
667 | // Check for positive 32-bit value. |
668 | int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; } |
669 | |
670 | virtual bool is_finite() const; // Has a finite value |
671 | |
672 | virtual jlong hi_as_long() const { return _hi; } |
673 | virtual jlong lo_as_long() const { return _lo; } |
674 | |
675 | virtual const Type *xmeet( const Type *t ) const; |
676 | virtual const Type *xdual() const; // Compute dual right now. |
677 | virtual const Type *widen( const Type *t, const Type* limit_type ) const; |
678 | virtual const Type *narrow( const Type *t ) const; |
679 | // Convenience common pre-built types. |
680 | static const TypeLong *MAX; |
681 | static const TypeLong *MIN; |
682 | static const TypeLong *MINUS_1; |
683 | static const TypeLong *ZERO; |
684 | static const TypeLong *ONE; |
685 | static const TypeLong *POS; |
686 | static const TypeLong *LONG; |
687 | static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint] |
688 | static const TypeLong *UINT; // 32-bit unsigned [0..max_juint] |
689 | static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG |
690 | |
691 | // static convenience methods. |
692 | static const TypeLong *as_self(const Type *t) { return t->is_long(); } |
693 | |
694 | #ifndef PRODUCT |
695 | virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping |
696 | #endif |
697 | }; |
698 | |
699 | //------------------------------TypeTuple-------------------------------------- |
700 | // Class of Tuple Types, essentially type collections for function signatures |
701 | // and class layouts. It happens to also be a fast cache for the HotSpot |
702 | // signature types. |
703 | class TypeTuple : public Type { |
704 | TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { } |
705 | |
706 | const uint _cnt; // Count of fields |
707 | const Type ** const _fields; // Array of field types |
708 | |
709 | public: |
710 | virtual bool eq( const Type *t ) const; |
711 | virtual int hash() const; // Type specific hashing |
712 | virtual bool singleton(void) const; // TRUE if type is a singleton |
713 | virtual bool empty(void) const; // TRUE if type is vacuous |
714 | |
715 | // Accessors: |
716 | uint cnt() const { return _cnt; } |
717 | const Type* field_at(uint i) const { |
718 | assert(i < _cnt, "oob")do { if (!(i < _cnt)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 718, "assert(" "i < _cnt" ") failed", "oob"); ::breakpoint (); } } while (0); |
719 | return _fields[i]; |
720 | } |
721 | void set_field_at(uint i, const Type* t) { |
722 | assert(i < _cnt, "oob")do { if (!(i < _cnt)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 722, "assert(" "i < _cnt" ") failed", "oob"); ::breakpoint (); } } while (0); |
723 | _fields[i] = t; |
724 | } |
725 | |
726 | static const TypeTuple *make( uint cnt, const Type **fields ); |
727 | static const TypeTuple *make_range(ciSignature *sig); |
728 | static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig); |
729 | |
730 | // Subroutine call type with space allocated for argument types |
731 | // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly |
732 | static const Type **fields( uint arg_cnt ); |
733 | |
734 | virtual const Type *xmeet( const Type *t ) const; |
735 | virtual const Type *xdual() const; // Compute dual right now. |
736 | // Convenience common pre-built types. |
737 | static const TypeTuple *IFBOTH; |
738 | static const TypeTuple *IFFALSE; |
739 | static const TypeTuple *IFTRUE; |
740 | static const TypeTuple *IFNEITHER; |
741 | static const TypeTuple *LOOPBODY; |
742 | static const TypeTuple *MEMBAR; |
743 | static const TypeTuple *STORECONDITIONAL; |
744 | static const TypeTuple *START_I2C; |
745 | static const TypeTuple *INT_PAIR; |
746 | static const TypeTuple *LONG_PAIR; |
747 | static const TypeTuple *INT_CC_PAIR; |
748 | static const TypeTuple *LONG_CC_PAIR; |
749 | #ifndef PRODUCT |
750 | virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping |
751 | #endif |
752 | }; |
753 | |
754 | //------------------------------TypeAry---------------------------------------- |
755 | // Class of Array Types |
756 | class TypeAry : public Type { |
757 | TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array), |
758 | _elem(elem), _size(size), _stable(stable) {} |
759 | public: |
760 | virtual bool eq( const Type *t ) const; |
761 | virtual int hash() const; // Type specific hashing |
762 | virtual bool singleton(void) const; // TRUE if type is a singleton |
763 | virtual bool empty(void) const; // TRUE if type is vacuous |
764 | |
765 | private: |
766 | const Type *_elem; // Element type of array |
767 | const TypeInt *_size; // Elements in array |
768 | const bool _stable; // Are elements @Stable? |
769 | friend class TypeAryPtr; |
770 | |
771 | public: |
772 | static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false); |
773 | |
774 | virtual const Type *xmeet( const Type *t ) const; |
775 | virtual const Type *xdual() const; // Compute dual right now. |
776 | bool ary_must_be_exact() const; // true if arrays of such are never generic |
777 | virtual const Type* remove_speculative() const; |
778 | virtual const Type* cleanup_speculative() const; |
779 | #ifdef ASSERT1 |
780 | // One type is interface, the other is oop |
781 | virtual bool interface_vs_oop(const Type *t) const; |
782 | #endif |
783 | #ifndef PRODUCT |
784 | virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping |
785 | #endif |
786 | }; |
787 | |
788 | //------------------------------TypeVect--------------------------------------- |
789 | // Class of Vector Types |
790 | class TypeVect : public Type { |
791 | const Type* _elem; // Vector's element type |
792 | const uint _length; // Elements in vector (power of 2) |
793 | |
794 | protected: |
795 | TypeVect(TYPES t, const Type* elem, uint length) : Type(t), |
796 | _elem(elem), _length(length) {} |
797 | |
798 | public: |
799 | const Type* element_type() const { return _elem; } |
800 | BasicType element_basic_type() const { return _elem->array_element_basic_type(); } |
801 | uint length() const { return _length; } |
802 | uint length_in_bytes() const { |
803 | return _length * type2aelembytes(element_basic_type()); |
804 | } |
805 | |
806 | virtual bool eq(const Type *t) const; |
807 | virtual int hash() const; // Type specific hashing |
808 | virtual bool singleton(void) const; // TRUE if type is a singleton |
809 | virtual bool empty(void) const; // TRUE if type is vacuous |
810 | |
811 | static const TypeVect *make(const BasicType elem_bt, uint length, bool is_mask = false) { |
812 | // Use bottom primitive type. |
813 | return make(get_const_basic_type(elem_bt), length, is_mask); |
814 | } |
815 | // Used directly by Replicate nodes to construct singleton vector. |
816 | static const TypeVect *make(const Type* elem, uint length, bool is_mask = false); |
817 | |
818 | static const TypeVect *makemask(const BasicType elem_bt, uint length) { |
819 | // Use bottom primitive type. |
820 | return makemask(get_const_basic_type(elem_bt), length); |
821 | } |
822 | static const TypeVect *makemask(const Type* elem, uint length); |
823 | |
824 | |
825 | virtual const Type *xmeet( const Type *t) const; |
826 | virtual const Type *xdual() const; // Compute dual right now. |
827 | |
828 | static const TypeVect *VECTA; |
829 | static const TypeVect *VECTS; |
830 | static const TypeVect *VECTD; |
831 | static const TypeVect *VECTX; |
832 | static const TypeVect *VECTY; |
833 | static const TypeVect *VECTZ; |
834 | static const TypeVect *VECTMASK; |
835 | |
836 | #ifndef PRODUCT |
837 | virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping |
838 | #endif |
839 | }; |
840 | |
841 | class TypeVectA : public TypeVect { |
842 | friend class TypeVect; |
843 | TypeVectA(const Type* elem, uint length) : TypeVect(VectorA, elem, length) {} |
844 | }; |
845 | |
846 | class TypeVectS : public TypeVect { |
847 | friend class TypeVect; |
