File: | jdk/src/hotspot/share/opto/type.cpp |
Warning: | line 4067, column 17 Although the value stored to 'tinst_xk' is used in the enclosing expression, the value is never actually read from 'tinst_xk' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "ci/ciMethodData.hpp" |
27 | #include "ci/ciTypeFlow.hpp" |
28 | #include "classfile/javaClasses.hpp" |
29 | #include "classfile/symbolTable.hpp" |
30 | #include "compiler/compileLog.hpp" |
31 | #include "libadt/dict.hpp" |
32 | #include "memory/oopFactory.hpp" |
33 | #include "memory/resourceArea.hpp" |
34 | #include "oops/instanceKlass.hpp" |
35 | #include "oops/instanceMirrorKlass.hpp" |
36 | #include "oops/objArrayKlass.hpp" |
37 | #include "oops/typeArrayKlass.hpp" |
38 | #include "opto/matcher.hpp" |
39 | #include "opto/node.hpp" |
40 | #include "opto/opcodes.hpp" |
41 | #include "opto/type.hpp" |
42 | #include "utilities/powerOfTwo.hpp" |
43 | #include "utilities/stringUtils.hpp" |
44 | |
45 | // Portions of code courtesy of Clifford Click |
46 | |
47 | // Optimization - Graph Style |
48 | |
49 | // Dictionary of types shared among compilations. |
50 | Dict* Type::_shared_type_dict = NULL__null; |
51 | |
52 | // Array which maps compiler types to Basic Types |
53 | const Type::TypeInfo Type::_type_info[Type::lastype] = { |
54 | { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad |
55 | { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control |
56 | { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top |
57 | { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int |
58 | { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long |
59 | { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half |
60 | { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop |
61 | { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass |
62 | { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple |
63 | { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array |
64 | |
65 | #if defined(PPC64) |
66 | { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. |
67 | { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. |
68 | { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS |
69 | { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD |
70 | { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX |
71 | { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY |
72 | { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ |
73 | #elif defined(S390) |
74 | { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. |
75 | { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. |
76 | { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS |
77 | { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD |
78 | { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX |
79 | { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY |
80 | { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ |
81 | #else // all other |
82 | { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. |
83 | { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. |
84 | { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS |
85 | { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD |
86 | { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX |
87 | { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY |
88 | { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ |
89 | #endif |
90 | { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr |
91 | { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr |
92 | { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr |
93 | { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr |
94 | { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr |
95 | { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr |
96 | { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr |
97 | { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr |
98 | { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr |
99 | { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function |
100 | { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio |
101 | { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address |
102 | { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory |
103 | { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop |
104 | { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon |
105 | { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot |
106 | { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop |
107 | { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon |
108 | { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot |
109 | { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom |
110 | }; |
111 | |
112 | // Map ideal registers (machine types) to ideal types |
113 | const Type *Type::mreg2type[_last_machine_leaf]; |
114 | |
115 | // Map basic types to canonical Type* pointers. |
116 | const Type* Type:: _const_basic_type[T_CONFLICT+1]; |
117 | |
118 | // Map basic types to constant-zero Types. |
119 | const Type* Type:: _zero_type[T_CONFLICT+1]; |
120 | |
121 | // Map basic types to array-body alias types. |
122 | const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; |
123 | |
124 | //============================================================================= |
125 | // Convenience common pre-built types. |
126 | const Type *Type::ABIO; // State-of-machine only |
127 | const Type *Type::BOTTOM; // All values |
128 | const Type *Type::CONTROL; // Control only |
129 | const Type *Type::DOUBLE; // All doubles |
130 | const Type *Type::FLOAT; // All floats |
131 | const Type *Type::HALF; // Placeholder half of doublewide type |
132 | const Type *Type::MEMORY; // Abstract store only |
133 | const Type *Type::RETURN_ADDRESS; |
134 | const Type *Type::TOP; // No values in set |
135 | |
136 | //------------------------------get_const_type--------------------------- |
137 | const Type* Type::get_const_type(ciType* type) { |
138 | if (type == NULL__null) { |
139 | return NULL__null; |
140 | } else if (type->is_primitive_type()) { |
141 | return get_const_basic_type(type->basic_type()); |
142 | } else { |
143 | return TypeOopPtr::make_from_klass(type->as_klass()); |
144 | } |
145 | } |
146 | |
147 | //---------------------------array_element_basic_type--------------------------------- |
148 | // Mapping to the array element's basic type. |
149 | BasicType Type::array_element_basic_type() const { |
150 | BasicType bt = basic_type(); |
151 | if (bt == T_INT) { |
152 | if (this == TypeInt::INT) return T_INT; |
153 | if (this == TypeInt::CHAR) return T_CHAR; |
154 | if (this == TypeInt::BYTE) return T_BYTE; |
155 | if (this == TypeInt::BOOL) return T_BOOLEAN; |
156 | if (this == TypeInt::SHORT) return T_SHORT; |
157 | return T_VOID; |
158 | } |
159 | return bt; |
160 | } |
161 | |
162 | // For two instance arrays of same dimension, return the base element types. |
163 | // Otherwise or if the arrays have different dimensions, return NULL. |
164 | void Type::get_arrays_base_elements(const Type *a1, const Type *a2, |
165 | const TypeInstPtr **e1, const TypeInstPtr **e2) { |
166 | |
167 | if (e1) *e1 = NULL__null; |
168 | if (e2) *e2 = NULL__null; |
169 | const TypeAryPtr* a1tap = (a1 == NULL__null) ? NULL__null : a1->isa_aryptr(); |
170 | const TypeAryPtr* a2tap = (a2 == NULL__null) ? NULL__null : a2->isa_aryptr(); |
171 | |
172 | if (a1tap != NULL__null && a2tap != NULL__null) { |
173 | // Handle multidimensional arrays |
174 | const TypePtr* a1tp = a1tap->elem()->make_ptr(); |
175 | const TypePtr* a2tp = a2tap->elem()->make_ptr(); |
176 | while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { |
177 | a1tap = a1tp->is_aryptr(); |
178 | a2tap = a2tp->is_aryptr(); |
179 | a1tp = a1tap->elem()->make_ptr(); |
180 | a2tp = a2tap->elem()->make_ptr(); |
181 | } |
182 | if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { |
183 | if (e1) *e1 = a1tp->is_instptr(); |
184 | if (e2) *e2 = a2tp->is_instptr(); |
185 | } |
186 | } |
187 | } |
188 | |
189 | //---------------------------get_typeflow_type--------------------------------- |
190 | // Import a type produced by ciTypeFlow. |
191 | const Type* Type::get_typeflow_type(ciType* type) { |
192 | switch (type->basic_type()) { |
193 | |
194 | case ciTypeFlow::StateVector::T_BOTTOM: |
195 | assert(type == ciTypeFlow::StateVector::bottom_type(), "")do { if (!(type == ciTypeFlow::StateVector::bottom_type())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 195, "assert(" "type == ciTypeFlow::StateVector::bottom_type()" ") failed", ""); ::breakpoint(); } } while (0); |
196 | return Type::BOTTOM; |
197 | |
198 | case ciTypeFlow::StateVector::T_TOP: |
199 | assert(type == ciTypeFlow::StateVector::top_type(), "")do { if (!(type == ciTypeFlow::StateVector::top_type())) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 199, "assert(" "type == ciTypeFlow::StateVector::top_type()" ") failed", ""); ::breakpoint(); } } while (0); |
200 | return Type::TOP; |
201 | |
202 | case ciTypeFlow::StateVector::T_NULL: |
203 | assert(type == ciTypeFlow::StateVector::null_type(), "")do { if (!(type == ciTypeFlow::StateVector::null_type())) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 203, "assert(" "type == ciTypeFlow::StateVector::null_type()" ") failed", ""); ::breakpoint(); } } while (0); |
204 | return TypePtr::NULL_PTR; |
205 | |
206 | case ciTypeFlow::StateVector::T_LONG2: |
207 | // The ciTypeFlow pass pushes a long, then the half. |
208 | // We do the same. |
209 | assert(type == ciTypeFlow::StateVector::long2_type(), "")do { if (!(type == ciTypeFlow::StateVector::long2_type())) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 209, "assert(" "type == ciTypeFlow::StateVector::long2_type()" ") failed", ""); ::breakpoint(); } } while (0); |
210 | return TypeInt::TOP; |
211 | |
212 | case ciTypeFlow::StateVector::T_DOUBLE2: |
213 | // The ciTypeFlow pass pushes double, then the half. |
214 | // Our convention is the same. |
215 | assert(type == ciTypeFlow::StateVector::double2_type(), "")do { if (!(type == ciTypeFlow::StateVector::double2_type())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 215, "assert(" "type == ciTypeFlow::StateVector::double2_type()" ") failed", ""); ::breakpoint(); } } while (0); |
216 | return Type::TOP; |
217 | |
218 | case T_ADDRESS: |
219 | assert(type->is_return_address(), "")do { if (!(type->is_return_address())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 219, "assert(" "type->is_return_address()" ") failed", "" ); ::breakpoint(); } } while (0); |
220 | return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); |
221 | |
222 | default: |
223 | // make sure we did not mix up the cases: |
224 | assert(type != ciTypeFlow::StateVector::bottom_type(), "")do { if (!(type != ciTypeFlow::StateVector::bottom_type())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 224, "assert(" "type != ciTypeFlow::StateVector::bottom_type()" ") failed", ""); ::breakpoint(); } } while (0); |
225 | assert(type != ciTypeFlow::StateVector::top_type(), "")do { if (!(type != ciTypeFlow::StateVector::top_type())) { (* g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 225, "assert(" "type != ciTypeFlow::StateVector::top_type()" ") failed", ""); ::breakpoint(); } } while (0); |
226 | assert(type != ciTypeFlow::StateVector::null_type(), "")do { if (!(type != ciTypeFlow::StateVector::null_type())) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 226, "assert(" "type != ciTypeFlow::StateVector::null_type()" ") failed", ""); ::breakpoint(); } } while (0); |
227 | assert(type != ciTypeFlow::StateVector::long2_type(), "")do { if (!(type != ciTypeFlow::StateVector::long2_type())) { ( *g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 227, "assert(" "type != ciTypeFlow::StateVector::long2_type()" ") failed", ""); ::breakpoint(); } } while (0); |
228 | assert(type != ciTypeFlow::StateVector::double2_type(), "")do { if (!(type != ciTypeFlow::StateVector::double2_type())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 228, "assert(" "type != ciTypeFlow::StateVector::double2_type()" ") failed", ""); ::breakpoint(); } } while (0); |
229 | assert(!type->is_return_address(), "")do { if (!(!type->is_return_address())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 229, "assert(" "!type->is_return_address()" ") failed", "" ); ::breakpoint(); } } while (0); |
230 | |
231 | return Type::get_const_type(type); |
232 | } |
233 | } |
234 | |
235 | |
236 | //-----------------------make_from_constant------------------------------------ |
237 | const Type* Type::make_from_constant(ciConstant constant, bool require_constant, |
238 | int stable_dimension, bool is_narrow_oop, |
239 | bool is_autobox_cache) { |
240 | switch (constant.basic_type()) { |
241 | case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); |
242 | case T_CHAR: return TypeInt::make(constant.as_char()); |
243 | case T_BYTE: return TypeInt::make(constant.as_byte()); |
244 | case T_SHORT: return TypeInt::make(constant.as_short()); |
245 | case T_INT: return TypeInt::make(constant.as_int()); |
246 | case T_LONG: return TypeLong::make(constant.as_long()); |
247 | case T_FLOAT: return TypeF::make(constant.as_float()); |
248 | case T_DOUBLE: return TypeD::make(constant.as_double()); |
249 | case T_ARRAY: |
250 | case T_OBJECT: { |
251 | const Type* con_type = NULL__null; |
252 | ciObject* oop_constant = constant.as_object(); |
253 | if (oop_constant->is_null_object()) { |
254 | con_type = Type::get_zero_type(T_OBJECT); |
255 | } else { |
256 | guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed")do { if (!(require_constant || oop_constant->should_be_constant ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 256, "guarantee(" "require_constant || oop_constant->should_be_constant()" ") failed", "con_type must get computed"); ::breakpoint(); } } while (0); |
257 | con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); |
258 | if (Compile::current()->eliminate_boxing() && is_autobox_cache) { |
259 | con_type = con_type->is_aryptr()->cast_to_autobox_cache(); |
260 | } |
261 | if (stable_dimension > 0) { |
262 | assert(FoldStableValues, "sanity")do { if (!(FoldStableValues)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 262, "assert(" "FoldStableValues" ") failed", "sanity"); :: breakpoint(); } } while (0); |
263 | assert(!con_type->is_zero_type(), "default value for stable field")do { if (!(!con_type->is_zero_type())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 263, "assert(" "!con_type->is_zero_type()" ") failed", "default value for stable field" ); ::breakpoint(); } } while (0); |
264 | con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); |
265 | } |
266 | } |
267 | if (is_narrow_oop) { |
268 | con_type = con_type->make_narrowoop(); |
269 | } |
270 | return con_type; |
271 | } |
272 | case T_ILLEGAL: |
273 | // Invalid ciConstant returned due to OutOfMemoryError in the CI |
274 | assert(Compile::current()->env()->failing(), "otherwise should not see this")do { if (!(Compile::current()->env()->failing())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 274, "assert(" "Compile::current()->env()->failing()" ") failed", "otherwise should not see this"); ::breakpoint() ; } } while (0); |
275 | return NULL__null; |
276 | default: |
277 | // Fall through to failure |
278 | return NULL__null; |
279 | } |
280 | } |
281 | |
282 | static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { |
283 | BasicType conbt = con.basic_type(); |
284 | switch (conbt) { |
285 | case T_BOOLEAN: conbt = T_BYTE; break; |
286 | case T_ARRAY: conbt = T_OBJECT; break; |
287 | default: break; |
288 | } |
289 | switch (loadbt) { |
290 | case T_BOOLEAN: loadbt = T_BYTE; break; |
291 | case T_NARROWOOP: loadbt = T_OBJECT; break; |
292 | case T_ARRAY: loadbt = T_OBJECT; break; |
293 | case T_ADDRESS: loadbt = T_OBJECT; break; |
294 | default: break; |
295 | } |
296 | if (conbt == loadbt) { |
297 | if (is_unsigned && conbt == T_BYTE) { |
298 | // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). |
299 | return ciConstant(T_INT, con.as_int() & 0xFF); |
300 | } else { |
301 | return con; |
302 | } |
303 | } |
304 | if (conbt == T_SHORT && loadbt == T_CHAR) { |
305 | // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). |
306 | return ciConstant(T_INT, con.as_int() & 0xFFFF); |
307 | } |
308 | return ciConstant(); // T_ILLEGAL |
309 | } |
310 | |
311 | // Try to constant-fold a stable array element. |
312 | const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, |
313 | BasicType loadbt, bool is_unsigned_load) { |
314 | // Decode the results of GraphKit::array_element_address. |
315 | ciConstant element_value = array->element_value_by_offset(off); |
316 | if (element_value.basic_type() == T_ILLEGAL) { |
317 | return NULL__null; // wrong offset |
318 | } |
319 | ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); |
320 | |
321 | assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",do { if (!(con.basic_type() != T_ILLEGAL)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 322, "assert(" "con.basic_type() != T_ILLEGAL" ") failed", "elembt=%s; loadbt=%s; unsigned=%d" , type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load ); ::breakpoint(); } } while (0) |
322 | type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load)do { if (!(con.basic_type() != T_ILLEGAL)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 322, "assert(" "con.basic_type() != T_ILLEGAL" ") failed", "elembt=%s; loadbt=%s; unsigned=%d" , type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load ); ::breakpoint(); } } while (0); |
323 | |
324 | if (con.is_valid() && // not a mismatched access |
325 | !con.is_null_or_zero()) { // not a default value |
326 | bool is_narrow_oop = (loadbt == T_NARROWOOP); |
327 | return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); |
328 | } |
329 | return NULL__null; |
330 | } |
331 | |
332 | const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { |
333 | ciField* field; |
334 | ciType* type = holder->java_mirror_type(); |
335 | if (type != NULL__null && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { |
336 | // Static field |
337 | field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); |
338 | } else { |
339 | // Instance field |
340 | field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); |
341 | } |
342 | if (field == NULL__null) { |
343 | return NULL__null; // Wrong offset |
344 | } |
345 | return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); |
346 | } |
347 | |
348 | const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, |
349 | BasicType loadbt, bool is_unsigned_load) { |
350 | if (!field->is_constant()) { |
351 | return NULL__null; // Non-constant field |
352 | } |
353 | ciConstant field_value; |
354 | if (field->is_static()) { |
355 | // final static field |
356 | field_value = field->constant_value(); |
357 | } else if (holder != NULL__null) { |
358 | // final or stable non-static field |
359 | // Treat final non-static fields of trusted classes (classes in |
360 | // java.lang.invoke and sun.invoke packages and subpackages) as |
361 | // compile time constants. |
362 | field_value = field->constant_value_of(holder); |
363 | } |
364 | if (!field_value.is_valid()) { |
365 | return NULL__null; // Not a constant |
366 | } |
367 | |
368 | ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); |
369 | |
370 | assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",do { if (!(con.is_valid())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 371, "assert(" "con.is_valid()" ") failed", "elembt=%s; loadbt=%s; unsigned=%d" , type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load ); ::breakpoint(); } } while (0) |
371 | type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load)do { if (!(con.is_valid())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 371, "assert(" "con.is_valid()" ") failed", "elembt=%s; loadbt=%s; unsigned=%d" , type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load ); ::breakpoint(); } } while (0); |
372 | |
373 | bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); |
374 | int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); |
375 | bool is_narrow_oop = (loadbt == T_NARROWOOP); |
376 | |
377 | const Type* con_type = make_from_constant(con, /*require_constant=*/ true, |
378 | stable_dimension, is_narrow_oop, |
379 | field->is_autobox_cache()); |
380 | if (con_type != NULL__null && field->is_call_site_target()) { |
381 | ciCallSite* call_site = holder->as_call_site(); |
382 | if (!call_site->is_fully_initialized_constant_call_site()) { |
383 | ciMethodHandle* target = con.as_object()->as_method_handle(); |
384 | Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); |
385 | } |
386 | } |
387 | return con_type; |
388 | } |
389 | |
390 | //------------------------------make------------------------------------------- |
391 | // Create a simple Type, with default empty symbol sets. Then hashcons it |
392 | // and look for an existing copy in the type dictionary. |
393 | const Type *Type::make( enum TYPES t ) { |
394 | return (new Type(t))->hashcons(); |
395 | } |
396 | |
397 | //------------------------------cmp-------------------------------------------- |
398 | int Type::cmp( const Type *const t1, const Type *const t2 ) { |
399 | if( t1->_base != t2->_base ) |
400 | return 1; // Missed badly |
401 | assert(t1 != t2 || t1->eq(t2), "eq must be reflexive")do { if (!(t1 != t2 || t1->eq(t2))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 401, "assert(" "t1 != t2 || t1->eq(t2)" ") failed", "eq must be reflexive" ); ::breakpoint(); } } while (0); |
402 | return !t1->eq(t2); // Return ZERO if equal |
403 | } |
404 | |
405 | const Type* Type::maybe_remove_speculative(bool include_speculative) const { |
406 | if (!include_speculative) { |
407 | return remove_speculative(); |
408 | } |
409 | return this; |
410 | } |
411 | |
412 | //------------------------------hash------------------------------------------- |
413 | int Type::uhash( const Type *const t ) { |
414 | return t->hash(); |
415 | } |
416 | |
417 | #define SMALLINT((juint)3) ((juint)3) // a value too insignificant to consider widening |
418 | #define POSITIVE_INFINITE_F0x7f800000 0x7f800000 // hex representation for IEEE 754 single precision positive infinite |
419 | #define POSITIVE_INFINITE_D0x7ff0000000000000 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite |
420 | |
421 | //--------------------------Initialize_shared---------------------------------- |
422 | void Type::Initialize_shared(Compile* current) { |
423 | // This method does not need to be locked because the first system |
424 | // compilations (stub compilations) occur serially. If they are |
425 | // changed to proceed in parallel, then this section will need |
426 | // locking. |
427 | |
428 | Arena* save = current->type_arena(); |
429 | Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); |
430 | |
431 | current->set_type_arena(shared_type_arena); |
432 | _shared_type_dict = |
433 | new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash, |
434 | shared_type_arena, 128 ); |
435 | current->set_type_dict(_shared_type_dict); |
436 | |
437 | // Make shared pre-built types. |
438 | CONTROL = make(Control); // Control only |
439 | TOP = make(Top); // No values in set |
440 | MEMORY = make(Memory); // Abstract store only |
441 | ABIO = make(Abio); // State-of-machine only |
442 | RETURN_ADDRESS=make(Return_Address); |
443 | FLOAT = make(FloatBot); // All floats |
444 | DOUBLE = make(DoubleBot); // All doubles |
445 | BOTTOM = make(Bottom); // Everything |
446 | HALF = make(Half); // Placeholder half of doublewide type |
447 | |
448 | TypeF::MAX = TypeF::make(max_jfloat); // Float MAX |
449 | TypeF::MIN = TypeF::make(min_jfloat); // Float MIN |
450 | TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) |
451 | TypeF::ONE = TypeF::make(1.0); // Float 1 |
452 | TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F0x7f800000)); |
453 | TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F0x7f800000)); |
454 | |
455 | TypeD::MAX = TypeD::make(max_jdouble); // Double MAX |
456 | TypeD::MIN = TypeD::make(min_jdouble); // Double MIN |
457 | TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) |
458 | TypeD::ONE = TypeD::make(1.0); // Double 1 |
459 | TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D0x7ff0000000000000)); |
460 | TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D0x7ff0000000000000)); |
461 | |
462 | TypeInt::MAX = TypeInt::make(max_jint); // Int MAX |
463 | TypeInt::MIN = TypeInt::make(min_jint); // Int MIN |
464 | TypeInt::MINUS_1 = TypeInt::make(-1); // -1 |
465 | TypeInt::ZERO = TypeInt::make( 0); // 0 |
466 | TypeInt::ONE = TypeInt::make( 1); // 1 |
467 | TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. |
468 | TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes |
469 | TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 |
470 | TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE |
471 | TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO |
472 | TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); |
473 | TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL |
474 | TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes |
475 | TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes |
476 | TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars |
477 | TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts |
478 | TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values |
479 | TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values |
480 | TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers |
481 | TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range |
482 | TypeInt::TYPE_DOMAIN = TypeInt::INT; |
483 | // CmpL is overloaded both as the bytecode computation returning |
484 | // a trinary (-1,0,+1) integer result AND as an efficient long |
485 | // compare returning optimizer ideal-type flags. |
486 | assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" )do { if (!(TypeInt::CC_LT == TypeInt::MINUS_1)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 486, "assert(" "TypeInt::CC_LT == TypeInt::MINUS_1" ") failed" , "types must match for CmpL to work"); ::breakpoint(); } } while (0); |
487 | assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" )do { if (!(TypeInt::CC_GT == TypeInt::ONE)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 487, "assert(" "TypeInt::CC_GT == TypeInt::ONE" ") failed", "types must match for CmpL to work"); ::breakpoint(); } } while (0); |
488 | assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" )do { if (!(TypeInt::CC_EQ == TypeInt::ZERO)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 488, "assert(" "TypeInt::CC_EQ == TypeInt::ZERO" ") failed" , "types must match for CmpL to work"); ::breakpoint(); } } while (0); |
489 | assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" )do { if (!(TypeInt::CC_GE == TypeInt::BOOL)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 489, "assert(" "TypeInt::CC_GE == TypeInt::BOOL" ") failed" , "types must match for CmpL to work"); ::breakpoint(); } } while (0); |
490 | assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small")do { if (!((juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= ((juint)3))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 490, "assert(" "(juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= ((juint)3)" ") failed", "CC is truly small"); ::breakpoint(); } } while ( 0); |
491 | |
492 | TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX |
493 | TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN |
494 | TypeLong::MINUS_1 = TypeLong::make(-1); // -1 |
495 | TypeLong::ZERO = TypeLong::make( 0); // 0 |
496 | TypeLong::ONE = TypeLong::make( 1); // 1 |
497 | TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values |
498 | TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers |
499 | TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); |
500 | TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); |
501 | TypeLong::TYPE_DOMAIN = TypeLong::LONG; |
502 | |
503 | const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); |
504 | fboth[0] = Type::CONTROL; |
505 | fboth[1] = Type::CONTROL; |
506 | TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); |
507 | |
508 | const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); |
509 | ffalse[0] = Type::CONTROL; |
510 | ffalse[1] = Type::TOP; |
511 | TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); |
512 | |
513 | const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); |
514 | fneither[0] = Type::TOP; |
515 | fneither[1] = Type::TOP; |
516 | TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); |
517 | |
518 | const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); |
519 | ftrue[0] = Type::TOP; |
520 | ftrue[1] = Type::CONTROL; |
521 | TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); |
522 | |
523 | const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); |
524 | floop[0] = Type::CONTROL; |
525 | floop[1] = TypeInt::INT; |
526 | TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); |
527 | |
528 | TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); |
529 | TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); |
530 | TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); |
531 | |
532 | TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); |
533 | TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); |
534 | |
535 | const Type **fmembar = TypeTuple::fields(0); |
536 | TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); |
537 | |
538 | const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); |
539 | fsc[0] = TypeInt::CC; |
540 | fsc[1] = Type::MEMORY; |
541 | TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); |
542 | |
543 | TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); |
544 | TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); |
545 | TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); |
546 | TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), |
547 | false, 0, oopDesc::mark_offset_in_bytes()); |
548 | TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), |
549 | false, 0, oopDesc::klass_offset_in_bytes()); |
550 | TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); |
551 | |
552 | TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL__null, OffsetBot); |
553 | |
554 | TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); |
555 | TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); |
556 | |
557 | TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); |
558 | |
559 | mreg2type[Op_Node] = Type::BOTTOM; |
560 | mreg2type[Op_Set ] = 0; |
561 | mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; |
562 | mreg2type[Op_RegI] = TypeInt::INT; |
563 | mreg2type[Op_RegP] = TypePtr::BOTTOM; |
564 | mreg2type[Op_RegF] = Type::FLOAT; |
565 | mreg2type[Op_RegD] = Type::DOUBLE; |
566 | mreg2type[Op_RegL] = TypeLong::LONG; |
567 | mreg2type[Op_RegFlags] = TypeInt::CC; |
568 | |
569 | TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL__null /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); |
570 | |
571 | TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL__null /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); |
572 | |
573 | #ifdef _LP641 |
574 | if (UseCompressedOops) { |
575 | assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop")do { if (!(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 575, "assert(" "TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop()" ") failed", "array of narrow oops must be ptr to narrow oop" ); ::breakpoint(); } } while (0); |
576 | TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; |
577 | } else |
578 | #endif |
579 | { |
580 | // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). |
581 | TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL__null /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); |
582 | } |
583 | TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); |
584 | TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); |
585 | TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); |
586 | TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); |
587 | TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); |
588 | TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); |
589 | TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); |
590 | |
591 | // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert. |
592 | TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL__null; |
593 | TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; |
594 | TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays |
595 | TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; |
596 | TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array |
597 | TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; |
598 | TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; |
599 | TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; |
600 | TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; |
