File: | jdk/src/hotspot/share/code/codeHeapState.cpp |
Warning: | line 750, column 11 Value stored to 'maxFreeBlock' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 2018, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * Copyright (c) 2018, 2019 SAP SE. All rights reserved. |
4 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
5 | * |
6 | * This code is free software; you can redistribute it and/or modify it |
7 | * under the terms of the GNU General Public License version 2 only, as |
8 | * published by the Free Software Foundation. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | * |
24 | */ |
25 | |
26 | #include "precompiled.hpp" |
27 | #include "code/codeHeapState.hpp" |
28 | #include "compiler/compileBroker.hpp" |
29 | #include "oops/klass.inline.hpp" |
30 | #include "runtime/safepoint.hpp" |
31 | #include "runtime/sweeper.hpp" |
32 | #include "utilities/powerOfTwo.hpp" |
33 | |
34 | // ------------------------- |
35 | // | General Description | |
36 | // ------------------------- |
37 | // The CodeHeap state analytics are divided in two parts. |
38 | // The first part examines the entire CodeHeap and aggregates all |
39 | // information that is believed useful/important. |
40 | // |
41 | // Aggregation condenses the information of a piece of the CodeHeap |
42 | // (4096 bytes by default) into an analysis granule. These granules |
43 | // contain enough detail to gain initial insight while keeping the |
44 | // internal structure sizes in check. |
45 | // |
46 | // The second part, which consists of several, independent steps, |
47 | // prints the previously collected information with emphasis on |
48 | // various aspects. |
49 | // |
50 | // The CodeHeap is a living thing. Therefore, protection against concurrent |
51 | // modification (by acquiring the CodeCache_lock) is necessary. It has |
52 | // to be provided by the caller of the analysis functions. |
53 | // If the CodeCache_lock is not held, the analysis functions may print |
54 | // less detailed information or may just do nothing. It is by intention |
55 | // that an unprotected invocation is not abnormally terminated. |
56 | // |
57 | // Data collection and printing is done on an "on request" basis. |
58 | // While no request is being processed, there is no impact on performance. |
59 | // The CodeHeap state analytics do have some memory footprint. |
60 | // The "aggregate" step allocates some data structures to hold the aggregated |
61 | // information for later output. These data structures live until they are |
62 | // explicitly discarded (function "discard") or until the VM terminates. |
63 | // There is one exception: the function "all" does not leave any data |
64 | // structures allocated. |
65 | // |
66 | // Requests for real-time, on-the-fly analysis can be issued via |
67 | // jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>] |
68 | // |
69 | // If you are (only) interested in how the CodeHeap looks like after running |
70 | // a sample workload, you can use the command line option |
71 | // -XX:+PrintCodeHeapAnalytics |
72 | // It will cause a full analysis to be written to tty. In addition, a full |
73 | // analysis will be written the first time a "CodeCache full" condition is |
74 | // detected. |
75 | // |
76 | // The command line option produces output identical to the jcmd function |
77 | // jcmd <pid> Compiler.CodeHeap_Analytics all 4096 |
78 | // --------------------------------------------------------------------------------- |
79 | |
80 | // With this declaration macro, it is possible to switch between |
81 | // - direct output into an argument-passed outputStream and |
82 | // - buffered output into a bufferedStream with subsequent flush |
83 | // of the filled buffer to the outputStream. |
84 | #define USE_BUFFEREDSTREAM |
85 | |
86 | // There are instances when composing an output line or a small set of |
87 | // output lines out of many tty->print() calls creates significant overhead. |
88 | // Writing to a bufferedStream buffer first has a significant advantage: |
89 | // It uses noticeably less cpu cycles and reduces (when writing to a |
90 | // network file) the required bandwidth by at least a factor of ten. Observed on MacOS. |
91 | // That clearly makes up for the increased code complexity. |
92 | // |
93 | // Conversion of existing code is easy and straightforward, if the code already |
94 | // uses a parameterized output destination, e.g. "outputStream st". |
95 | // - rename the formal parameter to any other name, e.g. out_st. |
96 | // - at a suitable place in your code, insert |
97 | // BUFFEREDSTEAM_DECL(buf_st, out_st) |
98 | // This will provide all the declarations necessary. After that, all |
99 | // buf_st->print() (and the like) calls will be directed to a bufferedStream object. |
100 | // Once a block of output (a line or a small set of lines) is composed, insert |
101 | // BUFFEREDSTREAM_FLUSH(termstring) |
102 | // to flush the bufferedStream to the final destination out_st. termstring is just |
103 | // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before |
104 | // being written to out_st. Be aware that the last character written MUST be a '\n'. |
105 | // Otherwise, buf_st->position() does not correspond to out_st->position() any longer. |
106 | // BUFFEREDSTREAM_FLUSH_LOCKED(termstring) |
107 | // does the same thing, protected by the ttyLocker lock. |
108 | // BUFFEREDSTREAM_FLUSH_IF(termstring, remSize) |
109 | // does a flush only if the remaining buffer space is less than remSize. |
110 | // |
111 | // To activate, #define USE_BUFFERED_STREAM before including this header. |
112 | // If not activated, output will directly go to the originally used outputStream |
113 | // with no additional overhead. |
114 | // |
115 | #if defined(USE_BUFFEREDSTREAM) |
116 | // All necessary declarations to print via a bufferedStream |
117 | // This macro must be placed before any other BUFFEREDSTREAM* |
118 | // macro in the function. |
119 | #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = _capa; bufferedStream _sstobj(_capa) ; bufferedStream* _sstbuf = &_sstobj; outputStream* _outbuf = _outst; bufferedStream* _anyst = &_sstobj; \ |
120 | ResourceMark _rm; \ |
121 | /* _anyst name of the stream as used in the code */ \ |
122 | /* _outst stream where final output will go to */ \ |
123 | /* _capa allocated capacity of stream buffer */ \ |
124 | size_t _nflush = 0; \ |
125 | size_t _nforcedflush = 0; \ |
126 | size_t _nsavedflush = 0; \ |
127 | size_t _nlockedflush = 0; \ |
128 | size_t _nflush_bytes = 0; \ |
129 | size_t _capacity = _capa; \ |
130 | bufferedStream _sstobj(_capa); \ |
131 | bufferedStream* _sstbuf = &_sstobj; \ |
132 | outputStream* _outbuf = _outst; \ |
133 | bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */ |
134 | |
135 | // Same as above, but with fixed buffer size. |
136 | #define BUFFEREDSTREAM_DECL(_anyst, _outst)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = _outst; bufferedStream * _anyst = &_sstobj;; \ |
137 | BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = _outst; bufferedStream * _anyst = &_sstobj;; |
138 | |
139 | // Flush the buffer contents unconditionally. |
140 | // No action if the buffer is empty. |
141 | #define BUFFEREDSTREAM_FLUSH(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } \ |
142 | if (((_termString) != NULL__null) && (strlen(_termString) > 0)){\ |
143 | _sstbuf->print("%s", _termString); \ |
144 | } \ |
145 | if (_sstbuf != _outbuf) { \ |
146 | if (_sstbuf->size() != 0) { \ |
147 | _nforcedflush++; _nflush_bytes += _sstbuf->size(); \ |
148 | _outbuf->print("%s", _sstbuf->as_string()); \ |
149 | _sstbuf->reset(); \ |
150 | } \ |
151 | } |
152 | |
153 | // Flush the buffer contents if the remaining capacity is |
154 | // less than the given threshold. |
155 | #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t )(_remSize)){ _nflush++; _nforcedflush--; if ((("") != __null ) && (strlen("") > 0)){ _sstbuf->print("%s", "" ); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size(); _outbuf ->print("%s", _sstbuf->as_string()); _sstbuf->reset( ); } } } else { _nsavedflush++; } } \ |
156 | if (((_termString) != NULL__null) && (strlen(_termString) > 0)){\ |
157 | _sstbuf->print("%s", _termString); \ |
158 | } \ |
159 | if (_sstbuf != _outbuf) { \ |
160 | if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\ |
161 | _nflush++; _nforcedflush--; \ |
162 | BUFFEREDSTREAM_FLUSH("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } \ |
163 | } else { \ |
164 | _nsavedflush++; \ |
165 | } \ |
166 | } |
167 | |
168 | // Flush the buffer contents if the remaining capacity is less |
169 | // than the calculated threshold (256 bytes + capacity/16) |
170 | // That should suffice for all reasonably sized output lines. |
171 | #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t )(256+(_capacity>>4))){ _nflush++; _nforcedflush--; if ( (("") != __null) && (strlen("") > 0)){ _sstbuf-> print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf-> size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf-> size(); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } else { _nsavedflush++; } } \ |
172 | BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t )(256+(_capacity>>4))){ _nflush++; _nforcedflush--; if ( (("") != __null) && (strlen("") > 0)){ _sstbuf-> print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf-> size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf-> size(); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } else { _nsavedflush++; } } |
173 | |
174 | #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString){ ttyLocker ttyl; _nlockedflush++; if (((_termString) != __null ) && (strlen(_termString) > 0)){ _sstbuf->print ("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf-> size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf-> size(); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } \ |
175 | { ttyLocker ttyl;/* keep this output block together */ \ |
176 | _nlockedflush++; \ |
177 | BUFFEREDSTREAM_FLUSH(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } \ |
178 | } |
179 | |
180 | // #define BUFFEREDSTREAM_FLUSH_STAT() \ |
181 | // if (_sstbuf != _outbuf) { \ |
182 | // _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \ |
183 | // } |
184 | |
185 | #define BUFFEREDSTREAM_FLUSH_STAT() |
186 | #else |
187 | #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = _capa; bufferedStream _sstobj(_capa) ; bufferedStream* _sstbuf = &_sstobj; outputStream* _outbuf = _outst; bufferedStream* _anyst = &_sstobj; \ |
188 | size_t _capacity = _capa; \ |
189 | outputStream* _outbuf = _outst; \ |
190 | outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */ |
191 | |
192 | #define BUFFEREDSTREAM_DECL(_anyst, _outst)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = _outst; bufferedStream * _anyst = &_sstobj;; \ |
193 | BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = _outst; bufferedStream * _anyst = &_sstobj; |
194 | |
195 | #define BUFFEREDSTREAM_FLUSH(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } \ |
196 | if (((_termString) != NULL__null) && (strlen(_termString) > 0)){\ |
197 | _outbuf->print("%s", _termString); \ |
198 | } |
199 | |
200 | #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t )(_remSize)){ _nflush++; _nforcedflush--; if ((("") != __null ) && (strlen("") > 0)){ _sstbuf->print("%s", "" ); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size(); _outbuf ->print("%s", _sstbuf->as_string()); _sstbuf->reset( ); } } } else { _nsavedflush++; } } \ |
201 | BUFFEREDSTREAM_FLUSH(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } |
202 | |
203 | #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t )(256+(_capacity>>4))){ _nflush++; _nforcedflush--; if ( (("") != __null) && (strlen("") > 0)){ _sstbuf-> print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf-> size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf-> size(); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } else { _nsavedflush++; } } \ |
204 | BUFFEREDSTREAM_FLUSH(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } |
205 | |
206 | #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString){ ttyLocker ttyl; _nlockedflush++; if (((_termString) != __null ) && (strlen(_termString) > 0)){ _sstbuf->print ("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf-> size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf-> size(); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } \ |
207 | BUFFEREDSTREAM_FLUSH(_termString)if (((_termString) != __null) && (strlen(_termString) > 0)){ _sstbuf->print("%s", _termString); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } |
208 | |
209 | #define BUFFEREDSTREAM_FLUSH_STAT() |
210 | #endif |
211 | #define HEX32_FORMAT"0x%x" "0x%x" // just a helper format string used below multiple times |
212 | |
213 | const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' }; |
214 | const char* blobTypeName[] = {"noType" |
215 | , "nMethod (under construction), cannot be observed" |
216 | , "nMethod (active)" |
217 | , "nMethod (inactive)" |
218 | , "nMethod (deopt)" |
219 | , "nMethod (zombie)" |
220 | , "nMethod (unloaded)" |
221 | , "runtime stub" |
222 | , "ricochet stub" |
223 | , "deopt stub" |
224 | , "uncommon trap stub" |
225 | , "exception stub" |
226 | , "safepoint stub" |
227 | , "adapter blob" |
228 | , "MH adapter blob" |
229 | , "buffer blob" |
230 | , "lastType" |
231 | }; |
232 | const char* compTypeName[] = { "none", "c1", "c2", "jvmci" }; |
233 | |
234 | // Be prepared for ten different CodeHeap segments. Should be enough for a few years. |
235 | const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32 |
236 | const unsigned int maxTopSizeBlocks = 100; |
237 | const unsigned int tsbStopper = 2 * maxTopSizeBlocks; |
238 | const unsigned int maxHeaps = 10; |
239 | static unsigned int nHeaps = 0; |
240 | static struct CodeHeapStat CodeHeapStatArray[maxHeaps]; |
241 | |
242 | // static struct StatElement *StatArray = NULL; |
243 | static StatElement* StatArray = NULL__null; |
244 | static int log2_seg_size = 0; |
245 | static size_t seg_size = 0; |
246 | static size_t alloc_granules = 0; |
247 | static size_t granule_size = 0; |
248 | static bool segment_granules = false; |
249 | static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only. |
250 | static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only. |
251 | static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only. |
252 | static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only. |