848 | TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {} |
849 | }; |
850 | |
851 | class TypeVectD : public TypeVect { |
852 | friend class TypeVect; |
853 | TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {} |
854 | }; |
855 | |
856 | class TypeVectX : public TypeVect { |
857 | friend class TypeVect; |
858 | TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {} |
859 | }; |
860 | |
861 | class TypeVectY : public TypeVect { |
862 | friend class TypeVect; |
863 | TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {} |
864 | }; |
865 | |
866 | class TypeVectZ : public TypeVect { |
867 | friend class TypeVect; |
868 | TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {} |
869 | }; |
870 | |
871 | class TypeVectMask : public TypeVect { |
872 | public: |
873 | friend class TypeVect; |
874 | TypeVectMask(const Type* elem, uint length) : TypeVect(VectorMask, elem, length) {} |
875 | virtual bool eq(const Type *t) const; |
876 | virtual const Type *xdual() const; |
877 | static const TypeVectMask* make(const BasicType elem_bt, uint length); |
878 | static const TypeVectMask* make(const Type* elem, uint length); |
879 | }; |
880 | |
881 | //------------------------------TypePtr---------------------------------------- |
882 | // Class of machine Pointer Types: raw data, instances or arrays. |
883 | // If the _base enum is AnyPtr, then this refers to all of the above. |
884 | // Otherwise the _base will indicate which subset of pointers is affected, |
885 | // and the class will be inherited from. |
886 | class TypePtr : public Type { |
887 | friend class TypeNarrowPtr; |
888 | public: |
889 | enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR }; |
890 | protected: |
891 | TypePtr(TYPES t, PTR ptr, int offset, |
892 | const TypePtr* speculative = NULL__null, |
893 | int inline_depth = InlineDepthBottom) : |
894 | Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset), |
895 | _ptr(ptr) {} |
896 | static const PTR ptr_meet[lastPTR][lastPTR]; |
897 | static const PTR ptr_dual[lastPTR]; |
898 | static const char * const ptr_msg[lastPTR]; |
899 | |
900 | enum { |
901 | InlineDepthBottom = INT_MAX2147483647, |
902 | InlineDepthTop = -InlineDepthBottom |
903 | }; |
904 | |
905 | // Extra type information profiling gave us. We propagate it the |
906 | // same way the rest of the type info is propagated. If we want to |
907 | // use it, then we have to emit a guard: this part of the type is |
908 | // not something we know but something we speculate about the type. |
909 | const TypePtr* _speculative; |
910 | // For speculative types, we record at what inlining depth the |
911 | // profiling point that provided the data is. We want to favor |
912 | // profile data coming from outer scopes which are likely better for |
913 | // the current compilation. |
914 | int _inline_depth; |
915 | |
916 | // utility methods to work on the speculative part of the type |
917 | const TypePtr* dual_speculative() const; |
918 | const TypePtr* xmeet_speculative(const TypePtr* other) const; |
919 | bool eq_speculative(const TypePtr* other) const; |
920 | int hash_speculative() const; |
921 | const TypePtr* add_offset_speculative(intptr_t offset) const; |
922 | #ifndef PRODUCT |
923 | void dump_speculative(outputStream *st) const; |
924 | #endif |
925 | |
926 | // utility methods to work on the inline depth of the type |
927 | int dual_inline_depth() const; |
928 | int meet_inline_depth(int depth) const; |
929 | #ifndef PRODUCT |
930 | void dump_inline_depth(outputStream *st) const; |
931 | #endif |
932 | |
933 | // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic. |
934 | // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for |
935 | // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what |
936 | // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was |
937 | // encountered so the right logic specific to klasses or oops can be executed., |
938 | enum MeetResult { |
939 | QUICK, |
940 | UNLOADED, |
941 | SUBTYPE, |
942 | NOT_SUBTYPE, |
943 | LCA |
944 | }; |
945 | static MeetResult |
946 | meet_instptr(PTR &ptr, ciKlass* this_klass, ciKlass* tinst_klass, bool this_xk, bool tinst_xk, PTR this_ptr, |
947 | PTR tinst_ptr, ciKlass*&res_klass, bool &res_xk); |
948 | static MeetResult |
949 | meet_aryptr(PTR& ptr, const Type*& elem, ciKlass* this_klass, ciKlass* tap_klass, bool this_xk, bool tap_xk, PTR this_ptr, PTR tap_ptr, ciKlass*& res_klass, bool& res_xk); |
950 | |
951 | public: |
952 | const int _offset; // Offset into oop, with TOP & BOT |
953 | const PTR _ptr; // Pointer equivalence class |
954 | |
955 | const int offset() const { return _offset; } |
956 | const PTR ptr() const { return _ptr; } |
957 | |
958 | static const TypePtr *make(TYPES t, PTR ptr, int offset, |
959 | const TypePtr* speculative = NULL__null, |
960 | int inline_depth = InlineDepthBottom); |
961 | |
962 | // Return a 'ptr' version of this type |
963 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
964 | |
965 | virtual intptr_t get_con() const; |
966 | |
967 | int xadd_offset( intptr_t offset ) const; |
968 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
969 | virtual bool eq(const Type *t) const; |
970 | virtual int hash() const; // Type specific hashing |
971 | |
972 | virtual bool singleton(void) const; // TRUE if type is a singleton |
973 | virtual bool empty(void) const; // TRUE if type is vacuous |
974 | virtual const Type *xmeet( const Type *t ) const; |
975 | virtual const Type *xmeet_helper( const Type *t ) const; |
976 | int meet_offset( int offset ) const; |
977 | int dual_offset( ) const; |
978 | virtual const Type *xdual() const; // Compute dual right now. |
979 | |
980 | // meet, dual and join over pointer equivalence sets |
981 | PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; } |
982 | PTR dual_ptr() const { return ptr_dual[ptr()]; } |
983 | |
984 | // This is textually confusing unless one recalls that |
985 | // join(t) == dual()->meet(t->dual())->dual(). |
986 | PTR join_ptr( const PTR in_ptr ) const { |
987 | return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ]; |
988 | } |
989 | |
990 | // Speculative type helper methods. |
991 | virtual const TypePtr* speculative() const { return _speculative; } |
992 | int inline_depth() const { return _inline_depth; } |
993 | virtual ciKlass* speculative_type() const; |
994 | virtual ciKlass* speculative_type_not_null() const; |
995 | virtual bool speculative_maybe_null() const; |
996 | virtual bool speculative_always_null() const; |
997 | virtual const Type* remove_speculative() const; |
998 | virtual const Type* cleanup_speculative() const; |
999 | virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; |
1000 | virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const; |
1001 | virtual const TypePtr* with_inline_depth(int depth) const; |
1002 | |
1003 | virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); } |
1004 | |
1005 | // Tests for relation to centerline of type lattice: |
1006 | static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); } |
1007 | static bool below_centerline(PTR ptr) { return (ptr >= NotNull); } |
1008 | // Convenience common pre-built types. |
1009 | static const TypePtr *NULL_PTR; |
1010 | static const TypePtr *NOTNULL; |
1011 | static const TypePtr *BOTTOM; |
1012 | #ifndef PRODUCT |
1013 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1014 | #endif |
1015 | }; |
1016 | |
1017 | //------------------------------TypeRawPtr------------------------------------- |
1018 | // Class of raw pointers, pointers to things other than Oops. Examples |
1019 | // include the stack pointer, top of heap, card-marking area, handles, etc. |
1020 | class TypeRawPtr : public TypePtr { |
1021 | protected: |
1022 | TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){} |
1023 | public: |
1024 | virtual bool eq( const Type *t ) const; |
1025 | virtual int hash() const; // Type specific hashing |