601 | TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; |
602 | TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; |
603 | |
604 | TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0); |
605 | TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0); |
606 | |
607 | const Type **fi2c = TypeTuple::fields(2); |
608 | fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* |
609 | fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer |
610 | TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); |
611 | |
612 | const Type **intpair = TypeTuple::fields(2); |
613 | intpair[0] = TypeInt::INT; |
614 | intpair[1] = TypeInt::INT; |
615 | TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); |
616 | |
617 | const Type **longpair = TypeTuple::fields(2); |
618 | longpair[0] = TypeLong::LONG; |
619 | longpair[1] = TypeLong::LONG; |
620 | TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); |
621 | |
622 | const Type **intccpair = TypeTuple::fields(2); |
623 | intccpair[0] = TypeInt::INT; |
624 | intccpair[1] = TypeInt::CC; |
625 | TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); |
626 | |
627 | const Type **longccpair = TypeTuple::fields(2); |
628 | longccpair[0] = TypeLong::LONG; |
629 | longccpair[1] = TypeInt::CC; |
630 | TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); |
631 | |
632 | _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; |
633 | _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; |
634 | _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; |
635 | _const_basic_type[T_CHAR] = TypeInt::CHAR; |
636 | _const_basic_type[T_BYTE] = TypeInt::BYTE; |
637 | _const_basic_type[T_SHORT] = TypeInt::SHORT; |
638 | _const_basic_type[T_INT] = TypeInt::INT; |
639 | _const_basic_type[T_LONG] = TypeLong::LONG; |
640 | _const_basic_type[T_FLOAT] = Type::FLOAT; |
641 | _const_basic_type[T_DOUBLE] = Type::DOUBLE; |
642 | _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; |
643 | _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays |
644 | _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way |
645 | _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs |
646 | _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? |
647 | |
648 | _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; |
649 | _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; |
650 | _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 |
651 | _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 |
652 | _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 |
653 | _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 |
654 | _zero_type[T_INT] = TypeInt::ZERO; |
655 | _zero_type[T_LONG] = TypeLong::ZERO; |
656 | _zero_type[T_FLOAT] = TypeF::ZERO; |
657 | _zero_type[T_DOUBLE] = TypeD::ZERO; |
658 | _zero_type[T_OBJECT] = TypePtr::NULL_PTR; |
659 | _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop |
660 | _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null |
661 | _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all |
662 | |
663 | // get_zero_type() should not happen for T_CONFLICT |
664 | _zero_type[T_CONFLICT]= NULL__null; |
665 | |
666 | TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons(); |
667 | mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; |
668 | |
669 | if (Matcher::supports_scalable_vector()) { |
670 | TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); |
671 | } |
672 | |
673 | // Vector predefined types, it needs initialized _const_basic_type[]. |
674 | if (Matcher::vector_size_supported(T_BYTE,4)) { |
675 | TypeVect::VECTS = TypeVect::make(T_BYTE,4); |
676 | } |
677 | if (Matcher::vector_size_supported(T_FLOAT,2)) { |
678 | TypeVect::VECTD = TypeVect::make(T_FLOAT,2); |
679 | } |
680 | if (Matcher::vector_size_supported(T_FLOAT,4)) { |
681 | TypeVect::VECTX = TypeVect::make(T_FLOAT,4); |
682 | } |
683 | if (Matcher::vector_size_supported(T_FLOAT,8)) { |
684 | TypeVect::VECTY = TypeVect::make(T_FLOAT,8); |
685 | } |
686 | if (Matcher::vector_size_supported(T_FLOAT,16)) { |
687 | TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); |
688 | } |
689 | |
690 | mreg2type[Op_VecA] = TypeVect::VECTA; |
691 | mreg2type[Op_VecS] = TypeVect::VECTS; |
692 | mreg2type[Op_VecD] = TypeVect::VECTD; |
693 | mreg2type[Op_VecX] = TypeVect::VECTX; |
694 | mreg2type[Op_VecY] = TypeVect::VECTY; |
695 | mreg2type[Op_VecZ] = TypeVect::VECTZ; |
696 | |
697 | // Restore working type arena. |
698 | current->set_type_arena(save); |
699 | current->set_type_dict(NULL__null); |
700 | } |
701 | |
702 | //------------------------------Initialize------------------------------------- |
703 | void Type::Initialize(Compile* current) { |
704 | assert(current->type_arena() != NULL, "must have created type arena")do { if (!(current->type_arena() != __null)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 704, "assert(" "current->type_arena() != __null" ") failed" , "must have created type arena"); ::breakpoint(); } } while ( 0); |
705 | |
706 | if (_shared_type_dict == NULL__null) { |
707 | Initialize_shared(current); |
708 | } |
709 | |
710 | Arena* type_arena = current->type_arena(); |
711 | |
712 | // Create the hash-cons'ing dictionary with top-level storage allocation |
713 | Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); |
714 | current->set_type_dict(tdic); |
715 | } |
716 | |
717 | //------------------------------hashcons--------------------------------------- |
718 | // Do the hash-cons trick. If the Type already exists in the type table, |
719 | // delete the current Type and return the existing Type. Otherwise stick the |
720 | // current Type in the Type table. |
721 | const Type *Type::hashcons(void) { |
722 | debug_only(base())base(); // Check the assertion in Type::base(). |
723 | // Look up the Type in the Type dictionary |
724 | Dict *tdic = type_dict(); |
725 | Type* old = (Type*)(tdic->Insert(this, this, false)); |
726 | if( old ) { // Pre-existing Type? |
727 | if( old != this ) // Yes, this guy is not the pre-existing? |
728 | delete this; // Yes, Nuke this guy |
729 | assert( old->_dual, "" )do { if (!(old->_dual)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 729, "assert(" "old->_dual" ") failed", ""); ::breakpoint (); } } while (0); |
730 | return old; // Return pre-existing |
731 | } |
732 | |
733 | // Every type has a dual (to make my lattice symmetric). |
734 | // Since we just discovered a new Type, compute its dual right now. |
735 | assert( !_dual, "" )do { if (!(!_dual)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 735, "assert(" "!_dual" ") failed", ""); ::breakpoint(); } } while (0); // No dual yet |
736 | _dual = xdual(); // Compute the dual |
737 | if (cmp(this, _dual) == 0) { // Handle self-symmetric |
738 | if (_dual != this) { |
739 | delete _dual; |
740 | _dual = this; |
741 | } |
742 | return this; |
743 | } |
744 | assert( !_dual->_dual, "" )do { if (!(!_dual->_dual)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 744, "assert(" "!_dual->_dual" ") failed", ""); ::breakpoint (); } } while (0); // No reverse dual yet |
745 | assert( !(*tdic)[_dual], "" )do { if (!(!(*tdic)[_dual])) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 745, "assert(" "!(*tdic)[_dual]" ") failed", ""); ::breakpoint (); } } while (0); // Dual not in type system either |
746 | // New Type, insert into Type table |
747 | tdic->Insert((void*)_dual,(void*)_dual); |
748 | ((Type*)_dual)->_dual = this; // Finish up being symmetric |
749 | #ifdef ASSERT1 |
750 | Type *dual_dual = (Type*)_dual->xdual(); |
751 | assert( eq(dual_dual), "xdual(xdual()) should be identity" )do { if (!(eq(dual_dual))) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 751, "assert(" "eq(dual_dual)" ") failed", "xdual(xdual()) should be identity" ); ::breakpoint(); } } while (0); |
752 | delete dual_dual; |
753 | #endif |
754 | return this; // Return new Type |
755 | } |
756 | |
757 | //------------------------------eq--------------------------------------------- |
758 | // Structural equality check for Type representations |
759 | bool Type::eq( const Type * ) const { |
760 | return true; // Nothing else can go wrong |
761 | } |
762 | |
763 | //------------------------------hash------------------------------------------- |
764 | // Type-specific hashing function. |
765 | int Type::hash(void) const { |
766 | return _base; |
767 | } |
768 | |
769 | //------------------------------is_finite-------------------------------------- |
770 | // Has a finite value |
771 | bool Type::is_finite() const { |
772 | return false; |
773 | } |
774 | |
775 | //------------------------------is_nan----------------------------------------- |
776 | // Is not a number (NaN) |
777 | bool Type::is_nan() const { |
778 | return false; |
779 | } |
780 | |
781 | //----------------------interface_vs_oop--------------------------------------- |
782 | #ifdef ASSERT1 |
783 | bool Type::interface_vs_oop_helper(const Type *t) const { |
784 | bool result = false; |
785 | |
786 | const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop |
787 | const TypePtr* t_ptr = t->make_ptr(); |
788 | if( this_ptr == NULL__null || t_ptr == NULL__null ) |
789 | return result; |
790 | |
791 | const TypeInstPtr* this_inst = this_ptr->isa_instptr(); |
792 | const TypeInstPtr* t_inst = t_ptr->isa_instptr(); |
793 | if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) { |
794 | bool this_interface = this_inst->klass()->is_interface(); |
795 | bool t_interface = t_inst->klass()->is_interface(); |
796 | result = this_interface ^ t_interface; |
797 | } |
798 | |
799 | return result; |
800 | } |
801 | |
802 | bool Type::interface_vs_oop(const Type *t) const { |
803 | if (interface_vs_oop_helper(t)) { |
804 | return true; |
805 | } |
806 | // Now check the speculative parts as well |
807 | const TypePtr* this_spec = isa_ptr() != NULL__null ? is_ptr()->speculative() : NULL__null; |
808 | const TypePtr* t_spec = t->isa_ptr() != NULL__null ? t->is_ptr()->speculative() : NULL__null; |
809 | if (this_spec != NULL__null && t_spec != NULL__null) { |
810 | if (this_spec->interface_vs_oop_helper(t_spec)) { |
811 | return true; |
812 | } |
813 | return false; |
814 | } |
815 | if (this_spec != NULL__null && this_spec->interface_vs_oop_helper(t)) { |
816 | return true; |
817 | } |
818 | if (t_spec != NULL__null && interface_vs_oop_helper(t_spec)) { |
819 | return true; |
820 | } |
821 | return false; |
822 | } |
823 | |
824 | #endif |
825 | |
826 | void Type::check_symmetrical(const Type* t, const Type* mt) const { |
827 | #ifdef ASSERT1 |
828 | const Type* mt2 = t->xmeet(this); |
829 | if (mt != mt2) { |
830 | tty->print_cr("=== Meet Not Commutative ==="); |
831 | tty->print("t = "); t->dump(); tty->cr(); |
832 | tty->print("this = "); dump(); tty->cr(); |
833 | tty->print("t meet this = "); mt2->dump(); tty->cr(); |
834 | tty->print("this meet t = "); mt->dump(); tty->cr(); |
835 | fatal("meet not commutative")do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 835, "meet not commutative"); ::breakpoint(); } while (0); |
836 | } |
837 | const Type* dual_join = mt->_dual; |
838 | const Type* t2t = dual_join->xmeet(t->_dual); |
839 | const Type* t2this = dual_join->xmeet(this->_dual); |
840 | |
841 | // Interface meet Oop is Not Symmetric: |
842 | // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull |
843 | // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull |
844 | |
845 | if (!interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual)) { |
846 | tty->print_cr("=== Meet Not Symmetric ==="); |
847 | tty->print("t = "); t->dump(); tty->cr(); |
848 | tty->print("this= "); dump(); tty->cr(); |
849 | tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); |
850 | |
851 | tty->print("t_dual= "); t->_dual->dump(); tty->cr(); |
852 | tty->print("this_dual= "); _dual->dump(); tty->cr(); |
853 | tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); |
854 | |
855 | tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); |
856 | tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); |
857 | |
858 | fatal("meet not symmetric")do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 858, "meet not symmetric"); ::breakpoint(); } while (0); |
859 | } |
860 | #endif |
861 | } |
862 | |
863 | //------------------------------meet------------------------------------------- |
864 | // Compute the MEET of two types. NOT virtual. It enforces that meet is |
865 | // commutative and the lattice is symmetric. |
866 | const Type *Type::meet_helper(const Type *t, bool include_speculative) const { |
867 | if (isa_narrowoop() && t->isa_narrowoop()) { |
868 | const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); |
869 | return result->make_narrowoop(); |
870 | } |
871 | if (isa_narrowklass() && t->isa_narrowklass()) { |
872 | const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); |
873 | return result->make_narrowklass(); |
874 | } |
875 | |
876 | const Type *this_t = maybe_remove_speculative(include_speculative); |
877 | t = t->maybe_remove_speculative(include_speculative); |
878 | |
879 | const Type *mt = this_t->xmeet(t); |
880 | #ifdef ASSERT1 |
881 | if (isa_narrowoop() || t->isa_narrowoop()) return mt; |
882 | if (isa_narrowklass() || t->isa_narrowklass()) return mt; |
883 | Compile* C = Compile::current(); |
884 | if (!C->_type_verify_symmetry) { |
885 | return mt; |
886 | } |
887 | this_t->check_symmetrical(t, mt); |
888 | // In the case of an array, computing the meet above, caused the |
889 | // computation of the meet of the elements which at verification |
890 | // time caused the computation of the meet of the dual of the |
891 | // elements. Computing the meet of the dual of the arrays here |
892 | // causes the meet of the dual of the elements to be computed which |
893 | // would cause the meet of the dual of the dual of the elements, |
894 | // that is the meet of the elements already computed above to be |
895 | // computed. Avoid redundant computations by requesting no |
896 | // verification. |
897 | C->_type_verify_symmetry = false; |
898 | const Type *mt_dual = this_t->_dual->xmeet(t->_dual); |
899 | this_t->_dual->check_symmetrical(t->_dual, mt_dual); |
900 | assert(!C->_type_verify_symmetry, "shouldn't have changed")do { if (!(!C->_type_verify_symmetry)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 900, "assert(" "!C->_type_verify_symmetry" ") failed", "shouldn't have changed" ); ::breakpoint(); } } while (0); |
901 | C->_type_verify_symmetry = true; |
902 | #endif |
903 | return mt; |
904 | } |
905 | |
906 | //------------------------------xmeet------------------------------------------ |
907 | // Compute the MEET of two types. It returns a new Type object. |
908 | const Type *Type::xmeet( const Type *t ) const { |
909 | // Perform a fast test for common case; meeting the same types together. |
910 | if( this == t ) return this; // Meeting same type-rep? |
911 | |
912 | // Meeting TOP with anything? |
913 | if( _base == Top ) return t; |
914 | |
915 | // Meeting BOTTOM with anything? |
916 | if( _base == Bottom ) return BOTTOM; |
917 | |
918 | // Current "this->_base" is one of: Bad, Multi, Control, Top, |
919 | // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. |
920 | switch (t->base()) { // Switch on original type |
921 | |
922 | // Cut in half the number of cases I must handle. Only need cases for when |
923 | // the given enum "t->type" is less than or equal to the local enum "type". |
924 | case FloatCon: |
925 | case DoubleCon: |
926 | case Int: |
927 | case Long: |
928 | return t->xmeet(this); |
929 | |
930 | case OopPtr: |
931 | return t->xmeet(this); |
932 | |
933 | case InstPtr: |
934 | return t->xmeet(this); |
935 | |
936 | case MetadataPtr: |
937 | case KlassPtr: |
938 | case InstKlassPtr: |
939 | case AryKlassPtr: |
940 | return t->xmeet(this); |
941 | |
942 | case AryPtr: |
943 | return t->xmeet(this); |
944 | |
945 | case NarrowOop: |
946 | return t->xmeet(this); |
947 | |
948 | case NarrowKlass: |
949 | return t->xmeet(this); |
950 | |
951 | case Bad: // Type check |
952 | default: // Bogus type not in lattice |
953 | typerr(t); |
954 | return Type::BOTTOM; |
955 | |
956 | case Bottom: // Ye Olde Default |
957 | return t; |
958 | |
959 | case FloatTop: |
960 | if( _base == FloatTop ) return this; |
961 | case FloatBot: // Float |
962 | if( _base == FloatBot || _base == FloatTop ) return FLOAT; |
963 | if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; |
964 | typerr(t); |
965 | return Type::BOTTOM; |
966 | |
967 | case DoubleTop: |
968 | if( _base == DoubleTop ) return this; |
969 | case DoubleBot: // Double |
970 | if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; |
971 | if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; |
972 | typerr(t); |
973 | return Type::BOTTOM; |
974 | |
975 | // These next few cases must match exactly or it is a compile-time error. |
976 | case Control: // Control of code |
977 | case Abio: // State of world outside of program |
978 | case Memory: |
979 | if( _base == t->_base ) return this; |
980 | typerr(t); |
981 | return Type::BOTTOM; |
982 | |
983 | case Top: // Top of the lattice |
984 | return this; |
985 | } |
986 | |
987 | // The type is unchanged |
988 | return this; |
989 | } |
990 | |
991 | //-----------------------------filter------------------------------------------ |
992 | const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { |
993 | const Type* ft = join_helper(kills, include_speculative); |
994 | if (ft->empty()) |
995 | return Type::TOP; // Canonical empty value |
996 | return ft; |
997 | } |
998 | |
999 | //------------------------------xdual------------------------------------------ |
1000 | const Type *Type::xdual() const { |
1001 | // Note: the base() accessor asserts the sanity of _base. |
1002 | assert(_type_info[base()].dual_type != Bad, "implement with v-call")do { if (!(_type_info[base()].dual_type != Bad)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1002, "assert(" "_type_info[base()].dual_type != Bad" ") failed" , "implement with v-call"); ::breakpoint(); } } while (0); |
1003 | return new Type(_type_info[_base].dual_type); |
1004 | } |
1005 | |
1006 | //------------------------------has_memory------------------------------------- |
1007 | bool Type::has_memory() const { |
1008 | Type::TYPES tx = base(); |
1009 | if (tx == Memory) return true; |
1010 | if (tx == Tuple) { |
1011 | const TypeTuple *t = is_tuple(); |
1012 | for (uint i=0; i < t->cnt(); i++) { |
1013 | tx = t->field_at(i)->base(); |
1014 | if (tx == Memory) return true; |
1015 | } |
1016 | } |
1017 | return false; |
1018 | } |
1019 | |
1020 | #ifndef PRODUCT |
1021 | //------------------------------dump2------------------------------------------ |
1022 | void Type::dump2( Dict &d, uint depth, outputStream *st ) const { |
1023 | st->print("%s", _type_info[_base].msg); |
1024 | } |
1025 | |
1026 | //------------------------------dump------------------------------------------- |
1027 | void Type::dump_on(outputStream *st) const { |
1028 | ResourceMark rm; |
1029 | Dict d(cmpkey,hashkey); // Stop recursive type dumping |
1030 | dump2(d,1, st); |
1031 | if (is_ptr_to_narrowoop()) { |
1032 | st->print(" [narrow]"); |
1033 | } else if (is_ptr_to_narrowklass()) { |
1034 | st->print(" [narrowklass]"); |
1035 | } |
1036 | } |
1037 | |
1038 | //----------------------------------------------------------------------------- |
1039 | const char* Type::str(const Type* t) { |
1040 | stringStream ss; |
1041 | t->dump_on(&ss); |
1042 | return ss.as_string(); |
1043 | } |
1044 | #endif |
1045 | |
1046 | //------------------------------singleton-------------------------------------- |
1047 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1048 | // constants (Ldi nodes). Singletons are integer, float or double constants. |
1049 | bool Type::singleton(void) const { |
1050 | return _base == Top || _base == Half; |
1051 | } |
1052 | |
1053 | //------------------------------empty------------------------------------------ |
1054 | // TRUE if Type is a type with no values, FALSE otherwise. |
1055 | bool Type::empty(void) const { |
1056 | switch (_base) { |
1057 | case DoubleTop: |
1058 | case FloatTop: |
1059 | case Top: |
1060 | return true; |
1061 | |
1062 | case Half: |
1063 | case Abio: |
1064 | case Return_Address: |
1065 | case Memory: |
1066 | case Bottom: |
1067 | case FloatBot: |
1068 | case DoubleBot: |
1069 | return false; // never a singleton, therefore never empty |
1070 | |
1071 | default: |
1072 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1072); ::breakpoint(); } while (0); |
1073 | return false; |
1074 | } |
1075 | } |
1076 | |
1077 | //------------------------------dump_stats------------------------------------- |
1078 | // Dump collected statistics to stderr |
1079 | #ifndef PRODUCT |
1080 | void Type::dump_stats() { |
1081 | tty->print("Types made: %d\n", type_dict()->Size()); |
1082 | } |
1083 | #endif |
1084 | |
1085 | //------------------------------category--------------------------------------- |
1086 | #ifndef PRODUCT |
1087 | Type::Category Type::category() const { |
1088 | const TypeTuple* tuple; |
1089 | switch (base()) { |
1090 | case Type::Int: |
1091 | case Type::Long: |
1092 | case Type::Half: |
1093 | case Type::NarrowOop: |
1094 | case Type::NarrowKlass: |
1095 | case Type::Array: |
1096 | case Type::VectorA: |
1097 | case Type::VectorS: |
1098 | case Type::VectorD: |
1099 | case Type::VectorX: |
1100 | case Type::VectorY: |
1101 | case Type::VectorZ: |
1102 | case Type::VectorMask: |
1103 | case Type::AnyPtr: |
1104 | case Type::RawPtr: |
1105 | case Type::OopPtr: |
1106 | case Type::InstPtr: |
1107 | case Type::AryPtr: |
1108 | case Type::MetadataPtr: |
1109 | case Type::KlassPtr: |
1110 | case Type::InstKlassPtr: |
1111 | case Type::AryKlassPtr: |
1112 | case Type::Function: |
1113 | case Type::Return_Address: |
1114 | case Type::FloatTop: |
1115 | case Type::FloatCon: |
1116 | case Type::FloatBot: |
1117 | case Type::DoubleTop: |
1118 | case Type::DoubleCon: |
1119 | case Type::DoubleBot: |
1120 | return Category::Data; |
1121 | case Type::Memory: |
1122 | return Category::Memory; |
1123 | case Type::Control: |
1124 | return Category::Control; |
1125 | case Type::Top: |
1126 | case Type::Abio: |
1127 | case Type::Bottom: |
1128 | return Category::Other; |
1129 | case Type::Bad: |
1130 | case Type::lastype: |
1131 | return Category::Undef; |
1132 | case Type::Tuple: |
1133 | // Recursive case. Return CatMixed if the tuple contains types of |
1134 | // different categories (e.g. CallStaticJavaNode's type), or the specific |
1135 | // category if all types are of the same category (e.g. IfNode's type). |
1136 | tuple = is_tuple(); |
1137 | if (tuple->cnt() == 0) { |
1138 | return Category::Undef; |
1139 | } else { |
1140 | Category first = tuple->field_at(0)->category(); |
1141 | for (uint i = 1; i < tuple->cnt(); i++) { |
1142 | if (tuple->field_at(i)->category() != first) { |
1143 | return Category::Mixed; |
1144 | } |
1145 | } |
1146 | return first; |
1147 | } |
1148 | default: |
1149 | assert(false, "unmatched base type: all base types must be categorized")do { if (!(false)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1149, "assert(" "false" ") failed", "unmatched base type: all base types must be categorized" ); ::breakpoint(); } } while (0); |
1150 | } |
1151 | return Category::Undef; |
1152 | } |
1153 | #endif |
1154 | |
1155 | //------------------------------typerr----------------------------------------- |
1156 | void Type::typerr( const Type *t ) const { |
1157 | #ifndef PRODUCT |
1158 | tty->print("\nError mixing types: "); |
1159 | dump(); |
1160 | tty->print(" and "); |
1161 | t->dump(); |
1162 | tty->print("\n"); |
1163 | #endif |
1164 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1164); ::breakpoint(); } while (0); |
1165 | } |
1166 | |
1167 | |
1168 | //============================================================================= |
1169 | // Convenience common pre-built types. |
1170 | const TypeF *TypeF::MAX; // Floating point max |
1171 | const TypeF *TypeF::MIN; // Floating point min |
1172 | const TypeF *TypeF::ZERO; // Floating point zero |
1173 | const TypeF *TypeF::ONE; // Floating point one |
1174 | const TypeF *TypeF::POS_INF; // Floating point positive infinity |
1175 | const TypeF *TypeF::NEG_INF; // Floating point negative infinity |
1176 | |
1177 | //------------------------------make------------------------------------------- |
1178 | // Create a float constant |
1179 | const TypeF *TypeF::make(float f) { |
1180 | return (TypeF*)(new TypeF(f))->hashcons(); |
1181 | } |
1182 | |
1183 | //------------------------------meet------------------------------------------- |
1184 | // Compute the MEET of two types. It returns a new Type object. |
1185 | const Type *TypeF::xmeet( const Type *t ) const { |
1186 | // Perform a fast test for common case; meeting the same types together. |
1187 | if( this == t ) return this; // Meeting same type-rep? |
1188 | |
1189 | // Current "this->_base" is FloatCon |
1190 | switch (t->base()) { // Switch on original type |
1191 | case AnyPtr: // Mixing with oops happens when javac |
1192 | case RawPtr: // reuses local variables |
1193 | case OopPtr: |
1194 | case InstPtr: |
1195 | case AryPtr: |
1196 | case MetadataPtr: |
1197 | case KlassPtr: |
1198 | case InstKlassPtr: |
1199 | case AryKlassPtr: |
1200 | case NarrowOop: |
1201 | case NarrowKlass: |
1202 | case Int: |
1203 | case Long: |
1204 | case DoubleTop: |
1205 | case DoubleCon: |
1206 | case DoubleBot: |
1207 | case Bottom: // Ye Olde Default |
1208 | return Type::BOTTOM; |
1209 | |
1210 | case FloatBot: |
1211 | return t; |
1212 | |
1213 | default: // All else is a mistake |
1214 | typerr(t); |
1215 | |
1216 | case FloatCon: // Float-constant vs Float-constant? |
1217 | if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? |
1218 | // must compare bitwise as positive zero, negative zero and NaN have |
1219 | // all the same representation in C++ |
1220 | return FLOAT; // Return generic float |
1221 | // Equal constants |
1222 | case Top: |
1223 | case FloatTop: |
1224 | break; // Return the float constant |
1225 | } |
1226 | return this; // Return the float constant |
1227 | } |
1228 | |
1229 | //------------------------------xdual------------------------------------------ |
1230 | // Dual: symmetric |
1231 | const Type *TypeF::xdual() const { |
1232 | return this; |
1233 | } |
1234 | |
1235 | //------------------------------eq--------------------------------------------- |
1236 | // Structural equality check for Type representations |
1237 | bool TypeF::eq(const Type *t) const { |
1238 | // Bitwise comparison to distinguish between +/-0. These values must be treated |
1239 | // as different to be consistent with C1 and the interpreter. |
1240 | return (jint_cast(_f) == jint_cast(t->getf())); |
1241 | } |
1242 | |
1243 | //------------------------------hash------------------------------------------- |
1244 | // Type-specific hashing function. |
1245 | int TypeF::hash(void) const { |
1246 | return *(int*)(&_f); |
1247 | } |
1248 | |
1249 | //------------------------------is_finite-------------------------------------- |
1250 | // Has a finite value |
1251 | bool TypeF::is_finite() const { |
1252 | return g_isfinite(getf()) != 0; |
1253 | } |
1254 | |
1255 | //------------------------------is_nan----------------------------------------- |
1256 | // Is not a number (NaN) |
1257 | bool TypeF::is_nan() const { |
1258 | return g_isnan(getf()) != 0; |
1259 | } |
1260 | |
1261 | //------------------------------dump2------------------------------------------ |
1262 | // Dump float constant Type |
1263 | #ifndef PRODUCT |
1264 | void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { |
1265 | Type::dump2(d,depth, st); |
1266 | st->print("%f", _f); |
1267 | } |
1268 | #endif |
1269 | |
1270 | //------------------------------singleton-------------------------------------- |
1271 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1272 | // constants (Ldi nodes). Singletons are integer, float or double constants |
1273 | // or a single symbol. |
1274 | bool TypeF::singleton(void) const { |
1275 | return true; // Always a singleton |
1276 | } |
1277 | |
1278 | bool TypeF::empty(void) const { |
1279 | return false; // always exactly a singleton |
1280 | } |
1281 | |
1282 | //============================================================================= |
1283 | // Convenience common pre-built types. |
1284 | const TypeD *TypeD::MAX; // Floating point max |
1285 | const TypeD *TypeD::MIN; // Floating point min |
1286 | const TypeD *TypeD::ZERO; // Floating point zero |
1287 | const TypeD *TypeD::ONE; // Floating point one |
1288 | const TypeD *TypeD::POS_INF; // Floating point positive infinity |
1289 | const TypeD *TypeD::NEG_INF; // Floating point negative infinity |
1290 | |
1291 | //------------------------------make------------------------------------------- |
1292 | const TypeD *TypeD::make(double d) { |
1293 | return (TypeD*)(new TypeD(d))->hashcons(); |
1294 | } |
1295 | |
1296 | //------------------------------meet------------------------------------------- |
1297 | // Compute the MEET of two types. It returns a new Type object. |
1298 | const Type *TypeD::xmeet( const Type *t ) const { |
1299 | // Perform a fast test for common case; meeting the same types together. |
1300 | if( this == t ) return this; // Meeting same type-rep? |
1301 | |
1302 | // Current "this->_base" is DoubleCon |
1303 | switch (t->base()) { // Switch on original type |
1304 | case AnyPtr: // Mixing with oops happens when javac |
1305 | case RawPtr: // reuses local variables |
1306 | case OopPtr: |
1307 | case InstPtr: |
1308 | case AryPtr: |
1309 | case MetadataPtr: |
1310 | case KlassPtr: |
1311 | case InstKlassPtr: |
1312 | case AryKlassPtr: |
1313 | case NarrowOop: |
1314 | case NarrowKlass: |
1315 | case Int: |
1316 | case Long: |
1317 | case FloatTop: |
1318 | case FloatCon: |
1319 | case FloatBot: |
1320 | case Bottom: // Ye Olde Default |
1321 | return Type::BOTTOM; |
1322 | |
1323 | case DoubleBot: |
1324 | return t; |
1325 | |
1326 | default: // All else is a mistake |
1327 | typerr(t); |
1328 | |
1329 | case DoubleCon: // Double-constant vs Double-constant? |
1330 | if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) |
1331 | return DOUBLE; // Return generic double |
1332 | case Top: |
1333 | case DoubleTop: |
1334 | break; |
1335 | } |
1336 | return this; // Return the double constant |
1337 | } |
1338 | |
1339 | //------------------------------xdual------------------------------------------ |
1340 | // Dual: symmetric |
1341 | const Type *TypeD::xdual() const { |
1342 | return this; |
1343 | } |
1344 | |
1345 | //------------------------------eq--------------------------------------------- |
1346 | // Structural equality check for Type representations |
1347 | bool TypeD::eq(const Type *t) const { |
1348 | // Bitwise comparison to distinguish between +/-0. These values must be treated |
1349 | // as different to be consistent with C1 and the interpreter. |
1350 | return (jlong_cast(_d) == jlong_cast(t->getd())); |
1351 | } |
1352 | |
1353 | //------------------------------hash------------------------------------------- |
1354 | // Type-specific hashing function. |
1355 | int TypeD::hash(void) const { |
1356 | return *(int*)(&_d); |
1357 | } |
1358 | |
1359 | //------------------------------is_finite-------------------------------------- |
1360 | // Has a finite value |
1361 | bool TypeD::is_finite() const { |
1362 | return g_isfinite(getd()) != 0; |
1363 | } |
1364 | |
1365 | //------------------------------is_nan----------------------------------------- |
1366 | // Is not a number (NaN) |
1367 | bool TypeD::is_nan() const { |
1368 | return g_isnan(getd()) != 0; |
1369 | } |
1370 | |
1371 | //------------------------------dump2------------------------------------------ |
1372 | // Dump double constant Type |
1373 | #ifndef PRODUCT |
1374 | void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { |
1375 | Type::dump2(d,depth,st); |
1376 | st->print("%f", _d); |
1377 | } |
1378 | #endif |
1379 | |
1380 | //------------------------------singleton-------------------------------------- |
1381 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1382 | // constants (Ldi nodes). Singletons are integer, float or double constants |
1383 | // or a single symbol. |
1384 | bool TypeD::singleton(void) const { |
1385 | return true; // Always a singleton |
1386 | } |
1387 | |
1388 | bool TypeD::empty(void) const { |
1389 | return false; // always exactly a singleton |
1390 | } |
1391 | |
1392 | const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { |
1393 | if (bt == T_INT) { |
1394 | return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); |
1395 | } |
1396 | assert(bt == T_LONG, "basic type not an int or long")do { if (!(bt == T_LONG)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1396, "assert(" "bt == T_LONG" ") failed", "basic type not an int or long" ); ::breakpoint(); } } while (0); |