253 | static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transient state. |
254 | static unsigned int nBlocks_stub = 0; |
255 | |
256 | static struct FreeBlk* FreeArray = NULL__null; |
257 | static unsigned int alloc_freeBlocks = 0; |
258 | |
259 | static struct TopSizeBlk* TopSizeArray = NULL__null; |
260 | static unsigned int alloc_topSizeBlocks = 0; |
261 | static unsigned int used_topSizeBlocks = 0; |
262 | |
263 | static struct SizeDistributionElement* SizeDistributionArray = NULL__null; |
264 | |
265 | // nMethod temperature (hotness) indicators. |
266 | static int avgTemp = 0; |
267 | static int maxTemp = 0; |
268 | static int minTemp = 0; |
269 | |
270 | static unsigned int latest_compilation_id = 0; |
271 | static volatile bool initialization_complete = false; |
272 | |
273 | const char* CodeHeapState::get_heapName(CodeHeap* heap) { |
274 | if (SegmentedCodeCache) { |
275 | return heap->name(); |
276 | } else { |
277 | return "CodeHeap"; |
278 | } |
279 | } |
280 | |
281 | // returns the index for the heap being processed. |
282 | unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) { |
283 | if (heapName == NULL__null) { |
284 | return maxHeaps; |
285 | } |
286 | if (SegmentedCodeCache) { |
287 | // Search for a pre-existing entry. If found, return that index. |
288 | for (unsigned int i = 0; i < nHeaps; i++) { |
289 | if (CodeHeapStatArray[i].heapName != NULL__null && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) { |
290 | return i; |
291 | } |
292 | } |
293 | |
294 | // check if there are more code heap segments than we can handle. |
295 | if (nHeaps == maxHeaps) { |
296 | out->print_cr("Too many heap segments for current limit(%d).", maxHeaps); |
297 | return maxHeaps; |
298 | } |
299 | |
300 | // allocate new slot in StatArray. |
301 | CodeHeapStatArray[nHeaps].heapName = heapName; |
302 | return nHeaps++; |
303 | } else { |
304 | nHeaps = 1; |
305 | CodeHeapStatArray[0].heapName = heapName; |
306 | return 0; // This is the default index if CodeCache is not segmented. |
307 | } |
308 | } |
309 | |
310 | void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) { |
311 | unsigned int ix = findHeapIndex(out, heapName); |
312 | if (ix < maxHeaps) { |
313 | StatArray = CodeHeapStatArray[ix].StatArray; |
314 | seg_size = CodeHeapStatArray[ix].segment_size; |
315 | log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); |
316 | alloc_granules = CodeHeapStatArray[ix].alloc_granules; |
317 | granule_size = CodeHeapStatArray[ix].granule_size; |
318 | segment_granules = CodeHeapStatArray[ix].segment_granules; |
319 | nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1; |
320 | nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2; |
321 | nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive; |
322 | nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead; |
323 | nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded; |
324 | nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub; |
325 | FreeArray = CodeHeapStatArray[ix].FreeArray; |
326 | alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks; |
327 | TopSizeArray = CodeHeapStatArray[ix].TopSizeArray; |
328 | alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks; |
329 | used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks; |
330 | SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray; |
331 | avgTemp = CodeHeapStatArray[ix].avgTemp; |
332 | maxTemp = CodeHeapStatArray[ix].maxTemp; |
333 | minTemp = CodeHeapStatArray[ix].minTemp; |
334 | } else { |
335 | StatArray = NULL__null; |
336 | seg_size = 0; |
337 | log2_seg_size = 0; |
338 | alloc_granules = 0; |
339 | granule_size = 0; |
340 | segment_granules = false; |
341 | nBlocks_t1 = 0; |
342 | nBlocks_t2 = 0; |
343 | nBlocks_alive = 0; |
344 | nBlocks_dead = 0; |
345 | nBlocks_unloaded = 0; |
346 | nBlocks_stub = 0; |
347 | FreeArray = NULL__null; |
348 | alloc_freeBlocks = 0; |
349 | TopSizeArray = NULL__null; |
350 | alloc_topSizeBlocks = 0; |
351 | used_topSizeBlocks = 0; |
352 | SizeDistributionArray = NULL__null; |
353 | avgTemp = 0; |
354 | maxTemp = 0; |
355 | minTemp = 0; |
356 | } |
357 | } |
358 | |
359 | void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) { |
360 | unsigned int ix = findHeapIndex(out, heapName); |
361 | if (ix < maxHeaps) { |
362 | CodeHeapStatArray[ix].StatArray = StatArray; |
363 | CodeHeapStatArray[ix].segment_size = seg_size; |
364 | CodeHeapStatArray[ix].alloc_granules = alloc_granules; |
365 | CodeHeapStatArray[ix].granule_size = granule_size; |
366 | CodeHeapStatArray[ix].segment_granules = segment_granules; |
367 | CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1; |
368 | CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2; |
369 | CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive; |
370 | CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead; |
371 | CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded; |
372 | CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub; |
373 | CodeHeapStatArray[ix].FreeArray = FreeArray; |
374 | CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks; |
375 | CodeHeapStatArray[ix].TopSizeArray = TopSizeArray; |
376 | CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks; |
377 | CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks; |
378 | CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray; |
379 | CodeHeapStatArray[ix].avgTemp = avgTemp; |
380 | CodeHeapStatArray[ix].maxTemp = maxTemp; |
381 | CodeHeapStatArray[ix].minTemp = minTemp; |
382 | } |
383 | } |
384 | |
385 | //---< get a new statistics array >--- |
386 | void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) { |
387 | if (StatArray == NULL__null) { |
388 | StatArray = new StatElement[nElem]; |
389 | //---< reset some counts >--- |
390 | alloc_granules = nElem; |
391 | granule_size = granularity; |
392 | } |
393 | |
394 | if (StatArray == NULL__null) { |
395 | //---< just do nothing if allocation failed >--- |
396 | out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName); |
397 | out->print_cr("Current granularity is " SIZE_FORMAT"%" "l" "u" " bytes. Try a coarser granularity.", granularity); |
398 | alloc_granules = 0; |
399 | granule_size = 0; |
400 | } else { |
401 | //---< initialize statistics array >--- |
402 | memset((void*)StatArray, 0, nElem*sizeof(StatElement)); |
403 | } |
404 | } |
405 | |
406 | //---< get a new free block array >--- |
407 | void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) { |
408 | if (FreeArray == NULL__null) { |
409 | FreeArray = new FreeBlk[nElem]; |
410 | //---< reset some counts >--- |
411 | alloc_freeBlocks = nElem; |
412 | } |
413 | |
414 | if (FreeArray == NULL__null) { |
415 | //---< just do nothing if allocation failed >--- |
416 | out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName); |
417 | alloc_freeBlocks = 0; |
418 | } else { |
419 | //---< initialize free block array >--- |
420 | memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk)); |
421 | } |
422 | } |
423 | |
424 | //---< get a new TopSizeArray >--- |
425 | void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) { |
426 | if (TopSizeArray == NULL__null) { |
427 | TopSizeArray = new TopSizeBlk[nElem]; |
428 | //---< reset some counts >--- |
429 | alloc_topSizeBlocks = nElem; |
430 | used_topSizeBlocks = 0; |
431 | } |
432 | |
433 | if (TopSizeArray == NULL__null) { |
434 | //---< just do nothing if allocation failed >--- |
435 | out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName); |
436 | alloc_topSizeBlocks = 0; |
437 | } else { |
438 | //---< initialize TopSizeArray >--- |
439 | memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk)); |
440 | used_topSizeBlocks = 0; |
441 | } |
442 | } |
443 | |
444 | //---< get a new SizeDistributionArray >--- |
445 | void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) { |
446 | if (SizeDistributionArray == NULL__null) { |
447 | SizeDistributionArray = new SizeDistributionElement[nElem]; |
448 | } |
449 | |
450 | if (SizeDistributionArray == NULL__null) { |
451 | //---< just do nothing if allocation failed >--- |
452 | out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName); |
453 | } else { |
454 | //---< initialize SizeDistArray >--- |
455 | memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement)); |
456 | // Logarithmic range growth. First range starts at _segment_size. |
457 | SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U; |
458 | for (unsigned int i = log2_seg_size; i < nElem; i++) { |
459 | SizeDistributionArray[i].rangeStart = 1U << (i - log2_seg_size); |
460 | SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - log2_seg_size); |
461 | } |
462 | } |
463 | } |
464 | |
465 | //---< get a new SizeDistributionArray >--- |
466 | void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) { |
467 | if (SizeDistributionArray != NULL__null) { |
468 | for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) { |
469 | if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) { |
470 | SizeDistributionArray[i].lenSum += len; |
471 | SizeDistributionArray[i].count++; |
472 | break; |
473 | } |
474 | } |
475 | } |
476 | } |
477 | |
478 | void CodeHeapState::discard_StatArray(outputStream* out) { |
479 | if (StatArray != NULL__null) { |
480 | delete StatArray; |
481 | StatArray = NULL__null; |
482 | alloc_granules = 0; |
483 | granule_size = 0; |
484 | } |
485 | } |
486 | |
487 | void CodeHeapState::discard_FreeArray(outputStream* out) { |
488 | if (FreeArray != NULL__null) { |
489 | delete[] FreeArray; |
490 | FreeArray = NULL__null; |
491 | alloc_freeBlocks = 0; |
492 | } |
493 | } |
494 | |
495 | void CodeHeapState::discard_TopSizeArray(outputStream* out) { |
496 | if (TopSizeArray != NULL__null) { |
497 | for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { |
498 | if (TopSizeArray[i].blob_name != NULL__null) { |
499 | os::free((void*)TopSizeArray[i].blob_name); |
500 | } |
501 | } |
502 | delete[] TopSizeArray; |
503 | TopSizeArray = NULL__null; |
504 | alloc_topSizeBlocks = 0; |
505 | used_topSizeBlocks = 0; |
506 | } |
507 | } |
508 | |
509 | void CodeHeapState::discard_SizeDistArray(outputStream* out) { |
510 | if (SizeDistributionArray != NULL__null) { |
511 | delete[] SizeDistributionArray; |
512 | SizeDistributionArray = NULL__null; |
513 | } |
514 | } |
515 | |
516 | // Discard all allocated internal data structures. |
517 | // This should be done after an analysis session is completed. |
518 | void CodeHeapState::discard(outputStream* out, CodeHeap* heap) { |
519 | if (!initialization_complete) { |
520 | return; |
521 | } |
522 | |
523 | if (nHeaps > 0) { |
524 | for (unsigned int ix = 0; ix < nHeaps; ix++) { |
525 | get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); |
526 | discard_StatArray(out); |
527 | discard_FreeArray(out); |
528 | discard_TopSizeArray(out); |
529 | discard_SizeDistArray(out); |
530 | set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); |
531 | CodeHeapStatArray[ix].heapName = NULL__null; |
532 | } |
533 | nHeaps = 0; |
534 | } |
535 | } |
536 | |
537 | void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) { |
538 | unsigned int nBlocks_free = 0; |
539 | unsigned int nBlocks_used = 0; |
540 | unsigned int nBlocks_zomb = 0; |
541 | unsigned int nBlocks_disconn = 0; |
542 | unsigned int nBlocks_notentr = 0; |
543 | |
544 | //---< max & min of TopSizeArray >--- |
545 | // it is sufficient to have these sizes as 32bit unsigned ints. |
546 | // The CodeHeap is limited in size to 4GB. Furthermore, the sizes |
547 | // are stored in _segment_size units, scaling them down by a factor of 64 (at least). |
548 | unsigned int currMax = 0; |
549 | unsigned int currMin = 0; |
550 | unsigned int currMin_ix = 0; |
551 | unsigned long total_iterations = 0; |
552 | |
553 | bool done = false; |
554 | const int min_granules = 256; |
555 | const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M |
556 | // results in StatArray size of 24M (= max_granules * 48 Bytes per element) |
557 | // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit. |
558 | const char* heapName = get_heapName(heap); |
559 | BUFFEREDSTREAM_DECL(ast, out)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = out; bufferedStream * ast = &_sstobj;; |
560 | |
561 | if (!initialization_complete) { |
562 | memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray)); |
563 | initialization_complete = true; |
564 | |
565 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (general remarks)", NULL__null); |
566 | ast->print_cr(" The code heap analysis function provides deep insights into\n" |
567 | " the inner workings and the internal state of the Java VM's\n" |
568 | " code cache - the place where all the JVM generated machine\n" |
569 | " code is stored.\n" |
570 | " \n" |
571 | " This function is designed and provided for support engineers\n" |
572 | " to help them understand and solve issues in customer systems.\n" |
573 | " It is not intended for use and interpretation by other persons.\n" |
574 | " \n"); |
575 | BUFFEREDSTREAM_FLUSH("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
576 | } |
577 | get_HeapStatGlobals(out, heapName); |
578 | |
579 | |
580 | // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock, |
581 | // all heap information is "constant" and can be safely extracted/calculated before we |
582 | // enter the while() loop. Actually, the loop will only be iterated once. |
583 | char* low_bound = heap->low_boundary(); |
584 | size_t size = heap->capacity(); |
585 | size_t res_size = heap->max_capacity(); |
586 | seg_size = heap->segment_size(); |
587 | log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value. |
588 | |
589 | if (seg_size == 0) { |
590 | printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName); |
591 | BUFFEREDSTREAM_FLUSH("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
592 | return; |
593 | } |
594 | |
595 | if (!holding_required_locks()) { |
596 | printBox(ast, '-', "Must be at safepoint or hold Compile_lock and CodeCache_lock when calling aggregate function for ", heapName); |
597 | BUFFEREDSTREAM_FLUSH("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
598 | return; |
599 | } |
600 | |
601 | // Calculate granularity of analysis (and output). |
602 | // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize. |
603 | // The CodeHeap can become fairly large, in particular in productive real-life systems. |
604 | // |
605 | // It is often neither feasible nor desirable to aggregate the data with the highest possible |