1026 | |
1027 | const address _bits; // Constant value, if applicable |
1028 | |
1029 | static const TypeRawPtr *make( PTR ptr ); |
1030 | static const TypeRawPtr *make( address bits ); |
1031 | |
1032 | // Return a 'ptr' version of this type |
1033 | virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const; |
1034 | |
1035 | virtual intptr_t get_con() const; |
1036 | |
1037 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1038 | |
1039 | virtual const Type *xmeet( const Type *t ) const; |
1040 | virtual const Type *xdual() const; // Compute dual right now. |
1041 | // Convenience common pre-built types. |
1042 | static const TypeRawPtr *BOTTOM; |
1043 | static const TypeRawPtr *NOTNULL; |
1044 | #ifndef PRODUCT |
1045 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1046 | #endif |
1047 | }; |
1048 | |
1049 | //------------------------------TypeOopPtr------------------------------------- |
1050 | // Some kind of oop (Java pointer), either instance or array. |
1051 | class TypeOopPtr : public TypePtr { |
1052 | protected: |
1053 | TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, |
1054 | const TypePtr* speculative, int inline_depth); |
1055 | public: |
1056 | virtual bool eq( const Type *t ) const; |
1057 | virtual int hash() const; // Type specific hashing |
1058 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1059 | enum { |
1060 | InstanceTop = -1, // undefined instance |
1061 | InstanceBot = 0 // any possible instance |
1062 | }; |
1063 | protected: |
1064 | |
1065 | // Oop is NULL, unless this is a constant oop. |
1066 | ciObject* _const_oop; // Constant oop |
1067 | // If _klass is NULL, then so is _sig. This is an unloaded klass. |
1068 | ciKlass* _klass; // Klass object |
1069 | // Does the type exclude subclasses of the klass? (Inexact == polymorphic.) |
1070 | bool _klass_is_exact; |
1071 | bool _is_ptr_to_narrowoop; |
1072 | bool _is_ptr_to_narrowklass; |
1073 | bool _is_ptr_to_boxed_value; |
1074 | |
1075 | // If not InstanceTop or InstanceBot, indicates that this is |
1076 | // a particular instance of this type which is distinct. |
1077 | // This is the node index of the allocation node creating this instance. |
1078 | int _instance_id; |
1079 | |
1080 | static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact); |
1081 | |
1082 | int dual_instance_id() const; |
1083 | int meet_instance_id(int uid) const; |
1084 | |
1085 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
1086 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
1087 | |
1088 | public: |
1089 | // Creates a type given a klass. Correctly handles multi-dimensional arrays |
1090 | // Respects UseUniqueSubclasses. |
1091 | // If the klass is final, the resulting type will be exact. |
1092 | static const TypeOopPtr* make_from_klass(ciKlass* klass) { |
1093 | return make_from_klass_common(klass, true, false); |
1094 | } |
1095 | // Same as before, but will produce an exact type, even if |
1096 | // the klass is not final, as long as it has exactly one implementation. |
1097 | static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) { |
1098 | return make_from_klass_common(klass, true, true); |
1099 | } |
1100 | // Same as before, but does not respects UseUniqueSubclasses. |
1101 | // Use this only for creating array element types. |
1102 | static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) { |
1103 | return make_from_klass_common(klass, false, false); |
1104 | } |
1105 | // Creates a singleton type given an object. |
1106 | // If the object cannot be rendered as a constant, |
1107 | // may return a non-singleton type. |
1108 | // If require_constant, produce a NULL if a singleton is not possible. |
1109 | static const TypeOopPtr* make_from_constant(ciObject* o, |
1110 | bool require_constant = false); |
1111 | |
1112 | // Make a generic (unclassed) pointer to an oop. |
1113 | static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, |
1114 | const TypePtr* speculative = NULL__null, |
1115 | int inline_depth = InlineDepthBottom); |
1116 | |
1117 | ciObject* const_oop() const { return _const_oop; } |
1118 | virtual ciKlass* klass() const { return _klass; } |
1119 | bool klass_is_exact() const { return _klass_is_exact; } |
1120 | |
1121 | // Returns true if this pointer points at memory which contains a |
1122 | // compressed oop references. |
1123 | bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; } |
1124 | bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; } |
1125 | bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; } |
1126 | bool is_known_instance() const { return _instance_id > 0; } |
1127 | int instance_id() const { return _instance_id; } |
1128 | bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; } |
1129 | |
1130 | virtual intptr_t get_con() const; |
1131 | |
1132 | virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const; |
1133 | |
1134 | virtual const Type *cast_to_exactness(bool klass_is_exact) const; |
1135 | |
1136 | virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; |
1137 | |
1138 | // corresponding pointer to klass, for a given instance |
1139 | virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; |
1140 | |
1141 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1142 | |
1143 | // Speculative type helper methods. |
1144 | virtual const Type* remove_speculative() const; |
1145 | virtual const Type* cleanup_speculative() const; |
1146 | virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; |
1147 | virtual const TypePtr* with_inline_depth(int depth) const; |
1148 | |
1149 | virtual const TypePtr* with_instance_id(int instance_id) const; |
1150 | |
1151 | virtual const Type *xdual() const; // Compute dual right now. |
1152 | // the core of the computation of the meet for TypeOopPtr and for its subclasses |
1153 | virtual const Type *xmeet_helper(const Type *t) const; |
1154 | |
1155 | // Convenience common pre-built type. |
1156 | static const TypeOopPtr *BOTTOM; |
1157 | #ifndef PRODUCT |
1158 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1159 | #endif |
1160 | }; |
1161 | |
1162 | //------------------------------TypeInstPtr------------------------------------ |
1163 | // Class of Java object pointers, pointing either to non-array Java instances |
1164 | // or to a Klass* (including array klasses). |
1165 | class TypeInstPtr : public TypeOopPtr { |
1166 | TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, |
1167 | const TypePtr* speculative, int inline_depth); |
1168 | virtual bool eq( const Type *t ) const; |
1169 | virtual int hash() const; // Type specific hashing |
1170 | |
1171 | ciSymbol* _name; // class name |
1172 | |
1173 | public: |
1174 | ciSymbol* name() const { return _name; } |
1175 | |
1176 | bool is_loaded() const { return _klass->is_loaded(); } |
1177 | |
1178 | // Make a pointer to a constant oop. |
1179 | static const TypeInstPtr *make(ciObject* o) { |
1180 | return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot); |
1181 | } |
1182 | // Make a pointer to a constant oop with offset. |
1183 | static const TypeInstPtr *make(ciObject* o, int offset) { |
1184 | return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot); |
1185 | } |
1186 | |
1187 | // Make a pointer to some value of type klass. |
1188 | static const TypeInstPtr *make(PTR ptr, ciKlass* klass) { |
1189 | return make(ptr, klass, false, NULL__null, 0, InstanceBot); |
1190 | } |
1191 | |
1192 | // Make a pointer to some non-polymorphic value of exactly type klass. |
1193 | static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) { |
1194 | return make(ptr, klass, true, NULL__null, 0, InstanceBot); |
1195 | } |
1196 | |
1197 | // Make a pointer to some value of type klass with offset. |
1198 | static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) { |
1199 | return make(ptr, klass, false, NULL__null, offset, InstanceBot); |
1200 | } |
1201 | |