1397 | return TypeLong::make(lo, hi, w); |
1398 | } |
1399 | |
1400 | jlong TypeInteger::get_con_as_long(BasicType bt) const { |
1401 | if (bt == T_INT) { |
1402 | return is_int()->get_con(); |
1403 | } |
1404 | assert(bt == T_LONG, "basic type not an int or long")do { if (!(bt == T_LONG)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1404, "assert(" "bt == T_LONG" ") failed", "basic type not an int or long" ); ::breakpoint(); } } while (0); |
1405 | return is_long()->get_con(); |
1406 | } |
1407 | |
1408 | const TypeInteger* TypeInteger::bottom(BasicType bt) { |
1409 | if (bt == T_INT) { |
1410 | return TypeInt::INT; |
1411 | } |
1412 | assert(bt == T_LONG, "basic type not an int or long")do { if (!(bt == T_LONG)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1412, "assert(" "bt == T_LONG" ") failed", "basic type not an int or long" ); ::breakpoint(); } } while (0); |
1413 | return TypeLong::LONG; |
1414 | } |
1415 | |
1416 | const TypeInteger* TypeInteger::zero(BasicType bt) { |
1417 | if (bt == T_INT) { |
1418 | return TypeInt::ZERO; |
1419 | } |
1420 | assert(bt == T_LONG, "basic type not an int or long")do { if (!(bt == T_LONG)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1420, "assert(" "bt == T_LONG" ") failed", "basic type not an int or long" ); ::breakpoint(); } } while (0); |
1421 | return TypeLong::ZERO; |
1422 | } |
1423 | |
1424 | const TypeInteger* TypeInteger::one(BasicType bt) { |
1425 | if (bt == T_INT) { |
1426 | return TypeInt::ONE; |
1427 | } |
1428 | assert(bt == T_LONG, "basic type not an int or long")do { if (!(bt == T_LONG)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1428, "assert(" "bt == T_LONG" ") failed", "basic type not an int or long" ); ::breakpoint(); } } while (0); |
1429 | return TypeLong::ONE; |
1430 | } |
1431 | |
1432 | const TypeInteger* TypeInteger::minus_1(BasicType bt) { |
1433 | if (bt == T_INT) { |
1434 | return TypeInt::MINUS_1; |
1435 | } |
1436 | assert(bt == T_LONG, "basic type not an int or long")do { if (!(bt == T_LONG)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 1436, "assert(" "bt == T_LONG" ") failed", "basic type not an int or long" ); ::breakpoint(); } } while (0); |
1437 | return TypeLong::MINUS_1; |
1438 | } |
1439 | |
1440 | //============================================================================= |
1441 | // Convience common pre-built types. |
1442 | const TypeInt *TypeInt::MAX; // INT_MAX |
1443 | const TypeInt *TypeInt::MIN; // INT_MIN |
1444 | const TypeInt *TypeInt::MINUS_1;// -1 |
1445 | const TypeInt *TypeInt::ZERO; // 0 |
1446 | const TypeInt *TypeInt::ONE; // 1 |
1447 | const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. |
1448 | const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes |
1449 | const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 |
1450 | const TypeInt *TypeInt::CC_GT; // [1] == ONE |
1451 | const TypeInt *TypeInt::CC_EQ; // [0] == ZERO |
1452 | const TypeInt *TypeInt::CC_LE; // [-1,0] |
1453 | const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) |
1454 | const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 |
1455 | const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 |
1456 | const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 |
1457 | const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 |
1458 | const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero |
1459 | const TypeInt *TypeInt::POS1; // Positive 32-bit integers |
1460 | const TypeInt *TypeInt::INT; // 32-bit integers |
1461 | const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] |
1462 | const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT |
1463 | |
1464 | //------------------------------TypeInt---------------------------------------- |
1465 | TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int), _lo(lo), _hi(hi), _widen(w) { |
1466 | } |
1467 | |
1468 | //------------------------------make------------------------------------------- |
1469 | const TypeInt *TypeInt::make( jint lo ) { |
1470 | return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); |
1471 | } |
1472 | |
1473 | static int normalize_int_widen( jint lo, jint hi, int w ) { |
1474 | // Certain normalizations keep us sane when comparing types. |
1475 | // The 'SMALLINT' covers constants and also CC and its relatives. |
1476 | if (lo <= hi) { |
1477 | if (((juint)hi - lo) <= SMALLINT((juint)3)) w = Type::WidenMin; |
1478 | if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT |
1479 | } else { |
1480 | if (((juint)lo - hi) <= SMALLINT((juint)3)) w = Type::WidenMin; |
1481 | if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT |
1482 | } |
1483 | return w; |
1484 | } |
1485 | |
1486 | const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { |
1487 | w = normalize_int_widen(lo, hi, w); |
1488 | return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); |
1489 | } |
1490 | |
1491 | //------------------------------meet------------------------------------------- |
1492 | // Compute the MEET of two types. It returns a new Type representation object |
1493 | // with reference count equal to the number of Types pointing at it. |
1494 | // Caller should wrap a Types around it. |
1495 | const Type *TypeInt::xmeet( const Type *t ) const { |
1496 | // Perform a fast test for common case; meeting the same types together. |
1497 | if( this == t ) return this; // Meeting same type? |
1498 | |
1499 | // Currently "this->_base" is a TypeInt |
1500 | switch (t->base()) { // Switch on original type |
1501 | case AnyPtr: // Mixing with oops happens when javac |
1502 | case RawPtr: // reuses local variables |
1503 | case OopPtr: |
1504 | case InstPtr: |
1505 | case AryPtr: |
1506 | case MetadataPtr: |
1507 | case KlassPtr: |
1508 | case InstKlassPtr: |
1509 | case AryKlassPtr: |
1510 | case NarrowOop: |
1511 | case NarrowKlass: |
1512 | case Long: |
1513 | case FloatTop: |
1514 | case FloatCon: |
1515 | case FloatBot: |
1516 | case DoubleTop: |
1517 | case DoubleCon: |
1518 | case DoubleBot: |
1519 | case Bottom: // Ye Olde Default |
1520 | return Type::BOTTOM; |
1521 | default: // All else is a mistake |
1522 | typerr(t); |
1523 | case Top: // No change |
1524 | return this; |
1525 | case Int: // Int vs Int? |
1526 | break; |
1527 | } |
1528 | |
1529 | // Expand covered set |
1530 | const TypeInt *r = t->is_int(); |
1531 | return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); |
1532 | } |
1533 | |
1534 | //------------------------------xdual------------------------------------------ |
1535 | // Dual: reverse hi & lo; flip widen |
1536 | const Type *TypeInt::xdual() const { |
1537 | int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); |
1538 | return new TypeInt(_hi,_lo,w); |
1539 | } |
1540 | |
1541 | //------------------------------widen------------------------------------------ |
1542 | // Only happens for optimistic top-down optimizations. |
1543 | const Type *TypeInt::widen( const Type *old, const Type* limit ) const { |
1544 | // Coming from TOP or such; no widening |
1545 | if( old->base() != Int ) return this; |
1546 | const TypeInt *ot = old->is_int(); |
1547 | |
1548 | // If new guy is equal to old guy, no widening |
1549 | if( _lo == ot->_lo && _hi == ot->_hi ) |
1550 | return old; |
1551 | |
1552 | // If new guy contains old, then we widened |
1553 | if( _lo <= ot->_lo && _hi >= ot->_hi ) { |
1554 | // New contains old |
1555 | // If new guy is already wider than old, no widening |
1556 | if( _widen > ot->_widen ) return this; |
1557 | // If old guy was a constant, do not bother |
1558 | if (ot->_lo == ot->_hi) return this; |
1559 | // Now widen new guy. |
1560 | // Check for widening too far |
1561 | if (_widen == WidenMax) { |
1562 | int max = max_jint; |
1563 | int min = min_jint; |
1564 | if (limit->isa_int()) { |
1565 | max = limit->is_int()->_hi; |
1566 | min = limit->is_int()->_lo; |
1567 | } |
1568 | if (min < _lo && _hi < max) { |
1569 | // If neither endpoint is extremal yet, push out the endpoint |
1570 | // which is closer to its respective limit. |
1571 | if (_lo >= 0 || // easy common case |
1572 | (juint)(_lo - min) >= (juint)(max - _hi)) { |
1573 | // Try to widen to an unsigned range type of 31 bits: |
1574 | return make(_lo, max, WidenMax); |
1575 | } else { |
1576 | return make(min, _hi, WidenMax); |
1577 | } |
1578 | } |
1579 | return TypeInt::INT; |
1580 | } |
1581 | // Returned widened new guy |
1582 | return make(_lo,_hi,_widen+1); |
1583 | } |
1584 | |
1585 | // If old guy contains new, then we probably widened too far & dropped to |
1586 | // bottom. Return the wider fellow. |
1587 | if ( ot->_lo <= _lo && ot->_hi >= _hi ) |
1588 | return old; |
1589 | |
1590 | //fatal("Integer value range is not subset"); |
1591 | //return this; |
1592 | return TypeInt::INT; |
1593 | } |
1594 | |
1595 | //------------------------------narrow--------------------------------------- |
1596 | // Only happens for pessimistic optimizations. |
1597 | const Type *TypeInt::narrow( const Type *old ) const { |
1598 | if (_lo >= _hi) return this; // already narrow enough |
1599 | if (old == NULL__null) return this; |
1600 | const TypeInt* ot = old->isa_int(); |
1601 | if (ot == NULL__null) return this; |
1602 | jint olo = ot->_lo; |
1603 | jint ohi = ot->_hi; |
1604 | |
1605 | // If new guy is equal to old guy, no narrowing |
1606 | if (_lo == olo && _hi == ohi) return old; |
1607 | |
1608 | // If old guy was maximum range, allow the narrowing |
1609 | if (olo == min_jint && ohi == max_jint) return this; |
1610 | |
1611 | if (_lo < olo || _hi > ohi) |
1612 | return this; // doesn't narrow; pretty wierd |
1613 | |
1614 | // The new type narrows the old type, so look for a "death march". |
1615 | // See comments on PhaseTransform::saturate. |
1616 | juint nrange = (juint)_hi - _lo; |
1617 | juint orange = (juint)ohi - olo; |
1618 | if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT((juint)3)*2)) { |
1619 | // Use the new type only if the range shrinks a lot. |
1620 | // We do not want the optimizer computing 2^31 point by point. |
1621 | return old; |
1622 | } |
1623 | |
1624 | return this; |
1625 | } |
1626 | |
1627 | //-----------------------------filter------------------------------------------ |
1628 | const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { |
1629 | const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); |
1630 | if (ft == NULL__null || ft->empty()) |
1631 | return Type::TOP; // Canonical empty value |
1632 | if (ft->_widen < this->_widen) { |
1633 | // Do not allow the value of kill->_widen to affect the outcome. |
1634 | // The widen bits must be allowed to run freely through the graph. |
1635 | ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); |
1636 | } |
1637 | return ft; |
1638 | } |
1639 | |
1640 | //------------------------------eq--------------------------------------------- |
1641 | // Structural equality check for Type representations |
1642 | bool TypeInt::eq( const Type *t ) const { |
1643 | const TypeInt *r = t->is_int(); // Handy access |
1644 | return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; |
1645 | } |
1646 | |
1647 | //------------------------------hash------------------------------------------- |
1648 | // Type-specific hashing function. |
1649 | int TypeInt::hash(void) const { |
1650 | return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int)); |
1651 | } |
1652 | |
1653 | //------------------------------is_finite-------------------------------------- |
1654 | // Has a finite value |
1655 | bool TypeInt::is_finite() const { |
1656 | return true; |
1657 | } |
1658 | |
1659 | //------------------------------dump2------------------------------------------ |
1660 | // Dump TypeInt |
1661 | #ifndef PRODUCT |
1662 | static const char* intname(char* buf, jint n) { |
1663 | if (n == min_jint) |
1664 | return "min"; |
1665 | else if (n < min_jint + 10000) |
1666 | sprintf(buf, "min+" INT32_FORMAT"%" "d", n - min_jint); |
1667 | else if (n == max_jint) |
1668 | return "max"; |
1669 | else if (n > max_jint - 10000) |
1670 | sprintf(buf, "max-" INT32_FORMAT"%" "d", max_jint - n); |
1671 | else |
1672 | sprintf(buf, INT32_FORMAT"%" "d", n); |
1673 | return buf; |
1674 | } |
1675 | |
1676 | void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { |
1677 | char buf[40], buf2[40]; |
1678 | if (_lo == min_jint && _hi == max_jint) |
1679 | st->print("int"); |
1680 | else if (is_con()) |
1681 | st->print("int:%s", intname(buf, get_con())); |
1682 | else if (_lo == BOOL->_lo && _hi == BOOL->_hi) |
1683 | st->print("bool"); |
1684 | else if (_lo == BYTE->_lo && _hi == BYTE->_hi) |
1685 | st->print("byte"); |
1686 | else if (_lo == CHAR->_lo && _hi == CHAR->_hi) |
1687 | st->print("char"); |
1688 | else if (_lo == SHORT->_lo && _hi == SHORT->_hi) |
1689 | st->print("short"); |
1690 | else if (_hi == max_jint) |
1691 | st->print("int:>=%s", intname(buf, _lo)); |
1692 | else if (_lo == min_jint) |
1693 | st->print("int:<=%s", intname(buf, _hi)); |
1694 | else |
1695 | st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi)); |
1696 | |
1697 | if (_widen != 0 && this != TypeInt::INT) |
1698 | st->print(":%.*s", _widen, "wwww"); |
1699 | } |
1700 | #endif |
1701 | |
1702 | //------------------------------singleton-------------------------------------- |
1703 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1704 | // constants. |
1705 | bool TypeInt::singleton(void) const { |
1706 | return _lo >= _hi; |
1707 | } |
1708 | |
1709 | bool TypeInt::empty(void) const { |
1710 | return _lo > _hi; |
1711 | } |
1712 | |
1713 | //============================================================================= |
1714 | // Convenience common pre-built types. |
1715 | const TypeLong *TypeLong::MAX; |
1716 | const TypeLong *TypeLong::MIN; |
1717 | const TypeLong *TypeLong::MINUS_1;// -1 |
1718 | const TypeLong *TypeLong::ZERO; // 0 |
1719 | const TypeLong *TypeLong::ONE; // 1 |
1720 | const TypeLong *TypeLong::POS; // >=0 |
1721 | const TypeLong *TypeLong::LONG; // 64-bit integers |
1722 | const TypeLong *TypeLong::INT; // 32-bit subrange |
1723 | const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange |
1724 | const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG |
1725 | |
1726 | //------------------------------TypeLong--------------------------------------- |
1727 | TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long), _lo(lo), _hi(hi), _widen(w) { |
1728 | } |
1729 | |
1730 | //------------------------------make------------------------------------------- |
1731 | const TypeLong *TypeLong::make( jlong lo ) { |
1732 | return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); |
1733 | } |
1734 | |
1735 | static int normalize_long_widen( jlong lo, jlong hi, int w ) { |
1736 | // Certain normalizations keep us sane when comparing types. |
1737 | // The 'SMALLINT' covers constants. |
1738 | if (lo <= hi) { |
1739 | if (((julong)hi - lo) <= SMALLINT((juint)3)) w = Type::WidenMin; |
1740 | if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG |
1741 | } else { |
1742 | if (((julong)lo - hi) <= SMALLINT((juint)3)) w = Type::WidenMin; |
1743 | if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG |
1744 | } |
1745 | return w; |
1746 | } |
1747 | |
1748 | const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { |
1749 | w = normalize_long_widen(lo, hi, w); |
1750 | return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); |
1751 | } |
1752 | |
1753 | |
1754 | //------------------------------meet------------------------------------------- |
1755 | // Compute the MEET of two types. It returns a new Type representation object |
1756 | // with reference count equal to the number of Types pointing at it. |
1757 | // Caller should wrap a Types around it. |
1758 | const Type *TypeLong::xmeet( const Type *t ) const { |
1759 | // Perform a fast test for common case; meeting the same types together. |
1760 | if( this == t ) return this; // Meeting same type? |
1761 | |
1762 | // Currently "this->_base" is a TypeLong |
1763 | switch (t->base()) { // Switch on original type |
1764 | case AnyPtr: // Mixing with oops happens when javac |
1765 | case RawPtr: // reuses local variables |
1766 | case OopPtr: |
1767 | case InstPtr: |
1768 | case AryPtr: |
1769 | case MetadataPtr: |
1770 | case KlassPtr: |
1771 | case InstKlassPtr: |
1772 | case AryKlassPtr: |
1773 | case NarrowOop: |
1774 | case NarrowKlass: |
1775 | case Int: |
1776 | case FloatTop: |
1777 | case FloatCon: |
1778 | case FloatBot: |
1779 | case DoubleTop: |
1780 | case DoubleCon: |
1781 | case DoubleBot: |
1782 | case Bottom: // Ye Olde Default |
1783 | return Type::BOTTOM; |
1784 | default: // All else is a mistake |
1785 | typerr(t); |
1786 | case Top: // No change |
1787 | return this; |
1788 | case Long: // Long vs Long? |
1789 | break; |
1790 | } |
1791 | |
1792 | // Expand covered set |
1793 | const TypeLong *r = t->is_long(); // Turn into a TypeLong |
1794 | return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); |
1795 | } |
1796 | |
1797 | //------------------------------xdual------------------------------------------ |
1798 | // Dual: reverse hi & lo; flip widen |
1799 | const Type *TypeLong::xdual() const { |
1800 | int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); |
1801 | return new TypeLong(_hi,_lo,w); |
1802 | } |
1803 | |
1804 | //------------------------------widen------------------------------------------ |
1805 | // Only happens for optimistic top-down optimizations. |
1806 | const Type *TypeLong::widen( const Type *old, const Type* limit ) const { |
1807 | // Coming from TOP or such; no widening |
1808 | if( old->base() != Long ) return this; |
1809 | const TypeLong *ot = old->is_long(); |
1810 | |
1811 | // If new guy is equal to old guy, no widening |
1812 | if( _lo == ot->_lo && _hi == ot->_hi ) |
1813 | return old; |
1814 | |
1815 | // If new guy contains old, then we widened |
1816 | if( _lo <= ot->_lo && _hi >= ot->_hi ) { |
1817 | // New contains old |
1818 | // If new guy is already wider than old, no widening |
1819 | if( _widen > ot->_widen ) return this; |
1820 | // If old guy was a constant, do not bother |
1821 | if (ot->_lo == ot->_hi) return this; |
1822 | // Now widen new guy. |
1823 | // Check for widening too far |
1824 | if (_widen == WidenMax) { |
1825 | jlong max = max_jlong; |
1826 | jlong min = min_jlong; |
1827 | if (limit->isa_long()) { |
1828 | max = limit->is_long()->_hi; |
1829 | min = limit->is_long()->_lo; |
1830 | } |
1831 | if (min < _lo && _hi < max) { |
1832 | // If neither endpoint is extremal yet, push out the endpoint |
1833 | // which is closer to its respective limit. |
1834 | if (_lo >= 0 || // easy common case |
1835 | ((julong)_lo - min) >= ((julong)max - _hi)) { |
1836 | // Try to widen to an unsigned range type of 32/63 bits: |
1837 | if (max >= max_juint && _hi < max_juint) |
1838 | return make(_lo, max_juint, WidenMax); |
1839 | else |
1840 | return make(_lo, max, WidenMax); |
1841 | } else { |
1842 | return make(min, _hi, WidenMax); |
1843 | } |
1844 | } |
1845 | return TypeLong::LONG; |
1846 | } |
1847 | // Returned widened new guy |
1848 | return make(_lo,_hi,_widen+1); |
1849 | } |
1850 | |
1851 | // If old guy contains new, then we probably widened too far & dropped to |
1852 | // bottom. Return the wider fellow. |
1853 | if ( ot->_lo <= _lo && ot->_hi >= _hi ) |
1854 | return old; |
1855 | |
1856 | // fatal("Long value range is not subset"); |
1857 | // return this; |
1858 | return TypeLong::LONG; |
1859 | } |
1860 | |
1861 | //------------------------------narrow---------------------------------------- |
1862 | // Only happens for pessimistic optimizations. |
1863 | const Type *TypeLong::narrow( const Type *old ) const { |
1864 | if (_lo >= _hi) return this; // already narrow enough |
1865 | if (old == NULL__null) return this; |
1866 | const TypeLong* ot = old->isa_long(); |
1867 | if (ot == NULL__null) return this; |
1868 | jlong olo = ot->_lo; |
1869 | jlong ohi = ot->_hi; |
1870 | |
1871 | // If new guy is equal to old guy, no narrowing |
1872 | if (_lo == olo && _hi == ohi) return old; |
1873 | |
1874 | // If old guy was maximum range, allow the narrowing |
1875 | if (olo == min_jlong && ohi == max_jlong) return this; |
1876 | |
1877 | if (_lo < olo || _hi > ohi) |
1878 | return this; // doesn't narrow; pretty wierd |
1879 | |
1880 | // The new type narrows the old type, so look for a "death march". |
1881 | // See comments on PhaseTransform::saturate. |
1882 | julong nrange = _hi - _lo; |
1883 | julong orange = ohi - olo; |
1884 | if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT((juint)3)*2)) { |
1885 | // Use the new type only if the range shrinks a lot. |
1886 | // We do not want the optimizer computing 2^31 point by point. |
1887 | return old; |
1888 | } |
1889 | |
1890 | return this; |
1891 | } |
1892 | |
1893 | //-----------------------------filter------------------------------------------ |
1894 | const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { |
1895 | const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); |
1896 | if (ft == NULL__null || ft->empty()) |
1897 | return Type::TOP; // Canonical empty value |
1898 | if (ft->_widen < this->_widen) { |
1899 | // Do not allow the value of kill->_widen to affect the outcome. |
1900 | // The widen bits must be allowed to run freely through the graph. |
1901 | ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); |
1902 | } |
1903 | return ft; |
1904 | } |
1905 | |
1906 | //------------------------------eq--------------------------------------------- |
1907 | // Structural equality check for Type representations |
1908 | bool TypeLong::eq( const Type *t ) const { |
1909 | const TypeLong *r = t->is_long(); // Handy access |
1910 | return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; |
1911 | } |
1912 | |
1913 | //------------------------------hash------------------------------------------- |
1914 | // Type-specific hashing function. |
1915 | int TypeLong::hash(void) const { |
1916 | return (int)(_lo+_hi+_widen+(int)Type::Long); |
1917 | } |
1918 | |
1919 | //------------------------------is_finite-------------------------------------- |
1920 | // Has a finite value |
1921 | bool TypeLong::is_finite() const { |
1922 | return true; |
1923 | } |
1924 | |
1925 | //------------------------------dump2------------------------------------------ |
1926 | // Dump TypeLong |
1927 | #ifndef PRODUCT |
1928 | static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) { |
1929 | if (n > x) { |
1930 | if (n >= x + 10000) return NULL__null; |
1931 | sprintf(buf, "%s+" JLONG_FORMAT"%" "l" "d", xname, n - x); |
1932 | } else if (n < x) { |
1933 | if (n <= x - 10000) return NULL__null; |
1934 | sprintf(buf, "%s-" JLONG_FORMAT"%" "l" "d", xname, x - n); |
1935 | } else { |
1936 | return xname; |
1937 | } |
1938 | return buf; |
1939 | } |
1940 | |
1941 | static const char* longname(char* buf, jlong n) { |
1942 | const char* str; |
1943 | if (n == min_jlong) |
1944 | return "min"; |
1945 | else if (n < min_jlong + 10000) |
1946 | sprintf(buf, "min+" JLONG_FORMAT"%" "l" "d", n - min_jlong); |
1947 | else if (n == max_jlong) |
1948 | return "max"; |
1949 | else if (n > max_jlong - 10000) |
1950 | sprintf(buf, "max-" JLONG_FORMAT"%" "l" "d", max_jlong - n); |
1951 | else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL__null) |
1952 | return str; |
1953 | else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL__null) |
1954 | return str; |
1955 | else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL__null) |
1956 | return str; |
1957 | else |
1958 | sprintf(buf, JLONG_FORMAT"%" "l" "d", n); |
1959 | return buf; |
1960 | } |
1961 | |
1962 | void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { |
1963 | char buf[80], buf2[80]; |
1964 | if (_lo == min_jlong && _hi == max_jlong) |
1965 | st->print("long"); |
1966 | else if (is_con()) |
1967 | st->print("long:%s", longname(buf, get_con())); |
1968 | else if (_hi == max_jlong) |
1969 | st->print("long:>=%s", longname(buf, _lo)); |
1970 | else if (_lo == min_jlong) |
1971 | st->print("long:<=%s", longname(buf, _hi)); |
1972 | else |
1973 | st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi)); |
1974 | |
1975 | if (_widen != 0 && this != TypeLong::LONG) |
1976 | st->print(":%.*s", _widen, "wwww"); |
1977 | } |
1978 | #endif |
1979 | |
1980 | //------------------------------singleton-------------------------------------- |
1981 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
1982 | // constants |
1983 | bool TypeLong::singleton(void) const { |
1984 | return _lo >= _hi; |
1985 | } |
1986 | |
1987 | bool TypeLong::empty(void) const { |
1988 | return _lo > _hi; |
1989 | } |
1990 | |
1991 | //============================================================================= |
1992 | // Convenience common pre-built types. |
1993 | const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable |
1994 | const TypeTuple *TypeTuple::IFFALSE; |
1995 | const TypeTuple *TypeTuple::IFTRUE; |
1996 | const TypeTuple *TypeTuple::IFNEITHER; |
1997 | const TypeTuple *TypeTuple::LOOPBODY; |
1998 | const TypeTuple *TypeTuple::MEMBAR; |
1999 | const TypeTuple *TypeTuple::STORECONDITIONAL; |
2000 | const TypeTuple *TypeTuple::START_I2C; |
2001 | const TypeTuple *TypeTuple::INT_PAIR; |
2002 | const TypeTuple *TypeTuple::LONG_PAIR; |
2003 | const TypeTuple *TypeTuple::INT_CC_PAIR; |
2004 | const TypeTuple *TypeTuple::LONG_CC_PAIR; |
2005 | |
2006 | //------------------------------make------------------------------------------- |
2007 | // Make a TypeTuple from the range of a method signature |
2008 | const TypeTuple *TypeTuple::make_range(ciSignature* sig) { |
2009 | ciType* return_type = sig->return_type(); |
2010 | uint arg_cnt = return_type->size(); |
2011 | const Type **field_array = fields(arg_cnt); |
2012 | switch (return_type->basic_type()) { |
2013 | case T_LONG: |
2014 | field_array[TypeFunc::Parms] = TypeLong::LONG; |
2015 | field_array[TypeFunc::Parms+1] = Type::HALF; |
2016 | break; |
2017 | case T_DOUBLE: |
2018 | field_array[TypeFunc::Parms] = Type::DOUBLE; |
2019 | field_array[TypeFunc::Parms+1] = Type::HALF; |
2020 | break; |
2021 | case T_OBJECT: |
2022 | case T_ARRAY: |
2023 | case T_BOOLEAN: |
2024 | case T_CHAR: |
2025 | case T_FLOAT: |
2026 | case T_BYTE: |
2027 | case T_SHORT: |
2028 | case T_INT: |
2029 | field_array[TypeFunc::Parms] = get_const_type(return_type); |
2030 | break; |
2031 | case T_VOID: |
2032 | break; |
2033 | default: |
2034 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2034); ::breakpoint(); } while (0); |
2035 | } |
2036 | return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); |
2037 | } |
2038 | |
2039 | // Make a TypeTuple from the domain of a method signature |
2040 | const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) { |
2041 | uint arg_cnt = sig->size(); |
2042 | |
2043 | uint pos = TypeFunc::Parms; |
2044 | const Type **field_array; |
2045 | if (recv != NULL__null) { |
2046 | arg_cnt++; |
2047 | field_array = fields(arg_cnt); |
2048 | // Use get_const_type here because it respects UseUniqueSubclasses: |
2049 | field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL); |
2050 | } else { |
2051 | field_array = fields(arg_cnt); |
2052 | } |
2053 | |
2054 | int i = 0; |
2055 | while (pos < TypeFunc::Parms + arg_cnt) { |
2056 | ciType* type = sig->type_at(i); |
2057 | |
2058 | switch (type->basic_type()) { |
2059 | case T_LONG: |
2060 | field_array[pos++] = TypeLong::LONG; |
2061 | field_array[pos++] = Type::HALF; |
2062 | break; |
2063 | case T_DOUBLE: |
2064 | field_array[pos++] = Type::DOUBLE; |
2065 | field_array[pos++] = Type::HALF; |
2066 | break; |
2067 | case T_OBJECT: |
2068 | case T_ARRAY: |
2069 | case T_FLOAT: |
2070 | case T_INT: |
2071 | field_array[pos++] = get_const_type(type); |
2072 | break; |
2073 | case T_BOOLEAN: |
2074 | case T_CHAR: |
2075 | case T_BYTE: |
2076 | case T_SHORT: |
2077 | field_array[pos++] = TypeInt::INT; |
2078 | break; |
2079 | default: |
2080 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2080); ::breakpoint(); } while (0); |
2081 | } |
2082 | i++; |
2083 | } |
2084 | |
2085 | return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); |
2086 | } |
2087 | |
2088 | const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { |
2089 | return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); |
2090 | } |
2091 | |
2092 | //------------------------------fields----------------------------------------- |
2093 | // Subroutine call type with space allocated for argument types |
2094 | // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly |
2095 | const Type **TypeTuple::fields( uint arg_cnt ) { |
2096 | const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); |
2097 | flds[TypeFunc::Control ] = Type::CONTROL; |
2098 | flds[TypeFunc::I_O ] = Type::ABIO; |
2099 | flds[TypeFunc::Memory ] = Type::MEMORY; |
2100 | flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; |
2101 | flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; |
2102 | |
2103 | return flds; |
2104 | } |
2105 | |
2106 | //------------------------------meet------------------------------------------- |
2107 | // Compute the MEET of two types. It returns a new Type object. |
2108 | const Type *TypeTuple::xmeet( const Type *t ) const { |
2109 | // Perform a fast test for common case; meeting the same types together. |
2110 | if( this == t ) return this; // Meeting same type-rep? |
2111 | |
2112 | // Current "this->_base" is Tuple |
2113 | switch (t->base()) { // switch on original type |
2114 | |
2115 | case Bottom: // Ye Olde Default |
2116 | return t; |
2117 | |
2118 | default: // All else is a mistake |
2119 | typerr(t); |
2120 | |
2121 | case Tuple: { // Meeting 2 signatures? |
2122 | const TypeTuple *x = t->is_tuple(); |
2123 | assert( _cnt == x->_cnt, "" )do { if (!(_cnt == x->_cnt)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2123, "assert(" "_cnt == x->_cnt" ") failed", ""); ::breakpoint (); } } while (0); |
2124 | const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); |
2125 | for( uint i=0; i<_cnt; i++ ) |
2126 | fields[i] = field_at(i)->xmeet( x->field_at(i) ); |
2127 | return TypeTuple::make(_cnt,fields); |
2128 | } |
2129 | case Top: |
2130 | break; |
2131 | } |
2132 | return this; // Return the double constant |
2133 | } |
2134 | |
2135 | //------------------------------xdual------------------------------------------ |
2136 | // Dual: compute field-by-field dual |
2137 | const Type *TypeTuple::xdual() const { |
2138 | const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); |
2139 | for( uint i=0; i<_cnt; i++ ) |
2140 | fields[i] = _fields[i]->dual(); |
2141 | return new TypeTuple(_cnt,fields); |
2142 | } |
2143 | |
2144 | //------------------------------eq--------------------------------------------- |
2145 | // Structural equality check for Type representations |
2146 | bool TypeTuple::eq( const Type *t ) const { |
2147 | const TypeTuple *s = (const TypeTuple *)t; |
2148 | if (_cnt != s->_cnt) return false; // Unequal field counts |
2149 | for (uint i = 0; i < _cnt; i++) |
2150 | if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! |
2151 | return false; // Missed |
2152 | return true; |
2153 | } |
2154 | |
2155 | //------------------------------hash------------------------------------------- |
2156 | // Type-specific hashing function. |
2157 | int TypeTuple::hash(void) const { |
2158 | intptr_t sum = _cnt; |
2159 | for( uint i=0; i<_cnt; i++ ) |
2160 | sum += (intptr_t)_fields[i]; // Hash on pointers directly |
2161 | return sum; |
2162 | } |
2163 | |
2164 | //------------------------------dump2------------------------------------------ |
2165 | // Dump signature Type |
2166 | #ifndef PRODUCT |
2167 | void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { |
2168 | st->print("{"); |
2169 | if( !depth || d[this] ) { // Check for recursive print |
2170 | st->print("...}"); |
2171 | return; |
2172 | } |
2173 | d.Insert((void*)this, (void*)this); // Stop recursion |
2174 | if( _cnt ) { |
2175 | uint i; |
2176 | for( i=0; i<_cnt-1; i++ ) { |
2177 | st->print("%d:", i); |
2178 | _fields[i]->dump2(d, depth-1, st); |
2179 | st->print(", "); |
2180 | } |
2181 | st->print("%d:", i); |
2182 | _fields[i]->dump2(d, depth-1, st); |
2183 | } |
2184 | st->print("}"); |
2185 | } |
2186 | #endif |
2187 | |
2188 | //------------------------------singleton-------------------------------------- |
2189 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2190 | // constants (Ldi nodes). Singletons are integer, float or double constants |
2191 | // or a single symbol. |
2192 | bool TypeTuple::singleton(void) const { |
2193 | return false; // Never a singleton |
2194 | } |
2195 | |
2196 | bool TypeTuple::empty(void) const { |
2197 | for( uint i=0; i<_cnt; i++ ) { |
2198 | if (_fields[i]->empty()) return true; |
2199 | } |
2200 | return false; |
2201 | } |
2202 | |
2203 | //============================================================================= |