606 | // level of detail, i.e. inspecting and printing each segment on its own. |
607 | // |
608 | // The granularity parameter allows to specify the level of detail available in the analysis. |
609 | // It must be a positive multiple of the segment size and should be selected such that enough |
610 | // detail is provided while, at the same time, the printed output does not explode. |
611 | // |
612 | // By manipulating the granularity value, we enforce that at least min_granules units |
613 | // of analysis are available. We also enforce an upper limit of max_granules units to |
614 | // keep the amount of allocated storage in check. |
615 | // |
616 | // Finally, we adjust the granularity such that each granule covers at most 64k-1 segments. |
617 | // This is necessary to prevent an unsigned short overflow while accumulating space information. |
618 | // |
619 | assert(granularity > 0, "granularity should be positive.")do { if (!(granularity > 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/code/codeHeapState.cpp" , 619, "assert(" "granularity > 0" ") failed", "granularity should be positive." ); ::breakpoint(); } } while (0); |
620 | |
621 | if (granularity > size) { |
622 | granularity = size; |
623 | } |
624 | if (size/granularity < min_granules) { |
625 | granularity = size/min_granules; // at least min_granules granules |
626 | } |
627 | granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size |
628 | if (granularity < seg_size) { |
629 | granularity = seg_size; // must be at least seg_size |
630 | } |
631 | if (size/granularity > max_granules) { |
632 | granularity = size/max_granules; // at most max_granules granules |
633 | } |
634 | granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size |
635 | if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) { |
636 | granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size |
637 | } |
638 | segment_granules = granularity == seg_size; |
639 | size_t granules = (size + (granularity-1))/granularity; |
640 | |
641 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (used blocks) for segment ", heapName); |
642 | ast->print_cr(" The aggregate step takes an aggregated snapshot of the CodeHeap.\n" |
643 | " Subsequent print functions create their output based on this snapshot.\n" |
644 | " The CodeHeap is a living thing, and every effort has been made for the\n" |
645 | " collected data to be consistent. Only the method names and signatures\n" |
646 | " are retrieved at print time. That may lead to rare cases where the\n" |
647 | " name of a method is no longer available, e.g. because it was unloaded.\n"); |
648 | ast->print_cr(" CodeHeap committed size " SIZE_FORMAT"%" "l" "u" "K (" SIZE_FORMAT"%" "l" "u" "M), reserved size " SIZE_FORMAT"%" "l" "u" "K (" SIZE_FORMAT"%" "l" "u" "M), %d%% occupied.", |
649 | size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size)); |
650 | ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT"%" "l" "u" " bytes. This is the smallest possible granularity.", seg_size); |
651 | ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT"%" "l" "u" " granules of size " SIZE_FORMAT"%" "l" "u" " bytes.", granules, granularity); |
652 | ast->print_cr(" Each granule takes " SIZE_FORMAT"%" "l" "u" " bytes of C heap, that is " SIZE_FORMAT"%" "l" "u" "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K); |
653 | ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules)); |
654 | BUFFEREDSTREAM_FLUSH("\n")if ((("\n") != __null) && (strlen("\n") > 0)){ _sstbuf ->print("%s", "\n"); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
655 | |
656 | |
657 | while (!done) { |
658 | //---< reset counters with every aggregation >--- |
659 | nBlocks_t1 = 0; |
660 | nBlocks_t2 = 0; |
661 | nBlocks_alive = 0; |
662 | nBlocks_dead = 0; |
663 | nBlocks_unloaded = 0; |
664 | nBlocks_stub = 0; |
665 | |
666 | nBlocks_free = 0; |
667 | nBlocks_used = 0; |
668 | nBlocks_zomb = 0; |
669 | nBlocks_disconn = 0; |
670 | nBlocks_notentr = 0; |
671 | |
672 | //---< discard old arrays if size does not match >--- |
673 | if (granules != alloc_granules) { |
674 | discard_StatArray(out); |
675 | discard_TopSizeArray(out); |
676 | } |
677 | |
678 | //---< allocate arrays if they don't yet exist, initialize >--- |
679 | prepare_StatArray(out, granules, granularity, heapName); |
680 | if (StatArray == NULL__null) { |
681 | set_HeapStatGlobals(out, heapName); |
682 | return; |
683 | } |
684 | prepare_TopSizeArray(out, maxTopSizeBlocks, heapName); |
685 | prepare_SizeDistArray(out, nSizeDistElements, heapName); |
686 | |
687 | latest_compilation_id = CompileBroker::get_compilation_id(); |
688 | unsigned int highest_compilation_id = 0; |
689 | size_t usedSpace = 0; |
690 | size_t t1Space = 0; |
691 | size_t t2Space = 0; |
692 | size_t aliveSpace = 0; |
693 | size_t disconnSpace = 0; |
694 | size_t notentrSpace = 0; |
695 | size_t deadSpace = 0; |
696 | size_t unloadedSpace = 0; |
697 | size_t stubSpace = 0; |
698 | size_t freeSpace = 0; |
699 | size_t maxFreeSize = 0; |
700 | HeapBlock* maxFreeBlock = NULL__null; |
701 | bool insane = false; |
702 | |
703 | int64_t hotnessAccumulator = 0; |
704 | unsigned int n_methods = 0; |
705 | avgTemp = 0; |
706 | minTemp = (int)(res_size > M ? (res_size/M)*2 : 1); |
707 | maxTemp = -minTemp; |
708 | |
709 | for (HeapBlock *h = heap->first_block(); h != NULL__null && !insane; h = heap->next_block(h)) { |
710 | unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int. |
711 | size_t hb_bytelen = ((size_t)hb_len)<<log2_seg_size; |
712 | unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size); |
713 | unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size); |
714 | unsigned int compile_id = 0; |
715 | CompLevel comp_lvl = CompLevel_none; |
716 | compType cType = noComp; |
717 | blobType cbType = noType; |
718 | |
719 | //---< some sanity checks >--- |
720 | // Do not assert here, just check, print error message and return. |
721 | // This is a diagnostic function. It is not supposed to tear down the VM. |
722 | if ((char*)h < low_bound) { |
723 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound); |
724 | } |
725 | if ((char*)h > (low_bound + res_size)) { |
726 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size); |
727 | } |
728 | if ((char*)h > (low_bound + size)) { |
729 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size); |
730 | } |
731 | if (ix_end >= granules) { |
732 | insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT"%" "l" "u" ")", ix_end, granules); |
733 | } |
734 | if (size != heap->capacity()) { |
735 | insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT"%" "l" "u" "K to " SIZE_FORMAT"%" "l" "u" "K)", size/(size_t)K, heap->capacity()/(size_t)K); |
736 | } |
737 | if (ix_beg > ix_end) { |
738 | insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg); |
739 | } |
740 | if (insane) { |
741 | BUFFEREDSTREAM_FLUSH("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
742 | continue; |
743 | } |
744 | |
745 | if (h->free()) { |
746 | nBlocks_free++; |
747 | freeSpace += hb_bytelen; |
748 | if (hb_bytelen > maxFreeSize) { |
749 | maxFreeSize = hb_bytelen; |
750 | maxFreeBlock = h; |
Value stored to 'maxFreeBlock' is never read | |
751 | } |
752 | } else { |
753 | update_SizeDistArray(out, hb_len); |
754 | nBlocks_used++; |
755 | usedSpace += hb_bytelen; |
756 | CodeBlob* cb = (CodeBlob*)heap->find_start(h); |
757 | cbType = get_cbType(cb); // Will check for cb == NULL and other safety things. |
758 | if (cbType != noType) { |
759 | const char* blob_name = os::strdup(cb->name()); |
760 | unsigned int nm_size = 0; |
761 | int temperature = 0; |
762 | nmethod* nm = cb->as_nmethod_or_null(); |
763 | if (nm != NULL__null) { // no is_readable check required, nm = (nmethod*)cb. |
764 | ResourceMark rm; |
765 | Method* method = nm->method(); |
766 | if (nm->is_in_use()) { |
767 | blob_name = os::strdup(method->name_and_sig_as_C_string()); |
768 | } |
769 | if (nm->is_not_entrant()) { |
770 | blob_name = os::strdup(method->name_and_sig_as_C_string()); |
771 | } |
772 | |
773 | nm_size = nm->total_size(); |
774 | compile_id = nm->compile_id(); |
775 | comp_lvl = (CompLevel)(nm->comp_level()); |
776 | if (nm->is_compiled_by_c1()) { |
777 | cType = c1; |
778 | } |
779 | if (nm->is_compiled_by_c2()) { |
780 | cType = c2; |
781 | } |
782 | if (nm->is_compiled_by_jvmci()) { |
783 | cType = jvmci; |
784 | } |
785 | switch (cbType) { |
786 | case nMethod_inuse: { // only for executable methods!!! |
787 | // space for these cbs is accounted for later. |
788 | temperature = nm->hotness_counter(); |
789 | hotnessAccumulator += temperature; |
790 | n_methods++; |
791 | maxTemp = (temperature > maxTemp) ? temperature : maxTemp; |
792 | minTemp = (temperature < minTemp) ? temperature : minTemp; |
793 | break; |
794 | } |
795 | case nMethod_notused: |
796 | nBlocks_alive++; |
797 | nBlocks_disconn++; |
798 | aliveSpace += hb_bytelen; |
799 | disconnSpace += hb_bytelen; |
800 | break; |
801 | case nMethod_notentrant: // equivalent to nMethod_alive |
802 | nBlocks_alive++; |
803 | nBlocks_notentr++; |
804 | aliveSpace += hb_bytelen; |
805 | notentrSpace += hb_bytelen; |
806 | break; |
807 | case nMethod_unloaded: |
808 | nBlocks_unloaded++; |
809 | unloadedSpace += hb_bytelen; |
810 | break; |
811 | case nMethod_dead: |
812 | nBlocks_dead++; |
813 | deadSpace += hb_bytelen; |
814 | break; |
815 | default: |
816 | break; |
817 | } |
818 | } |
819 | |
820 | //------------------------------------------ |
821 | //---< register block in TopSizeArray >--- |
822 | //------------------------------------------ |
823 | if (alloc_topSizeBlocks > 0) { |
824 | if (used_topSizeBlocks == 0) { |
825 | TopSizeArray[0].start = h; |
826 | TopSizeArray[0].blob_name = blob_name; |
827 | TopSizeArray[0].len = hb_len; |
828 | TopSizeArray[0].index = tsbStopper; |
829 | TopSizeArray[0].nm_size = nm_size; |
830 | TopSizeArray[0].temperature = temperature; |
831 | TopSizeArray[0].compiler = cType; |
832 | TopSizeArray[0].level = comp_lvl; |
833 | TopSizeArray[0].type = cbType; |
834 | currMax = hb_len; |
835 | currMin = hb_len; |
836 | currMin_ix = 0; |
837 | used_topSizeBlocks++; |
838 | blob_name = NULL__null; // indicate blob_name was consumed |
839 | // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats): |
840 | } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) { |
841 | //---< all blocks in list are larger, but there is room left in array >--- |
842 | TopSizeArray[currMin_ix].index = used_topSizeBlocks; |
843 | TopSizeArray[used_topSizeBlocks].start = h; |
844 | TopSizeArray[used_topSizeBlocks].blob_name = blob_name; |
845 | TopSizeArray[used_topSizeBlocks].len = hb_len; |
846 | TopSizeArray[used_topSizeBlocks].index = tsbStopper; |
847 | TopSizeArray[used_topSizeBlocks].nm_size = nm_size; |
848 | TopSizeArray[used_topSizeBlocks].temperature = temperature; |
849 | TopSizeArray[used_topSizeBlocks].compiler = cType; |
850 | TopSizeArray[used_topSizeBlocks].level = comp_lvl; |
851 | TopSizeArray[used_topSizeBlocks].type = cbType; |
852 | currMin = hb_len; |
853 | currMin_ix = used_topSizeBlocks; |
854 | used_topSizeBlocks++; |
855 | blob_name = NULL__null; // indicate blob_name was consumed |
856 | } else { |
857 | // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats): |
858 | // We don't need to search the list if we know beforehand that the current block size is |
859 | // smaller than the currently recorded minimum and there is no free entry left in the list. |
860 | if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) { |
861 | if (currMax < hb_len) { |
862 | currMax = hb_len; |
863 | } |
864 | unsigned int i; |
865 | unsigned int prev_i = tsbStopper; |
866 | unsigned int limit_i = 0; |
867 | for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) { |
868 | if (limit_i++ >= alloc_topSizeBlocks) { |
869 | insane = true; break; // emergency exit |
870 | } |
871 | if (i >= used_topSizeBlocks) { |
872 | insane = true; break; // emergency exit |
873 | } |
874 | total_iterations++; |
875 | if (TopSizeArray[i].len < hb_len) { |
876 | //---< We want to insert here, element <i> is smaller than the current one >--- |
877 | if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert |
878 | // old entry gets moved to the next free element of the array. |
879 | // That's necessary to keep the entry for the largest block at index 0. |
880 | // This move might cause the current minimum to be moved to another place |
881 | if (i == currMin_ix) { |
882 | assert(TopSizeArray[i].len == currMin, "sort error")do { if (!(TopSizeArray[i].len == currMin)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/code/codeHeapState.cpp" , 882, "assert(" "TopSizeArray[i].len == currMin" ") failed", "sort error"); ::breakpoint(); } } while (0); |
883 | currMin_ix = used_topSizeBlocks; |
884 | } |
885 | memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); |
886 | TopSizeArray[i].start = h; |
887 | TopSizeArray[i].blob_name = blob_name; |
888 | TopSizeArray[i].len = hb_len; |
889 | TopSizeArray[i].index = used_topSizeBlocks; |
890 | TopSizeArray[i].nm_size = nm_size; |
891 | TopSizeArray[i].temperature = temperature; |
892 | TopSizeArray[i].compiler = cType; |
893 | TopSizeArray[i].level = comp_lvl; |
894 | TopSizeArray[i].type = cbType; |
895 | used_topSizeBlocks++; |
896 | blob_name = NULL__null; // indicate blob_name was consumed |
897 | } else { // no room for new entries, current block replaces entry for smallest block |
898 | //---< Find last entry (entry for smallest remembered block) >--- |
899 | // We either want to insert right before the smallest entry, which is when <i> |
900 | // indexes the smallest entry. We then just overwrite the smallest entry. |
901 | // What's more likely: |
902 | // We want to insert somewhere in the list. The smallest entry (@<j>) then falls off the cliff. |
903 | // The element at the insert point <i> takes it's slot. The second-smallest entry now becomes smallest. |
904 | // Data of the current block is filled in at index <i>. |
905 | unsigned int j = i; |
906 | unsigned int prev_j = tsbStopper; |
907 | unsigned int limit_j = 0; |
908 | while (TopSizeArray[j].index != tsbStopper) { |
909 | if (limit_j++ >= alloc_topSizeBlocks) { |
910 | insane = true; break; // emergency exit |
911 | } |
912 | if (j >= used_topSizeBlocks) { |
913 | insane = true; break; // emergency exit |
914 | } |
915 | total_iterations++; |
916 | prev_j = j; |
917 | j = TopSizeArray[j].index; |
918 | } |
919 | if (!insane) { |
920 | if (TopSizeArray[j].blob_name != NULL__null) { |