1202 | // Make a pointer to an oop. |
1203 | static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, |
1204 | int instance_id = InstanceBot, |
1205 | const TypePtr* speculative = NULL__null, |
1206 | int inline_depth = InlineDepthBottom); |
1207 | |
1208 | /** Create constant type for a constant boxed value */ |
1209 | const Type* get_const_boxed_value() const; |
1210 | |
1211 | // If this is a java.lang.Class constant, return the type for it or NULL. |
1212 | // Pass to Type::get_const_type to turn it to a type, which will usually |
1213 | // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc. |
1214 | ciType* java_mirror_type() const; |
1215 | |
1216 | virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const; |
1217 | |
1218 | virtual const Type *cast_to_exactness(bool klass_is_exact) const; |
1219 | |
1220 | virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; |
1221 | |
1222 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1223 | |
1224 | // Speculative type helper methods. |
1225 | virtual const Type* remove_speculative() const; |
1226 | virtual const TypePtr* with_inline_depth(int depth) const; |
1227 | virtual const TypePtr* with_instance_id(int instance_id) const; |
1228 | |
1229 | // the core of the computation of the meet of 2 types |
1230 | virtual const Type *xmeet_helper(const Type *t) const; |
1231 | virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const; |
1232 | virtual const Type *xdual() const; // Compute dual right now. |
1233 | |
1234 | const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; |
1235 | |
1236 | // Convenience common pre-built types. |
1237 | static const TypeInstPtr *NOTNULL; |
1238 | static const TypeInstPtr *BOTTOM; |
1239 | static const TypeInstPtr *MIRROR; |
1240 | static const TypeInstPtr *MARK; |
1241 | static const TypeInstPtr *KLASS; |
1242 | #ifndef PRODUCT |
1243 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1244 | #endif |
1245 | }; |
1246 | |
1247 | //------------------------------TypeAryPtr------------------------------------- |
1248 | // Class of Java array pointers |
1249 | class TypeAryPtr : public TypeOopPtr { |
1250 | TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, |
1251 | int offset, int instance_id, bool is_autobox_cache, |
1252 | const TypePtr* speculative, int inline_depth) |
1253 | : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth), |
1254 | _ary(ary), |
1255 | _is_autobox_cache(is_autobox_cache) |
1256 | { |
1257 | #ifdef ASSERT1 |
1258 | if (k != NULL__null) { |
1259 | // Verify that specified klass and TypeAryPtr::klass() follow the same rules. |
1260 | ciKlass* ck = compute_klass(true); |
1261 | if (k != ck) { |
1262 | this->dump(); tty->cr(); |
1263 | tty->print(" k: "); |
1264 | k->print(); tty->cr(); |
1265 | tty->print("ck: "); |
1266 | if (ck != NULL__null) ck->print(); |
1267 | else tty->print("<NULL>"); |
1268 | tty->cr(); |
1269 | assert(false, "unexpected TypeAryPtr::_klass")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1269, "assert(" "false" ") failed", "unexpected TypeAryPtr::_klass" ); ::breakpoint(); } } while (0); |
1270 | } |
1271 | } |
1272 | #endif |
1273 | } |
1274 | virtual bool eq( const Type *t ) const; |
1275 | virtual int hash() const; // Type specific hashing |
1276 | const TypeAry *_ary; // Array we point into |
1277 | const bool _is_autobox_cache; |
1278 | |
1279 | ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)bool verify = false) const; |
1280 | |
1281 | public: |
1282 | // Accessors |
1283 | ciKlass* klass() const; |
1284 | const TypeAry* ary() const { return _ary; } |
1285 | const Type* elem() const { return _ary->_elem; } |
1286 | const TypeInt* size() const { return _ary->_size; } |
1287 | bool is_stable() const { return _ary->_stable; } |
1288 | |
1289 | bool is_autobox_cache() const { return _is_autobox_cache; } |
1290 | |
1291 | static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
1292 | int instance_id = InstanceBot, |
1293 | const TypePtr* speculative = NULL__null, |
1294 | int inline_depth = InlineDepthBottom); |
1295 | // Constant pointer to array |
1296 | static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
1297 | int instance_id = InstanceBot, |
1298 | const TypePtr* speculative = NULL__null, |
1299 | int inline_depth = InlineDepthBottom, bool is_autobox_cache = false); |
1300 | |
1301 | // Return a 'ptr' version of this type |
1302 | virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const; |
1303 | |
1304 | virtual const Type *cast_to_exactness(bool klass_is_exact) const; |
1305 | |
1306 | virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; |
1307 | |
1308 | virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const; |
1309 | virtual const TypeInt* narrow_size_type(const TypeInt* size) const; |
1310 | |
1311 | virtual bool empty(void) const; // TRUE if type is vacuous |
1312 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1313 | |
1314 | // Speculative type helper methods. |
1315 | virtual const Type* remove_speculative() const; |
1316 | virtual const TypePtr* with_inline_depth(int depth) const; |
1317 | virtual const TypePtr* with_instance_id(int instance_id) const; |
1318 | |
1319 | // the core of the computation of the meet of 2 types |
1320 | virtual const Type *xmeet_helper(const Type *t) const; |
1321 | virtual const Type *xdual() const; // Compute dual right now. |
1322 | |
1323 | const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const; |
1324 | int stable_dimension() const; |
1325 | |
1326 | const TypeAryPtr* cast_to_autobox_cache() const; |
1327 | |
1328 | static jint max_array_length(BasicType etype) ; |
1329 | virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; |
1330 | |
1331 | // Convenience common pre-built types. |
1332 | static const TypeAryPtr *RANGE; |
1333 | static const TypeAryPtr *OOPS; |
1334 | static const TypeAryPtr *NARROWOOPS; |
1335 | static const TypeAryPtr *BYTES; |
1336 | static const TypeAryPtr *SHORTS; |
1337 | static const TypeAryPtr *CHARS; |
1338 | static const TypeAryPtr *INTS; |
1339 | static const TypeAryPtr *LONGS; |
1340 | static const TypeAryPtr *FLOATS; |
1341 | static const TypeAryPtr *DOUBLES; |
1342 | // selects one of the above: |
1343 | static const TypeAryPtr *get_array_body_type(BasicType elem) { |
1344 | assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type")do { if (!((uint)elem <= T_CONFLICT && _array_body_type [elem] != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1344, "assert(" "(uint)elem <= T_CONFLICT && _array_body_type[elem] != __null" ") failed", "bad elem type"); ::breakpoint(); } } while (0); |
1345 | return _array_body_type[elem]; |
1346 | } |
1347 | static const TypeAryPtr *_array_body_type[T_CONFLICT+1]; |
1348 | // sharpen the type of an int which is used as an array size |
1349 | #ifdef ASSERT1 |
1350 | // One type is interface, the other is oop |
1351 | virtual bool interface_vs_oop(const Type *t) const; |
1352 | #endif |
1353 | #ifndef PRODUCT |
1354 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1355 | #endif |
1356 | }; |
1357 | |
1358 | //------------------------------TypeMetadataPtr------------------------------------- |
1359 | // Some kind of metadata, either Method*, MethodData* or CPCacheOop |
1360 | class TypeMetadataPtr : public TypePtr { |
1361 | protected: |
1362 | TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset); |
1363 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
1364 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
1365 | public: |
1366 | virtual bool eq( const Type *t ) const; |
1367 | virtual int hash() const; // Type specific hashing |
1368 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1369 | |
1370 | private: |
1371 | ciMetadata* _metadata; |
1372 | |
1373 | public: |
1374 | static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset); |
1375 | |
1376 | static const TypeMetadataPtr* make(ciMethod* m); |