2204 | // Convenience common pre-built types. |
2205 | |
2206 | inline const TypeInt* normalize_array_size(const TypeInt* size) { |
2207 | // Certain normalizations keep us sane when comparing types. |
2208 | // We do not want arrayOop variables to differ only by the wideness |
2209 | // of their index types. Pick minimum wideness, since that is the |
2210 | // forced wideness of small ranges anyway. |
2211 | if (size->_widen != Type::WidenMin) |
2212 | return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); |
2213 | else |
2214 | return size; |
2215 | } |
2216 | |
2217 | //------------------------------make------------------------------------------- |
2218 | const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { |
2219 | if (UseCompressedOops && elem->isa_oopptr()) { |
2220 | elem = elem->make_narrowoop(); |
2221 | } |
2222 | size = normalize_array_size(size); |
2223 | return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); |
2224 | } |
2225 | |
2226 | //------------------------------meet------------------------------------------- |
2227 | // Compute the MEET of two types. It returns a new Type object. |
2228 | const Type *TypeAry::xmeet( const Type *t ) const { |
2229 | // Perform a fast test for common case; meeting the same types together. |
2230 | if( this == t ) return this; // Meeting same type-rep? |
2231 | |
2232 | // Current "this->_base" is Ary |
2233 | switch (t->base()) { // switch on original type |
2234 | |
2235 | case Bottom: // Ye Olde Default |
2236 | return t; |
2237 | |
2238 | default: // All else is a mistake |
2239 | typerr(t); |
2240 | |
2241 | case Array: { // Meeting 2 arrays? |
2242 | const TypeAry *a = t->is_ary(); |
2243 | return TypeAry::make(_elem->meet_speculative(a->_elem), |
2244 | _size->xmeet(a->_size)->is_int(), |
2245 | _stable && a->_stable); |
2246 | } |
2247 | case Top: |
2248 | break; |
2249 | } |
2250 | return this; // Return the double constant |
2251 | } |
2252 | |
2253 | //------------------------------xdual------------------------------------------ |
2254 | // Dual: compute field-by-field dual |
2255 | const Type *TypeAry::xdual() const { |
2256 | const TypeInt* size_dual = _size->dual()->is_int(); |
2257 | size_dual = normalize_array_size(size_dual); |
2258 | return new TypeAry(_elem->dual(), size_dual, !_stable); |
2259 | } |
2260 | |
2261 | //------------------------------eq--------------------------------------------- |
2262 | // Structural equality check for Type representations |
2263 | bool TypeAry::eq( const Type *t ) const { |
2264 | const TypeAry *a = (const TypeAry*)t; |
2265 | return _elem == a->_elem && |
2266 | _stable == a->_stable && |
2267 | _size == a->_size; |
2268 | } |
2269 | |
2270 | //------------------------------hash------------------------------------------- |
2271 | // Type-specific hashing function. |
2272 | int TypeAry::hash(void) const { |
2273 | return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0); |
2274 | } |
2275 | |
2276 | /** |
2277 | * Return same type without a speculative part in the element |
2278 | */ |
2279 | const Type* TypeAry::remove_speculative() const { |
2280 | return make(_elem->remove_speculative(), _size, _stable); |
2281 | } |
2282 | |
2283 | /** |
2284 | * Return same type with cleaned up speculative part of element |
2285 | */ |
2286 | const Type* TypeAry::cleanup_speculative() const { |
2287 | return make(_elem->cleanup_speculative(), _size, _stable); |
2288 | } |
2289 | |
2290 | /** |
2291 | * Return same type but with a different inline depth (used for speculation) |
2292 | * |
2293 | * @param depth depth to meet with |
2294 | */ |
2295 | const TypePtr* TypePtr::with_inline_depth(int depth) const { |
2296 | if (!UseInlineDepthForSpeculativeTypes) { |
2297 | return this; |
2298 | } |
2299 | return make(AnyPtr, _ptr, _offset, _speculative, depth); |
2300 | } |
2301 | |
2302 | //----------------------interface_vs_oop--------------------------------------- |
2303 | #ifdef ASSERT1 |
2304 | bool TypeAry::interface_vs_oop(const Type *t) const { |
2305 | const TypeAry* t_ary = t->is_ary(); |
2306 | if (t_ary) { |
2307 | const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops |
2308 | const TypePtr* t_ptr = t_ary->_elem->make_ptr(); |
2309 | if(this_ptr != NULL__null && t_ptr != NULL__null) { |
2310 | return this_ptr->interface_vs_oop(t_ptr); |
2311 | } |
2312 | } |
2313 | return false; |
2314 | } |
2315 | #endif |
2316 | |
2317 | //------------------------------dump2------------------------------------------ |
2318 | #ifndef PRODUCT |
2319 | void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { |
2320 | if (_stable) st->print("stable:"); |
2321 | _elem->dump2(d, depth, st); |
2322 | st->print("["); |
2323 | _size->dump2(d, depth, st); |
2324 | st->print("]"); |
2325 | } |
2326 | #endif |
2327 | |
2328 | //------------------------------singleton-------------------------------------- |
2329 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2330 | // constants (Ldi nodes). Singletons are integer, float or double constants |
2331 | // or a single symbol. |
2332 | bool TypeAry::singleton(void) const { |
2333 | return false; // Never a singleton |
2334 | } |
2335 | |
2336 | bool TypeAry::empty(void) const { |
2337 | return _elem->empty() || _size->empty(); |
2338 | } |
2339 | |
2340 | //--------------------------ary_must_be_exact---------------------------------- |
2341 | bool TypeAry::ary_must_be_exact() const { |
2342 | // This logic looks at the element type of an array, and returns true |
2343 | // if the element type is either a primitive or a final instance class. |
2344 | // In such cases, an array built on this ary must have no subclasses. |
2345 | if (_elem == BOTTOM) return false; // general array not exact |
2346 | if (_elem == TOP ) return false; // inverted general array not exact |
2347 | const TypeOopPtr* toop = NULL__null; |
2348 | if (UseCompressedOops && _elem->isa_narrowoop()) { |
2349 | toop = _elem->make_ptr()->isa_oopptr(); |
2350 | } else { |
2351 | toop = _elem->isa_oopptr(); |
2352 | } |
2353 | if (!toop) return true; // a primitive type, like int |
2354 | ciKlass* tklass = toop->klass(); |
2355 | if (tklass == NULL__null) return false; // unloaded class |
2356 | if (!tklass->is_loaded()) return false; // unloaded class |
2357 | const TypeInstPtr* tinst; |
2358 | if (_elem->isa_narrowoop()) |
2359 | tinst = _elem->make_ptr()->isa_instptr(); |
2360 | else |
2361 | tinst = _elem->isa_instptr(); |
2362 | if (tinst) |
2363 | return tklass->as_instance_klass()->is_final(); |
2364 | const TypeAryPtr* tap; |
2365 | if (_elem->isa_narrowoop()) |
2366 | tap = _elem->make_ptr()->isa_aryptr(); |
2367 | else |
2368 | tap = _elem->isa_aryptr(); |
2369 | if (tap) |
2370 | return tap->ary()->ary_must_be_exact(); |
2371 | return false; |
2372 | } |
2373 | |
2374 | //==============================TypeVect======================================= |
2375 | // Convenience common pre-built types. |
2376 | const TypeVect *TypeVect::VECTA = NULL__null; // vector length agnostic |
2377 | const TypeVect *TypeVect::VECTS = NULL__null; // 32-bit vectors |
2378 | const TypeVect *TypeVect::VECTD = NULL__null; // 64-bit vectors |
2379 | const TypeVect *TypeVect::VECTX = NULL__null; // 128-bit vectors |
2380 | const TypeVect *TypeVect::VECTY = NULL__null; // 256-bit vectors |
2381 | const TypeVect *TypeVect::VECTZ = NULL__null; // 512-bit vectors |
2382 | const TypeVect *TypeVect::VECTMASK = NULL__null; // predicate/mask vector |
2383 | |
2384 | //------------------------------make------------------------------------------- |
2385 | const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) { |
2386 | if (is_mask) { |
2387 | return makemask(elem, length); |
2388 | } |
2389 | BasicType elem_bt = elem->array_element_basic_type(); |
2390 | assert(is_java_primitive(elem_bt), "only primitive types in vector")do { if (!(is_java_primitive(elem_bt))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2390, "assert(" "is_java_primitive(elem_bt)" ") failed", "only primitive types in vector" ); ::breakpoint(); } } while (0); |
2391 | assert(Matcher::vector_size_supported(elem_bt, length), "length in range")do { if (!(Matcher::vector_size_supported(elem_bt, length))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2391, "assert(" "Matcher::vector_size_supported(elem_bt, length)" ") failed", "length in range"); ::breakpoint(); } } while (0 ); |
2392 | int size = length * type2aelembytes(elem_bt); |
2393 | switch (Matcher::vector_ideal_reg(size)) { |
2394 | case Op_VecA: |
2395 | return (TypeVect*)(new TypeVectA(elem, length))->hashcons(); |
2396 | case Op_VecS: |
2397 | return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); |
2398 | case Op_RegL: |
2399 | case Op_VecD: |
2400 | case Op_RegD: |
2401 | return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); |
2402 | case Op_VecX: |
2403 | return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); |
2404 | case Op_VecY: |
2405 | return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); |
2406 | case Op_VecZ: |
2407 | return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); |
2408 | } |
2409 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2409); ::breakpoint(); } while (0); |
2410 | return NULL__null; |
2411 | } |
2412 | |
2413 | const TypeVect *TypeVect::makemask(const Type* elem, uint length) { |
2414 | BasicType elem_bt = elem->array_element_basic_type(); |
2415 | if (Matcher::has_predicated_vectors() && |
2416 | Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { |
2417 | return TypeVectMask::make(elem, length); |
2418 | } else { |
2419 | return make(elem, length); |
2420 | } |
2421 | } |
2422 | |
2423 | //------------------------------meet------------------------------------------- |
2424 | // Compute the MEET of two types. It returns a new Type object. |
2425 | const Type *TypeVect::xmeet( const Type *t ) const { |
2426 | // Perform a fast test for common case; meeting the same types together. |
2427 | if( this == t ) return this; // Meeting same type-rep? |
2428 | |
2429 | // Current "this->_base" is Vector |
2430 | switch (t->base()) { // switch on original type |
2431 | |
2432 | case Bottom: // Ye Olde Default |
2433 | return t; |
2434 | |
2435 | default: // All else is a mistake |
2436 | typerr(t); |
2437 | case VectorMask: { |
2438 | const TypeVectMask* v = t->is_vectmask(); |
2439 | assert( base() == v->base(), "")do { if (!(base() == v->base())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2439, "assert(" "base() == v->base()" ") failed", ""); :: breakpoint(); } } while (0); |
2440 | assert(length() == v->length(), "")do { if (!(length() == v->length())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2440, "assert(" "length() == v->length()" ") failed", "" ); ::breakpoint(); } } while (0); |
2441 | assert(element_basic_type() == v->element_basic_type(), "")do { if (!(element_basic_type() == v->element_basic_type() )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2441, "assert(" "element_basic_type() == v->element_basic_type()" ") failed", ""); ::breakpoint(); } } while (0); |
2442 | return TypeVect::makemask(_elem->xmeet(v->_elem), _length); |
2443 | } |
2444 | case VectorA: |
2445 | case VectorS: |
2446 | case VectorD: |
2447 | case VectorX: |
2448 | case VectorY: |
2449 | case VectorZ: { // Meeting 2 vectors? |
2450 | const TypeVect* v = t->is_vect(); |
2451 | assert( base() == v->base(), "")do { if (!(base() == v->base())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2451, "assert(" "base() == v->base()" ") failed", ""); :: breakpoint(); } } while (0); |
2452 | assert(length() == v->length(), "")do { if (!(length() == v->length())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2452, "assert(" "length() == v->length()" ") failed", "" ); ::breakpoint(); } } while (0); |
2453 | assert(element_basic_type() == v->element_basic_type(), "")do { if (!(element_basic_type() == v->element_basic_type() )) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2453, "assert(" "element_basic_type() == v->element_basic_type()" ") failed", ""); ::breakpoint(); } } while (0); |
2454 | return TypeVect::make(_elem->xmeet(v->_elem), _length); |
2455 | } |
2456 | case Top: |
2457 | break; |
2458 | } |
2459 | return this; |
2460 | } |
2461 | |
2462 | //------------------------------xdual------------------------------------------ |
2463 | // Dual: compute field-by-field dual |
2464 | const Type *TypeVect::xdual() const { |
2465 | return new TypeVect(base(), _elem->dual(), _length); |
2466 | } |
2467 | |
2468 | //------------------------------eq--------------------------------------------- |
2469 | // Structural equality check for Type representations |
2470 | bool TypeVect::eq(const Type *t) const { |
2471 | const TypeVect *v = t->is_vect(); |
2472 | return (_elem == v->_elem) && (_length == v->_length); |
2473 | } |
2474 | |
2475 | //------------------------------hash------------------------------------------- |
2476 | // Type-specific hashing function. |
2477 | int TypeVect::hash(void) const { |
2478 | return (intptr_t)_elem + (intptr_t)_length; |
2479 | } |
2480 | |
2481 | //------------------------------singleton-------------------------------------- |
2482 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2483 | // constants (Ldi nodes). Vector is singleton if all elements are the same |
2484 | // constant value (when vector is created with Replicate code). |
2485 | bool TypeVect::singleton(void) const { |
2486 | // There is no Con node for vectors yet. |
2487 | // return _elem->singleton(); |
2488 | return false; |
2489 | } |
2490 | |
2491 | bool TypeVect::empty(void) const { |
2492 | return _elem->empty(); |
2493 | } |
2494 | |
2495 | //------------------------------dump2------------------------------------------ |
2496 | #ifndef PRODUCT |
2497 | void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { |
2498 | switch (base()) { |
2499 | case VectorA: |
2500 | st->print("vectora["); break; |
2501 | case VectorS: |
2502 | st->print("vectors["); break; |
2503 | case VectorD: |
2504 | st->print("vectord["); break; |
2505 | case VectorX: |
2506 | st->print("vectorx["); break; |
2507 | case VectorY: |
2508 | st->print("vectory["); break; |
2509 | case VectorZ: |
2510 | st->print("vectorz["); break; |
2511 | case VectorMask: |
2512 | st->print("vectormask["); break; |
2513 | default: |
2514 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2514); ::breakpoint(); } while (0); |
2515 | } |
2516 | st->print("%d]:{", _length); |
2517 | _elem->dump2(d, depth, st); |
2518 | st->print("}"); |
2519 | } |
2520 | #endif |
2521 | |
2522 | bool TypeVectMask::eq(const Type *t) const { |
2523 | const TypeVectMask *v = t->is_vectmask(); |
2524 | return (element_type() == v->element_type()) && (length() == v->length()); |
2525 | } |
2526 | |
2527 | const Type *TypeVectMask::xdual() const { |
2528 | return new TypeVectMask(element_type()->dual(), length()); |
2529 | } |
2530 | |
2531 | const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) { |
2532 | return make(get_const_basic_type(elem_bt), length); |
2533 | } |
2534 | |
2535 | const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) { |
2536 | const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length); |
2537 | return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons(); |
2538 | } |
2539 | |
2540 | //============================================================================= |
2541 | // Convenience common pre-built types. |
2542 | const TypePtr *TypePtr::NULL_PTR; |
2543 | const TypePtr *TypePtr::NOTNULL; |
2544 | const TypePtr *TypePtr::BOTTOM; |
2545 | |
2546 | //------------------------------meet------------------------------------------- |
2547 | // Meet over the PTR enum |
2548 | const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { |
2549 | // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, |
2550 | { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, |
2551 | { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, |
2552 | { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, |
2553 | { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, |
2554 | { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, |
2555 | { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} |
2556 | }; |
2557 | |
2558 | //------------------------------make------------------------------------------- |
2559 | const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { |
2560 | return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); |
2561 | } |
2562 | |
2563 | //------------------------------cast_to_ptr_type------------------------------- |
2564 | const Type *TypePtr::cast_to_ptr_type(PTR ptr) const { |
2565 | assert(_base == AnyPtr, "subclass must override cast_to_ptr_type")do { if (!(_base == AnyPtr)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2565, "assert(" "_base == AnyPtr" ") failed", "subclass must override cast_to_ptr_type" ); ::breakpoint(); } } while (0); |
2566 | if( ptr == _ptr ) return this; |
2567 | return make(_base, ptr, _offset, _speculative, _inline_depth); |
2568 | } |
2569 | |
2570 | //------------------------------get_con---------------------------------------- |
2571 | intptr_t TypePtr::get_con() const { |
2572 | assert( _ptr == Null, "" )do { if (!(_ptr == Null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2572, "assert(" "_ptr == Null" ") failed", ""); ::breakpoint (); } } while (0); |
2573 | return _offset; |
2574 | } |
2575 | |
2576 | //------------------------------meet------------------------------------------- |
2577 | // Compute the MEET of two types. It returns a new Type object. |
2578 | const Type *TypePtr::xmeet(const Type *t) const { |
2579 | const Type* res = xmeet_helper(t); |
2580 | if (res->isa_ptr() == NULL__null) { |
2581 | return res; |
2582 | } |
2583 | |
2584 | const TypePtr* res_ptr = res->is_ptr(); |
2585 | if (res_ptr->speculative() != NULL__null) { |
2586 | // type->speculative() == NULL means that speculation is no better |
2587 | // than type, i.e. type->speculative() == type. So there are 2 |
2588 | // ways to represent the fact that we have no useful speculative |
2589 | // data and we should use a single one to be able to test for |
2590 | // equality between types. Check whether type->speculative() == |
2591 | // type and set speculative to NULL if it is the case. |
2592 | if (res_ptr->remove_speculative() == res_ptr->speculative()) { |
2593 | return res_ptr->remove_speculative(); |
2594 | } |
2595 | } |
2596 | |
2597 | return res; |
2598 | } |
2599 | |
2600 | const Type *TypePtr::xmeet_helper(const Type *t) const { |
2601 | // Perform a fast test for common case; meeting the same types together. |
2602 | if( this == t ) return this; // Meeting same type-rep? |
2603 | |
2604 | // Current "this->_base" is AnyPtr |
2605 | switch (t->base()) { // switch on original type |
2606 | case Int: // Mixing ints & oops happens when javac |
2607 | case Long: // reuses local variables |
2608 | case FloatTop: |
2609 | case FloatCon: |
2610 | case FloatBot: |
2611 | case DoubleTop: |
2612 | case DoubleCon: |
2613 | case DoubleBot: |
2614 | case NarrowOop: |
2615 | case NarrowKlass: |
2616 | case Bottom: // Ye Olde Default |
2617 | return Type::BOTTOM; |
2618 | case Top: |
2619 | return this; |
2620 | |
2621 | case AnyPtr: { // Meeting to AnyPtrs |
2622 | const TypePtr *tp = t->is_ptr(); |
2623 | const TypePtr* speculative = xmeet_speculative(tp); |
2624 | int depth = meet_inline_depth(tp->inline_depth()); |
2625 | return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); |
2626 | } |
2627 | case RawPtr: // For these, flip the call around to cut down |
2628 | case OopPtr: |
2629 | case InstPtr: // on the cases I have to handle. |
2630 | case AryPtr: |
2631 | case MetadataPtr: |
2632 | case KlassPtr: |
2633 | case InstKlassPtr: |
2634 | case AryKlassPtr: |
2635 | return t->xmeet(this); // Call in reverse direction |
2636 | default: // All else is a mistake |
2637 | typerr(t); |
2638 | |
2639 | } |
2640 | return this; |
2641 | } |
2642 | |
2643 | //------------------------------meet_offset------------------------------------ |
2644 | int TypePtr::meet_offset( int offset ) const { |
2645 | // Either is 'TOP' offset? Return the other offset! |
2646 | if( _offset == OffsetTop ) return offset; |
2647 | if( offset == OffsetTop ) return _offset; |
2648 | // If either is different, return 'BOTTOM' offset |
2649 | if( _offset != offset ) return OffsetBot; |
2650 | return _offset; |
2651 | } |
2652 | |
2653 | //------------------------------dual_offset------------------------------------ |
2654 | int TypePtr::dual_offset( ) const { |
2655 | if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' |
2656 | if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' |
2657 | return _offset; // Map everything else into self |
2658 | } |
2659 | |
2660 | //------------------------------xdual------------------------------------------ |
2661 | // Dual: compute field-by-field dual |
2662 | const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { |
2663 | BotPTR, NotNull, Constant, Null, AnyNull, TopPTR |
2664 | }; |
2665 | const Type *TypePtr::xdual() const { |
2666 | return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); |
2667 | } |
2668 | |
2669 | //------------------------------xadd_offset------------------------------------ |
2670 | int TypePtr::xadd_offset( intptr_t offset ) const { |
2671 | // Adding to 'TOP' offset? Return 'TOP'! |
2672 | if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; |
2673 | // Adding to 'BOTTOM' offset? Return 'BOTTOM'! |
2674 | if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; |
2675 | // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! |
2676 | offset += (intptr_t)_offset; |
2677 | if (offset != (int)offset || offset == OffsetTop) return OffsetBot; |
2678 | |
2679 | // assert( _offset >= 0 && _offset+offset >= 0, "" ); |
2680 | // It is possible to construct a negative offset during PhaseCCP |
2681 | |
2682 | return (int)offset; // Sum valid offsets |
2683 | } |
2684 | |
2685 | //------------------------------add_offset------------------------------------- |
2686 | const TypePtr *TypePtr::add_offset( intptr_t offset ) const { |
2687 | return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); |
2688 | } |
2689 | |
2690 | //------------------------------eq--------------------------------------------- |
2691 | // Structural equality check for Type representations |
2692 | bool TypePtr::eq( const Type *t ) const { |
2693 | const TypePtr *a = (const TypePtr*)t; |
2694 | return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; |
2695 | } |
2696 | |
2697 | //------------------------------hash------------------------------------------- |
2698 | // Type-specific hashing function. |
2699 | int TypePtr::hash(void) const { |
2700 | return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth)); |
2701 | ; |
2702 | } |
2703 | |
2704 | /** |
2705 | * Return same type without a speculative part |
2706 | */ |
2707 | const Type* TypePtr::remove_speculative() const { |
2708 | if (_speculative == NULL__null) { |
2709 | return this; |
2710 | } |
2711 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth")do { if (!(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2711, "assert(" "_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom" ") failed", "non speculative type shouldn't have inline depth" ); ::breakpoint(); } } while (0); |
2712 | return make(AnyPtr, _ptr, _offset, NULL__null, _inline_depth); |
2713 | } |
2714 | |
2715 | /** |
2716 | * Return same type but drop speculative part if we know we won't use |
2717 | * it |
2718 | */ |
2719 | const Type* TypePtr::cleanup_speculative() const { |
2720 | if (speculative() == NULL__null) { |
2721 | return this; |
2722 | } |
2723 | const Type* no_spec = remove_speculative(); |
2724 | // If this is NULL_PTR then we don't need the speculative type |
2725 | // (with_inline_depth in case the current type inline depth is |
2726 | // InlineDepthTop) |
2727 | if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { |
2728 | return no_spec; |
2729 | } |
2730 | if (above_centerline(speculative()->ptr())) { |
2731 | return no_spec; |
2732 | } |
2733 | const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); |
2734 | // If the speculative may be null and is an inexact klass then it |
2735 | // doesn't help |
2736 | if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && |
2737 | (spec_oopptr == NULL__null || !spec_oopptr->klass_is_exact())) { |
2738 | return no_spec; |
2739 | } |
2740 | return this; |
2741 | } |
2742 | |
2743 | /** |
2744 | * dual of the speculative part of the type |
2745 | */ |
2746 | const TypePtr* TypePtr::dual_speculative() const { |
2747 | if (_speculative == NULL__null) { |
2748 | return NULL__null; |
2749 | } |
2750 | return _speculative->dual()->is_ptr(); |
2751 | } |
2752 | |
2753 | /** |
2754 | * meet of the speculative parts of 2 types |
2755 | * |
2756 | * @param other type to meet with |
2757 | */ |
2758 | const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { |
2759 | bool this_has_spec = (_speculative != NULL__null); |
2760 | bool other_has_spec = (other->speculative() != NULL__null); |
2761 | |
2762 | if (!this_has_spec && !other_has_spec) { |
2763 | return NULL__null; |
2764 | } |
2765 | |
2766 | // If we are at a point where control flow meets and one branch has |
2767 | // a speculative type and the other has not, we meet the speculative |
2768 | // type of one branch with the actual type of the other. If the |
2769 | // actual type is exact and the speculative is as well, then the |
2770 | // result is a speculative type which is exact and we can continue |
2771 | // speculation further. |
2772 | const TypePtr* this_spec = _speculative; |
2773 | const TypePtr* other_spec = other->speculative(); |
2774 | |
2775 | if (!this_has_spec) { |
2776 | this_spec = this; |
2777 | } |
2778 | |
2779 | if (!other_has_spec) { |
2780 | other_spec = other; |
2781 | } |
2782 | |
2783 | return this_spec->meet(other_spec)->is_ptr(); |
2784 | } |
2785 | |
2786 | /** |
2787 | * dual of the inline depth for this type (used for speculation) |
2788 | */ |
2789 | int TypePtr::dual_inline_depth() const { |
2790 | return -inline_depth(); |
2791 | } |
2792 | |
2793 | /** |
2794 | * meet of 2 inline depths (used for speculation) |
2795 | * |
2796 | * @param depth depth to meet with |
2797 | */ |
2798 | int TypePtr::meet_inline_depth(int depth) const { |
2799 | return MAX2(inline_depth(), depth); |
2800 | } |
2801 | |
2802 | /** |
2803 | * Are the speculative parts of 2 types equal? |
2804 | * |
2805 | * @param other type to compare this one to |
2806 | */ |
2807 | bool TypePtr::eq_speculative(const TypePtr* other) const { |
2808 | if (_speculative == NULL__null || other->speculative() == NULL__null) { |
2809 | return _speculative == other->speculative(); |
2810 | } |
2811 | |
2812 | if (_speculative->base() != other->speculative()->base()) { |
2813 | return false; |
2814 | } |
2815 | |
2816 | return _speculative->eq(other->speculative()); |
2817 | } |
2818 | |
2819 | /** |
2820 | * Hash of the speculative part of the type |
2821 | */ |
2822 | int TypePtr::hash_speculative() const { |
2823 | if (_speculative == NULL__null) { |
2824 | return 0; |
2825 | } |
2826 | |
2827 | return _speculative->hash(); |
2828 | } |
2829 | |
2830 | /** |
2831 | * add offset to the speculative part of the type |
2832 | * |
2833 | * @param offset offset to add |
2834 | */ |
2835 | const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { |
2836 | if (_speculative == NULL__null) { |
2837 | return NULL__null; |
2838 | } |
2839 | return _speculative->add_offset(offset)->is_ptr(); |
2840 | } |
2841 | |
2842 | /** |
2843 | * return exact klass from the speculative type if there's one |
2844 | */ |
2845 | ciKlass* TypePtr::speculative_type() const { |
2846 | if (_speculative != NULL__null && _speculative->isa_oopptr()) { |
2847 | const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); |
2848 | if (speculative->klass_is_exact()) { |
2849 | return speculative->klass(); |
2850 | } |
2851 | } |
2852 | return NULL__null; |
2853 | } |
2854 | |
2855 | /** |
2856 | * return true if speculative type may be null |
2857 | */ |
2858 | bool TypePtr::speculative_maybe_null() const { |
2859 | if (_speculative != NULL__null) { |
2860 | const TypePtr* speculative = _speculative->join(this)->is_ptr(); |
2861 | return speculative->maybe_null(); |
2862 | } |
2863 | return true; |
2864 | } |
2865 | |
2866 | bool TypePtr::speculative_always_null() const { |
2867 | if (_speculative != NULL__null) { |
2868 | const TypePtr* speculative = _speculative->join(this)->is_ptr(); |
2869 | return speculative == TypePtr::NULL_PTR; |
2870 | } |
2871 | return false; |
2872 | } |
2873 | |
2874 | /** |
2875 | * Same as TypePtr::speculative_type() but return the klass only if |
2876 | * the speculative tells us is not null |
2877 | */ |
2878 | ciKlass* TypePtr::speculative_type_not_null() const { |
2879 | if (speculative_maybe_null()) { |
2880 | return NULL__null; |
2881 | } |
2882 | return speculative_type(); |
2883 | } |
2884 | |
2885 | /** |
2886 | * Check whether new profiling would improve speculative type |
2887 | * |
2888 | * @param exact_kls class from profiling |
2889 | * @param inline_depth inlining depth of profile point |
2890 | * |
2891 | * @return true if type profile is valuable |
2892 | */ |
2893 | bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { |
2894 | // no profiling? |
2895 | if (exact_kls == NULL__null) { |
2896 | return false; |
2897 | } |
2898 | if (speculative() == TypePtr::NULL_PTR) { |
2899 | return false; |
2900 | } |
2901 | // no speculative type or non exact speculative type? |
2902 | if (speculative_type() == NULL__null) { |
2903 | return true; |
2904 | } |
2905 | // If the node already has an exact speculative type keep it, |
2906 | // unless it was provided by profiling that is at a deeper |
2907 | // inlining level. Profiling at a higher inlining depth is |
2908 | // expected to be less accurate. |
2909 | if (_speculative->inline_depth() == InlineDepthBottom) { |
2910 | return false; |
2911 | } |
2912 | assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison")do { if (!(_speculative->inline_depth() != InlineDepthTop) ) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 2912, "assert(" "_speculative->inline_depth() != InlineDepthTop" ") failed", "can't do the comparison"); ::breakpoint(); } } while (0); |
2913 | return inline_depth < _speculative->inline_depth(); |
2914 | } |
2915 | |
2916 | /** |
2917 | * Check whether new profiling would improve ptr (= tells us it is non |
2918 | * null) |
2919 | * |
2920 | * @param ptr_kind always null or not null? |
2921 | * |
2922 | * @return true if ptr profile is valuable |
2923 | */ |
2924 | bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { |
2925 | // profiling doesn't tell us anything useful |
2926 | if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { |
2927 | return false; |
2928 | } |
2929 | // We already know this is not null |
2930 | if (!this->maybe_null()) { |
2931 | return false; |
2932 | } |
2933 | // We already know the speculative type cannot be null |
2934 | if (!speculative_maybe_null()) { |
2935 | return false; |
2936 | } |
2937 | // We already know this is always null |
2938 | if (this == TypePtr::NULL_PTR) { |
2939 | return false; |
2940 | } |
2941 | // We already know the speculative type is always null |
2942 | if (speculative_always_null()) { |
2943 | return false; |
2944 | } |
2945 | if (ptr_kind == ProfileAlwaysNull && speculative() != NULL__null && speculative()->isa_oopptr()) { |
2946 | return false; |
2947 | } |
2948 | return true; |
2949 | } |
2950 | |
2951 | //------------------------------dump2------------------------------------------ |
2952 | const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { |
2953 | "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR" |
2954 | }; |
2955 | |
2956 | #ifndef PRODUCT |
2957 | void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
2958 | if( _ptr == Null ) st->print("NULL"); |
2959 | else st->print("%s *", ptr_msg[_ptr]); |
2960 | if( _offset == OffsetTop ) st->print("+top"); |
2961 | else if( _offset == OffsetBot ) st->print("+bot"); |
2962 | else if( _offset ) st->print("+%d", _offset); |
2963 | dump_inline_depth(st); |
2964 | dump_speculative(st); |
2965 | } |
2966 | |
2967 | /** |
2968 | *dump the speculative part of the type |
2969 | */ |
2970 | void TypePtr::dump_speculative(outputStream *st) const { |
2971 | if (_speculative != NULL__null) { |
2972 | st->print(" (speculative="); |
2973 | _speculative->dump_on(st); |
2974 | st->print(")"); |
2975 | } |
2976 | } |
2977 | |
2978 | /** |
2979 | *dump the inline depth of the type |
2980 | */ |
2981 | void TypePtr::dump_inline_depth(outputStream *st) const { |
2982 | if (_inline_depth != InlineDepthBottom) { |
2983 | if (_inline_depth == InlineDepthTop) { |
2984 | st->print(" (inline_depth=InlineDepthTop)"); |
2985 | } else { |
2986 | st->print(" (inline_depth=%d)", _inline_depth); |