921 | os::free((void*)TopSizeArray[j].blob_name); |
922 | } |
923 | if (prev_j == tsbStopper) { |
924 | //---< Above while loop did not iterate, we already are the min entry >--- |
925 | //---< We have to just replace the smallest entry >--- |
926 | currMin = hb_len; |
927 | currMin_ix = j; |
928 | TopSizeArray[j].start = h; |
929 | TopSizeArray[j].blob_name = blob_name; |
930 | TopSizeArray[j].len = hb_len; |
931 | TopSizeArray[j].index = tsbStopper; // already set!! |
932 | TopSizeArray[i].nm_size = nm_size; |
933 | TopSizeArray[i].temperature = temperature; |
934 | TopSizeArray[j].compiler = cType; |
935 | TopSizeArray[j].level = comp_lvl; |
936 | TopSizeArray[j].type = cbType; |
937 | } else { |
938 | //---< second-smallest entry is now smallest >--- |
939 | TopSizeArray[prev_j].index = tsbStopper; |
940 | currMin = TopSizeArray[prev_j].len; |
941 | currMin_ix = prev_j; |
942 | //---< previously smallest entry gets overwritten >--- |
943 | memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); |
944 | TopSizeArray[i].start = h; |
945 | TopSizeArray[i].blob_name = blob_name; |
946 | TopSizeArray[i].len = hb_len; |
947 | TopSizeArray[i].index = j; |
948 | TopSizeArray[i].nm_size = nm_size; |
949 | TopSizeArray[i].temperature = temperature; |
950 | TopSizeArray[i].compiler = cType; |
951 | TopSizeArray[i].level = comp_lvl; |
952 | TopSizeArray[i].type = cbType; |
953 | } |
954 | blob_name = NULL__null; // indicate blob_name was consumed |
955 | } // insane |
956 | } |
957 | break; |
958 | } |
959 | prev_i = i; |
960 | } |
961 | if (insane) { |
962 | // Note: regular analysis could probably continue by resetting "insane" flag. |
963 | out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted."); |
964 | discard_TopSizeArray(out); |
965 | } |
966 | } |
967 | } |
968 | } |
969 | if (blob_name != NULL__null) { |
970 | os::free((void*)blob_name); |
971 | blob_name = NULL__null; |
972 | } |
973 | //---------------------------------------------- |
974 | //---< END register block in TopSizeArray >--- |
975 | //---------------------------------------------- |
976 | } else { |
977 | nBlocks_zomb++; |
978 | } |
979 | |
980 | if (ix_beg == ix_end) { |
981 | StatArray[ix_beg].type = cbType; |
982 | switch (cbType) { |
983 | case nMethod_inuse: |
984 | highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id; |
985 | if (comp_lvl < CompLevel_full_optimization) { |
986 | nBlocks_t1++; |
987 | t1Space += hb_bytelen; |
988 | StatArray[ix_beg].t1_count++; |
989 | StatArray[ix_beg].t1_space += (unsigned short)hb_len; |
990 | StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; |
991 | } else { |
992 | nBlocks_t2++; |
993 | t2Space += hb_bytelen; |
994 | StatArray[ix_beg].t2_count++; |
995 | StatArray[ix_beg].t2_space += (unsigned short)hb_len; |
996 | StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; |
997 | } |
998 | StatArray[ix_beg].level = comp_lvl; |
999 | StatArray[ix_beg].compiler = cType; |
1000 | break; |
1001 | case nMethod_alive: |
1002 | StatArray[ix_beg].tx_count++; |
1003 | StatArray[ix_beg].tx_space += (unsigned short)hb_len; |
1004 | StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; |
1005 | StatArray[ix_beg].level = comp_lvl; |
1006 | StatArray[ix_beg].compiler = cType; |
1007 | break; |
1008 | case nMethod_dead: |
1009 | case nMethod_unloaded: |
1010 | StatArray[ix_beg].dead_count++; |
1011 | StatArray[ix_beg].dead_space += (unsigned short)hb_len; |
1012 | break; |
1013 | default: |
1014 | // must be a stub, if it's not a dead or alive nMethod |
1015 | nBlocks_stub++; |
1016 | stubSpace += hb_bytelen; |
1017 | StatArray[ix_beg].stub_count++; |
1018 | StatArray[ix_beg].stub_space += (unsigned short)hb_len; |
1019 | break; |
1020 | } |
1021 | } else { |
1022 | unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size)); |
1023 | unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size); |
1024 | beg_space = beg_space>>log2_seg_size; // store in units of _segment_size |
1025 | end_space = end_space>>log2_seg_size; // store in units of _segment_size |
1026 | StatArray[ix_beg].type = cbType; |
1027 | StatArray[ix_end].type = cbType; |
1028 | switch (cbType) { |
1029 | case nMethod_inuse: |
1030 | highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id; |
1031 | if (comp_lvl < CompLevel_full_optimization) { |
1032 | nBlocks_t1++; |
1033 | t1Space += hb_bytelen; |
1034 | StatArray[ix_beg].t1_count++; |
1035 | StatArray[ix_beg].t1_space += (unsigned short)beg_space; |
1036 | StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; |
1037 | |
1038 | StatArray[ix_end].t1_count++; |
1039 | StatArray[ix_end].t1_space += (unsigned short)end_space; |
1040 | StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age; |
1041 | } else { |
1042 | nBlocks_t2++; |
1043 | t2Space += hb_bytelen; |
1044 | StatArray[ix_beg].t2_count++; |
1045 | StatArray[ix_beg].t2_space += (unsigned short)beg_space; |
1046 | StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; |
1047 | |
1048 | StatArray[ix_end].t2_count++; |
1049 | StatArray[ix_end].t2_space += (unsigned short)end_space; |
1050 | StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age; |
1051 | } |
1052 | StatArray[ix_beg].level = comp_lvl; |
1053 | StatArray[ix_beg].compiler = cType; |
1054 | StatArray[ix_end].level = comp_lvl; |
1055 | StatArray[ix_end].compiler = cType; |
1056 | break; |
1057 | case nMethod_alive: |
1058 | StatArray[ix_beg].tx_count++; |
1059 | StatArray[ix_beg].tx_space += (unsigned short)beg_space; |
1060 | StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; |
1061 | |
1062 | StatArray[ix_end].tx_count++; |
1063 | StatArray[ix_end].tx_space += (unsigned short)end_space; |
1064 | StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age; |
1065 | |
1066 | StatArray[ix_beg].level = comp_lvl; |
1067 | StatArray[ix_beg].compiler = cType; |
1068 | StatArray[ix_end].level = comp_lvl; |
1069 | StatArray[ix_end].compiler = cType; |
1070 | break; |
1071 | case nMethod_dead: |
1072 | case nMethod_unloaded: |
1073 | StatArray[ix_beg].dead_count++; |
1074 | StatArray[ix_beg].dead_space += (unsigned short)beg_space; |
1075 | StatArray[ix_end].dead_count++; |
1076 | StatArray[ix_end].dead_space += (unsigned short)end_space; |
1077 | break; |
1078 | default: |
1079 | // must be a stub, if it's not a dead or alive nMethod |
1080 | nBlocks_stub++; |
1081 | stubSpace += hb_bytelen; |
1082 | StatArray[ix_beg].stub_count++; |
1083 | StatArray[ix_beg].stub_space += (unsigned short)beg_space; |
1084 | StatArray[ix_end].stub_count++; |
1085 | StatArray[ix_end].stub_space += (unsigned short)end_space; |
1086 | break; |
1087 | } |
1088 | for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) { |
1089 | StatArray[ix].type = cbType; |
1090 | switch (cbType) { |
1091 | case nMethod_inuse: |
1092 | if (comp_lvl < CompLevel_full_optimization) { |
1093 | StatArray[ix].t1_count++; |
1094 | StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size); |
1095 | StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age; |
1096 | } else { |
1097 | StatArray[ix].t2_count++; |
1098 | StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size); |
1099 | StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age; |
1100 | } |
1101 | StatArray[ix].level = comp_lvl; |
1102 | StatArray[ix].compiler = cType; |
1103 | break; |
1104 | case nMethod_alive: |
1105 | StatArray[ix].tx_count++; |
1106 | StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size); |
1107 | StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age; |
1108 | StatArray[ix].level = comp_lvl; |
1109 | StatArray[ix].compiler = cType; |
1110 | break; |
1111 | case nMethod_dead: |
1112 | case nMethod_unloaded: |
1113 | StatArray[ix].dead_count++; |
1114 | StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size); |
1115 | break; |
1116 | default: |
1117 | // must be a stub, if it's not a dead or alive nMethod |
1118 | StatArray[ix].stub_count++; |
1119 | StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size); |
1120 | break; |
1121 | } |
1122 | } |
1123 | } |
1124 | } |
1125 | } |
1126 | done = true; |
1127 | |
1128 | if (!insane) { |
1129 | // There is a risk for this block (because it contains many print statements) to get |
1130 | // interspersed with print data from other threads. We take this risk intentionally. |
1131 | // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable. |
1132 | printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName); |
1133 | ast->print_cr("freeSpace = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size); |
1134 | ast->print_cr("usedSpace = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size); |
1135 | ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size); |
1136 | ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size); |
1137 | ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size); |
1138 | ast->print_cr(" disconnected = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size); |
1139 | ast->print_cr(" not entrant = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size); |
1140 | ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size); |
1141 | ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size); |
1142 | ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8)"%" "8" "l" "u" "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size); |
1143 | ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb); |
1144 | ast->cr(); |
1145 | ast->print_cr("Segment start = " INTPTR_FORMAT"0x%016" "l" "x" ", used space = " SIZE_FORMAT_W(8)"%" "8" "l" "u""k", p2i(low_bound), size/K); |
1146 | ast->print_cr("Segment end (used) = " INTPTR_FORMAT"0x%016" "l" "x" ", remaining space = " SIZE_FORMAT_W(8)"%" "8" "l" "u""k", p2i(low_bound) + size, (res_size - size)/K); |
1147 | ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT"0x%016" "l" "x" ", reserved space = " SIZE_FORMAT_W(8)"%" "8" "l" "u""k", p2i(low_bound) + res_size, res_size/K); |
1148 | ast->cr(); |
1149 | ast->print_cr("latest allocated compilation id = %d", latest_compilation_id); |
1150 | ast->print_cr("highest observed compilation id = %d", highest_compilation_id); |
1151 | ast->print_cr("Building TopSizeList iterations = %ld", total_iterations); |
1152 | ast->cr(); |
1153 | |
1154 | int reset_val = NMethodSweeper::hotness_counter_reset_val(); |
1155 | double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size; |
1156 | printBox(ast, '-', "Method hotness information at time of this analysis", NULL__null); |
1157 | ast->print_cr("Highest possible method temperature: %12d", reset_val); |
1158 | ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity); |
1159 | if (n_methods > 0) { |
1160 | avgTemp = hotnessAccumulator/n_methods; |
1161 | ast->print_cr("min. hotness = %6d", minTemp); |
1162 | ast->print_cr("avg. hotness = %6d", avgTemp); |
1163 | ast->print_cr("max. hotness = %6d", maxTemp); |
1164 | } else { |
1165 | avgTemp = 0; |
1166 | ast->print_cr("No hotness data available"); |
1167 | } |
1168 | BUFFEREDSTREAM_FLUSH("\n")if ((("\n") != __null) && (strlen("\n") > 0)){ _sstbuf ->print("%s", "\n"); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
1169 | |
1170 | // This loop is intentionally printing directly to "out". |
1171 | // It should not print anything, anyway. |
1172 | out->print("Verifying collected data..."); |
1173 | size_t granule_segs = granule_size>>log2_seg_size; |
1174 | for (unsigned int ix = 0; ix < granules; ix++) { |
1175 | if (StatArray[ix].t1_count > granule_segs) { |
1176 | out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count); |
1177 | } |
1178 | if (StatArray[ix].t2_count > granule_segs) { |
1179 | out->print_cr("t2_count[%d] = %d", ix, StatArray[ix].t2_count); |
1180 | } |
1181 | if (StatArray[ix].tx_count > granule_segs) { |
1182 | out->print_cr("tx_count[%d] = %d", ix, StatArray[ix].tx_count); |
1183 | } |
1184 | if (StatArray[ix].stub_count > granule_segs) { |
1185 | out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count); |
1186 | } |
1187 | if (StatArray[ix].dead_count > granule_segs) { |
1188 | out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count); |
1189 | } |
1190 | if (StatArray[ix].t1_space > granule_segs) { |
1191 | out->print_cr("t1_space[%d] = %d", ix, StatArray[ix].t1_space); |
1192 | } |
1193 | if (StatArray[ix].t2_space > granule_segs) { |
1194 | out->print_cr("t2_space[%d] = %d", ix, StatArray[ix].t2_space); |
1195 | } |
1196 | if (StatArray[ix].tx_space > granule_segs) { |
1197 | out->print_cr("tx_space[%d] = %d", ix, StatArray[ix].tx_space); |
1198 | } |
1199 | if (StatArray[ix].stub_space > granule_segs) { |
1200 | out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space); |
1201 | } |
1202 | if (StatArray[ix].dead_space > granule_segs) { |
1203 | out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space); |
1204 | } |
1205 | // this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch. |
1206 | if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) { |
1207 | out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count); |
1208 | } |
1209 | if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) { |
1210 | out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space); |
1211 | } |
1212 | } |
1213 | |
1214 | // This loop is intentionally printing directly to "out". |
1215 | // It should not print anything, anyway. |
1216 | if (used_topSizeBlocks > 0) { |
1217 | unsigned int j = 0; |
1218 | if (TopSizeArray[0].len != currMax) { |
1219 | out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len); |
1220 | } |
1221 | for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) { |
1222 | if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) { |
1223 | out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len); |
1224 | } |
1225 | } |
1226 | if (j >= alloc_topSizeBlocks) { |
1227 | out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks); |
1228 | for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { |
1229 | out->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len); |
1230 | } |
1231 | } |
1232 | } |
1233 | out->print_cr("...done\n\n"); |
1234 | } else { |
1235 | // insane heap state detected. Analysis data incomplete. Just throw it away. |
1236 | discard_StatArray(out); |
1237 | discard_TopSizeArray(out); |
1238 | } |
1239 | } |
1240 | |
1241 | |
1242 | done = false; |
1243 | while (!done && (nBlocks_free > 0)) { |
1244 | |
1245 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName); |
1246 | ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n" |
1247 | " Subsequent print functions create their output based on this snapshot.\n"); |