1377 | static const TypeMetadataPtr* make(ciMethodData* m); |
1378 | |
1379 | ciMetadata* metadata() const { return _metadata; } |
1380 | |
1381 | virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const; |
1382 | |
1383 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1384 | |
1385 | virtual const Type *xmeet( const Type *t ) const; |
1386 | virtual const Type *xdual() const; // Compute dual right now. |
1387 | |
1388 | virtual intptr_t get_con() const; |
1389 | |
1390 | // Convenience common pre-built types. |
1391 | static const TypeMetadataPtr *BOTTOM; |
1392 | |
1393 | #ifndef PRODUCT |
1394 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1395 | #endif |
1396 | }; |
1397 | |
1398 | //------------------------------TypeKlassPtr----------------------------------- |
1399 | // Class of Java Klass pointers |
1400 | class TypeKlassPtr : public TypePtr { |
1401 | protected: |
1402 | TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, int offset); |
1403 | |
1404 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
1405 | |
1406 | public: |
1407 | virtual bool eq( const Type *t ) const; |
1408 | virtual int hash() const; |
1409 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1410 | virtual bool must_be_exact() const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1410); ::breakpoint(); } while (0); return false; } |
1411 | |
1412 | protected: |
1413 | |
1414 | ciKlass* _klass; |
1415 | |
1416 | public: |
1417 | |
1418 | virtual ciKlass* klass() const { return _klass; } |
1419 | bool klass_is_exact() const { return _ptr == Constant; } |
1420 | bool is_loaded() const { return klass()->is_loaded(); } |
1421 | |
1422 | static const TypeKlassPtr* make(ciKlass* klass); |
1423 | static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset); |
1424 | |
1425 | |
1426 | virtual const TypePtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1426); ::breakpoint(); } while (0); return NULL__null; } |
1427 | |
1428 | virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1428); ::breakpoint(); } while (0); return NULL__null; } |
1429 | |
1430 | // corresponding pointer to instance, for a given class |
1431 | virtual const TypeOopPtr* as_instance_type() const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1431); ::breakpoint(); } while (0); return NULL__null; } |
1432 | |
1433 | virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1433); ::breakpoint(); } while (0); return NULL__null; } |
1434 | virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1434); ::breakpoint(); } while (0); return NULL__null; } |
1435 | virtual const Type *xdual() const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1435); ::breakpoint(); } while (0); return NULL__null; } |
1436 | |
1437 | virtual intptr_t get_con() const; |
1438 | |
1439 | virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1439); ::breakpoint(); } while (0); return NULL__null; } |
1440 | |
1441 | #ifndef PRODUCT |
1442 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1443 | #endif |
1444 | }; |
1445 | |
1446 | // Instance klass pointer, mirrors TypeInstPtr |
1447 | class TypeInstKlassPtr : public TypeKlassPtr { |
1448 | |
1449 | TypeInstKlassPtr(PTR ptr, ciKlass* klass, int offset) |
1450 | : TypeKlassPtr(InstKlassPtr, ptr, klass, offset) { |
1451 | } |
1452 | |
1453 | virtual bool must_be_exact() const; |
1454 | |
1455 | public: |
1456 | // Instance klass ignoring any interface |
1457 | ciInstanceKlass* instance_klass() const { return klass()->as_instance_klass(); } |
1458 | |
1459 | static const TypeInstKlassPtr *make(ciKlass* k) { |
1460 | return make(TypePtr::Constant, k, 0); |
1461 | } |
1462 | static const TypeInstKlassPtr *make(PTR ptr, ciKlass* k, int offset); |
1463 | |
1464 | virtual const TypePtr* cast_to_ptr_type(PTR ptr) const; |
1465 | |
1466 | virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; |
1467 | |
1468 | // corresponding pointer to instance, for a given class |
1469 | virtual const TypeOopPtr* as_instance_type() const; |
1470 | virtual int hash() const; |
1471 | virtual bool eq(const Type *t) const; |
1472 | |
1473 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1474 | virtual const Type *xmeet( const Type *t ) const; |
1475 | virtual const Type *xdual() const; |
1476 | virtual const TypeKlassPtr* with_offset(intptr_t offset) const; |
1477 | |
1478 | // Convenience common pre-built types. |
1479 | static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below |
1480 | static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same |
1481 | }; |
1482 | |
1483 | // Array klass pointer, mirrors TypeAryPtr |
1484 | class TypeAryKlassPtr : public TypeKlassPtr { |
1485 | const Type *_elem; |
1486 | |
1487 | TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset) |
1488 | : TypeKlassPtr(AryKlassPtr, ptr, klass, offset), _elem(elem) { |
1489 | } |
1490 | |
1491 | virtual bool must_be_exact() const; |
1492 | |
1493 | public: |
1494 | virtual ciKlass* klass() const; |
1495 | |
1496 | // returns base element type, an instance klass (and not interface) for object arrays |
1497 | const Type* base_element_type(int& dims) const; |
1498 | |
1499 | static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset); |
1500 | static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset); |
1501 | static const TypeAryKlassPtr* make(ciKlass* klass); |
1502 | |
1503 | const Type *elem() const { return _elem; } |
1504 | |
1505 | virtual bool eq(const Type *t) const; |
1506 | virtual int hash() const; // Type specific hashing |
1507 | |
1508 | virtual const TypePtr* cast_to_ptr_type(PTR ptr) const; |
1509 | |
1510 | virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; |
1511 | |
1512 | // corresponding pointer to instance, for a given class |
1513 | virtual const TypeOopPtr* as_instance_type() const; |
1514 | |
1515 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1516 | virtual const Type *xmeet( const Type *t ) const; |
1517 | virtual const Type *xdual() const; // Compute dual right now. |
1518 | |
1519 | virtual const TypeKlassPtr* with_offset(intptr_t offset) const; |
1520 | |
1521 | virtual bool empty(void) const { |
1522 | return TypeKlassPtr::empty() || _elem->empty(); |
1523 | } |
1524 | |
1525 | #ifndef PRODUCT |
1526 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1527 | #endif |
1528 | }; |
1529 | |
1530 | class TypeNarrowPtr : public Type { |
1531 | protected: |
1532 | const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR |
1533 | |
1534 | TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t), |
1535 | _ptrtype(ptrtype) { |
1536 | assert(ptrtype->offset() == 0 ||do { if (!(ptrtype->offset() == 0 || ptrtype->offset() == OffsetBot || ptrtype->offset() == OffsetTop)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1538, "assert(" "ptrtype->offset() == 0 || ptrtype->offset() == OffsetBot || ptrtype->offset() == OffsetTop" ") failed", "no real offsets"); ::breakpoint(); } } while (0 ) |
1537 | ptrtype->offset() == OffsetBot ||do { if (!(ptrtype->offset() == 0 || ptrtype->offset() == OffsetBot || ptrtype->offset() == OffsetTop)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1538, "assert(" "ptrtype->offset() == 0 || ptrtype->offset() == OffsetBot || ptrtype->offset() == OffsetTop" ") failed", "no real offsets"); ::breakpoint(); } } while (0 ) |
1538 | ptrtype->offset() == OffsetTop, "no real offsets")do { if (!(ptrtype->offset() == 0 || ptrtype->offset() == OffsetBot || ptrtype->offset() == OffsetTop)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1538, "assert(" "ptrtype->offset() == 0 || ptrtype->offset() == OffsetBot || ptrtype->offset() == OffsetTop" ") failed", "no real offsets"); ::breakpoint(); } } while (0 ); |
1539 | } |
1540 | |
1541 | virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0; |
1542 | virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0; |
1543 | virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0; |