2987 | } |
2988 | } |
2989 | } |
2990 | #endif |
2991 | |
2992 | //------------------------------singleton-------------------------------------- |
2993 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
2994 | // constants |
2995 | bool TypePtr::singleton(void) const { |
2996 | // TopPTR, Null, AnyNull, Constant are all singletons |
2997 | return (_offset != OffsetBot) && !below_centerline(_ptr); |
2998 | } |
2999 | |
3000 | bool TypePtr::empty(void) const { |
3001 | return (_offset == OffsetTop) || above_centerline(_ptr); |
3002 | } |
3003 | |
3004 | //============================================================================= |
3005 | // Convenience common pre-built types. |
3006 | const TypeRawPtr *TypeRawPtr::BOTTOM; |
3007 | const TypeRawPtr *TypeRawPtr::NOTNULL; |
3008 | |
3009 | //------------------------------make------------------------------------------- |
3010 | const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { |
3011 | assert( ptr != Constant, "what is the constant?" )do { if (!(ptr != Constant)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3011, "assert(" "ptr != Constant" ") failed", "what is the constant?" ); ::breakpoint(); } } while (0); |
3012 | assert( ptr != Null, "Use TypePtr for NULL" )do { if (!(ptr != Null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3012, "assert(" "ptr != Null" ") failed", "Use TypePtr for NULL" ); ::breakpoint(); } } while (0); |
3013 | return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons(); |
3014 | } |
3015 | |
3016 | const TypeRawPtr *TypeRawPtr::make( address bits ) { |
3017 | assert( bits, "Use TypePtr for NULL" )do { if (!(bits)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3017, "assert(" "bits" ") failed", "Use TypePtr for NULL"); ::breakpoint(); } } while (0); |
3018 | return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); |
3019 | } |
3020 | |
3021 | //------------------------------cast_to_ptr_type------------------------------- |
3022 | const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { |
3023 | assert( ptr != Constant, "what is the constant?" )do { if (!(ptr != Constant)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3023, "assert(" "ptr != Constant" ") failed", "what is the constant?" ); ::breakpoint(); } } while (0); |
3024 | assert( ptr != Null, "Use TypePtr for NULL" )do { if (!(ptr != Null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3024, "assert(" "ptr != Null" ") failed", "Use TypePtr for NULL" ); ::breakpoint(); } } while (0); |
3025 | assert( _bits==0, "Why cast a constant address?")do { if (!(_bits==0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3025, "assert(" "_bits==0" ") failed", "Why cast a constant address?" ); ::breakpoint(); } } while (0); |
3026 | if( ptr == _ptr ) return this; |
3027 | return make(ptr); |
3028 | } |
3029 | |
3030 | //------------------------------get_con---------------------------------------- |
3031 | intptr_t TypeRawPtr::get_con() const { |
3032 | assert( _ptr == Null || _ptr == Constant, "" )do { if (!(_ptr == Null || _ptr == Constant)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3032, "assert(" "_ptr == Null || _ptr == Constant" ") failed" , ""); ::breakpoint(); } } while (0); |
3033 | return (intptr_t)_bits; |
3034 | } |
3035 | |
3036 | //------------------------------meet------------------------------------------- |
3037 | // Compute the MEET of two types. It returns a new Type object. |
3038 | const Type *TypeRawPtr::xmeet( const Type *t ) const { |
3039 | // Perform a fast test for common case; meeting the same types together. |
3040 | if( this == t ) return this; // Meeting same type-rep? |
3041 | |
3042 | // Current "this->_base" is RawPtr |
3043 | switch( t->base() ) { // switch on original type |
3044 | case Bottom: // Ye Olde Default |
3045 | return t; |
3046 | case Top: |
3047 | return this; |
3048 | case AnyPtr: // Meeting to AnyPtrs |
3049 | break; |
3050 | case RawPtr: { // might be top, bot, any/not or constant |
3051 | enum PTR tptr = t->is_ptr()->ptr(); |
3052 | enum PTR ptr = meet_ptr( tptr ); |
3053 | if( ptr == Constant ) { // Cannot be equal constants, so... |
3054 | if( tptr == Constant && _ptr != Constant) return t; |
3055 | if( _ptr == Constant && tptr != Constant) return this; |
3056 | ptr = NotNull; // Fall down in lattice |
3057 | } |
3058 | return make( ptr ); |
3059 | } |
3060 | |
3061 | case OopPtr: |
3062 | case InstPtr: |
3063 | case AryPtr: |
3064 | case MetadataPtr: |
3065 | case KlassPtr: |
3066 | case InstKlassPtr: |
3067 | case AryKlassPtr: |
3068 | return TypePtr::BOTTOM; // Oop meet raw is not well defined |
3069 | default: // All else is a mistake |
3070 | typerr(t); |
3071 | } |
3072 | |
3073 | // Found an AnyPtr type vs self-RawPtr type |
3074 | const TypePtr *tp = t->is_ptr(); |
3075 | switch (tp->ptr()) { |
3076 | case TypePtr::TopPTR: return this; |
3077 | case TypePtr::BotPTR: return t; |
3078 | case TypePtr::Null: |
3079 | if( _ptr == TypePtr::TopPTR ) return t; |
3080 | return TypeRawPtr::BOTTOM; |
3081 | case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); |
3082 | case TypePtr::AnyNull: |
3083 | if( _ptr == TypePtr::Constant) return this; |
3084 | return make( meet_ptr(TypePtr::AnyNull) ); |
3085 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3085); ::breakpoint(); } while (0); |
3086 | } |
3087 | return this; |
3088 | } |
3089 | |
3090 | //------------------------------xdual------------------------------------------ |
3091 | // Dual: compute field-by-field dual |
3092 | const Type *TypeRawPtr::xdual() const { |
3093 | return new TypeRawPtr( dual_ptr(), _bits ); |
3094 | } |
3095 | |
3096 | //------------------------------add_offset------------------------------------- |
3097 | const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const { |
3098 | if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer |
3099 | if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer |
3100 | if( offset == 0 ) return this; // No change |
3101 | switch (_ptr) { |
3102 | case TypePtr::TopPTR: |
3103 | case TypePtr::BotPTR: |
3104 | case TypePtr::NotNull: |
3105 | return this; |
3106 | case TypePtr::Null: |
3107 | case TypePtr::Constant: { |
3108 | address bits = _bits+offset; |
3109 | if ( bits == 0 ) return TypePtr::NULL_PTR; |
3110 | return make( bits ); |
3111 | } |
3112 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3112); ::breakpoint(); } while (0); |
3113 | } |
3114 | return NULL__null; // Lint noise |
3115 | } |
3116 | |
3117 | //------------------------------eq--------------------------------------------- |
3118 | // Structural equality check for Type representations |
3119 | bool TypeRawPtr::eq( const Type *t ) const { |
3120 | const TypeRawPtr *a = (const TypeRawPtr*)t; |
3121 | return _bits == a->_bits && TypePtr::eq(t); |
3122 | } |
3123 | |
3124 | //------------------------------hash------------------------------------------- |
3125 | // Type-specific hashing function. |
3126 | int TypeRawPtr::hash(void) const { |
3127 | return (intptr_t)_bits + TypePtr::hash(); |
3128 | } |
3129 | |
3130 | //------------------------------dump2------------------------------------------ |
3131 | #ifndef PRODUCT |
3132 | void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
3133 | if( _ptr == Constant ) |
3134 | st->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(_bits)); |
3135 | else |
3136 | st->print("rawptr:%s", ptr_msg[_ptr]); |
3137 | } |
3138 | #endif |
3139 | |
3140 | //============================================================================= |
3141 | // Convenience common pre-built type. |
3142 | const TypeOopPtr *TypeOopPtr::BOTTOM; |
3143 | |
3144 | //------------------------------TypeOopPtr------------------------------------- |
3145 | TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, |
3146 | int instance_id, const TypePtr* speculative, int inline_depth) |
3147 | : TypePtr(t, ptr, offset, speculative, inline_depth), |
3148 | _const_oop(o), _klass(k), |
3149 | _klass_is_exact(xk), |
3150 | _is_ptr_to_narrowoop(false), |
3151 | _is_ptr_to_narrowklass(false), |
3152 | _is_ptr_to_boxed_value(false), |
3153 | _instance_id(instance_id) { |
3154 | if (Compile::current()->eliminate_boxing() && (t == InstPtr) && |
3155 | (offset > 0) && xk && (k != 0) && k->is_instance_klass()) { |
3156 | _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); |
3157 | } |
3158 | #ifdef _LP641 |
3159 | if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) { |
3160 | if (_offset == oopDesc::klass_offset_in_bytes()) { |
3161 | _is_ptr_to_narrowklass = UseCompressedClassPointers; |
3162 | } else if (klass() == NULL__null) { |
3163 | // Array with unknown body type |
3164 | assert(this->isa_aryptr(), "only arrays without klass")do { if (!(this->isa_aryptr())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3164, "assert(" "this->isa_aryptr()" ") failed", "only arrays without klass" ); ::breakpoint(); } } while (0); |
3165 | _is_ptr_to_narrowoop = UseCompressedOops; |
3166 | } else if (this->isa_aryptr()) { |
3167 | _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && |
3168 | _offset != arrayOopDesc::length_offset_in_bytes()); |
3169 | } else if (klass()->is_instance_klass()) { |
3170 | ciInstanceKlass* ik = klass()->as_instance_klass(); |
3171 | ciField* field = NULL__null; |
3172 | if (this->isa_klassptr()) { |
3173 | // Perm objects don't use compressed references |
3174 | } else if (_offset == OffsetBot || _offset == OffsetTop) { |
3175 | // unsafe access |
3176 | _is_ptr_to_narrowoop = UseCompressedOops; |
3177 | } else { |
3178 | assert(this->isa_instptr(), "must be an instance ptr.")do { if (!(this->isa_instptr())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3178, "assert(" "this->isa_instptr()" ") failed", "must be an instance ptr." ); ::breakpoint(); } } while (0); |
3179 | |
3180 | if (klass() == ciEnv::current()->Class_klass() && |
3181 | (_offset == java_lang_Class::klass_offset() || |
3182 | _offset == java_lang_Class::array_klass_offset())) { |
3183 | // Special hidden fields from the Class. |
3184 | assert(this->isa_instptr(), "must be an instance ptr.")do { if (!(this->isa_instptr())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3184, "assert(" "this->isa_instptr()" ") failed", "must be an instance ptr." ); ::breakpoint(); } } while (0); |
3185 | _is_ptr_to_narrowoop = false; |
3186 | } else if (klass() == ciEnv::current()->Class_klass() && |
3187 | _offset >= InstanceMirrorKlass::offset_of_static_fields()) { |
3188 | // Static fields |
3189 | ciField* field = NULL__null; |
3190 | if (const_oop() != NULL__null) { |
3191 | ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); |
3192 | field = k->get_field_by_offset(_offset, true); |
3193 | } |
3194 | if (field != NULL__null) { |
3195 | BasicType basic_elem_type = field->layout_type(); |
3196 | _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type); |
3197 | } else { |
3198 | // unsafe access |
3199 | _is_ptr_to_narrowoop = UseCompressedOops; |
3200 | } |
3201 | } else { |
3202 | // Instance fields which contains a compressed oop references. |
3203 | field = ik->get_field_by_offset(_offset, false); |
3204 | if (field != NULL__null) { |
3205 | BasicType basic_elem_type = field->layout_type(); |
3206 | _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type); |
3207 | } else if (klass()->equals(ciEnv::current()->Object_klass())) { |
3208 | // Compile::find_alias_type() cast exactness on all types to verify |
3209 | // that it does not affect alias type. |
3210 | _is_ptr_to_narrowoop = UseCompressedOops; |
3211 | } else { |
3212 | // Type for the copy start in LibraryCallKit::inline_native_clone(). |
3213 | _is_ptr_to_narrowoop = UseCompressedOops; |
3214 | } |
3215 | } |
3216 | } |
3217 | } |
3218 | } |
3219 | #endif |
3220 | } |
3221 | |
3222 | //------------------------------make------------------------------------------- |
3223 | const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, |
3224 | const TypePtr* speculative, int inline_depth) { |
3225 | assert(ptr != Constant, "no constant generic pointers")do { if (!(ptr != Constant)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3225, "assert(" "ptr != Constant" ") failed", "no constant generic pointers" ); ::breakpoint(); } } while (0); |
3226 | ciKlass* k = Compile::current()->env()->Object_klass(); |
3227 | bool xk = false; |
3228 | ciObject* o = NULL__null; |
3229 | return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); |
3230 | } |
3231 | |
3232 | |
3233 | //------------------------------cast_to_ptr_type------------------------------- |
3234 | const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { |
3235 | assert(_base == OopPtr, "subclass must override cast_to_ptr_type")do { if (!(_base == OopPtr)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3235, "assert(" "_base == OopPtr" ") failed", "subclass must override cast_to_ptr_type" ); ::breakpoint(); } } while (0); |
3236 | if( ptr == _ptr ) return this; |
3237 | return make(ptr, _offset, _instance_id, _speculative, _inline_depth); |
3238 | } |
3239 | |
3240 | //-----------------------------cast_to_instance_id---------------------------- |
3241 | const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { |
3242 | // There are no instances of a general oop. |
3243 | // Return self unchanged. |
3244 | return this; |
3245 | } |
3246 | |
3247 | //-----------------------------cast_to_exactness------------------------------- |
3248 | const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { |
3249 | // There is no such thing as an exact general oop. |
3250 | // Return self unchanged. |
3251 | return this; |
3252 | } |
3253 | |
3254 | |
3255 | //------------------------------as_klass_type---------------------------------- |
3256 | // Return the klass type corresponding to this instance or array type. |
3257 | // It is the type that is loaded from an object of this type. |
3258 | const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { |
3259 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3259); ::breakpoint(); } while (0); |
3260 | return NULL__null; |
3261 | } |
3262 | |
3263 | //------------------------------meet------------------------------------------- |
3264 | // Compute the MEET of two types. It returns a new Type object. |
3265 | const Type *TypeOopPtr::xmeet_helper(const Type *t) const { |
3266 | // Perform a fast test for common case; meeting the same types together. |
3267 | if( this == t ) return this; // Meeting same type-rep? |
3268 | |
3269 | // Current "this->_base" is OopPtr |
3270 | switch (t->base()) { // switch on original type |
3271 | |
3272 | case Int: // Mixing ints & oops happens when javac |
3273 | case Long: // reuses local variables |
3274 | case FloatTop: |
3275 | case FloatCon: |
3276 | case FloatBot: |
3277 | case DoubleTop: |
3278 | case DoubleCon: |
3279 | case DoubleBot: |
3280 | case NarrowOop: |
3281 | case NarrowKlass: |
3282 | case Bottom: // Ye Olde Default |
3283 | return Type::BOTTOM; |
3284 | case Top: |
3285 | return this; |
3286 | |
3287 | default: // All else is a mistake |
3288 | typerr(t); |
3289 | |
3290 | case RawPtr: |
3291 | case MetadataPtr: |
3292 | case KlassPtr: |
3293 | case InstKlassPtr: |
3294 | case AryKlassPtr: |
3295 | return TypePtr::BOTTOM; // Oop meet raw is not well defined |
3296 | |
3297 | case AnyPtr: { |
3298 | // Found an AnyPtr type vs self-OopPtr type |
3299 | const TypePtr *tp = t->is_ptr(); |
3300 | int offset = meet_offset(tp->offset()); |
3301 | PTR ptr = meet_ptr(tp->ptr()); |
3302 | const TypePtr* speculative = xmeet_speculative(tp); |
3303 | int depth = meet_inline_depth(tp->inline_depth()); |
3304 | switch (tp->ptr()) { |
3305 | case Null: |
3306 | if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
3307 | // else fall through: |
3308 | case TopPTR: |
3309 | case AnyNull: { |
3310 | int instance_id = meet_instance_id(InstanceTop); |
3311 | return make(ptr, offset, instance_id, speculative, depth); |
3312 | } |
3313 | case BotPTR: |
3314 | case NotNull: |
3315 | return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
3316 | default: typerr(t); |
3317 | } |
3318 | } |
3319 | |
3320 | case OopPtr: { // Meeting to other OopPtrs |
3321 | const TypeOopPtr *tp = t->is_oopptr(); |
3322 | int instance_id = meet_instance_id(tp->instance_id()); |
3323 | const TypePtr* speculative = xmeet_speculative(tp); |
3324 | int depth = meet_inline_depth(tp->inline_depth()); |
3325 | return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); |
3326 | } |
3327 | |
3328 | case InstPtr: // For these, flip the call around to cut down |
3329 | case AryPtr: |
3330 | return t->xmeet(this); // Call in reverse direction |
3331 | |
3332 | } // End of switch |
3333 | return this; // Return the double constant |
3334 | } |
3335 | |
3336 | |
3337 | //------------------------------xdual------------------------------------------ |
3338 | // Dual of a pure heap pointer. No relevant klass or oop information. |
3339 | const Type *TypeOopPtr::xdual() const { |
3340 | assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here")do { if (!(klass() == Compile::current()->env()->Object_klass ())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3340, "assert(" "klass() == Compile::current()->env()->Object_klass()" ") failed", "no klasses here"); ::breakpoint(); } } while (0 ); |
3341 | assert(const_oop() == NULL, "no constants here")do { if (!(const_oop() == __null)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3341, "assert(" "const_oop() == __null" ") failed", "no constants here" ); ::breakpoint(); } } while (0); |
3342 | return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); |
3343 | } |
3344 | |
3345 | //--------------------------make_from_klass_common----------------------------- |
3346 | // Computes the element-type given a klass. |
3347 | const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) { |
3348 | if (klass->is_instance_klass()) { |
3349 | Compile* C = Compile::current(); |
3350 | Dependencies* deps = C->dependencies(); |
3351 | assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity")do { if (!((deps != __null) == (C->method() != __null && C->method()->code_size() > 0))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3351, "assert(" "(deps != __null) == (C->method() != __null && C->method()->code_size() > 0)" ") failed", "sanity"); ::breakpoint(); } } while (0); |
3352 | // Element is an instance |
3353 | bool klass_is_exact = false; |
3354 | if (klass->is_loaded()) { |
3355 | // Try to set klass_is_exact. |
3356 | ciInstanceKlass* ik = klass->as_instance_klass(); |
3357 | klass_is_exact = ik->is_final(); |
3358 | if (!klass_is_exact && klass_change |
3359 | && deps != NULL__null && UseUniqueSubclasses) { |
3360 | ciInstanceKlass* sub = ik->unique_concrete_subklass(); |
3361 | if (sub != NULL__null) { |
3362 | deps->assert_abstract_with_unique_concrete_subtype(ik, sub); |
3363 | klass = ik = sub; |
3364 | klass_is_exact = sub->is_final(); |
3365 | } |
3366 | } |
3367 | if (!klass_is_exact && try_for_exact && deps != NULL__null && |
3368 | !ik->is_interface() && !ik->has_subklass()) { |
3369 | // Add a dependence; if concrete subclass added we need to recompile |
3370 | deps->assert_leaf_type(ik); |
3371 | klass_is_exact = true; |
3372 | } |
3373 | } |
3374 | return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL__null, 0); |
3375 | } else if (klass->is_obj_array_klass()) { |
3376 | // Element is an object array. Recursively call ourself. |
3377 | const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact); |
3378 | bool xk = etype->klass_is_exact(); |
3379 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); |
3380 | // We used to pass NotNull in here, asserting that the sub-arrays |
3381 | // are all not-null. This is not true in generally, as code can |
3382 | // slam NULLs down in the subarrays. |
3383 | const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0); |
3384 | return arr; |
3385 | } else if (klass->is_type_array_klass()) { |
3386 | // Element is an typeArray |
3387 | const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); |
3388 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); |
3389 | // We used to pass NotNull in here, asserting that the array pointer |
3390 | // is not-null. That was not true in general. |
3391 | const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); |
3392 | return arr; |
3393 | } else { |
3394 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3394); ::breakpoint(); } while (0); |
3395 | return NULL__null; |
3396 | } |
3397 | } |
3398 | |
3399 | //------------------------------make_from_constant----------------------------- |
3400 | // Make a java pointer from an oop constant |
3401 | const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { |
3402 | assert(!o->is_null_object(), "null object not yet handled here.")do { if (!(!o->is_null_object())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3402, "assert(" "!o->is_null_object()" ") failed", "null object not yet handled here." ); ::breakpoint(); } } while (0); |
3403 | |
3404 | const bool make_constant = require_constant || o->should_be_constant(); |
3405 | |
3406 | ciKlass* klass = o->klass(); |
3407 | if (klass->is_instance_klass()) { |
3408 | // Element is an instance |
3409 | if (make_constant) { |
3410 | return TypeInstPtr::make(o); |
3411 | } else { |
3412 | return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL__null, 0); |
3413 | } |
3414 | } else if (klass->is_obj_array_klass()) { |
3415 | // Element is an object array. Recursively call ourself. |
3416 | const TypeOopPtr *etype = |
3417 | TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass()); |
3418 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); |
3419 | // We used to pass NotNull in here, asserting that the sub-arrays |
3420 | // are all not-null. This is not true in generally, as code can |
3421 | // slam NULLs down in the subarrays. |
3422 | if (make_constant) { |
3423 | return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); |
3424 | } else { |
3425 | return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); |
3426 | } |
3427 | } else if (klass->is_type_array_klass()) { |
3428 | // Element is an typeArray |
3429 | const Type* etype = |
3430 | (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); |
3431 | const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); |
3432 | // We used to pass NotNull in here, asserting that the array pointer |
3433 | // is not-null. That was not true in general. |
3434 | if (make_constant) { |
3435 | return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); |
3436 | } else { |
3437 | return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); |
3438 | } |
3439 | } |
3440 | |
3441 | fatal("unhandled object type")do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3441, "unhandled object type"); ::breakpoint(); } while (0); |
3442 | return NULL__null; |
3443 | } |
3444 | |
3445 | //------------------------------get_con---------------------------------------- |
3446 | intptr_t TypeOopPtr::get_con() const { |
3447 | assert( _ptr == Null || _ptr == Constant, "" )do { if (!(_ptr == Null || _ptr == Constant)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3447, "assert(" "_ptr == Null || _ptr == Constant" ") failed" , ""); ::breakpoint(); } } while (0); |
3448 | assert( _offset >= 0, "" )do { if (!(_offset >= 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3448, "assert(" "_offset >= 0" ") failed", ""); ::breakpoint (); } } while (0); |
3449 | |
3450 | if (_offset != 0) { |
3451 | // After being ported to the compiler interface, the compiler no longer |
3452 | // directly manipulates the addresses of oops. Rather, it only has a pointer |
3453 | // to a handle at compile time. This handle is embedded in the generated |
3454 | // code and dereferenced at the time the nmethod is made. Until that time, |
3455 | // it is not reasonable to do arithmetic with the addresses of oops (we don't |
3456 | // have access to the addresses!). This does not seem to currently happen, |
3457 | // but this assertion here is to help prevent its occurence. |
3458 | tty->print_cr("Found oop constant with non-zero offset"); |
3459 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3459); ::breakpoint(); } while (0); |
3460 | } |
3461 | |
3462 | return (intptr_t)const_oop()->constant_encoding(); |
3463 | } |
3464 | |
3465 | |
3466 | //-----------------------------filter------------------------------------------ |
3467 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
3468 | const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { |
3469 | |
3470 | const Type* ft = join_helper(kills, include_speculative); |
3471 | const TypeInstPtr* ftip = ft->isa_instptr(); |
3472 | const TypeInstPtr* ktip = kills->isa_instptr(); |
3473 | |
3474 | if (ft->empty()) { |
3475 | // Check for evil case of 'this' being a class and 'kills' expecting an |
3476 | // interface. This can happen because the bytecodes do not contain |
3477 | // enough type info to distinguish a Java-level interface variable |
3478 | // from a Java-level object variable. If we meet 2 classes which |
3479 | // both implement interface I, but their meet is at 'j/l/O' which |
3480 | // doesn't implement I, we have no way to tell if the result should |
3481 | // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows |
3482 | // into a Phi which "knows" it's an Interface type we'll have to |
3483 | // uplift the type. |
3484 | if (!empty()) { |
3485 | if (ktip != NULL__null && ktip->is_loaded() && ktip->klass()->is_interface()) { |
3486 | return kills; // Uplift to interface |
3487 | } |
3488 | // Also check for evil cases of 'this' being a class array |
3489 | // and 'kills' expecting an array of interfaces. |
3490 | Type::get_arrays_base_elements(ft, kills, NULL__null, &ktip); |
3491 | if (ktip != NULL__null && ktip->is_loaded() && ktip->klass()->is_interface()) { |
3492 | return kills; // Uplift to array of interface |
3493 | } |
3494 | } |
3495 | |
3496 | return Type::TOP; // Canonical empty value |
3497 | } |
3498 | |
3499 | // If we have an interface-typed Phi or cast and we narrow to a class type, |
3500 | // the join should report back the class. However, if we have a J/L/Object |
3501 | // class-typed Phi and an interface flows in, it's possible that the meet & |
3502 | // join report an interface back out. This isn't possible but happens |
3503 | // because the type system doesn't interact well with interfaces. |
3504 | if (ftip != NULL__null && ktip != NULL__null && |
3505 | ftip->is_loaded() && ftip->klass()->is_interface() && |
3506 | ktip->is_loaded() && !ktip->klass()->is_interface()) { |
3507 | assert(!ftip->klass_is_exact(), "interface could not be exact")do { if (!(!ftip->klass_is_exact())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3507, "assert(" "!ftip->klass_is_exact()" ") failed", "interface could not be exact" ); ::breakpoint(); } } while (0); |
3508 | return ktip->cast_to_ptr_type(ftip->ptr()); |
3509 | } |
3510 | |
3511 | return ft; |
3512 | } |
3513 | |
3514 | //------------------------------eq--------------------------------------------- |
3515 | // Structural equality check for Type representations |
3516 | bool TypeOopPtr::eq( const Type *t ) const { |
3517 | const TypeOopPtr *a = (const TypeOopPtr*)t; |
3518 | if (_klass_is_exact != a->_klass_is_exact || |
3519 | _instance_id != a->_instance_id) return false; |
3520 | ciObject* one = const_oop(); |
3521 | ciObject* two = a->const_oop(); |
3522 | if (one == NULL__null || two == NULL__null) { |
3523 | return (one == two) && TypePtr::eq(t); |
3524 | } else { |
3525 | return one->equals(two) && TypePtr::eq(t); |
3526 | } |
3527 | } |
3528 | |
3529 | //------------------------------hash------------------------------------------- |
3530 | // Type-specific hashing function. |
3531 | int TypeOopPtr::hash(void) const { |
3532 | return |
3533 | java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact), |
3534 | java_add((jint)_instance_id, (jint)TypePtr::hash())); |
3535 | } |
3536 | |
3537 | //------------------------------dump2------------------------------------------ |
3538 | #ifndef PRODUCT |
3539 | void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
3540 | st->print("oopptr:%s", ptr_msg[_ptr]); |
3541 | if( _klass_is_exact ) st->print(":exact"); |
3542 | if( const_oop() ) st->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(const_oop())); |
3543 | switch( _offset ) { |
3544 | case OffsetTop: st->print("+top"); break; |
3545 | case OffsetBot: st->print("+any"); break; |
3546 | case 0: break; |
3547 | default: st->print("+%d",_offset); break; |
3548 | } |
3549 | if (_instance_id == InstanceTop) |
3550 | st->print(",iid=top"); |
3551 | else if (_instance_id != InstanceBot) |
3552 | st->print(",iid=%d",_instance_id); |
3553 | |
3554 | dump_inline_depth(st); |
3555 | dump_speculative(st); |
3556 | } |
3557 | #endif |
3558 | |
3559 | //------------------------------singleton-------------------------------------- |
3560 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
3561 | // constants |
3562 | bool TypeOopPtr::singleton(void) const { |
3563 | // detune optimizer to not generate constant oop + constant offset as a constant! |
3564 | // TopPTR, Null, AnyNull, Constant are all singletons |
3565 | return (_offset == 0) && !below_centerline(_ptr); |
3566 | } |
3567 | |
3568 | //------------------------------add_offset------------------------------------- |
3569 | const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const { |
3570 | return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); |
3571 | } |
3572 | |
3573 | /** |
3574 | * Return same type without a speculative part |
3575 | */ |
3576 | const Type* TypeOopPtr::remove_speculative() const { |
3577 | if (_speculative == NULL__null) { |
3578 | return this; |
3579 | } |
3580 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth")do { if (!(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3580, "assert(" "_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom" ") failed", "non speculative type shouldn't have inline depth" ); ::breakpoint(); } } while (0); |
3581 | return make(_ptr, _offset, _instance_id, NULL__null, _inline_depth); |
3582 | } |
3583 | |
3584 | /** |
3585 | * Return same type but drop speculative part if we know we won't use |
3586 | * it |
3587 | */ |
3588 | const Type* TypeOopPtr::cleanup_speculative() const { |
3589 | // If the klass is exact and the ptr is not null then there's |
3590 | // nothing that the speculative type can help us with |
3591 | if (klass_is_exact() && !maybe_null()) { |
3592 | return remove_speculative(); |
3593 | } |
3594 | return TypePtr::cleanup_speculative(); |
3595 | } |
3596 | |
3597 | /** |
3598 | * Return same type but with a different inline depth (used for speculation) |
3599 | * |
3600 | * @param depth depth to meet with |
3601 | */ |
3602 | const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { |
3603 | if (!UseInlineDepthForSpeculativeTypes) { |
3604 | return this; |
3605 | } |
3606 | return make(_ptr, _offset, _instance_id, _speculative, depth); |
3607 | } |
3608 | |
3609 | //------------------------------with_instance_id-------------------------------- |
3610 | const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { |
3611 | assert(_instance_id != -1, "should be known")do { if (!(_instance_id != -1)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3611, "assert(" "_instance_id != -1" ") failed", "should be known" ); ::breakpoint(); } } while (0); |
3612 | return make(_ptr, _offset, instance_id, _speculative, _inline_depth); |
3613 | } |
3614 | |
3615 | //------------------------------meet_instance_id-------------------------------- |
3616 | int TypeOopPtr::meet_instance_id( int instance_id ) const { |
3617 | // Either is 'TOP' instance? Return the other instance! |
3618 | if( _instance_id == InstanceTop ) return instance_id; |
3619 | if( instance_id == InstanceTop ) return _instance_id; |
3620 | // If either is different, return 'BOTTOM' instance |
3621 | if( _instance_id != instance_id ) return InstanceBot; |
3622 | return _instance_id; |
3623 | } |
3624 | |
3625 | //------------------------------dual_instance_id-------------------------------- |
3626 | int TypeOopPtr::dual_instance_id( ) const { |
3627 | if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM |
3628 | if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP |
3629 | return _instance_id; // Map everything else into self |
3630 | } |
3631 | |
3632 | /** |
3633 | * Check whether new profiling would improve speculative type |
3634 | * |
3635 | * @param exact_kls class from profiling |
3636 | * @param inline_depth inlining depth of profile point |
3637 | * |
3638 | * @return true if type profile is valuable |
3639 | */ |
3640 | bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { |
3641 | // no way to improve an already exact type |
3642 | if (klass_is_exact()) { |
3643 | return false; |
3644 | } |
3645 | return TypePtr::would_improve_type(exact_kls, inline_depth); |
3646 | } |