1248 | ast->print_cr(" Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free); |
1249 | ast->print_cr(" Each free block takes " SIZE_FORMAT"%" "l" "u" " bytes of C heap for statistics data, that is " SIZE_FORMAT"%" "l" "u" "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K); |
1250 | BUFFEREDSTREAM_FLUSH("\n")if ((("\n") != __null) && (strlen("\n") > 0)){ _sstbuf ->print("%s", "\n"); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
1251 | |
1252 | //---------------------------------------- |
1253 | //-- Prepare the FreeArray of FreeBlks -- |
1254 | //---------------------------------------- |
1255 | |
1256 | //---< discard old array if size does not match >--- |
1257 | if (nBlocks_free != alloc_freeBlocks) { |
1258 | discard_FreeArray(out); |
1259 | } |
1260 | |
1261 | prepare_FreeArray(out, nBlocks_free, heapName); |
1262 | if (FreeArray == NULL__null) { |
1263 | done = true; |
1264 | continue; |
1265 | } |
1266 | |
1267 | //---------------------------------------- |
1268 | //-- Collect all FreeBlks in FreeArray -- |
1269 | //---------------------------------------- |
1270 | |
1271 | unsigned int ix = 0; |
1272 | FreeBlock* cur = heap->freelist(); |
1273 | |
1274 | while (cur != NULL__null) { |
1275 | if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated |
1276 | FreeArray[ix].start = cur; |
1277 | FreeArray[ix].len = (unsigned int)(cur->length()<<log2_seg_size); |
1278 | FreeArray[ix].index = ix; |
1279 | } |
1280 | cur = cur->link(); |
1281 | ix++; |
1282 | } |
1283 | if (ix != alloc_freeBlocks) { |
1284 | ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix); |
1285 | ast->print_cr("I will update the counter and retry data collection"); |
1286 | BUFFEREDSTREAM_FLUSH("\n")if ((("\n") != __null) && (strlen("\n") > 0)){ _sstbuf ->print("%s", "\n"); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
1287 | nBlocks_free = ix; |
1288 | continue; |
1289 | } |
1290 | done = true; |
1291 | } |
1292 | |
1293 | if (!done || (nBlocks_free == 0)) { |
1294 | if (nBlocks_free == 0) { |
1295 | printBox(ast, '-', "no free blocks found in ", heapName); |
1296 | } else if (!done) { |
1297 | ast->print_cr("Free block count mismatch could not be resolved."); |
1298 | ast->print_cr("Try to run \"aggregate\" function to update counters"); |
1299 | } |
1300 | BUFFEREDSTREAM_FLUSH("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
1301 | |
1302 | //---< discard old array and update global values >--- |
1303 | discard_FreeArray(out); |
1304 | set_HeapStatGlobals(out, heapName); |
1305 | return; |
1306 | } |
1307 | |
1308 | //---< calculate and fill remaining fields >--- |
1309 | if (FreeArray != NULL__null) { |
1310 | // This loop is intentionally printing directly to "out". |
1311 | // It should not print anything, anyway. |
1312 | for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { |
1313 | size_t lenSum = 0; |
1314 | FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len)); |
1315 | for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL__null) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) { |
1316 | CodeBlob *cb = (CodeBlob*)(heap->find_start(h)); |
1317 | if ((cb != NULL__null) && !cb->is_nmethod()) { // checks equivalent to those in get_cbType() |
1318 | FreeArray[ix].stubs_in_gap = true; |
1319 | } |
1320 | FreeArray[ix].n_gapBlocks++; |
1321 | lenSum += h->length()<<log2_seg_size; |
1322 | if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) { |
1323 | out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start); |
1324 | } |
1325 | } |
1326 | if (lenSum != FreeArray[ix].gap) { |
1327 | out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum); |
1328 | } |
1329 | } |
1330 | } |
1331 | set_HeapStatGlobals(out, heapName); |
1332 | |
1333 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName); |
1334 | BUFFEREDSTREAM_FLUSH("\n")if ((("\n") != __null) && (strlen("\n") > 0)){ _sstbuf ->print("%s", "\n"); } if (_sstbuf != _outbuf) { if (_sstbuf ->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf ->size(); _outbuf->print("%s", _sstbuf->as_string()) ; _sstbuf->reset(); } } |
1335 | } |
1336 | |
1337 | |
1338 | void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) { |
1339 | if (!initialization_complete) { |
1340 | return; |
1341 | } |
1342 | |
1343 | const char* heapName = get_heapName(heap); |
1344 | get_HeapStatGlobals(out, heapName); |
1345 | |
1346 | if ((StatArray == NULL__null) || (TopSizeArray == NULL__null) || (used_topSizeBlocks == 0)) { |
1347 | return; |
1348 | } |
1349 | BUFFEREDSTREAM_DECL(ast, out)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = out; bufferedStream * ast = &_sstobj;; |
1350 | |
1351 | { |
1352 | printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName); |
1353 | ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n" |
1354 | " and other identifying information with the block size data.\n" |
1355 | "\n" |
1356 | " Method names are dynamically retrieved from the code cache at print time.\n" |
1357 | " Due to the living nature of the code cache and because the CodeCache_lock\n" |
1358 | " is not continuously held, the displayed name might be wrong or no name\n" |
1359 | " might be found at all. The likelihood for that to happen increases\n" |
1360 | " over time passed between analysis and print step.\n", used_topSizeBlocks); |
1361 | BUFFEREDSTREAM_FLUSH_LOCKED("\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n") != __null) && (strlen("\n") > 0)){ _sstbuf->print("%s", "\n"); } if ( _sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush ++; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1362 | } |
1363 | |
1364 | //---------------------------- |
1365 | //-- Print Top Used Blocks -- |
1366 | //---------------------------- |
1367 | { |
1368 | char* low_bound = heap->low_boundary(); |
1369 | |
1370 | printBox(ast, '-', "Largest Used Blocks in ", heapName); |
1371 | print_blobType_legend(ast); |
1372 | |
1373 | ast->fill_to(51); |
1374 | ast->print("%4s", "blob"); |
1375 | ast->fill_to(56); |
1376 | ast->print("%9s", "compiler"); |
1377 | ast->fill_to(66); |
1378 | ast->print_cr("%6s", "method"); |
1379 | ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name"); |
1380 | BUFFEREDSTREAM_FLUSH_LOCKED(""){ ttyLocker ttyl; _nlockedflush++; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1381 | |
1382 | //---< print Top Ten Used Blocks >--- |
1383 | if (used_topSizeBlocks > 0) { |
1384 | unsigned int printed_topSizeBlocks = 0; |
1385 | for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) { |
1386 | printed_topSizeBlocks++; |
1387 | if (TopSizeArray[i].blob_name == NULL__null) { |
1388 | TopSizeArray[i].blob_name = os::strdup("unnamed blob or blob name unavailable"); |
1389 | } |
1390 | // heap->find_start() is safe. Only works on _segmap. |
1391 | // Returns NULL or void*. Returned CodeBlob may be uninitialized. |
1392 | HeapBlock* heapBlock = TopSizeArray[i].start; |
1393 | CodeBlob* this_blob = (CodeBlob*)(heap->find_start(heapBlock)); |
1394 | if (this_blob != NULL__null) { |
1395 | //---< access these fields only if we own the CodeCache_lock >--- |
1396 | //---< blob address >--- |
1397 | ast->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(this_blob)); |
1398 | ast->fill_to(19); |
1399 | //---< blob offset from CodeHeap begin >--- |
1400 | ast->print("(+" PTR32_FORMAT"0x%08" "x" ")", (unsigned int)((char*)this_blob-low_bound)); |
1401 | ast->fill_to(33); |
1402 | } else { |
1403 | //---< block address >--- |
1404 | ast->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(TopSizeArray[i].start)); |
1405 | ast->fill_to(19); |
1406 | //---< block offset from CodeHeap begin >--- |
1407 | ast->print("(+" PTR32_FORMAT"0x%08" "x" ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound)); |
1408 | ast->fill_to(33); |
1409 | } |
1410 | |
1411 | //---< print size, name, and signature (for nMethods) >--- |
1412 | bool is_nmethod = TopSizeArray[i].nm_size > 0; |
1413 | if (is_nmethod) { |
1414 | //---< nMethod size in hex >--- |
1415 | ast->print(PTR32_FORMAT"0x%08" "x", TopSizeArray[i].nm_size); |
1416 | ast->print("(" SIZE_FORMAT_W(4)"%" "4" "l" "u" "K)", TopSizeArray[i].nm_size/K); |
1417 | ast->fill_to(51); |
1418 | ast->print(" %c", blobTypeChar[TopSizeArray[i].type]); |
1419 | //---< compiler information >--- |
1420 | ast->fill_to(56); |
1421 | ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level); |
1422 | //---< method temperature >--- |
1423 | ast->fill_to(67); |
1424 | ast->print("%5d", TopSizeArray[i].temperature); |
1425 | //---< name and signature >--- |
1426 | ast->fill_to(67+6); |
1427 | if (TopSizeArray[i].type == nMethod_dead) { |
1428 | ast->print(" zombie method "); |
1429 | } |
1430 | ast->print("%s", TopSizeArray[i].blob_name); |
1431 | } else { |
1432 | //---< block size in hex >--- |
1433 | ast->print(PTR32_FORMAT"0x%08" "x", (unsigned int)(TopSizeArray[i].len<<log2_seg_size)); |
1434 | ast->print("(" SIZE_FORMAT_W(4)"%" "4" "l" "u" "K)", (TopSizeArray[i].len<<log2_seg_size)/K); |
1435 | //---< no compiler information >--- |
1436 | ast->fill_to(56); |
1437 | //---< name and signature >--- |
1438 | ast->fill_to(67+6); |
1439 | ast->print("%s", TopSizeArray[i].blob_name); |
1440 | } |
1441 | ast->cr(); |
1442 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1443 | } |
1444 | if (used_topSizeBlocks != printed_topSizeBlocks) { |
1445 | ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks); |
1446 | for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { |
1447 | ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len); |
1448 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1449 | } |
1450 | } |
1451 | BUFFEREDSTREAM_FLUSH("\n\n")if ((("\n\n") != __null) && (strlen("\n\n") > 0)){ _sstbuf->print("%s", "\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s", _sstbuf->as_string ()); _sstbuf->reset(); } } |
1452 | } |
1453 | } |
1454 | |
1455 | //----------------------------- |
1456 | //-- Print Usage Histogram -- |
1457 | //----------------------------- |
1458 | |
1459 | if (SizeDistributionArray != NULL__null) { |
1460 | unsigned long total_count = 0; |
1461 | unsigned long total_size = 0; |
1462 | const unsigned long pctFactor = 200; |
1463 | |
1464 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
1465 | total_count += SizeDistributionArray[i].count; |
1466 | total_size += SizeDistributionArray[i].lenSum; |
1467 | } |
1468 | |
1469 | if ((total_count > 0) && (total_size > 0)) { |
1470 | printBox(ast, '-', "Block count histogram for ", heapName); |
1471 | ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n" |
1472 | " of all blocks) have a size in the given range.\n" |
1473 | " %ld characters are printed per percentage point.\n", pctFactor/100); |
1474 | ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M); |
1475 | ast->print_cr("total number of all blocks: %7ld\n", total_count); |
1476 | BUFFEREDSTREAM_FLUSH_LOCKED(""){ ttyLocker ttyl; _nlockedflush++; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1477 | |
1478 | ast->print_cr("[Size Range)------avg.-size-+----count-+"); |
1479 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
1480 | if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { |
1481 | ast->print("[" SIZE_FORMAT_W(5)"%" "5" "l" "u" " .." SIZE_FORMAT_W(5)"%" "5" "l" "u" " ): " |
1482 | ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size) |
1483 | ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size) |
1484 | ); |
1485 | } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) { |
1486 | ast->print("[" SIZE_FORMAT_W(5)"%" "5" "l" "u" "K.." SIZE_FORMAT_W(5)"%" "5" "l" "u" "K): " |
1487 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K |
1488 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K |
1489 | ); |
1490 | } else { |
1491 | ast->print("[" SIZE_FORMAT_W(5)"%" "5" "l" "u" "M.." SIZE_FORMAT_W(5)"%" "5" "l" "u" "M): " |
1492 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M |
1493 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M |
1494 | ); |
1495 | } |
1496 | ast->print(" %8d | %8d |", |
1497 | SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0, |
1498 | SizeDistributionArray[i].count); |
1499 | |
1500 | unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count; |
1501 | for (unsigned int j = 1; j <= percent; j++) { |
1502 | ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); |
1503 | } |
1504 | ast->cr(); |
1505 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1506 | } |
1507 | ast->print_cr("----------------------------+----------+"); |
1508 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1509 | |
1510 | printBox(ast, '-', "Contribution per size range to total size for ", heapName); |
1511 | ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n" |
1512 | " occupied space) is used by the blocks in the given size range.\n" |
1513 | " %ld characters are printed per percentage point.\n", pctFactor/100); |
1514 | ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M); |
1515 | ast->print_cr("total number of all blocks: %7ld\n", total_count); |
1516 | BUFFEREDSTREAM_FLUSH_LOCKED(""){ ttyLocker ttyl; _nlockedflush++; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1517 | |
1518 | ast->print_cr("[Size Range)------avg.-size-+----count-+"); |
1519 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
1520 | if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { |
1521 | ast->print("[" SIZE_FORMAT_W(5)"%" "5" "l" "u" " .." SIZE_FORMAT_W(5)"%" "5" "l" "u" " ): " |
1522 | ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size) |
1523 | ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size) |
1524 | ); |
1525 | } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) { |
1526 | ast->print("[" SIZE_FORMAT_W(5)"%" "5" "l" "u" "K.." SIZE_FORMAT_W(5)"%" "5" "l" "u" "K): " |
1527 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K |
1528 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K |
1529 | ); |
1530 | } else { |
1531 | ast->print("[" SIZE_FORMAT_W(5)"%" "5" "l" "u" "M.." SIZE_FORMAT_W(5)"%" "5" "l" "u" "M): " |
1532 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M |
1533 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M |
1534 | ); |
1535 | } |
1536 | ast->print(" %8d | %8d |", |
1537 | SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0, |
1538 | SizeDistributionArray[i].count); |
1539 | |
1540 | unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size; |
1541 | for (unsigned int j = 1; j <= percent; j++) { |
1542 | ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); |
1543 | } |
1544 | ast->cr(); |