1544 | virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0; |
1545 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
1546 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
1547 | public: |
1548 | virtual bool eq( const Type *t ) const; |
1549 | virtual int hash() const; // Type specific hashing |
1550 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1551 | |
1552 | virtual const Type *xmeet( const Type *t ) const; |
1553 | virtual const Type *xdual() const; // Compute dual right now. |
1554 | |
1555 | virtual intptr_t get_con() const; |
1556 | |
1557 | virtual bool empty(void) const; // TRUE if type is vacuous |
1558 | |
1559 | // returns the equivalent ptr type for this compressed pointer |
1560 | const TypePtr *get_ptrtype() const { |
1561 | return _ptrtype; |
1562 | } |
1563 | |
1564 | bool is_known_instance() const { |
1565 | return _ptrtype->is_known_instance(); |
1566 | } |
1567 | |
1568 | #ifndef PRODUCT |
1569 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1570 | #endif |
1571 | }; |
1572 | |
1573 | //------------------------------TypeNarrowOop---------------------------------- |
1574 | // A compressed reference to some kind of Oop. This type wraps around |
1575 | // a preexisting TypeOopPtr and forwards most of it's operations to |
1576 | // the underlying type. It's only real purpose is to track the |
1577 | // oopness of the compressed oop value when we expose the conversion |
1578 | // between the normal and the compressed form. |
1579 | class TypeNarrowOop : public TypeNarrowPtr { |
1580 | protected: |
1581 | TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) { |
1582 | } |
1583 | |
1584 | virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { |
1585 | return t->isa_narrowoop(); |
1586 | } |
1587 | |
1588 | virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { |
1589 | return t->is_narrowoop(); |
1590 | } |
1591 | |
1592 | virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { |
1593 | return new TypeNarrowOop(t); |
1594 | } |
1595 | |
1596 | virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { |
1597 | return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons()); |
1598 | } |
1599 | |
1600 | public: |
1601 | |
1602 | static const TypeNarrowOop *make( const TypePtr* type); |
1603 | |
1604 | static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) { |
1605 | return make(TypeOopPtr::make_from_constant(con, require_constant)); |
1606 | } |
1607 | |
1608 | static const TypeNarrowOop *BOTTOM; |
1609 | static const TypeNarrowOop *NULL_PTR; |
1610 | |
1611 | virtual const Type* remove_speculative() const; |
1612 | virtual const Type* cleanup_speculative() const; |
1613 | |
1614 | #ifndef PRODUCT |
1615 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1616 | #endif |
1617 | }; |
1618 | |
1619 | //------------------------------TypeNarrowKlass---------------------------------- |
1620 | // A compressed reference to klass pointer. This type wraps around a |
1621 | // preexisting TypeKlassPtr and forwards most of it's operations to |
1622 | // the underlying type. |
1623 | class TypeNarrowKlass : public TypeNarrowPtr { |
1624 | protected: |
1625 | TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) { |
1626 | } |
1627 | |
1628 | virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { |
1629 | return t->isa_narrowklass(); |
1630 | } |
1631 | |
1632 | virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { |
1633 | return t->is_narrowklass(); |
1634 | } |
1635 | |
1636 | virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { |
1637 | return new TypeNarrowKlass(t); |
1638 | } |
1639 | |
1640 | virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { |
1641 | return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons()); |
1642 | } |
1643 | |
1644 | public: |
1645 | static const TypeNarrowKlass *make( const TypePtr* type); |
1646 | |
1647 | // static const TypeNarrowKlass *BOTTOM; |
1648 | static const TypeNarrowKlass *NULL_PTR; |
1649 | |
1650 | #ifndef PRODUCT |
1651 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1652 | #endif |
1653 | }; |
1654 | |
1655 | //------------------------------TypeFunc--------------------------------------- |
1656 | // Class of Array Types |
1657 | class TypeFunc : public Type { |
1658 | TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {} |
1659 | virtual bool eq( const Type *t ) const; |
1660 | virtual int hash() const; // Type specific hashing |
1661 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1662 | virtual bool empty(void) const; // TRUE if type is vacuous |
1663 | |
1664 | const TypeTuple* const _domain; // Domain of inputs |
1665 | const TypeTuple* const _range; // Range of results |
1666 | |
1667 | public: |
1668 | // Constants are shared among ADLC and VM |
1669 | enum { Control = AdlcVMDeps::Control, |
1670 | I_O = AdlcVMDeps::I_O, |
1671 | Memory = AdlcVMDeps::Memory, |
1672 | FramePtr = AdlcVMDeps::FramePtr, |
1673 | ReturnAdr = AdlcVMDeps::ReturnAdr, |
1674 | Parms = AdlcVMDeps::Parms |
1675 | }; |
1676 | |
1677 | |
1678 | // Accessors: |
1679 | const TypeTuple* domain() const { return _domain; } |
1680 | const TypeTuple* range() const { return _range; } |
1681 | |
1682 | static const TypeFunc *make(ciMethod* method); |
1683 | static const TypeFunc *make(ciSignature signature, const Type* extra); |
1684 | static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range); |
1685 | |
1686 | virtual const Type *xmeet( const Type *t ) const; |
1687 | virtual const Type *xdual() const; // Compute dual right now. |
1688 | |
1689 | BasicType return_type() const; |
1690 | |
1691 | #ifndef PRODUCT |
1692 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1693 | #endif |
1694 | // Convenience common pre-built types. |
1695 | }; |
1696 | |
1697 | //------------------------------accessors-------------------------------------- |
1698 | inline bool Type::is_ptr_to_narrowoop() const { |
1699 | #ifdef _LP641 |
1700 | return (isa_oopptr() != NULL__null && is_oopptr()->is_ptr_to_narrowoop_nv()); |
1701 | #else |
1702 | return false; |
1703 | #endif |
1704 | } |
1705 | |
1706 | inline bool Type::is_ptr_to_narrowklass() const { |
1707 | #ifdef _LP641 |
1708 | return (isa_oopptr() != NULL__null && is_oopptr()->is_ptr_to_narrowklass_nv()); |
1709 | #else |
1710 | return false; |
1711 | #endif |
1712 | } |
1713 | |
1714 | inline float Type::getf() const { |
1715 | assert( _base == FloatCon, "Not a FloatCon" )do { if (!(_base == FloatCon)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1715, "assert(" "_base == FloatCon" ") failed", "Not a FloatCon" ); ::breakpoint(); } } while (0); |
1716 | return ((TypeF*)this)->_f; |
1717 | } |
1718 | |
1719 | inline double Type::getd() const { |
1720 | assert( _base == DoubleCon, "Not a DoubleCon" )do { if (!(_base == DoubleCon)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1720, "assert(" "_base == DoubleCon" ") failed", "Not a DoubleCon" ); ::breakpoint(); } } while (0); |
1721 | return ((TypeD*)this)->_d; |
1722 | } |
1723 | |
1724 | inline const TypeInteger *Type::is_integer(BasicType bt) const { |
1725 | assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int")do { if (!((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1725, "assert(" "(bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)" ") failed", "Not an Int"); ::breakpoint(); } } while (0); |
1726 | return (TypeInteger*)this; |
1727 | } |
1728 | |
1729 | inline const TypeInteger *Type::isa_integer(BasicType bt) const { |
1730 | return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : NULL__null); |
1731 | } |
1732 | |
1733 | inline const TypeInt *Type::is_int() const { |
1734 | assert( _base == Int, "Not an Int" )do { if (!(_base == Int)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1734, "assert(" "_base == Int" ") failed", "Not an Int"); :: breakpoint(); } } while (0); |
1735 | return (TypeInt*)this; |
1736 | } |