3647 | |
3648 | //============================================================================= |
3649 | // Convenience common pre-built types. |
3650 | const TypeInstPtr *TypeInstPtr::NOTNULL; |
3651 | const TypeInstPtr *TypeInstPtr::BOTTOM; |
3652 | const TypeInstPtr *TypeInstPtr::MIRROR; |
3653 | const TypeInstPtr *TypeInstPtr::MARK; |
3654 | const TypeInstPtr *TypeInstPtr::KLASS; |
3655 | |
3656 | //------------------------------TypeInstPtr------------------------------------- |
3657 | TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, |
3658 | int instance_id, const TypePtr* speculative, int inline_depth) |
3659 | : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), |
3660 | _name(k->name()) { |
3661 | assert(k != NULL &&do { if (!(k != __null && (k->is_loaded() || o == __null ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3663, "assert(" "k != __null && (k->is_loaded() || o == __null)" ") failed", "cannot have constants with non-loaded klass"); :: breakpoint(); } } while (0) |
3662 | (k->is_loaded() || o == NULL),do { if (!(k != __null && (k->is_loaded() || o == __null ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3663, "assert(" "k != __null && (k->is_loaded() || o == __null)" ") failed", "cannot have constants with non-loaded klass"); :: breakpoint(); } } while (0) |
3663 | "cannot have constants with non-loaded klass")do { if (!(k != __null && (k->is_loaded() || o == __null ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3663, "assert(" "k != __null && (k->is_loaded() || o == __null)" ") failed", "cannot have constants with non-loaded klass"); :: breakpoint(); } } while (0); |
3664 | }; |
3665 | |
3666 | //------------------------------make------------------------------------------- |
3667 | const TypeInstPtr *TypeInstPtr::make(PTR ptr, |
3668 | ciKlass* k, |
3669 | bool xk, |
3670 | ciObject* o, |
3671 | int offset, |
3672 | int instance_id, |
3673 | const TypePtr* speculative, |
3674 | int inline_depth) { |
3675 | assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance")do { if (!(!k->is_loaded() || k->is_instance_klass())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3675, "assert(" "!k->is_loaded() || k->is_instance_klass()" ") failed", "Must be for instance"); ::breakpoint(); } } while (0); |
3676 | // Either const_oop() is NULL or else ptr is Constant |
3677 | assert( (!o && ptr != Constant) || (o && ptr == Constant),do { if (!((!o && ptr != Constant) || (o && ptr == Constant))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3678, "assert(" "(!o && ptr != Constant) || (o && ptr == Constant)" ") failed", "constant pointers must have a value supplied"); ::breakpoint(); } } while (0) |
3678 | "constant pointers must have a value supplied" )do { if (!((!o && ptr != Constant) || (o && ptr == Constant))) { (*g_assert_poison) = 'X';; report_vm_error( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3678, "assert(" "(!o && ptr != Constant) || (o && ptr == Constant)" ") failed", "constant pointers must have a value supplied"); ::breakpoint(); } } while (0); |
3679 | // Ptr is never Null |
3680 | assert( ptr != Null, "NULL pointers are not typed" )do { if (!(ptr != Null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3680, "assert(" "ptr != Null" ") failed", "NULL pointers are not typed" ); ::breakpoint(); } } while (0); |
3681 | |
3682 | assert(instance_id <= 0 || xk, "instances are always exactly typed")do { if (!(instance_id <= 0 || xk)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3682, "assert(" "instance_id <= 0 || xk" ") failed", "instances are always exactly typed" ); ::breakpoint(); } } while (0); |
3683 | if (ptr == Constant) { |
3684 | // Note: This case includes meta-object constants, such as methods. |
3685 | xk = true; |
3686 | } else if (k->is_loaded()) { |
3687 | ciInstanceKlass* ik = k->as_instance_klass(); |
3688 | if (!xk && ik->is_final()) xk = true; // no inexact final klass |
3689 | if (xk && ik->is_interface()) xk = false; // no exact interface |
3690 | } |
3691 | |
3692 | // Now hash this baby |
3693 | TypeInstPtr *result = |
3694 | (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); |
3695 | |
3696 | return result; |
3697 | } |
3698 | |
3699 | /** |
3700 | * Create constant type for a constant boxed value |
3701 | */ |
3702 | const Type* TypeInstPtr::get_const_boxed_value() const { |
3703 | assert(is_ptr_to_boxed_value(), "should be called only for boxed value")do { if (!(is_ptr_to_boxed_value())) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3703, "assert(" "is_ptr_to_boxed_value()" ") failed", "should be called only for boxed value" ); ::breakpoint(); } } while (0); |
3704 | assert((const_oop() != NULL), "should be called only for constant object")do { if (!((const_oop() != __null))) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3704, "assert(" "(const_oop() != __null)" ") failed", "should be called only for constant object" ); ::breakpoint(); } } while (0); |
3705 | ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); |
3706 | BasicType bt = constant.basic_type(); |
3707 | switch (bt) { |
3708 | case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); |
3709 | case T_INT: return TypeInt::make(constant.as_int()); |
3710 | case T_CHAR: return TypeInt::make(constant.as_char()); |
3711 | case T_BYTE: return TypeInt::make(constant.as_byte()); |
3712 | case T_SHORT: return TypeInt::make(constant.as_short()); |
3713 | case T_FLOAT: return TypeF::make(constant.as_float()); |
3714 | case T_DOUBLE: return TypeD::make(constant.as_double()); |
3715 | case T_LONG: return TypeLong::make(constant.as_long()); |
3716 | default: break; |
3717 | } |
3718 | fatal("Invalid boxed value type '%s'", type2name(bt))do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3718, "Invalid boxed value type '%s'", type2name(bt)); ::breakpoint (); } while (0); |
3719 | return NULL__null; |
3720 | } |
3721 | |
3722 | //------------------------------cast_to_ptr_type------------------------------- |
3723 | const TypeInstPtr *TypeInstPtr::cast_to_ptr_type(PTR ptr) const { |
3724 | if( ptr == _ptr ) return this; |
3725 | // Reconstruct _sig info here since not a problem with later lazy |
3726 | // construction, _sig will show up on demand. |
3727 | return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth); |
3728 | } |
3729 | |
3730 | |
3731 | //-----------------------------cast_to_exactness------------------------------- |
3732 | const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { |
3733 | if( klass_is_exact == _klass_is_exact ) return this; |
3734 | if (!_klass->is_loaded()) return this; |
3735 | ciInstanceKlass* ik = _klass->as_instance_klass(); |
3736 | if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk |
3737 | if( ik->is_interface() ) return this; // cannot set xk |
3738 | return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); |
3739 | } |
3740 | |
3741 | //-----------------------------cast_to_instance_id---------------------------- |
3742 | const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const { |
3743 | if( instance_id == _instance_id ) return this; |
3744 | return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); |
3745 | } |
3746 | |
3747 | //------------------------------xmeet_unloaded--------------------------------- |
3748 | // Compute the MEET of two InstPtrs when at least one is unloaded. |
3749 | // Assume classes are different since called after check for same name/class-loader |
3750 | const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const { |
3751 | int off = meet_offset(tinst->offset()); |
3752 | PTR ptr = meet_ptr(tinst->ptr()); |
3753 | int instance_id = meet_instance_id(tinst->instance_id()); |
3754 | const TypePtr* speculative = xmeet_speculative(tinst); |
3755 | int depth = meet_inline_depth(tinst->inline_depth()); |
3756 | |
3757 | const TypeInstPtr *loaded = is_loaded() ? this : tinst; |
3758 | const TypeInstPtr *unloaded = is_loaded() ? tinst : this; |
3759 | if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { |
3760 | // |
3761 | // Meet unloaded class with java/lang/Object |
3762 | // |
3763 | // Meet |
3764 | // | Unloaded Class |
3765 | // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | |
3766 | // =================================================================== |
3767 | // TOP | ..........................Unloaded......................| |
3768 | // AnyNull | U-AN |................Unloaded......................| |
3769 | // Constant | ... O-NN .................................. | O-BOT | |
3770 | // NotNull | ... O-NN .................................. | O-BOT | |
3771 | // BOTTOM | ........................Object-BOTTOM ..................| |
3772 | // |
3773 | assert(loaded->ptr() != TypePtr::Null, "insanity check")do { if (!(loaded->ptr() != TypePtr::Null)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3773, "assert(" "loaded->ptr() != TypePtr::Null" ") failed" , "insanity check"); ::breakpoint(); } } while (0); |
3774 | // |
3775 | if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; } |
3776 | else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL__null, off, instance_id, speculative, depth); } |
3777 | else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } |
3778 | else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { |
3779 | if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } |
3780 | else { return TypeInstPtr::NOTNULL; } |
3781 | } |
3782 | else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; } |
3783 | |
3784 | return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr(); |
3785 | } |
3786 | |
3787 | // Both are unloaded, not the same class, not Object |
3788 | // Or meet unloaded with a different loaded class, not java/lang/Object |
3789 | if( ptr != TypePtr::BotPTR ) { |
3790 | return TypeInstPtr::NOTNULL; |
3791 | } |
3792 | return TypeInstPtr::BOTTOM; |
3793 | } |
3794 | |
3795 | |
3796 | //------------------------------meet------------------------------------------- |
3797 | // Compute the MEET of two types. It returns a new Type object. |
3798 | const Type *TypeInstPtr::xmeet_helper(const Type *t) const { |
3799 | // Perform a fast test for common case; meeting the same types together. |
3800 | if( this == t ) return this; // Meeting same type-rep? |
3801 | |
3802 | // Current "this->_base" is Pointer |
3803 | switch (t->base()) { // switch on original type |
3804 | |
3805 | case Int: // Mixing ints & oops happens when javac |
3806 | case Long: // reuses local variables |
3807 | case FloatTop: |
3808 | case FloatCon: |
3809 | case FloatBot: |
3810 | case DoubleTop: |
3811 | case DoubleCon: |
3812 | case DoubleBot: |
3813 | case NarrowOop: |
3814 | case NarrowKlass: |
3815 | case Bottom: // Ye Olde Default |
3816 | return Type::BOTTOM; |
3817 | case Top: |
3818 | return this; |
3819 | |
3820 | default: // All else is a mistake |
3821 | typerr(t); |
3822 | |
3823 | case MetadataPtr: |
3824 | case KlassPtr: |
3825 | case InstKlassPtr: |
3826 | case AryKlassPtr: |
3827 | case RawPtr: return TypePtr::BOTTOM; |
3828 | |
3829 | case AryPtr: { // All arrays inherit from Object class |
3830 | // Call in reverse direction to avoid duplication |
3831 | return t->is_aryptr()->xmeet_helper(this); |
3832 | } |
3833 | |
3834 | case OopPtr: { // Meeting to OopPtrs |
3835 | // Found a OopPtr type vs self-InstPtr type |
3836 | const TypeOopPtr *tp = t->is_oopptr(); |
3837 | int offset = meet_offset(tp->offset()); |
3838 | PTR ptr = meet_ptr(tp->ptr()); |
3839 | switch (tp->ptr()) { |
3840 | case TopPTR: |
3841 | case AnyNull: { |
3842 | int instance_id = meet_instance_id(InstanceTop); |
3843 | const TypePtr* speculative = xmeet_speculative(tp); |
3844 | int depth = meet_inline_depth(tp->inline_depth()); |
3845 | return make(ptr, klass(), klass_is_exact(), |
3846 | (ptr == Constant ? const_oop() : NULL__null), offset, instance_id, speculative, depth); |
3847 | } |
3848 | case NotNull: |
3849 | case BotPTR: { |
3850 | int instance_id = meet_instance_id(tp->instance_id()); |
3851 | const TypePtr* speculative = xmeet_speculative(tp); |
3852 | int depth = meet_inline_depth(tp->inline_depth()); |
3853 | return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); |
3854 | } |
3855 | default: typerr(t); |
3856 | } |
3857 | } |
3858 | |
3859 | case AnyPtr: { // Meeting to AnyPtrs |
3860 | // Found an AnyPtr type vs self-InstPtr type |
3861 | const TypePtr *tp = t->is_ptr(); |
3862 | int offset = meet_offset(tp->offset()); |
3863 | PTR ptr = meet_ptr(tp->ptr()); |
3864 | int instance_id = meet_instance_id(InstanceTop); |
3865 | const TypePtr* speculative = xmeet_speculative(tp); |
3866 | int depth = meet_inline_depth(tp->inline_depth()); |
3867 | switch (tp->ptr()) { |
3868 | case Null: |
3869 | if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
3870 | // else fall through to AnyNull |
3871 | case TopPTR: |
3872 | case AnyNull: { |
3873 | return make(ptr, klass(), klass_is_exact(), |
3874 | (ptr == Constant ? const_oop() : NULL__null), offset, instance_id, speculative, depth); |
3875 | } |
3876 | case NotNull: |
3877 | case BotPTR: |
3878 | return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); |
3879 | default: typerr(t); |
3880 | } |
3881 | } |
3882 | |
3883 | /* |
3884 | A-top } |
3885 | / | \ } Tops |
3886 | B-top A-any C-top } |
3887 | | / | \ | } Any-nulls |
3888 | B-any | C-any } |
3889 | | | | |
3890 | B-con A-con C-con } constants; not comparable across classes |
3891 | | | | |
3892 | B-not | C-not } |
3893 | | \ | / | } not-nulls |
3894 | B-bot A-not C-bot } |
3895 | \ | / } Bottoms |
3896 | A-bot } |
3897 | */ |
3898 | |
3899 | case InstPtr: { // Meeting 2 Oops? |
3900 | // Found an InstPtr sub-type vs self-InstPtr type |
3901 | const TypeInstPtr *tinst = t->is_instptr(); |
3902 | int off = meet_offset(tinst->offset()); |
3903 | PTR ptr = meet_ptr(tinst->ptr()); |
3904 | int instance_id = meet_instance_id(tinst->instance_id()); |
3905 | const TypePtr* speculative = xmeet_speculative(tinst); |
3906 | int depth = meet_inline_depth(tinst->inline_depth()); |
3907 | ciKlass* tinst_klass = tinst->klass(); |
3908 | ciKlass* this_klass = klass(); |
3909 | bool tinst_xk = tinst->klass_is_exact(); |
3910 | bool this_xk = klass_is_exact(); |
3911 | |
3912 | ciKlass* res_klass = NULL__null; |
3913 | bool res_xk = false; |
3914 | const Type* res; |
3915 | MeetResult kind = meet_instptr(ptr, this_klass, tinst_klass, this_xk, tinst_xk, this->_ptr, tinst->_ptr, res_klass, res_xk); |
3916 | if (kind == UNLOADED) { |
3917 | // One of these classes has not been loaded |
3918 | const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst); |
3919 | #ifndef PRODUCT |
3920 | if (PrintOpto && Verbose) { |
3921 | tty->print("meet of unloaded classes resulted in: "); |
3922 | unloaded_meet->dump(); |
3923 | tty->cr(); |
3924 | tty->print(" this == "); |
3925 | dump(); |
3926 | tty->cr(); |
3927 | tty->print(" tinst == "); |
3928 | tinst->dump(); |
3929 | tty->cr(); |
3930 | } |
3931 | #endif |
3932 | res = unloaded_meet; |
3933 | } else { |
3934 | if (kind == NOT_SUBTYPE && instance_id > 0) { |
3935 | instance_id = InstanceBot; |
3936 | } else if (kind == LCA) { |
3937 | instance_id = InstanceBot; |
3938 | } |
3939 | ciObject* o = NULL__null; // Assume not constant when done |
3940 | ciObject* this_oop = const_oop(); |
3941 | ciObject* tinst_oop = tinst->const_oop(); |
3942 | if (ptr == Constant) { |
3943 | if (this_oop != NULL__null && tinst_oop != NULL__null && |
3944 | this_oop->equals(tinst_oop)) |
3945 | o = this_oop; |
3946 | else if (above_centerline(_ptr)) { |
3947 | assert(!tinst_klass->is_interface(), "")do { if (!(!tinst_klass->is_interface())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3947, "assert(" "!tinst_klass->is_interface()" ") failed" , ""); ::breakpoint(); } } while (0); |
3948 | o = tinst_oop; |
3949 | } else if (above_centerline(tinst->_ptr)) { |
3950 | assert(!this_klass->is_interface(), "")do { if (!(!this_klass->is_interface())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 3950, "assert(" "!this_klass->is_interface()" ") failed" , ""); ::breakpoint(); } } while (0); |
3951 | o = this_oop; |
3952 | } else |
3953 | ptr = NotNull; |
3954 | } |
3955 | res = make(ptr, res_klass, res_xk, o, off, instance_id, speculative, depth); |
3956 | } |
3957 | |
3958 | return res; |
3959 | |
3960 | } // End of case InstPtr |
3961 | |
3962 | } // End of switch |
3963 | return this; // Return the double constant |
3964 | } |
3965 | |
3966 | TypePtr::MeetResult TypePtr::meet_instptr(PTR &ptr, ciKlass* this_klass, ciKlass* tinst_klass, bool this_xk, bool tinst_xk, |
3967 | PTR this_ptr, |
3968 | PTR tinst_ptr, ciKlass*&res_klass, bool &res_xk) { |
3969 | |
3970 | // Check for easy case; klasses are equal (and perhaps not loaded!) |
3971 | // If we have constants, then we created oops so classes are loaded |
3972 | // and we can handle the constants further down. This case handles |
3973 | // both-not-loaded or both-loaded classes |
3974 | if (ptr != Constant && this_klass->equals(tinst_klass) && this_xk == tinst_xk) { |
3975 | res_klass = this_klass; |
3976 | res_xk = this_xk; |
3977 | return QUICK; |
3978 | } |
3979 | |
3980 | // Classes require inspection in the Java klass hierarchy. Must be loaded. |
3981 | if (!tinst_klass->is_loaded() || !this_klass->is_loaded()) { |
3982 | return UNLOADED; |
3983 | } |
3984 | |
3985 | // Handle mixing oops and interfaces first. |
3986 | if (this_klass->is_interface() && !(tinst_klass->is_interface() || |
3987 | tinst_klass == ciEnv::current()->Object_klass())) { |
3988 | ciKlass *tmp = tinst_klass; // Swap interface around |
3989 | tinst_klass = this_klass; |
3990 | this_klass = tmp; |
3991 | bool tmp2 = tinst_xk; |
3992 | tinst_xk = this_xk; |
3993 | this_xk = tmp2; |
3994 | } |
3995 | if (tinst_klass->is_interface() && |
3996 | !(this_klass->is_interface() || |
3997 | // Treat java/lang/Object as an honorary interface, |
3998 | // because we need a bottom for the interface hierarchy. |
3999 | this_klass == ciEnv::current()->Object_klass())) { |
4000 | // Oop meets interface! |
4001 | |
4002 | // See if the oop subtypes (implements) interface. |
4003 | if (this_klass->is_subtype_of(tinst_klass)) { |
4004 | // Oop indeed subtypes. Now keep oop or interface depending |
4005 | // on whether we are both above the centerline or either is |
4006 | // below the centerline. If we are on the centerline |
4007 | // (e.g., Constant vs. AnyNull interface), use the constant. |
4008 | res_klass = below_centerline(ptr) ? tinst_klass : this_klass; |
4009 | // If we are keeping this_klass, keep its exactness too. |
4010 | res_xk = below_centerline(ptr) ? tinst_xk : this_xk; |
4011 | return SUBTYPE; |
4012 | } else { // Does not implement, fall to Object |
4013 | // Oop does not implement interface, so mixing falls to Object |
4014 | // just like the verifier does (if both are above the |
4015 | // centerline fall to interface) |
4016 | res_klass = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass(); |
4017 | res_xk = above_centerline(ptr) ? tinst_xk : false; |
4018 | // Watch out for Constant vs. AnyNull interface. |
4019 | if (ptr == Constant) ptr = NotNull; // forget it was a constant |
4020 | return NOT_SUBTYPE; |
4021 | } |
4022 | } |
4023 | |
4024 | // Either oop vs oop or interface vs interface or interface vs Object |
4025 | |
4026 | // !!! Here's how the symmetry requirement breaks down into invariants: |
4027 | // If we split one up & one down AND they subtype, take the down man. |
4028 | // If we split one up & one down AND they do NOT subtype, "fall hard". |
4029 | // If both are up and they subtype, take the subtype class. |
4030 | // If both are up and they do NOT subtype, "fall hard". |
4031 | // If both are down and they subtype, take the supertype class. |
4032 | // If both are down and they do NOT subtype, "fall hard". |
4033 | // Constants treated as down. |
4034 | |
4035 | // Now, reorder the above list; observe that both-down+subtype is also |
4036 | // "fall hard"; "fall hard" becomes the default case: |
4037 | // If we split one up & one down AND they subtype, take the down man. |
4038 | // If both are up and they subtype, take the subtype class. |
4039 | |
4040 | // If both are down and they subtype, "fall hard". |
4041 | // If both are down and they do NOT subtype, "fall hard". |
4042 | // If both are up and they do NOT subtype, "fall hard". |
4043 | // If we split one up & one down AND they do NOT subtype, "fall hard". |
4044 | |
4045 | // If a proper subtype is exact, and we return it, we return it exactly. |
4046 | // If a proper supertype is exact, there can be no subtyping relationship! |
4047 | // If both types are equal to the subtype, exactness is and-ed below the |
4048 | // centerline and or-ed above it. (N.B. Constants are always exact.) |
4049 | |
4050 | // Check for subtyping: |
4051 | ciKlass *subtype = NULL__null; |
4052 | bool subtype_exact = false; |
4053 | if (tinst_klass->equals(this_klass)) { |
4054 | subtype = this_klass; |
4055 | subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk); |
4056 | } else if (!tinst_xk && this_klass->is_subtype_of(tinst_klass)) { |
4057 | subtype = this_klass; // Pick subtyping class |
4058 | subtype_exact = this_xk; |
4059 | } else if (!this_xk && tinst_klass->is_subtype_of(this_klass)) { |
4060 | subtype = tinst_klass; // Pick subtyping class |
4061 | subtype_exact = tinst_xk; |
4062 | } |
4063 | |
4064 | if (subtype) { |
4065 | if (above_centerline(ptr)) { // both are up? |
4066 | this_klass = tinst_klass = subtype; |
4067 | this_xk = tinst_xk = subtype_exact; |
Although the value stored to 'tinst_xk' is used in the enclosing expression, the value is never actually read from 'tinst_xk' | |
4068 | } else if (above_centerline(this_ptr) && !above_centerline(tinst_ptr)) { |
4069 | this_klass = tinst_klass; // tinst is down; keep down man |
4070 | this_xk = tinst_xk; |
4071 | } else if (above_centerline(tinst_ptr) && !above_centerline(this_ptr)) { |
4072 | tinst_klass = this_klass; // this is down; keep down man |
4073 | tinst_xk = this_xk; |
4074 | } else { |
4075 | this_xk = subtype_exact; // either they are equal, or we'll do an LCA |
4076 | } |
4077 | } |
4078 | |
4079 | // Check for classes now being equal |
4080 | if (tinst_klass->equals(this_klass)) { |
4081 | // If the klasses are equal, the constants may still differ. Fall to |
4082 | // NotNull if they do (neither constant is NULL; that is a special case |
4083 | // handled elsewhere). |
4084 | res_klass = this_klass; |
4085 | res_xk = this_xk; |
4086 | return SUBTYPE; |
4087 | } // Else classes are not equal |
4088 | |
4089 | // Since klasses are different, we require a LCA in the Java |
4090 | // class hierarchy - which means we have to fall to at least NotNull. |
4091 | if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { |
4092 | ptr = NotNull; |
4093 | } |
4094 | |
4095 | // Now we find the LCA of Java classes |
4096 | ciKlass* k = this_klass->least_common_ancestor(tinst_klass); |
4097 | |
4098 | res_klass = k; |
4099 | res_xk = false; |
4100 | |
4101 | return LCA; |
4102 | } |
4103 | |
4104 | |
4105 | //------------------------java_mirror_type-------------------------------------- |
4106 | ciType* TypeInstPtr::java_mirror_type() const { |
4107 | // must be a singleton type |
4108 | if( const_oop() == NULL__null ) return NULL__null; |
4109 | |
4110 | // must be of type java.lang.Class |
4111 | if( klass() != ciEnv::current()->Class_klass() ) return NULL__null; |
4112 | |
4113 | return const_oop()->as_instance()->java_mirror_type(); |
4114 | } |
4115 | |
4116 | |
4117 | //------------------------------xdual------------------------------------------ |
4118 | // Dual: do NOT dual on klasses. This means I do NOT understand the Java |
4119 | // inheritance mechanism. |
4120 | const Type *TypeInstPtr::xdual() const { |
4121 | return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); |
4122 | } |
4123 | |
4124 | //------------------------------eq--------------------------------------------- |
4125 | // Structural equality check for Type representations |
4126 | bool TypeInstPtr::eq( const Type *t ) const { |
4127 | const TypeInstPtr *p = t->is_instptr(); |
4128 | return |
4129 | klass()->equals(p->klass()) && |
4130 | TypeOopPtr::eq(p); // Check sub-type stuff |
4131 | } |
4132 | |
4133 | //------------------------------hash------------------------------------------- |
4134 | // Type-specific hashing function. |
4135 | int TypeInstPtr::hash(void) const { |
4136 | int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash()); |
4137 | return hash; |
4138 | } |
4139 | |
4140 | //------------------------------dump2------------------------------------------ |
4141 | // Dump oop Type |
4142 | #ifndef PRODUCT |
4143 | void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { |
4144 | // Print the name of the klass. |
4145 | klass()->print_name_on(st); |
4146 | |
4147 | switch( _ptr ) { |
4148 | case Constant: |
4149 | if (WizardMode || Verbose) { |
4150 | ResourceMark rm; |
4151 | stringStream ss; |
4152 | |
4153 | st->print(" "); |
4154 | const_oop()->print_oop(&ss); |
4155 | // 'const_oop->print_oop()' may emit newlines('\n') into ss. |
4156 | // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. |
4157 | char* buf = ss.as_string(/* c_heap= */false); |
4158 | StringUtils::replace_no_expand(buf, "\n", ""); |
4159 | st->print_raw(buf); |
4160 | } |
4161 | case BotPTR: |
4162 | if (!WizardMode && !Verbose) { |
4163 | if( _klass_is_exact ) st->print(":exact"); |
4164 | break; |
4165 | } |
4166 | case TopPTR: |
4167 | case AnyNull: |
4168 | case NotNull: |
4169 | st->print(":%s", ptr_msg[_ptr]); |
4170 | if( _klass_is_exact ) st->print(":exact"); |
4171 | break; |
4172 | default: |
4173 | break; |
4174 | } |
4175 | |
4176 | if( _offset ) { // Dump offset, if any |
4177 | if( _offset == OffsetBot ) st->print("+any"); |
4178 | else if( _offset == OffsetTop ) st->print("+unknown"); |
4179 | else st->print("+%d", _offset); |
4180 | } |
4181 | |
4182 | st->print(" *"); |
4183 | if (_instance_id == InstanceTop) |
4184 | st->print(",iid=top"); |
4185 | else if (_instance_id != InstanceBot) |
4186 | st->print(",iid=%d",_instance_id); |
4187 | |
4188 | dump_inline_depth(st); |
4189 | dump_speculative(st); |
4190 | } |
4191 | #endif |
4192 | |
4193 | //------------------------------add_offset------------------------------------- |
4194 | const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const { |
4195 | return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), |
4196 | _instance_id, add_offset_speculative(offset), _inline_depth); |
4197 | } |
4198 | |
4199 | const Type *TypeInstPtr::remove_speculative() const { |
4200 | if (_speculative == NULL__null) { |
4201 | return this; |
4202 | } |
4203 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth")do { if (!(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4203, "assert(" "_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom" ") failed", "non speculative type shouldn't have inline depth" ); ::breakpoint(); } } while (0); |
4204 | return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, |
4205 | _instance_id, NULL__null, _inline_depth); |
4206 | } |
4207 | |
4208 | const TypePtr *TypeInstPtr::with_inline_depth(int depth) const { |
4209 | if (!UseInlineDepthForSpeculativeTypes) { |
4210 | return this; |
4211 | } |
4212 | return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); |
4213 | } |
4214 | |
4215 | const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const { |
4216 | assert(is_known_instance(), "should be known")do { if (!(is_known_instance())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4216, "assert(" "is_known_instance()" ") failed", "should be known" ); ::breakpoint(); } } while (0); |
4217 | return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth); |
4218 | } |
4219 | |
4220 | const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { |
4221 | bool xk = klass_is_exact(); |
4222 | ciInstanceKlass* ik = klass()->as_instance_klass(); |
4223 | if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final() && !ik->is_interface()) { |
4224 | Compile* C = Compile::current(); |
4225 | Dependencies* deps = C->dependencies(); |
4226 | deps->assert_leaf_type(ik); |
4227 | xk = true; |
4228 | } |
4229 | return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), 0); |
4230 | } |
4231 | |
4232 | //============================================================================= |
4233 | // Convenience common pre-built types. |
4234 | const TypeAryPtr *TypeAryPtr::RANGE; |
4235 | const TypeAryPtr *TypeAryPtr::OOPS; |
4236 | const TypeAryPtr *TypeAryPtr::NARROWOOPS; |
4237 | const TypeAryPtr *TypeAryPtr::BYTES; |
4238 | const TypeAryPtr *TypeAryPtr::SHORTS; |
4239 | const TypeAryPtr *TypeAryPtr::CHARS; |
4240 | const TypeAryPtr *TypeAryPtr::INTS; |
4241 | const TypeAryPtr *TypeAryPtr::LONGS; |
4242 | const TypeAryPtr *TypeAryPtr::FLOATS; |
4243 | const TypeAryPtr *TypeAryPtr::DOUBLES; |
4244 | |
4245 | //------------------------------make------------------------------------------- |
4246 | const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
4247 | int instance_id, const TypePtr* speculative, int inline_depth) { |
4248 | assert(!(k == NULL && ary->_elem->isa_int()),do { if (!(!(k == __null && ary->_elem->isa_int ()))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4249, "assert(" "!(k == __null && ary->_elem->isa_int())" ") failed", "integral arrays must be pre-equipped with a class" ); ::breakpoint(); } } while (0) |
4249 | "integral arrays must be pre-equipped with a class")do { if (!(!(k == __null && ary->_elem->isa_int ()))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4249, "assert(" "!(k == __null && ary->_elem->isa_int())" ") failed", "integral arrays must be pre-equipped with a class" ); ::breakpoint(); } } while (0); |
4250 | if (!xk) xk = ary->ary_must_be_exact(); |
4251 | assert(instance_id <= 0 || xk, "instances are always exactly typed")do { if (!(instance_id <= 0 || xk)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4251, "assert(" "instance_id <= 0 || xk" ") failed", "instances are always exactly typed" ); ::breakpoint(); } } while (0); |
4252 | return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL__null, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); |
4253 | } |
4254 | |
4255 | //------------------------------make------------------------------------------- |
4256 | const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
4257 | int instance_id, const TypePtr* speculative, int inline_depth, |
4258 | bool is_autobox_cache) { |
4259 | assert(!(k == NULL && ary->_elem->isa_int()),do { if (!(!(k == __null && ary->_elem->isa_int ()))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4260, "assert(" "!(k == __null && ary->_elem->isa_int())" ") failed", "integral arrays must be pre-equipped with a class" ); ::breakpoint(); } } while (0) |
4260 | "integral arrays must be pre-equipped with a class")do { if (!(!(k == __null && ary->_elem->isa_int ()))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4260, "assert(" "!(k == __null && ary->_elem->isa_int())" ") failed", "integral arrays must be pre-equipped with a class" ); ::breakpoint(); } } while (0); |
4261 | assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" )do { if (!((ptr==Constant && o) || (ptr!=Constant && !o))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4261, "assert(" "(ptr==Constant && o) || (ptr!=Constant && !o)" ") failed", ""); ::breakpoint(); } } while (0); |
4262 | if (!xk) xk = (o != NULL__null) || ary->ary_must_be_exact(); |
4263 | assert(instance_id <= 0 || xk, "instances are always exactly typed")do { if (!(instance_id <= 0 || xk)) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4263, "assert(" "instance_id <= 0 || xk" ") failed", "instances are always exactly typed" ); ::breakpoint(); } } while (0); |
4264 | return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); |
4265 | } |
4266 | |
4267 | //------------------------------cast_to_ptr_type------------------------------- |
4268 | const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { |
4269 | if( ptr == _ptr ) return this; |
4270 | return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); |
4271 | } |
4272 | |
4273 | |
4274 | //-----------------------------cast_to_exactness------------------------------- |
4275 | const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { |
4276 | if( klass_is_exact == _klass_is_exact ) return this; |
4277 | if (_ary->ary_must_be_exact()) return this; // cannot clear xk |
4278 | return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); |
4279 | } |
4280 | |
4281 | //-----------------------------cast_to_instance_id---------------------------- |
4282 | const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const { |
4283 | if( instance_id == _instance_id ) return this; |
4284 | return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); |
4285 | } |
4286 | |
4287 | |
4288 | //-----------------------------max_array_length------------------------------- |