1545 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1546 | } |
1547 | ast->print_cr("----------------------------+----------+"); |
1548 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1549 | } |
1550 | } |
1551 | } |
1552 | |
1553 | |
1554 | void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) { |
1555 | if (!initialization_complete) { |
1556 | return; |
1557 | } |
1558 | |
1559 | const char* heapName = get_heapName(heap); |
1560 | get_HeapStatGlobals(out, heapName); |
1561 | |
1562 | if ((StatArray == NULL__null) || (FreeArray == NULL__null) || (alloc_granules == 0)) { |
1563 | return; |
1564 | } |
1565 | BUFFEREDSTREAM_DECL(ast, out)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = out; bufferedStream * ast = &_sstobj;; |
1566 | |
1567 | { |
1568 | printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName); |
1569 | ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n" |
1570 | " Those gaps are of interest if there is a chance that they become\n" |
1571 | " unoccupied, e.g. by class unloading. Then, the two adjacent free\n" |
1572 | " blocks, together with the now unoccupied space, form a new, large\n" |
1573 | " free block."); |
1574 | BUFFEREDSTREAM_FLUSH_LOCKED("\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n") != __null) && (strlen("\n") > 0)){ _sstbuf->print("%s", "\n"); } if ( _sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush ++; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1575 | } |
1576 | |
1577 | { |
1578 | printBox(ast, '-', "List of all Free Blocks in ", heapName); |
1579 | |
1580 | unsigned int ix = 0; |
1581 | for (ix = 0; ix < alloc_freeBlocks-1; ix++) { |
1582 | ast->print(INTPTR_FORMAT"0x%016" "l" "x" ": Len[%4d] = " HEX32_FORMAT"0x%x" ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len); |
1583 | ast->fill_to(38); |
1584 | ast->print("Gap[%4d..%4d]: " HEX32_FORMAT"0x%x" " bytes,", ix, ix+1, FreeArray[ix].gap); |
1585 | ast->fill_to(71); |
1586 | ast->print("block count: %6d", FreeArray[ix].n_gapBlocks); |
1587 | if (FreeArray[ix].stubs_in_gap) { |
1588 | ast->print(" !! permanent gap, contains stubs and/or blobs !!"); |
1589 | } |
1590 | ast->cr(); |
1591 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1592 | } |
1593 | ast->print_cr(INTPTR_FORMAT"0x%016" "l" "x" ": Len[%4d] = " HEX32_FORMAT"0x%x", p2i(FreeArray[ix].start), ix, FreeArray[ix].len); |
1594 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n") != __null) && (strlen("\n\n") > 0)){ _sstbuf->print("%s", "\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush ++; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1595 | } |
1596 | |
1597 | |
1598 | //----------------------------------------- |
1599 | //-- Find and Print Top Ten Free Blocks -- |
1600 | //----------------------------------------- |
1601 | |
1602 | //---< find Top Ten Free Blocks >--- |
1603 | const unsigned int nTop = 10; |
1604 | unsigned int currMax10 = 0; |
1605 | struct FreeBlk* FreeTopTen[nTop]; |
1606 | memset(FreeTopTen, 0, sizeof(FreeTopTen)); |
1607 | |
1608 | for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) { |
1609 | if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far |
1610 | unsigned int currSize = FreeArray[ix].len; |
1611 | |
1612 | unsigned int iy; |
1613 | for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL__null; iy++) { |
1614 | if (FreeTopTen[iy]->len < currSize) { |
1615 | for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block |
1616 | FreeTopTen[iz] = FreeTopTen[iz-1]; |
1617 | } |
1618 | FreeTopTen[iy] = &FreeArray[ix]; // insert new free block |
1619 | if (FreeTopTen[nTop-1] != NULL__null) { |
1620 | currMax10 = FreeTopTen[nTop-1]->len; |
1621 | } |
1622 | break; // done with this, check next free block |
1623 | } |
1624 | } |
1625 | if (iy >= nTop) { |
1626 | ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d", |
1627 | currSize, currMax10); |
1628 | continue; |
1629 | } |
1630 | if (FreeTopTen[iy] == NULL__null) { |
1631 | FreeTopTen[iy] = &FreeArray[ix]; |
1632 | if (iy == (nTop-1)) { |
1633 | currMax10 = currSize; |
1634 | } |
1635 | } |
1636 | } |
1637 | } |
1638 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1639 | |
1640 | { |
1641 | printBox(ast, '-', "Top Ten Free Blocks in ", heapName); |
1642 | |
1643 | //---< print Top Ten Free Blocks >--- |
1644 | for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL__null); iy++) { |
1645 | ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT"0x%x" ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len); |
1646 | ast->fill_to(39); |
1647 | if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) { |
1648 | ast->print("last free block in list."); |
1649 | } else { |
1650 | ast->print("Gap (to next) " HEX32_FORMAT"0x%x" ",", FreeTopTen[iy]->gap); |
1651 | ast->fill_to(63); |
1652 | ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks); |
1653 | } |
1654 | ast->cr(); |
1655 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1656 | } |
1657 | } |
1658 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n") != __null) && (strlen("\n\n") > 0)){ _sstbuf->print("%s", "\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush ++; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1659 | |
1660 | |
1661 | //-------------------------------------------------------- |
1662 | //-- Find and Print Top Ten Free-Occupied-Free Triples -- |
1663 | //-------------------------------------------------------- |
1664 | |
1665 | //---< find and print Top Ten Triples (Free-Occupied-Free) >--- |
1666 | currMax10 = 0; |
1667 | struct FreeBlk *FreeTopTenTriple[nTop]; |
1668 | memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple)); |
1669 | |
1670 | for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { |
1671 | // If there are stubs in the gap, this gap will never become completely free. |
1672 | // The triple will thus never merge to one free block. |
1673 | unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len); |
1674 | FreeArray[ix].len = lenTriple; |
1675 | if (lenTriple > currMax10) { // larger than the ten largest found so far |
1676 | |
1677 | unsigned int iy; |
1678 | for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL__null); iy++) { |
1679 | if (FreeTopTenTriple[iy]->len < lenTriple) { |
1680 | for (unsigned int iz = nTop-1; iz > iy; iz--) { |
1681 | FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1]; |
1682 | } |
1683 | FreeTopTenTriple[iy] = &FreeArray[ix]; |
1684 | if (FreeTopTenTriple[nTop-1] != NULL__null) { |
1685 | currMax10 = FreeTopTenTriple[nTop-1]->len; |
1686 | } |
1687 | break; |
1688 | } |
1689 | } |
1690 | if (iy == nTop) { |
1691 | ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d", |
1692 | lenTriple, currMax10); |
1693 | continue; |
1694 | } |
1695 | if (FreeTopTenTriple[iy] == NULL__null) { |
1696 | FreeTopTenTriple[iy] = &FreeArray[ix]; |
1697 | if (iy == (nTop-1)) { |
1698 | currMax10 = lenTriple; |
1699 | } |
1700 | } |
1701 | } |
1702 | } |
1703 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1704 | |
1705 | { |
1706 | printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName); |
1707 | ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n" |
1708 | " might get created by code cache sweeping.\n" |
1709 | " If all the occupied blocks can be swept, the three free blocks will be\n" |
1710 | " merged into one (much larger) free block. That would reduce free space\n" |
1711 | " fragmentation.\n"); |
1712 | |
1713 | //---< print Top Ten Free-Occupied-Free Triples >--- |
1714 | for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL__null); iy++) { |
1715 | ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT"0x%x" ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len); |
1716 | ast->fill_to(39); |
1717 | ast->print("Gap (to next) " HEX32_FORMAT"0x%x" ",", FreeTopTenTriple[iy]->gap); |
1718 | ast->fill_to(63); |
1719 | ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks); |
1720 | ast->cr(); |
1721 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
1722 | } |
1723 | } |
1724 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n") != __null) && (strlen("\n\n") > 0)){ _sstbuf->print("%s", "\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush ++; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1725 | } |
1726 | |
1727 | |
1728 | void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) { |
1729 | if (!initialization_complete) { |
1730 | return; |
1731 | } |
1732 | |
1733 | const char* heapName = get_heapName(heap); |
1734 | get_HeapStatGlobals(out, heapName); |
1735 | |
1736 | if ((StatArray == NULL__null) || (alloc_granules == 0)) { |
1737 | return; |
1738 | } |
1739 | BUFFEREDSTREAM_DECL(ast, out)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = out; bufferedStream * ast = &_sstobj;; |
1740 | |
1741 | unsigned int granules_per_line = 32; |
1742 | char* low_bound = heap->low_boundary(); |
1743 | |
1744 | { |
1745 | printBox(ast, '=', "B L O C K C O U N T S for ", heapName); |
1746 | ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n" |
1747 | " may span multiple granules and are counted for each granule they touch.\n"); |
1748 | if (segment_granules) { |
1749 | ast->print_cr(" You have selected granule size to be as small as segment size.\n" |
1750 | " As a result, each granule contains exactly one block (or a part of one block)\n" |
1751 | " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" |
1752 | " Occupied granules show their BlobType character, see legend.\n"); |
1753 | print_blobType_legend(ast); |
1754 | } |
1755 | BUFFEREDSTREAM_FLUSH_LOCKED(""){ ttyLocker ttyl; _nlockedflush++; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1756 | } |
1757 | |
1758 | { |
1759 | if (segment_granules) { |
1760 | printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL__null); |
1761 | |
1762 | granules_per_line = 128; |
1763 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1764 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1765 | print_blobType_single(ast, StatArray[ix].type); |
1766 | } |
1767 | } else { |
1768 | printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL__null); |
1769 | |
1770 | granules_per_line = 128; |
1771 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1772 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1773 | unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count |
1774 | + StatArray[ix].stub_count + StatArray[ix].dead_count; |
1775 | print_count_single(ast, count); |
1776 | } |
1777 | } |
1778 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("|\n\n\n") != __null ) && (strlen("|\n\n\n") > 0)){ _sstbuf->print("%s" , "|\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1779 | } |
1780 | |
1781 | { |
1782 | if (nBlocks_t1 > 0) { |
1783 | printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL__null); |
1784 | |
1785 | granules_per_line = 128; |
1786 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1787 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1788 | if (segment_granules && StatArray[ix].t1_count > 0) { |
1789 | print_blobType_single(ast, StatArray[ix].type); |
1790 | } else { |
1791 | print_count_single(ast, StatArray[ix].t1_count); |
1792 | } |
1793 | } |
1794 | ast->print("|"); |
1795 | } else { |
1796 | ast->print("No Tier1 nMethods found in CodeHeap."); |
1797 | } |
1798 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1799 | } |
1800 | |
1801 | { |
1802 | if (nBlocks_t2 > 0) { |
1803 | printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL__null); |
1804 | |
1805 | granules_per_line = 128; |
1806 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1807 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1808 | if (segment_granules && StatArray[ix].t2_count > 0) { |
1809 | print_blobType_single(ast, StatArray[ix].type); |
1810 | } else { |
1811 | print_count_single(ast, StatArray[ix].t2_count); |
1812 | } |
1813 | } |
1814 | ast->print("|"); |
1815 | } else { |
1816 | ast->print("No Tier2 nMethods found in CodeHeap."); |
1817 | } |
1818 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1819 | } |
1820 | |
1821 | { |
1822 | if (nBlocks_alive > 0) { |
1823 | printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL__null); |
1824 | |
1825 | granules_per_line = 128; |
1826 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1827 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1828 | if (segment_granules && StatArray[ix].tx_count > 0) { |
1829 | print_blobType_single(ast, StatArray[ix].type); |
1830 | } else { |
1831 | print_count_single(ast, StatArray[ix].tx_count); |
1832 | } |
1833 | } |
1834 | ast->print("|"); |
1835 | } else { |
1836 | ast->print("No not_used/not_entrant nMethods found in CodeHeap."); |
1837 | } |
1838 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1839 | } |
1840 | |
1841 | { |
1842 | if (nBlocks_stub > 0) { |
1843 | printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL__null); |
1844 | |
1845 | granules_per_line = 128; |
1846 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1847 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1848 | if (segment_granules && StatArray[ix].stub_count > 0) { |
1849 | print_blobType_single(ast, StatArray[ix].type); |
1850 | } else { |
1851 | print_count_single(ast, StatArray[ix].stub_count); |
1852 | } |
1853 | } |
1854 | ast->print("|"); |
1855 | } else { |
1856 | ast->print("No Stubs and Blobs found in CodeHeap."); |
1857 | } |
1858 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1859 | } |
1860 | |
1861 | { |
1862 | if (nBlocks_dead > 0) { |
1863 | printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL__null); |
1864 | |
1865 | granules_per_line = 128; |
1866 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1867 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1868 | if (segment_granules && StatArray[ix].dead_count > 0) { |
1869 | print_blobType_single(ast, StatArray[ix].type); |
1870 | } else { |
1871 | print_count_single(ast, StatArray[ix].dead_count); |
1872 | } |
1873 | } |
1874 | ast->print("|"); |
1875 | } else { |
1876 | ast->print("No dead nMethods found in CodeHeap."); |
1877 | } |
1878 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1879 | } |
1880 | |
1881 | { |
1882 | if (!segment_granules) { // Prevent totally redundant printouts |
1883 | printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL__null); |
1884 | |
1885 | granules_per_line = 24; |
1886 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1887 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1888 | |
1889 | print_count_single(ast, StatArray[ix].t1_count); |
1890 | ast->print(":"); |