1737 | |
1738 | inline const TypeInt *Type::isa_int() const { |
1739 | return ( _base == Int ? (TypeInt*)this : NULL__null); |
1740 | } |
1741 | |
1742 | inline const TypeLong *Type::is_long() const { |
1743 | assert( _base == Long, "Not a Long" )do { if (!(_base == Long)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1743, "assert(" "_base == Long" ") failed", "Not a Long"); :: breakpoint(); } } while (0); |
1744 | return (TypeLong*)this; |
1745 | } |
1746 | |
1747 | inline const TypeLong *Type::isa_long() const { |
1748 | return ( _base == Long ? (TypeLong*)this : NULL__null); |
1749 | } |
1750 | |
1751 | inline const TypeF *Type::isa_float() const { |
1752 | return ((_base == FloatTop || |
1753 | _base == FloatCon || |
1754 | _base == FloatBot) ? (TypeF*)this : NULL__null); |
1755 | } |
1756 | |
1757 | inline const TypeF *Type::is_float_constant() const { |
1758 | assert( _base == FloatCon, "Not a Float" )do { if (!(_base == FloatCon)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1758, "assert(" "_base == FloatCon" ") failed", "Not a Float" ); ::breakpoint(); } } while (0); |
1759 | return (TypeF*)this; |
1760 | } |
1761 | |
1762 | inline const TypeF *Type::isa_float_constant() const { |
1763 | return ( _base == FloatCon ? (TypeF*)this : NULL__null); |
1764 | } |
1765 | |
1766 | inline const TypeD *Type::isa_double() const { |
1767 | return ((_base == DoubleTop || |
1768 | _base == DoubleCon || |
1769 | _base == DoubleBot) ? (TypeD*)this : NULL__null); |
1770 | } |
1771 | |
1772 | inline const TypeD *Type::is_double_constant() const { |
1773 | assert( _base == DoubleCon, "Not a Double" )do { if (!(_base == DoubleCon)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1773, "assert(" "_base == DoubleCon" ") failed", "Not a Double" ); ::breakpoint(); } } while (0); |
1774 | return (TypeD*)this; |
1775 | } |
1776 | |
1777 | inline const TypeD *Type::isa_double_constant() const { |
1778 | return ( _base == DoubleCon ? (TypeD*)this : NULL__null); |
1779 | } |
1780 | |
1781 | inline const TypeTuple *Type::is_tuple() const { |
1782 | assert( _base == Tuple, "Not a Tuple" )do { if (!(_base == Tuple)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1782, "assert(" "_base == Tuple" ") failed", "Not a Tuple") ; ::breakpoint(); } } while (0); |
1783 | return (TypeTuple*)this; |
1784 | } |
1785 | |
1786 | inline const TypeAry *Type::is_ary() const { |
1787 | assert( _base == Array , "Not an Array" )do { if (!(_base == Array)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1787, "assert(" "_base == Array" ") failed", "Not an Array" ); ::breakpoint(); } } while (0); |
1788 | return (TypeAry*)this; |
1789 | } |
1790 | |
1791 | inline const TypeAry *Type::isa_ary() const { |
1792 | return ((_base == Array) ? (TypeAry*)this : NULL__null); |
1793 | } |
1794 | |
1795 | inline const TypeVectMask *Type::is_vectmask() const { |
1796 | assert( _base == VectorMask, "Not a Vector Mask" )do { if (!(_base == VectorMask)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1796, "assert(" "_base == VectorMask" ") failed", "Not a Vector Mask" ); ::breakpoint(); } } while (0); |
1797 | return (TypeVectMask*)this; |
1798 | } |
1799 | |
1800 | inline const TypeVectMask *Type::isa_vectmask() const { |
1801 | return (_base == VectorMask) ? (TypeVectMask*)this : NULL__null; |
1802 | } |
1803 | |
1804 | inline const TypeVect *Type::is_vect() const { |
1805 | assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" )do { if (!(_base >= VectorMask && _base <= VectorZ )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1805, "assert(" "_base >= VectorMask && _base <= VectorZ" ") failed", "Not a Vector"); ::breakpoint(); } } while (0); |
1806 | return (TypeVect*)this; |
1807 | } |
1808 | |
1809 | inline const TypeVect *Type::isa_vect() const { |
1810 | return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : NULL__null; |
1811 | } |
1812 | |
1813 | inline const TypePtr *Type::is_ptr() const { |
1814 | // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. |
1815 | assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer")do { if (!(_base >= AnyPtr && _base <= AryKlassPtr )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1815, "assert(" "_base >= AnyPtr && _base <= AryKlassPtr" ") failed", "Not a pointer"); ::breakpoint(); } } while (0); |
1816 | return (TypePtr*)this; |
1817 | } |
1818 | |
1819 | inline const TypePtr *Type::isa_ptr() const { |
1820 | // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. |
1821 | return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : NULL__null; |
1822 | } |
1823 | |
1824 | inline const TypeOopPtr *Type::is_oopptr() const { |
1825 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1826 | assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" )do { if (!(_base >= OopPtr && _base <= AryPtr)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1826, "assert(" "_base >= OopPtr && _base <= AryPtr" ") failed", "Not a Java pointer"); ::breakpoint(); } } while (0) ; |
1827 | return (TypeOopPtr*)this; |
1828 | } |
1829 | |
1830 | inline const TypeOopPtr *Type::isa_oopptr() const { |
1831 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1832 | return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL__null; |
1833 | } |
1834 | |
1835 | inline const TypeRawPtr *Type::isa_rawptr() const { |
1836 | return (_base == RawPtr) ? (TypeRawPtr*)this : NULL__null; |
1837 | } |
1838 | |
1839 | inline const TypeRawPtr *Type::is_rawptr() const { |
1840 | assert( _base == RawPtr, "Not a raw pointer" )do { if (!(_base == RawPtr)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1840, "assert(" "_base == RawPtr" ") failed", "Not a raw pointer" ); ::breakpoint(); } } while (0); |
1841 | return (TypeRawPtr*)this; |
1842 | } |
1843 | |
1844 | inline const TypeInstPtr *Type::isa_instptr() const { |
1845 | return (_base == InstPtr) ? (TypeInstPtr*)this : NULL__null; |
1846 | } |
1847 | |
1848 | inline const TypeInstPtr *Type::is_instptr() const { |
1849 | assert( _base == InstPtr, "Not an object pointer" )do { if (!(_base == InstPtr)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1849, "assert(" "_base == InstPtr" ") failed", "Not an object pointer" ); ::breakpoint(); } } while (0); |
1850 | return (TypeInstPtr*)this; |
1851 | } |
1852 | |
1853 | inline const TypeAryPtr *Type::isa_aryptr() const { |
1854 | return (_base == AryPtr) ? (TypeAryPtr*)this : NULL__null; |
1855 | } |
1856 | |
1857 | inline const TypeAryPtr *Type::is_aryptr() const { |
1858 | assert( _base == AryPtr, "Not an array pointer" )do { if (!(_base == AryPtr)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1858, "assert(" "_base == AryPtr" ") failed", "Not an array pointer" ); ::breakpoint(); } } while (0); |
1859 | return (TypeAryPtr*)this; |
1860 | } |
1861 | |
1862 | inline const TypeNarrowOop *Type::is_narrowoop() const { |
1863 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1864 | assert(_base == NarrowOop, "Not a narrow oop" )do { if (!(_base == NarrowOop)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1864, "assert(" "_base == NarrowOop" ") failed", "Not a narrow oop" ); ::breakpoint(); } } while (0) ; |
1865 | return (TypeNarrowOop*)this; |
1866 | } |
1867 | |
1868 | inline const TypeNarrowOop *Type::isa_narrowoop() const { |
1869 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1870 | return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL__null; |
1871 | } |
1872 | |
1873 | inline const TypeNarrowKlass *Type::is_narrowklass() const { |
1874 | assert(_base == NarrowKlass, "Not a narrow oop" )do { if (!(_base == NarrowKlass)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1874, "assert(" "_base == NarrowKlass" ") failed", "Not a narrow oop" ); ::breakpoint(); } } while (0) ; |
1875 | return (TypeNarrowKlass*)this; |
1876 | } |
1877 | |
1878 | inline const TypeNarrowKlass *Type::isa_narrowklass() const { |