4289 | // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. |
4290 | jint TypeAryPtr::max_array_length(BasicType etype) { |
4291 | if (!is_java_primitive(etype) && !is_reference_type(etype)) { |
4292 | if (etype == T_NARROWOOP) { |
4293 | etype = T_OBJECT; |
4294 | } else if (etype == T_ILLEGAL) { // bottom[] |
4295 | etype = T_BYTE; // will produce conservatively high value |
4296 | } else { |
4297 | fatal("not an element type: %s", type2name(etype))do { (*g_assert_poison) = 'X';; report_fatal(INTERNAL_ERROR, "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4297, "not an element type: %s", type2name(etype)); ::breakpoint (); } while (0); |
4298 | } |
4299 | } |
4300 | return arrayOopDesc::max_array_length(etype); |
4301 | } |
4302 | |
4303 | //-----------------------------narrow_size_type------------------------------- |
4304 | // Narrow the given size type to the index range for the given array base type. |
4305 | // Return NULL if the resulting int type becomes empty. |
4306 | const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { |
4307 | jint hi = size->_hi; |
4308 | jint lo = size->_lo; |
4309 | jint min_lo = 0; |
4310 | jint max_hi = max_array_length(elem()->basic_type()); |
4311 | //if (index_not_size) --max_hi; // type of a valid array index, FTR |
4312 | bool chg = false; |
4313 | if (lo < min_lo) { |
4314 | lo = min_lo; |
4315 | if (size->is_con()) { |
4316 | hi = lo; |
4317 | } |
4318 | chg = true; |
4319 | } |
4320 | if (hi > max_hi) { |
4321 | hi = max_hi; |
4322 | if (size->is_con()) { |
4323 | lo = hi; |
4324 | } |
4325 | chg = true; |
4326 | } |
4327 | // Negative length arrays will produce weird intermediate dead fast-path code |
4328 | if (lo > hi) |
4329 | return TypeInt::ZERO; |
4330 | if (!chg) |
4331 | return size; |
4332 | return TypeInt::make(lo, hi, Type::WidenMin); |
4333 | } |
4334 | |
4335 | //-------------------------------cast_to_size---------------------------------- |
4336 | const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { |
4337 | assert(new_size != NULL, "")do { if (!(new_size != __null)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4337, "assert(" "new_size != __null" ") failed", ""); ::breakpoint (); } } while (0); |
4338 | new_size = narrow_size_type(new_size); |
4339 | if (new_size == size()) return this; |
4340 | const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); |
4341 | return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); |
4342 | } |
4343 | |
4344 | //------------------------------cast_to_stable--------------------------------- |
4345 | const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { |
4346 | if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) |
4347 | return this; |
4348 | |
4349 | const Type* elem = this->elem(); |
4350 | const TypePtr* elem_ptr = elem->make_ptr(); |
4351 | |
4352 | if (stable_dimension > 1 && elem_ptr != NULL__null && elem_ptr->isa_aryptr()) { |
4353 | // If this is widened from a narrow oop, TypeAry::make will re-narrow it. |
4354 | elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); |
4355 | } |
4356 | |
4357 | const TypeAry* new_ary = TypeAry::make(elem, size(), stable); |
4358 | |
4359 | return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); |
4360 | } |
4361 | |
4362 | //-----------------------------stable_dimension-------------------------------- |
4363 | int TypeAryPtr::stable_dimension() const { |
4364 | if (!is_stable()) return 0; |
4365 | int dim = 1; |
4366 | const TypePtr* elem_ptr = elem()->make_ptr(); |
4367 | if (elem_ptr != NULL__null && elem_ptr->isa_aryptr()) |
4368 | dim += elem_ptr->is_aryptr()->stable_dimension(); |
4369 | return dim; |
4370 | } |
4371 | |
4372 | //----------------------cast_to_autobox_cache----------------------------------- |
4373 | const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { |
4374 | if (is_autobox_cache()) return this; |
4375 | const TypeOopPtr* etype = elem()->make_oopptr(); |
4376 | if (etype == NULL__null) return this; |
4377 | // The pointers in the autobox arrays are always non-null. |
4378 | etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); |
4379 | const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); |
4380 | return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); |
4381 | } |
4382 | |
4383 | //------------------------------eq--------------------------------------------- |
4384 | // Structural equality check for Type representations |
4385 | bool TypeAryPtr::eq( const Type *t ) const { |
4386 | const TypeAryPtr *p = t->is_aryptr(); |
4387 | return |
4388 | _ary == p->_ary && // Check array |
4389 | TypeOopPtr::eq(p); // Check sub-parts |
4390 | } |
4391 | |
4392 | //------------------------------hash------------------------------------------- |
4393 | // Type-specific hashing function. |
4394 | int TypeAryPtr::hash(void) const { |
4395 | return (intptr_t)_ary + TypeOopPtr::hash(); |
4396 | } |
4397 | |
4398 | //------------------------------meet------------------------------------------- |
4399 | // Compute the MEET of two types. It returns a new Type object. |
4400 | const Type *TypeAryPtr::xmeet_helper(const Type *t) const { |
4401 | // Perform a fast test for common case; meeting the same types together. |
4402 | if( this == t ) return this; // Meeting same type-rep? |
4403 | // Current "this->_base" is Pointer |
4404 | switch (t->base()) { // switch on original type |
4405 | |
4406 | // Mixing ints & oops happens when javac reuses local variables |
4407 | case Int: |
4408 | case Long: |
4409 | case FloatTop: |
4410 | case FloatCon: |
4411 | case FloatBot: |
4412 | case DoubleTop: |
4413 | case DoubleCon: |
4414 | case DoubleBot: |
4415 | case NarrowOop: |
4416 | case NarrowKlass: |
4417 | case Bottom: // Ye Olde Default |
4418 | return Type::BOTTOM; |
4419 | case Top: |
4420 | return this; |
4421 | |
4422 | default: // All else is a mistake |
4423 | typerr(t); |
4424 | |
4425 | case OopPtr: { // Meeting to OopPtrs |
4426 | // Found a OopPtr type vs self-AryPtr type |
4427 | const TypeOopPtr *tp = t->is_oopptr(); |
4428 | int offset = meet_offset(tp->offset()); |
4429 | PTR ptr = meet_ptr(tp->ptr()); |
4430 | int depth = meet_inline_depth(tp->inline_depth()); |
4431 | const TypePtr* speculative = xmeet_speculative(tp); |
4432 | switch (tp->ptr()) { |
4433 | case TopPTR: |
4434 | case AnyNull: { |
4435 | int instance_id = meet_instance_id(InstanceTop); |
4436 | return make(ptr, (ptr == Constant ? const_oop() : NULL__null), |
4437 | _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4438 | } |
4439 | case BotPTR: |
4440 | case NotNull: { |
4441 | int instance_id = meet_instance_id(tp->instance_id()); |
4442 | return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); |
4443 | } |
4444 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4444); ::breakpoint(); } while (0); |
4445 | } |
4446 | } |
4447 | |
4448 | case AnyPtr: { // Meeting two AnyPtrs |
4449 | // Found an AnyPtr type vs self-AryPtr type |
4450 | const TypePtr *tp = t->is_ptr(); |
4451 | int offset = meet_offset(tp->offset()); |
4452 | PTR ptr = meet_ptr(tp->ptr()); |
4453 | const TypePtr* speculative = xmeet_speculative(tp); |
4454 | int depth = meet_inline_depth(tp->inline_depth()); |
4455 | switch (tp->ptr()) { |
4456 | case TopPTR: |
4457 | return this; |
4458 | case BotPTR: |
4459 | case NotNull: |
4460 | return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
4461 | case Null: |
4462 | if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); |
4463 | // else fall through to AnyNull |
4464 | case AnyNull: { |
4465 | int instance_id = meet_instance_id(InstanceTop); |
4466 | return make(ptr, (ptr == Constant ? const_oop() : NULL__null), |
4467 | _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4468 | } |
4469 | default: ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4469); ::breakpoint(); } while (0); |
4470 | } |
4471 | } |
4472 | |
4473 | case MetadataPtr: |
4474 | case KlassPtr: |
4475 | case InstKlassPtr: |
4476 | case AryKlassPtr: |
4477 | case RawPtr: return TypePtr::BOTTOM; |
4478 | |
4479 | case AryPtr: { // Meeting 2 references? |
4480 | const TypeAryPtr *tap = t->is_aryptr(); |
4481 | int off = meet_offset(tap->offset()); |
4482 | const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); |
4483 | PTR ptr = meet_ptr(tap->ptr()); |
4484 | int instance_id = meet_instance_id(tap->instance_id()); |
4485 | const TypePtr* speculative = xmeet_speculative(tap); |
4486 | int depth = meet_inline_depth(tap->inline_depth()); |
4487 | |
4488 | ciKlass* res_klass = NULL__null; |
4489 | bool res_xk = false; |
4490 | const Type* elem = tary->_elem; |
4491 | if (meet_aryptr(ptr, elem, this->klass(), tap->klass(), this->klass_is_exact(), tap->klass_is_exact(), this->ptr(), tap->ptr(), res_klass, res_xk) == NOT_SUBTYPE) { |
4492 | instance_id = InstanceBot; |
4493 | } |
4494 | |
4495 | ciObject* o = NULL__null; // Assume not constant when done |
4496 | ciObject* this_oop = const_oop(); |
4497 | ciObject* tap_oop = tap->const_oop(); |
4498 | if (ptr == Constant) { |
4499 | if (this_oop != NULL__null && tap_oop != NULL__null && |
4500 | this_oop->equals(tap_oop)) { |
4501 | o = tap_oop; |
4502 | } else if (above_centerline(_ptr)) { |
4503 | o = tap_oop; |
4504 | } else if (above_centerline(tap->_ptr)) { |
4505 | o = this_oop; |
4506 | } else { |
4507 | ptr = NotNull; |
4508 | } |
4509 | } |
4510 | return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth); |
4511 | } |
4512 | |
4513 | // All arrays inherit from Object class |
4514 | case InstPtr: { |
4515 | const TypeInstPtr *tp = t->is_instptr(); |
4516 | int offset = meet_offset(tp->offset()); |
4517 | PTR ptr = meet_ptr(tp->ptr()); |
4518 | int instance_id = meet_instance_id(tp->instance_id()); |
4519 | const TypePtr* speculative = xmeet_speculative(tp); |
4520 | int depth = meet_inline_depth(tp->inline_depth()); |
4521 | switch (ptr) { |
4522 | case TopPTR: |
4523 | case AnyNull: // Fall 'down' to dual of object klass |
4524 | // For instances when a subclass meets a superclass we fall |
4525 | // below the centerline when the superclass is exact. We need to |
4526 | // do the same here. |
4527 | if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { |
4528 | return make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4529 | } else { |
4530 | // cannot subclass, so the meet has to fall badly below the centerline |
4531 | ptr = NotNull; |
4532 | instance_id = InstanceBot; |
4533 | return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL__null,offset, instance_id, speculative, depth); |
4534 | } |
4535 | case Constant: |
4536 | case NotNull: |
4537 | case BotPTR: // Fall down to object klass |
4538 | // LCA is object_klass, but if we subclass from the top we can do better |
4539 | if (above_centerline(tp->ptr())) { |
4540 | // If 'tp' is above the centerline and it is Object class |
4541 | // then we can subclass in the Java class hierarchy. |
4542 | // For instances when a subclass meets a superclass we fall |
4543 | // below the centerline when the superclass is exact. We need |
4544 | // to do the same here. |
4545 | if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { |
4546 | // that is, my array type is a subtype of 'tp' klass |
4547 | return make(ptr, (ptr == Constant ? const_oop() : NULL__null), |
4548 | _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); |
4549 | } |
4550 | } |
4551 | // The other case cannot happen, since t cannot be a subtype of an array. |
4552 | // The meet falls down to Object class below centerline. |
4553 | if (ptr == Constant) { |
4554 | ptr = NotNull; |
4555 | } |
4556 | if (instance_id > 0) { |
4557 | instance_id = InstanceBot; |
4558 | } |
4559 | return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL__null, offset, instance_id, speculative, depth); |
4560 | default: typerr(t); |
4561 | } |
4562 | } |
4563 | } |
4564 | return this; // Lint noise |
4565 | } |
4566 | |
4567 | |
4568 | TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, ciKlass* this_klass, ciKlass* tap_klass, bool this_xk, bool tap_xk, PTR this_ptr, PTR tap_ptr, ciKlass*& res_klass, bool& res_xk) { |
4569 | res_klass = NULL__null; |
4570 | MeetResult result = SUBTYPE; |
4571 | if (elem->isa_int()) { |
4572 | // Integral array element types have irrelevant lattice relations. |
4573 | // It is the klass that determines array layout, not the element type. |
4574 | if (this_klass == NULL__null) |
4575 | res_klass = tap_klass; |
4576 | else if (tap_klass == NULL__null || tap_klass == this_klass) { |
4577 | res_klass = this_klass; |
4578 | } else { |
4579 | // Something like byte[int+] meets char[int+]. |
4580 | // This must fall to bottom, not (int[-128..65535])[int+]. |
4581 | // instance_id = InstanceBot; |
4582 | elem = Type::BOTTOM; |
4583 | result = NOT_SUBTYPE; |
4584 | } |
4585 | } else // Non integral arrays. |
4586 | // Must fall to bottom if exact klasses in upper lattice |
4587 | // are not equal or super klass is exact. |
4588 | if ((above_centerline(ptr) || ptr == Constant) && this_klass != tap_klass && |
4589 | // meet with top[] and bottom[] are processed further down: |
4590 | tap_klass != NULL__null && this_klass != NULL__null && |
4591 | // both are exact and not equal: |
4592 | ((tap_xk && this_xk) || |
4593 | // 'tap' is exact and super or unrelated: |
4594 | (tap_xk && !tap_klass->is_subtype_of(this_klass)) || |
4595 | // 'this' is exact and super or unrelated: |
4596 | (this_xk && !this_klass->is_subtype_of(tap_klass)))) { |
4597 | if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { |
4598 | elem = Type::BOTTOM; |
4599 | } |
4600 | ptr = NotNull; |
4601 | res_xk = false; |
4602 | return NOT_SUBTYPE; |
4603 | } |
4604 | |
4605 | res_xk = false; |
4606 | switch (tap_ptr) { |
4607 | case AnyNull: |
4608 | case TopPTR: |
4609 | // Compute new klass on demand, do not use tap->_klass |
4610 | if (below_centerline(this_ptr)) { |
4611 | res_xk = this_xk; |
4612 | } else { |
4613 | res_xk = (tap_xk || this_xk); |
4614 | } |
4615 | return result; |
4616 | case Constant: { |
4617 | if (this_ptr == Constant) { |
4618 | res_xk = true; |
4619 | } else if(above_centerline(this_ptr)) { |
4620 | res_xk = true; |
4621 | } else { |
4622 | // Only precise for identical arrays |
4623 | res_xk = this_xk && (this_klass == tap_klass); |
4624 | } |
4625 | return result; |
4626 | } |
4627 | case NotNull: |
4628 | case BotPTR: |
4629 | // Compute new klass on demand, do not use tap->_klass |
4630 | if (above_centerline(this_ptr)) { |
4631 | res_xk = tap_xk; |
4632 | } else { |
4633 | res_xk = (tap_xk && this_xk) && |
4634 | (this_klass == tap_klass); // Only precise for identical arrays |
4635 | } |
4636 | return result; |
4637 | default: { |
4638 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4638); ::breakpoint(); } while (0); |
4639 | return result; |
4640 | } |
4641 | } |
4642 | return result; |
4643 | } |
4644 | |
4645 | |
4646 | //------------------------------xdual------------------------------------------ |
4647 | // Dual: compute field-by-field dual |
4648 | const Type *TypeAryPtr::xdual() const { |
4649 | return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); |
4650 | } |
4651 | |
4652 | //----------------------interface_vs_oop--------------------------------------- |
4653 | #ifdef ASSERT1 |
4654 | bool TypeAryPtr::interface_vs_oop(const Type *t) const { |
4655 | const TypeAryPtr* t_aryptr = t->isa_aryptr(); |
4656 | if (t_aryptr) { |
4657 | return _ary->interface_vs_oop(t_aryptr->_ary); |
4658 | } |
4659 | return false; |
4660 | } |
4661 | #endif |
4662 | |
4663 | //------------------------------dump2------------------------------------------ |
4664 | #ifndef PRODUCT |
4665 | void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
4666 | _ary->dump2(d,depth,st); |
4667 | switch( _ptr ) { |
4668 | case Constant: |
4669 | const_oop()->print(st); |
4670 | break; |
4671 | case BotPTR: |
4672 | if (!WizardMode && !Verbose) { |
4673 | if( _klass_is_exact ) st->print(":exact"); |
4674 | break; |
4675 | } |
4676 | case TopPTR: |
4677 | case AnyNull: |
4678 | case NotNull: |
4679 | st->print(":%s", ptr_msg[_ptr]); |
4680 | if( _klass_is_exact ) st->print(":exact"); |
4681 | break; |
4682 | default: |
4683 | break; |
4684 | } |
4685 | |
4686 | if( _offset != 0 ) { |
4687 | int header_size = objArrayOopDesc::header_size() * wordSize; |
4688 | if( _offset == OffsetTop ) st->print("+undefined"); |
4689 | else if( _offset == OffsetBot ) st->print("+any"); |
4690 | else if( _offset < header_size ) st->print("+%d", _offset); |
4691 | else { |
4692 | BasicType basic_elem_type = elem()->basic_type(); |
4693 | int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); |
4694 | int elem_size = type2aelembytes(basic_elem_type); |
4695 | st->print("[%d]", (_offset - array_base)/elem_size); |
4696 | } |
4697 | } |
4698 | st->print(" *"); |
4699 | if (_instance_id == InstanceTop) |
4700 | st->print(",iid=top"); |
4701 | else if (_instance_id != InstanceBot) |
4702 | st->print(",iid=%d",_instance_id); |
4703 | |
4704 | dump_inline_depth(st); |
4705 | dump_speculative(st); |
4706 | } |
4707 | #endif |
4708 | |
4709 | bool TypeAryPtr::empty(void) const { |
4710 | if (_ary->empty()) return true; |
4711 | return TypeOopPtr::empty(); |
4712 | } |
4713 | |
4714 | //------------------------------add_offset------------------------------------- |
4715 | const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const { |
4716 | return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); |
4717 | } |
4718 | |
4719 | const Type *TypeAryPtr::remove_speculative() const { |
4720 | if (_speculative == NULL__null) { |
4721 | return this; |
4722 | } |
4723 | assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth")do { if (!(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4723, "assert(" "_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom" ") failed", "non speculative type shouldn't have inline depth" ); ::breakpoint(); } } while (0); |
4724 | return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL__null, _inline_depth); |
4725 | } |
4726 | |
4727 | const TypePtr *TypeAryPtr::with_inline_depth(int depth) const { |
4728 | if (!UseInlineDepthForSpeculativeTypes) { |
4729 | return this; |
4730 | } |
4731 | return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); |
4732 | } |
4733 | |
4734 | const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const { |
4735 | assert(is_known_instance(), "should be known")do { if (!(is_known_instance())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4735, "assert(" "is_known_instance()" ") failed", "should be known" ); ::breakpoint(); } } while (0); |
4736 | return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); |
4737 | } |
4738 | |
4739 | //============================================================================= |
4740 | |
4741 | //------------------------------hash------------------------------------------- |
4742 | // Type-specific hashing function. |
4743 | int TypeNarrowPtr::hash(void) const { |
4744 | return _ptrtype->hash() + 7; |
4745 | } |
4746 | |
4747 | bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton |
4748 | return _ptrtype->singleton(); |
4749 | } |
4750 | |
4751 | bool TypeNarrowPtr::empty(void) const { |
4752 | return _ptrtype->empty(); |
4753 | } |
4754 | |
4755 | intptr_t TypeNarrowPtr::get_con() const { |
4756 | return _ptrtype->get_con(); |
4757 | } |
4758 | |
4759 | bool TypeNarrowPtr::eq( const Type *t ) const { |
4760 | const TypeNarrowPtr* tc = isa_same_narrowptr(t); |
4761 | if (tc != NULL__null) { |
4762 | if (_ptrtype->base() != tc->_ptrtype->base()) { |
4763 | return false; |
4764 | } |
4765 | return tc->_ptrtype->eq(_ptrtype); |
4766 | } |
4767 | return false; |
4768 | } |
4769 | |
4770 | const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. |
4771 | const TypePtr* odual = _ptrtype->dual()->is_ptr(); |
4772 | return make_same_narrowptr(odual); |
4773 | } |
4774 | |
4775 | |
4776 | const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { |
4777 | if (isa_same_narrowptr(kills)) { |
4778 | const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); |
4779 | if (ft->empty()) |
4780 | return Type::TOP; // Canonical empty value |
4781 | if (ft->isa_ptr()) { |
4782 | return make_hash_same_narrowptr(ft->isa_ptr()); |
4783 | } |
4784 | return ft; |
4785 | } else if (kills->isa_ptr()) { |
4786 | const Type* ft = _ptrtype->join_helper(kills, include_speculative); |
4787 | if (ft->empty()) |
4788 | return Type::TOP; // Canonical empty value |
4789 | return ft; |
4790 | } else { |
4791 | return Type::TOP; |
4792 | } |
4793 | } |
4794 | |
4795 | //------------------------------xmeet------------------------------------------ |
4796 | // Compute the MEET of two types. It returns a new Type object. |
4797 | const Type *TypeNarrowPtr::xmeet( const Type *t ) const { |
4798 | // Perform a fast test for common case; meeting the same types together. |
4799 | if( this == t ) return this; // Meeting same type-rep? |
4800 | |
4801 | if (t->base() == base()) { |
4802 | const Type* result = _ptrtype->xmeet(t->make_ptr()); |
4803 | if (result->isa_ptr()) { |
4804 | return make_hash_same_narrowptr(result->is_ptr()); |
4805 | } |
4806 | return result; |
4807 | } |
4808 | |
4809 | // Current "this->_base" is NarrowKlass or NarrowOop |
4810 | switch (t->base()) { // switch on original type |
4811 | |
4812 | case Int: // Mixing ints & oops happens when javac |
4813 | case Long: // reuses local variables |
4814 | case FloatTop: |
4815 | case FloatCon: |
4816 | case FloatBot: |
4817 | case DoubleTop: |
4818 | case DoubleCon: |
4819 | case DoubleBot: |
4820 | case AnyPtr: |
4821 | case RawPtr: |
4822 | case OopPtr: |
4823 | case InstPtr: |
4824 | case AryPtr: |
4825 | case MetadataPtr: |
4826 | case KlassPtr: |
4827 | case InstKlassPtr: |
4828 | case AryKlassPtr: |
4829 | case NarrowOop: |
4830 | case NarrowKlass: |
4831 | |
4832 | case Bottom: // Ye Olde Default |
4833 | return Type::BOTTOM; |
4834 | case Top: |
4835 | return this; |
4836 | |
4837 | default: // All else is a mistake |
4838 | typerr(t); |
4839 | |
4840 | } // End of switch |
4841 | |
4842 | return this; |
4843 | } |
4844 | |
4845 | #ifndef PRODUCT |
4846 | void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { |
4847 | _ptrtype->dump2(d, depth, st); |
4848 | } |
4849 | #endif |
4850 | |
4851 | const TypeNarrowOop *TypeNarrowOop::BOTTOM; |
4852 | const TypeNarrowOop *TypeNarrowOop::NULL_PTR; |
4853 | |
4854 | |
4855 | const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { |
4856 | return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); |
4857 | } |
4858 | |
4859 | const Type* TypeNarrowOop::remove_speculative() const { |
4860 | return make(_ptrtype->remove_speculative()->is_ptr()); |
4861 | } |
4862 | |
4863 | const Type* TypeNarrowOop::cleanup_speculative() const { |
4864 | return make(_ptrtype->cleanup_speculative()->is_ptr()); |
4865 | } |
4866 | |
4867 | #ifndef PRODUCT |
4868 | void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { |
4869 | st->print("narrowoop: "); |
4870 | TypeNarrowPtr::dump2(d, depth, st); |
4871 | } |
4872 | #endif |
4873 | |
4874 | const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; |
4875 | |
4876 | const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { |
4877 | return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); |
4878 | } |
4879 | |
4880 | #ifndef PRODUCT |
4881 | void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { |
4882 | st->print("narrowklass: "); |
4883 | TypeNarrowPtr::dump2(d, depth, st); |
4884 | } |
4885 | #endif |
4886 | |
4887 | |
4888 | //------------------------------eq--------------------------------------------- |
4889 | // Structural equality check for Type representations |
4890 | bool TypeMetadataPtr::eq( const Type *t ) const { |
4891 | const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; |
4892 | ciMetadata* one = metadata(); |
4893 | ciMetadata* two = a->metadata(); |
4894 | if (one == NULL__null || two == NULL__null) { |
4895 | return (one == two) && TypePtr::eq(t); |
4896 | } else { |
4897 | return one->equals(two) && TypePtr::eq(t); |
4898 | } |
4899 | } |
4900 | |
4901 | //------------------------------hash------------------------------------------- |
4902 | // Type-specific hashing function. |
4903 | int TypeMetadataPtr::hash(void) const { |
4904 | return |
4905 | (metadata() ? metadata()->hash() : 0) + |
4906 | TypePtr::hash(); |
4907 | } |
4908 | |
4909 | //------------------------------singleton-------------------------------------- |
4910 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
4911 | // constants |
4912 | bool TypeMetadataPtr::singleton(void) const { |
4913 | // detune optimizer to not generate constant metadata + constant offset as a constant! |
4914 | // TopPTR, Null, AnyNull, Constant are all singletons |
4915 | return (_offset == 0) && !below_centerline(_ptr); |
4916 | } |
4917 | |
4918 | //------------------------------add_offset------------------------------------- |
4919 | const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const { |
4920 | return make( _ptr, _metadata, xadd_offset(offset)); |
4921 | } |
4922 | |
4923 | //-----------------------------filter------------------------------------------ |
4924 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
4925 | const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { |
4926 | const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); |
4927 | if (ft == NULL__null || ft->empty()) |
4928 | return Type::TOP; // Canonical empty value |
4929 | return ft; |
4930 | } |
4931 | |
4932 | //------------------------------get_con---------------------------------------- |
4933 | intptr_t TypeMetadataPtr::get_con() const { |
4934 | assert( _ptr == Null || _ptr == Constant, "" )do { if (!(_ptr == Null || _ptr == Constant)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4934, "assert(" "_ptr == Null || _ptr == Constant" ") failed" , ""); ::breakpoint(); } } while (0); |
4935 | assert( _offset >= 0, "" )do { if (!(_offset >= 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4935, "assert(" "_offset >= 0" ") failed", ""); ::breakpoint (); } } while (0); |
4936 | |
4937 | if (_offset != 0) { |
4938 | // After being ported to the compiler interface, the compiler no longer |
4939 | // directly manipulates the addresses of oops. Rather, it only has a pointer |
4940 | // to a handle at compile time. This handle is embedded in the generated |
4941 | // code and dereferenced at the time the nmethod is made. Until that time, |
4942 | // it is not reasonable to do arithmetic with the addresses of oops (we don't |
4943 | // have access to the addresses!). This does not seem to currently happen, |
4944 | // but this assertion here is to help prevent its occurence. |
4945 | tty->print_cr("Found oop constant with non-zero offset"); |
4946 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 4946); ::breakpoint(); } while (0); |
4947 | } |
4948 | |
4949 | return (intptr_t)metadata()->constant_encoding(); |
4950 | } |
4951 | |
4952 | //------------------------------cast_to_ptr_type------------------------------- |
4953 | const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { |
4954 | if( ptr == _ptr ) return this; |
4955 | return make(ptr, metadata(), _offset); |
4956 | } |
4957 | |
4958 | //------------------------------meet------------------------------------------- |
4959 | // Compute the MEET of two types. It returns a new Type object. |
4960 | const Type *TypeMetadataPtr::xmeet( const Type *t ) const { |
4961 | // Perform a fast test for common case; meeting the same types together. |
4962 | if( this == t ) return this; // Meeting same type-rep? |
4963 | |
4964 | // Current "this->_base" is OopPtr |
4965 | switch (t->base()) { // switch on original type |
4966 | |
4967 | case Int: // Mixing ints & oops happens when javac |
4968 | case Long: // reuses local variables |
4969 | case FloatTop: |
4970 | case FloatCon: |
4971 | case FloatBot: |
4972 | case DoubleTop: |
4973 | case DoubleCon: |
4974 | case DoubleBot: |
4975 | case NarrowOop: |
4976 | case NarrowKlass: |
4977 | case Bottom: // Ye Olde Default |
4978 | return Type::BOTTOM; |
4979 | case Top: |
4980 | return this; |
4981 | |
4982 | default: // All else is a mistake |
4983 | typerr(t); |
4984 | |
4985 | case AnyPtr: { |
4986 | // Found an AnyPtr type vs self-OopPtr type |
4987 | const TypePtr *tp = t->is_ptr(); |
4988 | int offset = meet_offset(tp->offset()); |
4989 | PTR ptr = meet_ptr(tp->ptr()); |
4990 | switch (tp->ptr()) { |
4991 | case Null: |
4992 | if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
4993 | // else fall through: |
4994 | case TopPTR: |
4995 | case AnyNull: { |
4996 | return make(ptr, _metadata, offset); |
4997 | } |
4998 | case BotPTR: |
4999 | case NotNull: |
5000 | return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
5001 | default: typerr(t); |
5002 | } |
5003 | } |
5004 | |
5005 | case RawPtr: |
5006 | case KlassPtr: |
5007 | case InstKlassPtr: |
5008 | case AryKlassPtr: |
5009 | case OopPtr: |
5010 | case InstPtr: |
5011 | case AryPtr: |
5012 | return TypePtr::BOTTOM; // Oop meet raw is not well defined |
5013 | |
5014 | case MetadataPtr: { |
5015 | const TypeMetadataPtr *tp = t->is_metadataptr(); |
5016 | int offset = meet_offset(tp->offset()); |
5017 | PTR tptr = tp->ptr(); |
5018 | PTR ptr = meet_ptr(tptr); |
5019 | ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); |
5020 | if (tptr == TopPTR || _ptr == TopPTR || |
5021 | metadata()->equals(tp->metadata())) { |
5022 | return make(ptr, md, offset); |
5023 | } |
5024 | // metadata is different |
5025 | if( ptr == Constant ) { // Cannot be equal constants, so... |
5026 | if( tptr == Constant && _ptr != Constant) return t; |
5027 | if( _ptr == Constant && tptr != Constant) return this; |
5028 | ptr = NotNull; // Fall down in lattice |
5029 | } |
5030 | return make(ptr, NULL__null, offset); |
5031 | break; |
5032 | } |
5033 | } // End of switch |
5034 | return this; // Return the double constant |
5035 | } |
5036 | |
5037 | |
5038 | //------------------------------xdual------------------------------------------ |
5039 | // Dual of a pure metadata pointer. |
5040 | const Type *TypeMetadataPtr::xdual() const { |
5041 | return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); |
5042 | } |
5043 | |
5044 | //------------------------------dump2------------------------------------------ |
5045 | #ifndef PRODUCT |
5046 | void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { |
5047 | st->print("metadataptr:%s", ptr_msg[_ptr]); |
5048 | if( metadata() ) st->print(INTPTR_FORMAT"0x%016" "l" "x", p2i(metadata())); |
5049 | switch( _offset ) { |
5050 | case OffsetTop: st->print("+top"); break; |
5051 | case OffsetBot: st->print("+any"); break; |
5052 | case 0: break; |
5053 | default: st->print("+%d",_offset); break; |
5054 | } |
5055 | } |
5056 | #endif |
5057 | |
5058 | |
5059 | //============================================================================= |
5060 | // Convenience common pre-built type. |
5061 | const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; |
5062 | |
5063 | TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): |
5064 | TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { |
5065 | } |
5066 | |
5067 | const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { |
5068 | return make(Constant, m, 0); |
5069 | } |
5070 | const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { |
5071 | return make(Constant, m, 0); |
5072 | } |
5073 | |
5074 | //------------------------------make------------------------------------------- |
5075 | // Create a meta data constant |
5076 | const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { |
5077 | assert(m == NULL || !m->is_klass(), "wrong type")do { if (!(m == __null || !m->is_klass())) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5077, "assert(" "m == __null || !m->is_klass()" ") failed" , "wrong type"); ::breakpoint(); } } while (0); |
5078 | return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); |
5079 | } |
5080 | |
5081 | |
5082 | const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { |
5083 | const Type* elem = _ary->_elem; |
5084 | bool xk = klass_is_exact(); |
5085 | if (elem->make_oopptr() != NULL__null) { |
5086 | elem = elem->make_oopptr()->as_klass_type(try_for_exact); |
5087 | if (elem->is_klassptr()->klass_is_exact()) { |
5088 | xk = true; |
5089 | } |
5090 | } |
5091 | return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0); |
5092 | } |
5093 | |
5094 | const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass) { |
5095 | if (klass->is_instance_klass()) { |
5096 | return TypeInstKlassPtr::make(klass); |
5097 | } |
5098 | return TypeAryKlassPtr::make(klass); |
5099 | } |
5100 | |
5101 | const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset) { |
5102 | if (klass->is_instance_klass()) { |
5103 | return TypeInstKlassPtr::make(ptr, klass, offset); |
5104 | } |
5105 | return TypeAryKlassPtr::make(ptr, klass, offset); |
5106 | } |
5107 | |
5108 | |