1891 | print_count_single(ast, StatArray[ix].t2_count); |
1892 | ast->print(":"); |
1893 | if (segment_granules && StatArray[ix].stub_count > 0) { |
1894 | print_blobType_single(ast, StatArray[ix].type); |
1895 | } else { |
1896 | print_count_single(ast, StatArray[ix].stub_count); |
1897 | } |
1898 | ast->print(" "); |
1899 | } |
1900 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("|\n\n\n") != __null ) && (strlen("|\n\n\n") > 0)){ _sstbuf->print("%s" , "|\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1901 | } |
1902 | } |
1903 | } |
1904 | |
1905 | |
1906 | void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) { |
1907 | if (!initialization_complete) { |
1908 | return; |
1909 | } |
1910 | |
1911 | const char* heapName = get_heapName(heap); |
1912 | get_HeapStatGlobals(out, heapName); |
1913 | |
1914 | if ((StatArray == NULL__null) || (alloc_granules == 0)) { |
1915 | return; |
1916 | } |
1917 | BUFFEREDSTREAM_DECL(ast, out)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = out; bufferedStream * ast = &_sstobj;; |
1918 | |
1919 | unsigned int granules_per_line = 32; |
1920 | char* low_bound = heap->low_boundary(); |
1921 | |
1922 | { |
1923 | printBox(ast, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for ", heapName); |
1924 | ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n" |
1925 | " The granule occupancy is displayed by one decimal digit per granule.\n"); |
1926 | if (segment_granules) { |
1927 | ast->print_cr(" You have selected granule size to be as small as segment size.\n" |
1928 | " As a result, each granule contains exactly one block (or a part of one block)\n" |
1929 | " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" |
1930 | " Occupied granules show their BlobType character, see legend.\n"); |
1931 | print_blobType_legend(ast); |
1932 | } else { |
1933 | ast->print_cr(" These digits represent a fill percentage range (see legend).\n"); |
1934 | print_space_legend(ast); |
1935 | } |
1936 | BUFFEREDSTREAM_FLUSH_LOCKED(""){ ttyLocker ttyl; _nlockedflush++; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
1937 | } |
1938 | |
1939 | { |
1940 | if (segment_granules) { |
1941 | printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL__null); |
1942 | |
1943 | granules_per_line = 128; |
1944 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1945 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1946 | print_blobType_single(ast, StatArray[ix].type); |
1947 | } |
1948 | } else { |
1949 | printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL__null); |
1950 | |
1951 | granules_per_line = 128; |
1952 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1953 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1954 | unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space |
1955 | + StatArray[ix].stub_space + StatArray[ix].dead_space; |
1956 | print_space_single(ast, space); |
1957 | } |
1958 | } |
1959 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("|\n\n\n") != __null ) && (strlen("|\n\n\n") > 0)){ _sstbuf->print("%s" , "|\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1960 | } |
1961 | |
1962 | { |
1963 | if (nBlocks_t1 > 0) { |
1964 | printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL__null); |
1965 | |
1966 | granules_per_line = 128; |
1967 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1968 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1969 | if (segment_granules && StatArray[ix].t1_space > 0) { |
1970 | print_blobType_single(ast, StatArray[ix].type); |
1971 | } else { |
1972 | print_space_single(ast, StatArray[ix].t1_space); |
1973 | } |
1974 | } |
1975 | ast->print("|"); |
1976 | } else { |
1977 | ast->print("No Tier1 nMethods found in CodeHeap."); |
1978 | } |
1979 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
1980 | } |
1981 | |
1982 | { |
1983 | if (nBlocks_t2 > 0) { |
1984 | printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL__null); |
1985 | |
1986 | granules_per_line = 128; |
1987 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1988 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1989 | if (segment_granules && StatArray[ix].t2_space > 0) { |
1990 | print_blobType_single(ast, StatArray[ix].type); |
1991 | } else { |
1992 | print_space_single(ast, StatArray[ix].t2_space); |
1993 | } |
1994 | } |
1995 | ast->print("|"); |
1996 | } else { |
1997 | ast->print("No Tier2 nMethods found in CodeHeap."); |
1998 | } |
1999 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2000 | } |
2001 | |
2002 | { |
2003 | if (nBlocks_alive > 0) { |
2004 | printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL__null); |
2005 | |
2006 | granules_per_line = 128; |
2007 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2008 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2009 | if (segment_granules && StatArray[ix].tx_space > 0) { |
2010 | print_blobType_single(ast, StatArray[ix].type); |
2011 | } else { |
2012 | print_space_single(ast, StatArray[ix].tx_space); |
2013 | } |
2014 | } |
2015 | ast->print("|"); |
2016 | } else { |
2017 | ast->print("No Tier2 nMethods found in CodeHeap."); |
2018 | } |
2019 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2020 | } |
2021 | |
2022 | { |
2023 | if (nBlocks_stub > 0) { |
2024 | printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL__null); |
2025 | |
2026 | granules_per_line = 128; |
2027 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2028 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2029 | if (segment_granules && StatArray[ix].stub_space > 0) { |
2030 | print_blobType_single(ast, StatArray[ix].type); |
2031 | } else { |
2032 | print_space_single(ast, StatArray[ix].stub_space); |
2033 | } |
2034 | } |
2035 | ast->print("|"); |
2036 | } else { |
2037 | ast->print("No Stubs and Blobs found in CodeHeap."); |
2038 | } |
2039 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2040 | } |
2041 | |
2042 | { |
2043 | if (nBlocks_dead > 0) { |
2044 | printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL__null); |
2045 | |
2046 | granules_per_line = 128; |
2047 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2048 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2049 | print_space_single(ast, StatArray[ix].dead_space); |
2050 | } |
2051 | ast->print("|"); |
2052 | } else { |
2053 | ast->print("No dead nMethods found in CodeHeap."); |
2054 | } |
2055 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2056 | } |
2057 | |
2058 | { |
2059 | if (!segment_granules) { // Prevent totally redundant printouts |
2060 | printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL__null); |
2061 | |
2062 | granules_per_line = 24; |
2063 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2064 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2065 | |
2066 | if (segment_granules && StatArray[ix].t1_space > 0) { |
2067 | print_blobType_single(ast, StatArray[ix].type); |
2068 | } else { |
2069 | print_space_single(ast, StatArray[ix].t1_space); |
2070 | } |
2071 | ast->print(":"); |
2072 | if (segment_granules && StatArray[ix].t2_space > 0) { |
2073 | print_blobType_single(ast, StatArray[ix].type); |
2074 | } else { |
2075 | print_space_single(ast, StatArray[ix].t2_space); |
2076 | } |
2077 | ast->print(":"); |
2078 | if (segment_granules && StatArray[ix].stub_space > 0) { |
2079 | print_blobType_single(ast, StatArray[ix].type); |
2080 | } else { |
2081 | print_space_single(ast, StatArray[ix].stub_space); |
2082 | } |
2083 | ast->print(" "); |
2084 | } |
2085 | ast->print("|"); |
2086 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2087 | } |
2088 | } |
2089 | } |
2090 | |
2091 | void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) { |
2092 | if (!initialization_complete) { |
2093 | return; |
2094 | } |
2095 | |
2096 | const char* heapName = get_heapName(heap); |
2097 | get_HeapStatGlobals(out, heapName); |
2098 | |
2099 | if ((StatArray == NULL__null) || (alloc_granules == 0)) { |
2100 | return; |
2101 | } |
2102 | BUFFEREDSTREAM_DECL(ast, out)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = out; bufferedStream * ast = &_sstobj;; |
2103 | |
2104 | unsigned int granules_per_line = 32; |
2105 | char* low_bound = heap->low_boundary(); |
2106 | |
2107 | { |
2108 | printBox(ast, '=', "M E T H O D A G E by CompileID for ", heapName); |
2109 | ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n" |
2110 | " time stamp. Instead, a relative age is deducted from the method's compilation ID.\n" |
2111 | " Age information is available for tier1 and tier2 methods only. There is no\n" |
2112 | " age information for stubs and blobs, because they have no compilation ID assigned.\n" |
2113 | " Information for the youngest method (highest ID) in the granule is printed.\n" |
2114 | " Refer to the legend to learn how method age is mapped to the displayed digit."); |
2115 | print_age_legend(ast); |
2116 | BUFFEREDSTREAM_FLUSH_LOCKED(""){ ttyLocker ttyl; _nlockedflush++; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
2117 | } |
2118 | |
2119 | { |
2120 | printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL__null); |
2121 | |
2122 | granules_per_line = 128; |
2123 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2124 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2125 | unsigned int age1 = StatArray[ix].t1_age; |
2126 | unsigned int age2 = StatArray[ix].t2_age; |
2127 | unsigned int agex = StatArray[ix].tx_age; |
2128 | unsigned int age = age1 > age2 ? age1 : age2; |
2129 | age = age > agex ? age : agex; |
2130 | print_age_single(ast, age); |
2131 | } |
2132 | ast->print("|"); |
2133 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2134 | } |
2135 | |
2136 | { |
2137 | if (nBlocks_t1 > 0) { |
2138 | printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL__null); |
2139 | |
2140 | granules_per_line = 128; |
2141 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2142 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2143 | print_age_single(ast, StatArray[ix].t1_age); |
2144 | } |
2145 | ast->print("|"); |
2146 | } else { |
2147 | ast->print("No Tier1 nMethods found in CodeHeap."); |
2148 | } |
2149 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2150 | } |
2151 | |
2152 | { |
2153 | if (nBlocks_t2 > 0) { |
2154 | printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL__null); |
2155 | |
2156 | granules_per_line = 128; |
2157 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2158 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2159 | print_age_single(ast, StatArray[ix].t2_age); |
2160 | } |
2161 | ast->print("|"); |
2162 | } else { |
2163 | ast->print("No Tier2 nMethods found in CodeHeap."); |
2164 | } |
2165 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2166 | } |
2167 | |
2168 | { |
2169 | if (nBlocks_alive > 0) { |
2170 | printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL__null); |
2171 | |
2172 | granules_per_line = 128; |
2173 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2174 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2175 | print_age_single(ast, StatArray[ix].tx_age); |
2176 | } |
2177 | ast->print("|"); |
2178 | } else { |
2179 | ast->print("No Tier2 nMethods found in CodeHeap."); |
2180 | } |
2181 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2182 | } |
2183 | |
2184 | { |
2185 | if (!segment_granules) { // Prevent totally redundant printouts |
2186 | printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL__null); |
2187 | |
2188 | granules_per_line = 32; |
2189 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2190 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2191 | print_age_single(ast, StatArray[ix].t1_age); |
2192 | ast->print(":"); |
2193 | print_age_single(ast, StatArray[ix].t2_age); |
2194 | ast->print(" "); |
2195 | } |
2196 | ast->print("|"); |
2197 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n\n") != __null) && (strlen("\n\n\n") > 0)){ _sstbuf->print("%s" , "\n\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size () != 0) { _nforcedflush++; _nflush_bytes += _sstbuf->size (); _outbuf->print("%s", _sstbuf->as_string()); _sstbuf ->reset(); } } } |
2198 | } |
2199 | } |
2200 | } |
2201 | |
2202 | |
2203 | void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) { |
2204 | if (!initialization_complete) { |
2205 | return; |
2206 | } |
2207 | |
2208 | const char* heapName = get_heapName(heap); |
2209 | get_HeapStatGlobals(out, heapName); |
2210 | |
2211 | if ((StatArray == NULL__null) || (alloc_granules == 0)) { |
2212 | return; |
2213 | } |
2214 | BUFFEREDSTREAM_DECL(ast, out)ResourceMark _rm; size_t _nflush = 0; size_t _nforcedflush = 0 ; size_t _nsavedflush = 0; size_t _nlockedflush = 0; size_t _nflush_bytes = 0; size_t _capacity = 4*K; bufferedStream _sstobj(4*K); bufferedStream * _sstbuf = &_sstobj; outputStream* _outbuf = out; bufferedStream * ast = &_sstobj;; |
2215 | |
2216 | unsigned int granules_per_line = 128; |
2217 | char* low_bound = heap->low_boundary(); |
2218 | CodeBlob* last_blob = NULL__null; |
2219 | bool name_in_addr_range = true; |
2220 | bool have_locks = holding_required_locks(); |
2221 | |
2222 | //---< print at least 128K per block (i.e. between headers) >--- |
2223 | if (granules_per_line*granule_size < 128*K) { |
2224 | granules_per_line = (unsigned int)((128*K)/granule_size); |
2225 | } |
2226 | |
2227 | printBox(ast, '=', "M E T H O D N A M E S for ", heapName); |
2228 | ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n" |
2229 | " Due to the living nature of the code heap and because the CodeCache_lock\n" |
2230 | " is not continuously held, the displayed name might be wrong or no name\n" |
2231 | " might be found at all. The likelihood for that to happen increases\n" |
2232 | " over time passed between aggregation and print steps.\n"); |
2233 | BUFFEREDSTREAM_FLUSH_LOCKED(""){ ttyLocker ttyl; _nlockedflush++; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
2234 | |
2235 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2236 | //---< print a new blob on a new line >--- |
2237 | if (ix%granules_per_line == 0) { |
2238 | if (!name_in_addr_range) { |
2239 | ast->print_cr("No methods, blobs, or stubs found in this address range"); |
2240 | } |
2241 | name_in_addr_range = false; |
2242 | |
2243 | size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules; |
2244 | ast->cr(); |
2245 | ast->print_cr("--------------------------------------------------------------------"); |
2246 | ast->print_cr("Address range [" INTPTR_FORMAT"0x%016" "l" "x" "," INTPTR_FORMAT"0x%016" "l" "x" "), " SIZE_FORMAT"%" "l" "u" "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K); |