1879 | return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL__null; |
1880 | } |
1881 | |
1882 | inline const TypeMetadataPtr *Type::is_metadataptr() const { |
1883 | // MetadataPtr is the first and CPCachePtr the last |
1884 | assert(_base == MetadataPtr, "Not a metadata pointer" )do { if (!(_base == MetadataPtr)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1884, "assert(" "_base == MetadataPtr" ") failed", "Not a metadata pointer" ); ::breakpoint(); } } while (0) ; |
1885 | return (TypeMetadataPtr*)this; |
1886 | } |
1887 | |
1888 | inline const TypeMetadataPtr *Type::isa_metadataptr() const { |
1889 | return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL__null; |
1890 | } |
1891 | |
1892 | inline const TypeKlassPtr *Type::isa_klassptr() const { |
1893 | return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : NULL__null; |
1894 | } |
1895 | |
1896 | inline const TypeKlassPtr *Type::is_klassptr() const { |
1897 | assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer")do { if (!(_base >= KlassPtr && _base <= AryKlassPtr )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1897, "assert(" "_base >= KlassPtr && _base <= AryKlassPtr" ") failed", "Not a klass pointer"); ::breakpoint(); } } while (0); |
1898 | return (TypeKlassPtr*)this; |
1899 | } |
1900 | |
1901 | inline const TypeInstKlassPtr *Type::isa_instklassptr() const { |
1902 | return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : NULL__null; |
1903 | } |
1904 | |
1905 | inline const TypeInstKlassPtr *Type::is_instklassptr() const { |
1906 | assert(_base == InstKlassPtr, "Not a klass pointer")do { if (!(_base == InstKlassPtr)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1906, "assert(" "_base == InstKlassPtr" ") failed", "Not a klass pointer" ); ::breakpoint(); } } while (0); |
1907 | return (TypeInstKlassPtr*)this; |
1908 | } |
1909 | |
1910 | inline const TypeAryKlassPtr *Type::isa_aryklassptr() const { |
1911 | return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : NULL__null; |
1912 | } |
1913 | |
1914 | inline const TypeAryKlassPtr *Type::is_aryklassptr() const { |
1915 | assert(_base == AryKlassPtr, "Not a klass pointer")do { if (!(_base == AryKlassPtr)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.hpp" , 1915, "assert(" "_base == AryKlassPtr" ") failed", "Not a klass pointer" ); ::breakpoint(); } } while (0); |
1916 | return (TypeAryKlassPtr*)this; |
1917 | } |
1918 | |
1919 | inline const TypePtr* Type::make_ptr() const { |
1920 | return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() : |
1921 | ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() : |
1922 | isa_ptr()); |
1923 | } |
1924 | |
1925 | inline const TypeOopPtr* Type::make_oopptr() const { |
1926 | return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr(); |
1927 | } |
1928 | |
1929 | inline const TypeNarrowOop* Type::make_narrowoop() const { |
1930 | return (_base == NarrowOop) ? is_narrowoop() : |
1931 | (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL__null); |
1932 | } |
1933 | |
1934 | inline const TypeNarrowKlass* Type::make_narrowklass() const { |
1935 | return (_base == NarrowKlass) ? is_narrowklass() : |
1936 | (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL__null); |
1937 | } |
1938 | |
1939 | inline bool Type::is_floatingpoint() const { |
1940 | if( (_base == FloatCon) || (_base == FloatBot) || |
1941 | (_base == DoubleCon) || (_base == DoubleBot) ) |
1942 | return true; |
1943 | return false; |
1944 | } |
1945 | |
1946 | inline bool Type::is_ptr_to_boxing_obj() const { |
1947 | const TypeInstPtr* tp = isa_instptr(); |
1948 | return (tp != NULL__null) && (tp->offset() == 0) && |
1949 | tp->klass()->is_instance_klass() && |
1950 | tp->klass()->as_instance_klass()->is_box_klass(); |
1951 | } |
1952 | |
1953 | |
1954 | // =============================================================== |
1955 | // Things that need to be 64-bits in the 64-bit build but |
1956 | // 32-bits in the 32-bit build. Done this way to get full |
1957 | // optimization AND strong typing. |
1958 | #ifdef _LP641 |
1959 | |
1960 | // For type queries and asserts |
1961 | #define is_intptr_tis_long is_long |
1962 | #define isa_intptr_tisa_long isa_long |
1963 | #define find_intptr_t_typefind_long_type find_long_type |
1964 | #define find_intptr_t_confind_long_con find_long_con |
1965 | #define TypeXTypeLong TypeLong |
1966 | #define Type_XType::Long Type::Long |
1967 | #define TypeX_XTypeLong::LONG TypeLong::LONG |
1968 | #define TypeX_ZEROTypeLong::ZERO TypeLong::ZERO |
1969 | // For 'ideal_reg' machine registers |
1970 | #define Op_RegXOp_RegL Op_RegL |
1971 | // For phase->intcon variants |
1972 | #define MakeConXlongcon longcon |
1973 | #define ConXNodeConLNode ConLNode |
1974 | // For array index arithmetic |
1975 | #define MulXNodeMulLNode MulLNode |
1976 | #define AndXNodeAndLNode AndLNode |
1977 | #define OrXNodeOrLNode OrLNode |
1978 | #define CmpXNodeCmpLNode CmpLNode |
1979 | #define SubXNodeSubLNode SubLNode |
1980 | #define LShiftXNodeLShiftLNode LShiftLNode |
1981 | // For object size computation: |
1982 | #define AddXNodeAddLNode AddLNode |
1983 | #define RShiftXNodeRShiftLNode RShiftLNode |
1984 | // For card marks and hashcodes |
1985 | #define URShiftXNodeURShiftLNode URShiftLNode |
1986 | // For shenandoahSupport |
1987 | #define LoadXNodeLoadLNode LoadLNode |
1988 | #define StoreXNodeStoreLNode StoreLNode |
1989 | // Opcodes |
1990 | #define Op_LShiftXOp_LShiftL Op_LShiftL |
1991 | #define Op_AndXOp_AndL Op_AndL |
1992 | #define Op_AddXOp_AddL Op_AddL |
1993 | #define Op_SubXOp_SubL Op_SubL |
1994 | #define Op_XorXOp_XorL Op_XorL |
1995 | #define Op_URShiftXOp_URShiftL Op_URShiftL |
1996 | #define Op_LoadXOp_LoadL Op_LoadL |
1997 | // conversions |
1998 | #define ConvI2X(x)ConvI2L(x) ConvI2L(x) |
1999 | #define ConvL2X(x)(x) (x) |
2000 | #define ConvX2I(x)ConvL2I(x) ConvL2I(x) |
2001 | #define ConvX2L(x)(x) (x) |
2002 | #define ConvX2UL(x)(x) (x) |
2003 | |
2004 | #else |
2005 | |
2006 | // For type queries and asserts |
2007 | #define is_intptr_tis_long is_int |
2008 | #define isa_intptr_tisa_long isa_int |
2009 | #define find_intptr_t_typefind_long_type find_int_type |
2010 | #define find_intptr_t_confind_long_con find_int_con |
2011 | #define TypeXTypeLong TypeInt |
2012 | #define Type_XType::Long Type::Int |
2013 | #define TypeX_XTypeLong::LONG TypeInt::INT |
2014 | #define TypeX_ZEROTypeLong::ZERO TypeInt::ZERO |
2015 | // For 'ideal_reg' machine registers |
2016 | #define Op_RegXOp_RegL Op_RegI |
2017 | // For phase->intcon variants |
2018 | #define MakeConXlongcon intcon |
2019 | #define ConXNodeConLNode ConINode |
2020 | // For array index arithmetic |
2021 | #define MulXNodeMulLNode MulINode |
2022 | #define AndXNodeAndLNode AndINode |
2023 | #define OrXNodeOrLNode OrINode |
2024 | #define CmpXNodeCmpLNode CmpINode |
2025 | #define SubXNodeSubLNode SubINode |
2026 | #define LShiftXNodeLShiftLNode LShiftINode |
2027 | // For object size computation: |
2028 | #define AddXNodeAddLNode AddINode |
2029 | #define RShiftXNodeRShiftLNode RShiftINode |
2030 | // For card marks and hashcodes |
2031 | #define URShiftXNodeURShiftLNode URShiftINode |
2032 | // For shenandoahSupport |
2033 | #define LoadXNodeLoadLNode LoadINode |
2034 | #define StoreXNodeStoreLNode StoreINode |
2035 | // Opcodes |
2036 | #define Op_LShiftXOp_LShiftL Op_LShiftI |
2037 | #define Op_AndXOp_AndL Op_AndI |
2038 | #define Op_AddXOp_AddL Op_AddI |
2039 | #define Op_SubXOp_SubL Op_SubI |
2040 | #define Op_XorXOp_XorL Op_XorI |
2041 | #define Op_URShiftXOp_URShiftL Op_URShiftI |
2042 | #define Op_LoadXOp_LoadL Op_LoadI |
2043 | // conversions |
2044 | #define ConvI2X(x)ConvI2L(x) (x) |
2045 | #define ConvL2X(x)(x) ConvL2I(x) |
2046 | #define ConvX2I(x)ConvL2I(x) (x) |
2047 | #define ConvX2L(x)(x) ConvI2L(x) |
2048 | #define ConvX2UL(x)(x) ConvI2UL(x) |
2049 | |
2050 | #endif |
2051 | |
2052 | #endif // SHARE_OPTO_TYPE_HPP |