2247 | ast->print_cr("--------------------------------------------------------------------"); |
2248 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
2249 | } |
2250 | // Only check granule if it contains at least one blob. |
2251 | unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + |
2252 | StatArray[ix].stub_count + StatArray[ix].dead_count; |
2253 | if (nBlobs > 0 ) { |
2254 | for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) { |
2255 | // heap->find_start() is safe. Only works on _segmap. |
2256 | // Returns NULL or void*. Returned CodeBlob may be uninitialized. |
2257 | char* this_seg = low_bound + ix*granule_size + is; |
2258 | CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg)); |
2259 | bool blob_is_safe = blob_access_is_safe(this_blob); |
2260 | // blob could have been flushed, freed, and merged. |
2261 | // this_blob < last_blob is an indicator for that. |
2262 | if (blob_is_safe && (this_blob > last_blob)) { |
2263 | last_blob = this_blob; |
2264 | |
2265 | //---< get type and name >--- |
2266 | blobType cbType = noType; |
2267 | if (segment_granules) { |
2268 | cbType = (blobType)StatArray[ix].type; |
2269 | } else { |
2270 | //---< access these fields only if we own the CodeCache_lock >--- |
2271 | if (have_locks) { |
2272 | cbType = get_cbType(this_blob); |
2273 | } |
2274 | } |
2275 | |
2276 | //---< access these fields only if we own the CodeCache_lock >--- |
2277 | const char* blob_name = "<unavailable>"; |
2278 | nmethod* nm = NULL__null; |
2279 | if (have_locks) { |
2280 | blob_name = this_blob->name(); |
2281 | nm = this_blob->as_nmethod_or_null(); |
2282 | // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack |
2283 | if (blob_name == NULL__null) { |
2284 | blob_name = "<unavailable>"; |
2285 | } |
2286 | } |
2287 | |
2288 | //---< print table header for new print range >--- |
2289 | if (!name_in_addr_range) { |
2290 | name_in_addr_range = true; |
2291 | ast->fill_to(51); |
2292 | ast->print("%9s", "compiler"); |
2293 | ast->fill_to(61); |
2294 | ast->print_cr("%6s", "method"); |
2295 | ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name"); |
2296 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
2297 | } |
2298 | |
2299 | //---< print line prefix (address and offset from CodeHeap start) >--- |
2300 | ast->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(this_blob)); |
2301 | ast->fill_to(19); |
2302 | ast->print("(+" PTR32_FORMAT"0x%08" "x" ")", (unsigned int)((char*)this_blob-low_bound)); |
2303 | ast->fill_to(33); |
2304 | |
2305 | // access nmethod and Method fields only if we own the CodeCache_lock. |
2306 | // This fact is implicitly transported via nm != NULL. |
2307 | if (nmethod_access_is_safe(nm)) { |
2308 | Method* method = nm->method(); |
2309 | ResourceMark rm; |
2310 | //---< collect all data to locals as quickly as possible >--- |
2311 | unsigned int total_size = nm->total_size(); |
2312 | int hotness = nm->hotness_counter(); |
2313 | bool get_name = (cbType == nMethod_inuse) || (cbType == nMethod_notused); |
2314 | //---< nMethod size in hex >--- |
2315 | ast->print(PTR32_FORMAT"0x%08" "x", total_size); |
2316 | ast->print("(" SIZE_FORMAT_W(4)"%" "4" "l" "u" "K)", total_size/K); |
2317 | //---< compiler information >--- |
2318 | ast->fill_to(51); |
2319 | ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level); |
2320 | //---< method temperature >--- |
2321 | ast->fill_to(62); |
2322 | ast->print("%5d", hotness); |
2323 | //---< name and signature >--- |
2324 | ast->fill_to(62+6); |
2325 | ast->print("%s", blobTypeName[cbType]); |
2326 | ast->fill_to(82+6); |
2327 | if (cbType == nMethod_dead) { |
2328 | ast->print("%14s", " zombie method"); |
2329 | } |
2330 | |
2331 | if (get_name) { |
2332 | Symbol* methName = method->name(); |
2333 | const char* methNameS = (methName == NULL__null) ? NULL__null : methName->as_C_string(); |
2334 | methNameS = (methNameS == NULL__null) ? "<method name unavailable>" : methNameS; |
2335 | Symbol* methSig = method->signature(); |
2336 | const char* methSigS = (methSig == NULL__null) ? NULL__null : methSig->as_C_string(); |
2337 | methSigS = (methSigS == NULL__null) ? "<method signature unavailable>" : methSigS; |
2338 | Klass* klass = method->method_holder(); |
2339 | assert(klass != nullptr, "No method holder")do { if (!(klass != nullptr)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/code/codeHeapState.cpp" , 2339, "assert(" "klass != nullptr" ") failed", "No method holder" ); ::breakpoint(); } } while (0); |
2340 | const char* classNameS = (klass->name() == nullptr) ? "<class name unavailable>" : klass->external_name(); |
2341 | |
2342 | ast->print("%s.", classNameS); |
2343 | ast->print("%s", methNameS); |
2344 | ast->print("%s", methSigS); |
2345 | } else { |
2346 | ast->print("%s", blob_name); |
2347 | } |
2348 | } else if (blob_is_safe) { |
2349 | ast->fill_to(62+6); |
2350 | ast->print("%s", blobTypeName[cbType]); |
2351 | ast->fill_to(82+6); |
2352 | ast->print("%s", blob_name); |
2353 | } else { |
2354 | ast->fill_to(62+6); |
2355 | ast->print("<stale blob>"); |
2356 | } |
2357 | ast->cr(); |
2358 | BUFFEREDSTREAM_FLUSH_AUTO("")if ((("") != __null) && (strlen("") > 0)){ _sstbuf ->print("%s", ""); } if (_sstbuf != _outbuf) { if ((_capacity - _sstbuf->size()) < (size_t)(256+(_capacity>>4) )){ _nflush++; _nforcedflush--; if ((("") != __null) && (strlen("") > 0)){ _sstbuf->print("%s", ""); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush++ ; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } else { _nsavedflush++; } } |
2359 | } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL__null)) { |
2360 | last_blob = this_blob; |
2361 | } |
2362 | } |
2363 | } // nBlobs > 0 |
2364 | } |
2365 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n"){ ttyLocker ttyl; _nlockedflush++; if ((("\n\n") != __null) && (strlen("\n\n") > 0)){ _sstbuf->print("%s", "\n\n"); } if (_sstbuf != _outbuf) { if (_sstbuf->size() != 0) { _nforcedflush ++; _nflush_bytes += _sstbuf->size(); _outbuf->print("%s" , _sstbuf->as_string()); _sstbuf->reset(); } } } |
2366 | } |
2367 | |
2368 | |
2369 | void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) { |
2370 | unsigned int lineLen = 1 + 2 + 2 + 1; |
2371 | char edge, frame; |
2372 | |
2373 | if (text1 != NULL__null) { |
2374 | lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars. |
2375 | } |
2376 | if (text2 != NULL__null) { |
2377 | lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars. |
2378 | } |
2379 | if (border == '-') { |
2380 | edge = '+'; |
2381 | frame = '|'; |
2382 | } else { |
2383 | edge = border; |
2384 | frame = border; |
2385 | } |
2386 | |
2387 | ast->print("%c", edge); |
2388 | for (unsigned int i = 0; i < lineLen-2; i++) { |
2389 | ast->print("%c", border); |
2390 | } |
2391 | ast->print_cr("%c", edge); |
2392 | |
2393 | ast->print("%c ", frame); |
2394 | if (text1 != NULL__null) { |
2395 | ast->print("%s", text1); |
2396 | } |
2397 | if (text2 != NULL__null) { |
2398 | ast->print("%s", text2); |
2399 | } |
2400 | ast->print_cr(" %c", frame); |
2401 | |
2402 | ast->print("%c", edge); |
2403 | for (unsigned int i = 0; i < lineLen-2; i++) { |
2404 | ast->print("%c", border); |
2405 | } |
2406 | ast->print_cr("%c", edge); |
2407 | } |
2408 | |
2409 | void CodeHeapState::print_blobType_legend(outputStream* out) { |
2410 | out->cr(); |
2411 | printBox(out, '-', "Block types used in the following CodeHeap dump", NULL__null); |
2412 | for (int type = noType; type < lastType; type += 1) { |
2413 | out->print_cr(" %c - %s", blobTypeChar[type], blobTypeName[type]); |
2414 | } |
2415 | out->print_cr(" -----------------------------------------------------"); |
2416 | out->cr(); |
2417 | } |
2418 | |
2419 | void CodeHeapState::print_space_legend(outputStream* out) { |
2420 | unsigned int indicator = 0; |
2421 | unsigned int age_range = 256; |
2422 | unsigned int range_beg = latest_compilation_id; |
2423 | out->cr(); |
2424 | printBox(out, '-', "Space ranges, based on granule occupancy", NULL__null); |
2425 | out->print_cr(" - 0%% == occupancy"); |
2426 | for (int i=0; i<=9; i++) { |
2427 | out->print_cr(" %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1)); |
2428 | } |
2429 | out->print_cr(" * - 100%% == occupancy"); |
2430 | out->print_cr(" ----------------------------------------------"); |
2431 | out->cr(); |
2432 | } |
2433 | |
2434 | void CodeHeapState::print_age_legend(outputStream* out) { |
2435 | unsigned int indicator = 0; |
2436 | unsigned int age_range = 256; |
2437 | unsigned int range_beg = latest_compilation_id; |
2438 | out->cr(); |
2439 | printBox(out, '-', "Age ranges, based on compilation id", NULL__null); |
2440 | while (age_range > 0) { |
2441 | out->print_cr(" %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range); |
2442 | range_beg = latest_compilation_id - latest_compilation_id/age_range; |
2443 | age_range /= 2; |
2444 | indicator += 1; |
2445 | } |
2446 | out->print_cr(" -----------------------------------------"); |
2447 | out->cr(); |
2448 | } |
2449 | |
2450 | void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) { |
2451 | out->print("%c", blobTypeChar[type]); |
2452 | } |
2453 | |
2454 | void CodeHeapState::print_count_single(outputStream* out, unsigned short count) { |
2455 | if (count >= 16) out->print("*"); |
2456 | else if (count > 0) out->print("%1.1x", count); |
2457 | else out->print(" "); |
2458 | } |
2459 | |
2460 | void CodeHeapState::print_space_single(outputStream* out, unsigned short space) { |
2461 | size_t space_in_bytes = ((unsigned int)space)<<log2_seg_size; |
2462 | char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size); |
2463 | out->print("%c", fraction); |
2464 | } |
2465 | |
2466 | void CodeHeapState::print_age_single(outputStream* out, unsigned int age) { |
2467 | unsigned int indicator = 0; |
2468 | unsigned int age_range = 256; |
2469 | if (age > 0) { |
2470 | while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) { |
2471 | age_range /= 2; |
2472 | indicator += 1; |
2473 | } |
2474 | out->print("%c", char('0'+indicator)); |
2475 | } else { |
2476 | out->print(" "); |
2477 | } |
2478 | } |
2479 | |
2480 | void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) { |
2481 | if (ix % gpl == 0) { |
2482 | if (ix > 0) { |
2483 | ast->print("|"); |
2484 | } |
2485 | ast->cr(); |
2486 | assert(out == ast, "must use the same stream!")do { if (!(out == ast)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/code/codeHeapState.cpp" , 2486, "assert(" "out == ast" ") failed", "must use the same stream!" ); ::breakpoint(); } } while (0); |
2487 | |
2488 | ast->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(low_bound + ix*granule_size)); |
2489 | ast->fill_to(19); |
2490 | ast->print("(+" PTR32_FORMAT"0x%08" "x" "): |", (unsigned int)(ix*granule_size)); |
2491 | } |
2492 | } |
2493 | |
2494 | void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) { |
2495 | assert(out != ast, "must not use the same stream!")do { if (!(out != ast)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/code/codeHeapState.cpp" , 2495, "assert(" "out != ast" ") failed", "must not use the same stream!" ); ::breakpoint(); } } while (0); |
2496 | if (ix % gpl == 0) { |
2497 | if (ix > 0) { |
2498 | ast->print("|"); |
2499 | } |
2500 | ast->cr(); |
2501 | |
2502 | // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here. |
2503 | // can't use this expression. bufferedStream::capacity() does not exist. |
2504 | // if ((ast->capacity() - ast->size()) < 512) { |
2505 | // Assume instead that default bufferedStream capacity (4K) was used. |
2506 | if (ast->size() > 3*K) { |
2507 | ttyLocker ttyl; |
2508 | out->print("%s", ast->as_string()); |
2509 | ast->reset(); |
2510 | } |
2511 | |
2512 | ast->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(low_bound + ix*granule_size)); |
2513 | ast->fill_to(19); |
2514 | ast->print("(+" PTR32_FORMAT"0x%08" "x" "): |", (unsigned int)(ix*granule_size)); |
2515 | } |
2516 | } |
2517 | |
2518 | // Find out which blob type we have at hand. |
2519 | // Return "noType" if anything abnormal is detected. |
2520 | CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) { |
2521 | if (cb != NULL__null) { |
2522 | if (cb->is_runtime_stub()) return runtimeStub; |
2523 | if (cb->is_deoptimization_stub()) return deoptimizationStub; |
2524 | if (cb->is_uncommon_trap_stub()) return uncommonTrapStub; |
2525 | if (cb->is_exception_stub()) return exceptionStub; |
2526 | if (cb->is_safepoint_stub()) return safepointStub; |
2527 | if (cb->is_adapter_blob()) return adapterBlob; |
2528 | if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob; |
2529 | if (cb->is_buffer_blob()) return bufferBlob; |
2530 | |
2531 | //---< access these fields only if we own CodeCache_lock and Compile_lock >--- |
2532 | // Should be ensured by caller. aggregate() and print_names() do that. |
2533 | if (holding_required_locks()) { |
2534 | nmethod* nm = cb->as_nmethod_or_null(); |
2535 | if (nm != NULL__null) { // no is_readable check required, nm = (nmethod*)cb. |
2536 | if (nm->is_zombie()) return nMethod_dead; |
2537 | if (nm->is_unloaded()) return nMethod_unloaded; |
2538 | if (nm->is_in_use()) return nMethod_inuse; |
2539 | if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused; |
2540 | if (nm->is_alive()) return nMethod_alive; |
2541 | return nMethod_dead; |
2542 | } |
2543 | } |
2544 | } |
2545 | return noType; |
2546 | } |
2547 | |
2548 | // make sure the blob at hand is not garbage. |
2549 | bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob) { |
2550 | return (this_blob != NULL__null) && // a blob must have been found, obviously |
2551 | (this_blob->header_size() >= 0) && |
2552 | (this_blob->relocation_size() >= 0) && |
2553 | ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) && |
2554 | ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())); |
2555 | } |
2556 | |
2557 | // make sure the nmethod at hand (and the linked method) is not garbage. |
2558 | bool CodeHeapState::nmethod_access_is_safe(nmethod* nm) { |
2559 | Method* method = (nm == NULL__null) ? NULL__null : nm->method(); // nm->method() was found to be uninitialized, i.e. != NULL, but invalid. |
2560 | return (nm != NULL__null) && (method != NULL__null) && nm->is_alive() && (method->signature() != NULL__null); |
2561 | } |
2562 | |
2563 | bool CodeHeapState::holding_required_locks() { |
2564 | return SafepointSynchronize::is_at_safepoint() || |
2565 | (CodeCache_lock->owned_by_self() && Compile_lock->owned_by_self()); |
2566 | } |