5109 | //------------------------------TypeKlassPtr----------------------------------- |
5110 | TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, int offset) |
5111 | : TypePtr(t, ptr, offset), _klass(klass) { |
5112 | } |
5113 | |
5114 | //------------------------------eq--------------------------------------------- |
5115 | // Structural equality check for Type representations |
5116 | bool TypeKlassPtr::eq(const Type *t) const { |
5117 | const TypeKlassPtr *p = t->is_klassptr(); |
5118 | return |
5119 | TypePtr::eq(p); |
5120 | } |
5121 | |
5122 | //------------------------------hash------------------------------------------- |
5123 | // Type-specific hashing function. |
5124 | int TypeKlassPtr::hash(void) const { |
5125 | return TypePtr::hash(); |
5126 | } |
5127 | |
5128 | //------------------------------singleton-------------------------------------- |
5129 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
5130 | // constants |
5131 | bool TypeKlassPtr::singleton(void) const { |
5132 | // detune optimizer to not generate constant klass + constant offset as a constant! |
5133 | // TopPTR, Null, AnyNull, Constant are all singletons |
5134 | return (_offset == 0) && !below_centerline(_ptr); |
5135 | } |
5136 | |
5137 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
5138 | const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { |
5139 | // logic here mirrors the one from TypeOopPtr::filter. See comments |
5140 | // there. |
5141 | const Type* ft = join_helper(kills, include_speculative); |
5142 | const TypeKlassPtr* ftkp = ft->isa_instklassptr(); |
5143 | const TypeKlassPtr* ktkp = kills->isa_instklassptr(); |
5144 | |
5145 | if (ft->empty()) { |
5146 | if (!empty() && ktkp != NULL__null && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface()) |
5147 | return kills; // Uplift to interface |
5148 | |
5149 | return Type::TOP; // Canonical empty value |
5150 | } |
5151 | |
5152 | // Interface klass type could be exact in opposite to interface type, |
5153 | // return it here instead of incorrect Constant ptr J/L/Object (6894807). |
5154 | if (ftkp != NULL__null && ktkp != NULL__null && |
5155 | ftkp->is_loaded() && ftkp->klass()->is_interface() && |
5156 | !ftkp->klass_is_exact() && // Keep exact interface klass |
5157 | ktkp->is_loaded() && !ktkp->klass()->is_interface()) { |
5158 | return ktkp->cast_to_ptr_type(ftkp->ptr()); |
5159 | } |
5160 | |
5161 | return ft; |
5162 | } |
5163 | |
5164 | //------------------------------get_con---------------------------------------- |
5165 | intptr_t TypeKlassPtr::get_con() const { |
5166 | assert( _ptr == Null || _ptr == Constant, "" )do { if (!(_ptr == Null || _ptr == Constant)) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5166, "assert(" "_ptr == Null || _ptr == Constant" ") failed" , ""); ::breakpoint(); } } while (0); |
5167 | assert( _offset >= 0, "" )do { if (!(_offset >= 0)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5167, "assert(" "_offset >= 0" ") failed", ""); ::breakpoint (); } } while (0); |
5168 | |
5169 | if (_offset != 0) { |
5170 | // After being ported to the compiler interface, the compiler no longer |
5171 | // directly manipulates the addresses of oops. Rather, it only has a pointer |
5172 | // to a handle at compile time. This handle is embedded in the generated |
5173 | // code and dereferenced at the time the nmethod is made. Until that time, |
5174 | // it is not reasonable to do arithmetic with the addresses of oops (we don't |
5175 | // have access to the addresses!). This does not seem to currently happen, |
5176 | // but this assertion here is to help prevent its occurence. |
5177 | tty->print_cr("Found oop constant with non-zero offset"); |
5178 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5178); ::breakpoint(); } while (0); |
5179 | } |
5180 | |
5181 | return (intptr_t)klass()->constant_encoding(); |
5182 | } |
5183 | |
5184 | //------------------------------dump2------------------------------------------ |
5185 | // Dump Klass Type |
5186 | #ifndef PRODUCT |
5187 | void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const { |
5188 | switch(_ptr) { |
5189 | case Constant: |
5190 | st->print("precise "); |
5191 | case NotNull: |
5192 | { |
5193 | const char *name = klass()->name()->as_utf8(); |
5194 | if (name) { |
5195 | st->print("%s: " INTPTR_FORMAT"0x%016" "l" "x", name, p2i(klass())); |
5196 | } else { |
5197 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5197); ::breakpoint(); } while (0); |
5198 | } |
5199 | } |
5200 | case BotPTR: |
5201 | if (!WizardMode && !Verbose && _ptr != Constant) break; |
5202 | case TopPTR: |
5203 | case AnyNull: |
5204 | st->print(":%s", ptr_msg[_ptr]); |
5205 | if (_ptr == Constant) st->print(":exact"); |
5206 | break; |
5207 | default: |
5208 | break; |
5209 | } |
5210 | |
5211 | if (_offset) { // Dump offset, if any |
5212 | if (_offset == OffsetBot) { st->print("+any"); } |
5213 | else if (_offset == OffsetTop) { st->print("+unknown"); } |
5214 | else { st->print("+%d", _offset); } |
5215 | } |
5216 | |
5217 | st->print(" *"); |
5218 | } |
5219 | #endif |
5220 | |
5221 | //============================================================================= |
5222 | // Convenience common pre-built types. |
5223 | |
5224 | // Not-null object klass or below |
5225 | const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; |
5226 | const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; |
5227 | |
5228 | bool TypeInstKlassPtr::eq(const Type *t) const { |
5229 | const TypeKlassPtr *p = t->is_klassptr(); |
5230 | return |
5231 | klass()->equals(p->klass()) && |
5232 | TypeKlassPtr::eq(p); |
5233 | } |
5234 | |
5235 | int TypeInstKlassPtr::hash(void) const { |
5236 | return java_add((jint)klass()->hash(), TypeKlassPtr::hash()); |
5237 | } |
5238 | |
5239 | const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, int offset) { |
5240 | TypeInstKlassPtr *r = |
5241 | (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, offset))->hashcons(); |
5242 | |
5243 | return r; |
5244 | } |
5245 | |
5246 | //------------------------------add_offset------------------------------------- |
5247 | // Access internals of klass object |
5248 | const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const { |
5249 | return make( _ptr, klass(), xadd_offset(offset) ); |
5250 | } |
5251 | |
5252 | const TypeKlassPtr *TypeInstKlassPtr::with_offset(intptr_t offset) const { |
5253 | return make(_ptr, klass(), offset); |
5254 | } |
5255 | |
5256 | //------------------------------cast_to_ptr_type------------------------------- |
5257 | const TypePtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { |
5258 | assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type")do { if (!(_base == InstKlassPtr)) { (*g_assert_poison) = 'X' ;; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5258, "assert(" "_base == InstKlassPtr" ") failed", "subclass must override cast_to_ptr_type" ); ::breakpoint(); } } while (0); |
5259 | if( ptr == _ptr ) return this; |
5260 | return make(ptr, _klass, _offset); |
5261 | } |
5262 | |
5263 | |
5264 | bool TypeInstKlassPtr::must_be_exact() const { |
5265 | if (!_klass->is_loaded()) return false; |
5266 | ciInstanceKlass* ik = _klass->as_instance_klass(); |
5267 | if (ik->is_final()) return true; // cannot clear xk |
5268 | return false; |
5269 | } |
5270 | |
5271 | //-----------------------------cast_to_exactness------------------------------- |
5272 | const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { |
5273 | if (klass_is_exact == (_ptr == Constant)) return this; |
5274 | if (must_be_exact()) return this; |
5275 | ciKlass* k = klass(); |
5276 | return make(klass_is_exact ? Constant : NotNull, k, _offset); |
5277 | } |
5278 | |
5279 | |
5280 | //-----------------------------as_instance_type-------------------------------- |
5281 | // Corresponding type for an instance of the given class. |
5282 | // It will be NotNull, and exact if and only if the klass type is exact. |
5283 | const TypeOopPtr* TypeInstKlassPtr::as_instance_type() const { |
5284 | ciKlass* k = klass(); |
5285 | bool xk = klass_is_exact(); |
5286 | return TypeInstPtr::make(TypePtr::BotPTR, k, xk, NULL__null, 0); |
5287 | } |
5288 | |
5289 | //------------------------------xmeet------------------------------------------ |
5290 | // Compute the MEET of two types, return a new Type object. |
5291 | const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { |
5292 | // Perform a fast test for common case; meeting the same types together. |
5293 | if( this == t ) return this; // Meeting same type-rep? |
5294 | |
5295 | // Current "this->_base" is Pointer |
5296 | switch (t->base()) { // switch on original type |
5297 | |
5298 | case Int: // Mixing ints & oops happens when javac |
5299 | case Long: // reuses local variables |
5300 | case FloatTop: |
5301 | case FloatCon: |
5302 | case FloatBot: |
5303 | case DoubleTop: |
5304 | case DoubleCon: |
5305 | case DoubleBot: |
5306 | case NarrowOop: |
5307 | case NarrowKlass: |
5308 | case Bottom: // Ye Olde Default |
5309 | return Type::BOTTOM; |
5310 | case Top: |
5311 | return this; |
5312 | |
5313 | default: // All else is a mistake |
5314 | typerr(t); |
5315 | |
5316 | case AnyPtr: { // Meeting to AnyPtrs |
5317 | // Found an AnyPtr type vs self-KlassPtr type |
5318 | const TypePtr *tp = t->is_ptr(); |
5319 | int offset = meet_offset(tp->offset()); |
5320 | PTR ptr = meet_ptr(tp->ptr()); |
5321 | switch (tp->ptr()) { |
5322 | case TopPTR: |
5323 | return this; |
5324 | case Null: |
5325 | if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
5326 | case AnyNull: |
5327 | return make( ptr, klass(), offset ); |
5328 | case BotPTR: |
5329 | case NotNull: |
5330 | return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
5331 | default: typerr(t); |
5332 | } |
5333 | } |
5334 | |
5335 | case RawPtr: |
5336 | case MetadataPtr: |
5337 | case OopPtr: |
5338 | case AryPtr: // Meet with AryPtr |
5339 | case InstPtr: // Meet with InstPtr |
5340 | return TypePtr::BOTTOM; |
5341 | |
5342 | // |
5343 | // A-top } |
5344 | // / | \ } Tops |
5345 | // B-top A-any C-top } |
5346 | // | / | \ | } Any-nulls |
5347 | // B-any | C-any } |
5348 | // | | | |
5349 | // B-con A-con C-con } constants; not comparable across classes |
5350 | // | | | |
5351 | // B-not | C-not } |
5352 | // | \ | / | } not-nulls |
5353 | // B-bot A-not C-bot } |
5354 | // \ | / } Bottoms |
5355 | // A-bot } |
5356 | // |
5357 | |
5358 | case InstKlassPtr: { // Meet two KlassPtr types |
5359 | const TypeInstKlassPtr *tkls = t->is_instklassptr(); |
5360 | int off = meet_offset(tkls->offset()); |
5361 | PTR ptr = meet_ptr(tkls->ptr()); |
5362 | ciKlass* tkls_klass = tkls->klass(); |
5363 | ciKlass* this_klass = klass(); |
5364 | bool tkls_xk = tkls->klass_is_exact(); |
5365 | bool this_xk = klass_is_exact(); |
5366 | |
5367 | ciKlass* res_klass = NULL__null; |
5368 | bool res_xk = false; |
5369 | switch(meet_instptr(ptr, this_klass, tkls_klass, this_xk, tkls_xk, this->_ptr, tkls->_ptr, res_klass, res_xk)) { |
5370 | case UNLOADED: |
5371 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5371); ::breakpoint(); } while (0); |
5372 | case SUBTYPE: |
5373 | case NOT_SUBTYPE: |
5374 | case LCA: |
5375 | case QUICK: { |
5376 | assert(res_xk == (ptr == Constant), "")do { if (!(res_xk == (ptr == Constant))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5376, "assert(" "res_xk == (ptr == Constant)" ") failed", "" ); ::breakpoint(); } } while (0); |
5377 | const Type* res1 = make(ptr, res_klass, off); |
5378 | return res1; |
5379 | } |
5380 | default: |
5381 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5381); ::breakpoint(); } while (0); |
5382 | } |
5383 | } // End of case KlassPtr |
5384 | case AryKlassPtr: { // All arrays inherit from Object class |
5385 | const TypeAryKlassPtr *tp = t->is_aryklassptr(); |
5386 | int offset = meet_offset(tp->offset()); |
5387 | PTR ptr = meet_ptr(tp->ptr()); |
5388 | |
5389 | switch (ptr) { |
5390 | case TopPTR: |
5391 | case AnyNull: // Fall 'down' to dual of object klass |
5392 | // For instances when a subclass meets a superclass we fall |
5393 | // below the centerline when the superclass is exact. We need to |
5394 | // do the same here. |
5395 | if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { |
5396 | return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset); |
5397 | } else { |
5398 | // cannot subclass, so the meet has to fall badly below the centerline |
5399 | ptr = NotNull; |
5400 | return make(ptr, ciEnv::current()->Object_klass(), offset); |
5401 | } |
5402 | case Constant: |
5403 | case NotNull: |
5404 | case BotPTR: // Fall down to object klass |
5405 | // LCA is object_klass, but if we subclass from the top we can do better |
5406 | if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) |
5407 | // If 'this' (InstPtr) is above the centerline and it is Object class |
5408 | // then we can subclass in the Java class hierarchy. |
5409 | // For instances when a subclass meets a superclass we fall |
5410 | // below the centerline when the superclass is exact. We need |
5411 | // to do the same here. |
5412 | if (klass()->equals(ciEnv::current()->Object_klass())) { |
5413 | // that is, tp's array type is a subtype of my klass |
5414 | return TypeAryKlassPtr::make(ptr, |
5415 | tp->elem(), tp->klass(), offset); |
5416 | } |
5417 | } |
5418 | // The other case cannot happen, since I cannot be a subtype of an array. |
5419 | // The meet falls down to Object class below centerline. |
5420 | if( ptr == Constant ) |
5421 | ptr = NotNull; |
5422 | return make(ptr, ciEnv::current()->Object_klass(), offset); |
5423 | default: typerr(t); |
5424 | } |
5425 | } |
5426 | |
5427 | } // End of switch |
5428 | return this; // Return the double constant |
5429 | } |
5430 | |
5431 | //------------------------------xdual------------------------------------------ |
5432 | // Dual: compute field-by-field dual |
5433 | const Type *TypeInstKlassPtr::xdual() const { |
5434 | return new TypeInstKlassPtr(dual_ptr(), klass(), dual_offset()); |
5435 | } |
5436 | |
5437 | const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) { |
5438 | return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons(); |
5439 | } |
5440 | |
5441 | const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* klass, int offset) { |
5442 | if (klass->is_obj_array_klass()) { |
5443 | // Element is an object array. Recursively call ourself. |
5444 | ciKlass* eklass = klass->as_obj_array_klass()->element_klass(); |
5445 | const TypeKlassPtr *etype = TypeKlassPtr::make(eklass)->cast_to_exactness(false); |
5446 | return TypeAryKlassPtr::make(ptr, etype, NULL__null, offset); |
5447 | } else if (klass->is_type_array_klass()) { |
5448 | // Element is an typeArray |
5449 | const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); |
5450 | return TypeAryKlassPtr::make(ptr, etype, klass, offset); |
5451 | } else { |
5452 | ShouldNotReachHere()do { (*g_assert_poison) = 'X';; report_should_not_reach_here( "/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5452); ::breakpoint(); } while (0); |
5453 | return NULL__null; |
5454 | } |
5455 | } |
5456 | |
5457 | const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass) { |
5458 | return TypeAryKlassPtr::make(Constant, klass, 0); |
5459 | } |
5460 | |
5461 | //------------------------------eq--------------------------------------------- |
5462 | // Structural equality check for Type representations |
5463 | bool TypeAryKlassPtr::eq(const Type *t) const { |
5464 | const TypeAryKlassPtr *p = t->is_aryklassptr(); |
5465 | return |
5466 | _elem == p->_elem && // Check array |
5467 | TypeKlassPtr::eq(p); // Check sub-parts |
5468 | } |
5469 | |
5470 | //------------------------------hash------------------------------------------- |
5471 | // Type-specific hashing function. |
5472 | int TypeAryKlassPtr::hash(void) const { |
5473 | return (intptr_t)_elem + TypeKlassPtr::hash(); |
5474 | } |
5475 | |
5476 | //----------------------compute_klass------------------------------------------ |
5477 | // Compute the defining klass for this class |
5478 | ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)bool verify) const { |
5479 | // Compute _klass based on element type. |
5480 | ciKlass* k_ary = NULL__null; |
5481 | const TypeInstPtr *tinst; |
5482 | const TypeAryPtr *tary; |
5483 | const Type* el = elem(); |
5484 | if (el->isa_narrowoop()) { |
5485 | el = el->make_ptr(); |
5486 | } |
5487 | |
5488 | // Get element klass |
5489 | if ((tinst = el->isa_instptr()) != NULL__null) { |
5490 | // Compute array klass from element klass |
5491 | k_ary = ciObjArrayKlass::make(tinst->klass()); |
5492 | } else if ((tary = el->isa_aryptr()) != NULL__null) { |
5493 | // Compute array klass from element klass |
5494 | ciKlass* k_elem = tary->klass(); |
5495 | // If element type is something like bottom[], k_elem will be null. |
5496 | if (k_elem != NULL__null) |
5497 | k_ary = ciObjArrayKlass::make(k_elem); |
5498 | } else if ((el->base() == Type::Top) || |
5499 | (el->base() == Type::Bottom)) { |
5500 | // element type of Bottom occurs from meet of basic type |
5501 | // and object; Top occurs when doing join on Bottom. |
5502 | // Leave k_ary at NULL. |
5503 | } else { |
5504 | // Cannot compute array klass directly from basic type, |
5505 | // since subtypes of TypeInt all have basic type T_INT. |
5506 | #ifdef ASSERT1 |
5507 | if (verify && el->isa_int()) { |
5508 | // Check simple cases when verifying klass. |
5509 | BasicType bt = T_ILLEGAL; |
5510 | if (el == TypeInt::BYTE) { |
5511 | bt = T_BYTE; |
5512 | } else if (el == TypeInt::SHORT) { |
5513 | bt = T_SHORT; |
5514 | } else if (el == TypeInt::CHAR) { |
5515 | bt = T_CHAR; |
5516 | } else if (el == TypeInt::INT) { |
5517 | bt = T_INT; |
5518 | } else { |
5519 | return _klass; // just return specified klass |
5520 | } |
5521 | return ciTypeArrayKlass::make(bt); |
5522 | } |
5523 | #endif |
5524 | assert(!el->isa_int(),do { if (!(!el->isa_int())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5525, "assert(" "!el->isa_int()" ") failed", "integral arrays must be pre-equipped with a class" ); ::breakpoint(); } } while (0) |
5525 | "integral arrays must be pre-equipped with a class")do { if (!(!el->isa_int())) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5525, "assert(" "!el->isa_int()" ") failed", "integral arrays must be pre-equipped with a class" ); ::breakpoint(); } } while (0); |
5526 | // Compute array klass directly from basic type |
5527 | k_ary = ciTypeArrayKlass::make(el->basic_type()); |
5528 | } |
5529 | return k_ary; |
5530 | } |
5531 | |
5532 | //------------------------------klass------------------------------------------ |
5533 | // Return the defining klass for this class |
5534 | ciKlass* TypeAryPtr::klass() const { |
5535 | if( _klass ) return _klass; // Return cached value, if possible |
5536 | |
5537 | // Oops, need to compute _klass and cache it |
5538 | ciKlass* k_ary = compute_klass(); |
5539 | |
5540 | if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { |
5541 | // The _klass field acts as a cache of the underlying |
5542 | // ciKlass for this array type. In order to set the field, |
5543 | // we need to cast away const-ness. |
5544 | // |
5545 | // IMPORTANT NOTE: we *never* set the _klass field for the |
5546 | // type TypeAryPtr::OOPS. This Type is shared between all |
5547 | // active compilations. However, the ciKlass which represents |
5548 | // this Type is *not* shared between compilations, so caching |
5549 | // this value would result in fetching a dangling pointer. |
5550 | // |
5551 | // Recomputing the underlying ciKlass for each request is |
5552 | // a bit less efficient than caching, but calls to |
5553 | // TypeAryPtr::OOPS->klass() are not common enough to matter. |
5554 | ((TypeAryPtr*)this)->_klass = k_ary; |
5555 | if (UseCompressedOops && k_ary != NULL__null && k_ary->is_obj_array_klass() && |
5556 | _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) { |
5557 | ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true; |
5558 | } |
5559 | } |
5560 | return k_ary; |
5561 | } |
5562 | |
5563 | |
5564 | //------------------------------add_offset------------------------------------- |
5565 | // Access internals of klass object |
5566 | const TypePtr *TypeAryKlassPtr::add_offset(intptr_t offset) const { |
5567 | return make(_ptr, elem(), klass(), xadd_offset(offset)); |
5568 | } |
5569 | |
5570 | const TypeKlassPtr *TypeAryKlassPtr::with_offset(intptr_t offset) const { |
5571 | return make(_ptr, elem(), klass(), offset); |
5572 | } |
5573 | |
5574 | //------------------------------cast_to_ptr_type------------------------------- |
5575 | const TypePtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { |
5576 | assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type")do { if (!(_base == AryKlassPtr)) { (*g_assert_poison) = 'X'; ; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5576, "assert(" "_base == AryKlassPtr" ") failed", "subclass must override cast_to_ptr_type" ); ::breakpoint(); } } while (0); |
5577 | if (ptr == _ptr) return this; |
5578 | return make(ptr, elem(), _klass, _offset); |
5579 | } |
5580 | |
5581 | bool TypeAryKlassPtr::must_be_exact() const { |
5582 | if (_elem == Type::BOTTOM) return false; |
5583 | if (_elem == Type::TOP ) return false; |
5584 | const TypeKlassPtr* tk = _elem->isa_klassptr(); |
5585 | if (!tk) return true; // a primitive type, like int |
5586 | return tk->must_be_exact(); |
5587 | } |
5588 | |
5589 | |
5590 | //-----------------------------cast_to_exactness------------------------------- |
5591 | const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { |
5592 | if (must_be_exact()) return this; // cannot clear xk |
5593 | ciKlass* k = _klass; |
5594 | const Type* elem = this->elem(); |
5595 | if (elem->isa_klassptr() && !klass_is_exact) { |
5596 | elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); |
5597 | } |
5598 | return make(klass_is_exact ? Constant : NotNull, elem, k, _offset); |
5599 | } |
5600 | |
5601 | |
5602 | //-----------------------------as_instance_type-------------------------------- |
5603 | // Corresponding type for an instance of the given class. |
5604 | // It will be exact if and only if the klass type is exact. |
5605 | const TypeOopPtr* TypeAryKlassPtr::as_instance_type() const { |
5606 | ciKlass* k = klass(); |
5607 | bool xk = klass_is_exact(); |
5608 | const Type* el = elem()->isa_klassptr() ? elem()->is_klassptr()->as_instance_type()->is_oopptr()->cast_to_exactness(false) : elem(); |
5609 | return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0); |
5610 | } |
5611 | |
5612 | |
5613 | //------------------------------xmeet------------------------------------------ |
5614 | // Compute the MEET of two types, return a new Type object. |
5615 | const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { |
5616 | // Perform a fast test for common case; meeting the same types together. |
5617 | if( this == t ) return this; // Meeting same type-rep? |
5618 | |
5619 | // Current "this->_base" is Pointer |
5620 | switch (t->base()) { // switch on original type |
5621 | |
5622 | case Int: // Mixing ints & oops happens when javac |
5623 | case Long: // reuses local variables |
5624 | case FloatTop: |
5625 | case FloatCon: |
5626 | case FloatBot: |
5627 | case DoubleTop: |
5628 | case DoubleCon: |
5629 | case DoubleBot: |
5630 | case NarrowOop: |
5631 | case NarrowKlass: |
5632 | case Bottom: // Ye Olde Default |
5633 | return Type::BOTTOM; |
5634 | case Top: |
5635 | return this; |
5636 | |
5637 | default: // All else is a mistake |
5638 | typerr(t); |
5639 | |
5640 | case AnyPtr: { // Meeting to AnyPtrs |
5641 | // Found an AnyPtr type vs self-KlassPtr type |
5642 | const TypePtr *tp = t->is_ptr(); |
5643 | int offset = meet_offset(tp->offset()); |
5644 | PTR ptr = meet_ptr(tp->ptr()); |
5645 | switch (tp->ptr()) { |
5646 | case TopPTR: |
5647 | return this; |
5648 | case Null: |
5649 | if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
5650 | case AnyNull: |
5651 | return make( ptr, _elem, klass(), offset ); |
5652 | case BotPTR: |
5653 | case NotNull: |
5654 | return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); |
5655 | default: typerr(t); |
5656 | } |
5657 | } |
5658 | |
5659 | case RawPtr: |
5660 | case MetadataPtr: |
5661 | case OopPtr: |
5662 | case AryPtr: // Meet with AryPtr |
5663 | case InstPtr: // Meet with InstPtr |
5664 | return TypePtr::BOTTOM; |
5665 | |
5666 | // |
5667 | // A-top } |
5668 | // / | \ } Tops |
5669 | // B-top A-any C-top } |
5670 | // | / | \ | } Any-nulls |
5671 | // B-any | C-any } |
5672 | // | | | |
5673 | // B-con A-con C-con } constants; not comparable across classes |
5674 | // | | | |
5675 | // B-not | C-not } |
5676 | // | \ | / | } not-nulls |
5677 | // B-bot A-not C-bot } |
5678 | // \ | / } Bottoms |
5679 | // A-bot } |
5680 | // |
5681 | |
5682 | case AryKlassPtr: { // Meet two KlassPtr types |
5683 | const TypeAryKlassPtr *tap = t->is_aryklassptr(); |
5684 | int off = meet_offset(tap->offset()); |
5685 | const Type* elem = _elem->meet(tap->_elem); |
5686 | |
5687 | PTR ptr = meet_ptr(tap->ptr()); |
5688 | ciKlass* res_klass = NULL__null; |
5689 | bool res_xk = false; |
5690 | meet_aryptr(ptr, elem, this->klass(), tap->klass(), this->klass_is_exact(), tap->klass_is_exact(), this->ptr(), tap->ptr(), res_klass, res_xk); |
5691 | assert(res_xk == (ptr == Constant), "")do { if (!(res_xk == (ptr == Constant))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/share/opto/type.cpp" , 5691, "assert(" "res_xk == (ptr == Constant)" ") failed", "" ); ::breakpoint(); } } while (0); |
5692 | return make(ptr, elem, res_klass, off); |
5693 | } // End of case KlassPtr |
5694 | case InstKlassPtr: { |
5695 | const TypeInstKlassPtr *tp = t->is_instklassptr(); |
5696 | int offset = meet_offset(tp->offset()); |
5697 | PTR ptr = meet_ptr(tp->ptr()); |
5698 | |
5699 | switch (ptr) { |
5700 | case TopPTR: |
5701 | case AnyNull: // Fall 'down' to dual of object klass |
5702 | // For instances when a subclass meets a superclass we fall |
5703 | // below the centerline when the superclass is exact. We need to |
5704 | // do the same here. |
5705 | if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { |
5706 | return TypeAryKlassPtr::make(ptr, _elem, _klass, offset); |
5707 | } else { |
5708 | // cannot subclass, so the meet has to fall badly below the centerline |
5709 | ptr = NotNull; |
5710 | return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), offset); |
5711 | } |
5712 | case Constant: |
5713 | case NotNull: |
5714 | case BotPTR: // Fall down to object klass |
5715 | // LCA is object_klass, but if we subclass from the top we can do better |
5716 | if (above_centerline(tp->ptr())) { |
5717 | // If 'tp' is above the centerline and it is Object class |
5718 | // then we can subclass in the Java class hierarchy. |
5719 | // For instances when a subclass meets a superclass we fall |
5720 | // below the centerline when the superclass is exact. We need |
5721 | // to do the same here. |
5722 | if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { |
5723 | // that is, my array type is a subtype of 'tp' klass |
5724 | return make(ptr, _elem, _klass, offset); |
5725 | } |
5726 | } |
5727 | // The other case cannot happen, since t cannot be a subtype of an array. |
5728 | // The meet falls down to Object class below centerline. |
5729 | if (ptr == Constant) |
5730 | ptr = NotNull; |
5731 | return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), offset); |
5732 | default: typerr(t); |
5733 | } |
5734 | } |
5735 | |
5736 | } // End of switch |
5737 | return this; // Return the double constant |
5738 | } |
5739 | |
5740 | //------------------------------xdual------------------------------------------ |
5741 | // Dual: compute field-by-field dual |
5742 | const Type *TypeAryKlassPtr::xdual() const { |
5743 | return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset()); |
5744 | } |
5745 | |
5746 | //------------------------------get_con---------------------------------------- |
5747 | ciKlass* TypeAryKlassPtr::klass() const { |
5748 | if (_klass != NULL__null) { |
5749 | return _klass; |
5750 | } |
5751 | ciKlass* k = NULL__null; |
5752 | if (elem()->isa_klassptr()) { |
5753 | k = elem()->is_klassptr()->klass(); |
5754 | if (k != NULL__null) { |
5755 | k = ciObjArrayKlass::make(k); |
5756 | ((TypeAryKlassPtr*)this)->_klass = k; |
5757 | } |
5758 | } else if ((elem()->base() == Type::Top) || |
5759 | (elem()->base() == Type::Bottom)) { |
5760 | } else { |
5761 | k = ciTypeArrayKlass::make(elem()->basic_type()); |
5762 | } |
5763 | return k; |
5764 | } |
5765 | |
5766 | //------------------------------dump2------------------------------------------ |
5767 | // Dump Klass Type |
5768 | #ifndef PRODUCT |
5769 | void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { |
5770 | switch( _ptr ) { |
5771 | case Constant: |
5772 | st->print("precise "); |
5773 | case NotNull: |
5774 | { |
5775 | st->print("["); |
5776 | _elem->dump2(d, depth, st); |
5777 | st->print(": "); |
5778 | } |
5779 | case BotPTR: |
5780 | if( !WizardMode && !Verbose && _ptr != Constant ) break; |
5781 | case TopPTR: |
5782 | case AnyNull: |
5783 | st->print(":%s", ptr_msg[_ptr]); |
5784 | if( _ptr == Constant ) st->print(":exact"); |
5785 | break; |
5786 | default: |
5787 | break; |
5788 | } |
5789 | |
5790 | if( _offset ) { // Dump offset, if any |
5791 | if( _offset == OffsetBot ) { st->print("+any"); } |
5792 | else if( _offset == OffsetTop ) { st->print("+unknown"); } |
5793 | else { st->print("+%d", _offset); } |
5794 | } |
5795 | |
5796 | st->print(" *"); |
5797 | } |
5798 | #endif |
5799 | |
5800 | const Type* TypeAryKlassPtr::base_element_type(int& dims) const { |
5801 | const Type* elem = this->elem(); |
5802 | dims = 1; |
5803 | while (elem->isa_aryklassptr()) { |
5804 | elem = elem->is_aryklassptr()->elem(); |
5805 | dims++; |
5806 | } |
5807 | return elem; |
5808 | } |
5809 | |
5810 | //============================================================================= |
5811 | // Convenience common pre-built types. |
5812 | |
5813 | //------------------------------make------------------------------------------- |
5814 | const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { |
5815 | return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); |
5816 | } |
5817 | |
5818 | //------------------------------make------------------------------------------- |
5819 | const TypeFunc *TypeFunc::make(ciMethod* method) { |
5820 | Compile* C = Compile::current(); |
5821 | const TypeFunc* tf = C->last_tf(method); // check cache |
5822 | if (tf != NULL__null) return tf; // The hit rate here is almost 50%. |
5823 | const TypeTuple *domain; |
5824 | if (method->is_static()) { |
5825 | domain = TypeTuple::make_domain(NULL__null, method->signature()); |
5826 | } else { |
5827 | domain = TypeTuple::make_domain(method->holder(), method->signature()); |
5828 | } |
5829 | const TypeTuple *range = TypeTuple::make_range(method->signature()); |
5830 | tf = TypeFunc::make(domain, range); |
5831 | C->set_last_tf(method, tf); // fill cache |
5832 | return tf; |
5833 | } |
5834 | |
5835 | //------------------------------meet------------------------------------------- |
5836 | // Compute the MEET of two types. It returns a new Type object. |
5837 | const Type *TypeFunc::xmeet( const Type *t ) const { |
5838 | // Perform a fast test for common case; meeting the same types together. |
5839 | if( this == t ) return this; // Meeting same type-rep? |
5840 | |
5841 | // Current "this->_base" is Func |
5842 | switch (t->base()) { // switch on original type |
5843 | |
5844 | case Bottom: // Ye Olde Default |
5845 | return t; |
5846 | |
5847 | default: // All else is a mistake |
5848 | typerr(t); |
5849 | |
5850 | case Top: |
5851 | break; |
5852 | } |
5853 | return this; // Return the double constant |
5854 | } |
5855 | |
5856 | //------------------------------xdual------------------------------------------ |
5857 | // Dual: compute field-by-field dual |
5858 | const Type *TypeFunc::xdual() const { |
5859 | return this; |
5860 | } |
5861 | |
5862 | //------------------------------eq--------------------------------------------- |
5863 | // Structural equality check for Type representations |
5864 | bool TypeFunc::eq( const Type *t ) const { |
5865 | const TypeFunc *a = (const TypeFunc*)t; |
5866 | return _domain == a->_domain && |
5867 | _range == a->_range; |
5868 | } |
5869 | |
5870 | //------------------------------hash------------------------------------------- |
5871 | // Type-specific hashing function. |
5872 | int TypeFunc::hash(void) const { |
5873 | return (intptr_t)_domain + (intptr_t)_range; |
5874 | } |
5875 | |
5876 | //------------------------------dump2------------------------------------------ |
5877 | // Dump Function Type |
5878 | #ifndef PRODUCT |
5879 | void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { |
5880 | if( _range->cnt() <= Parms ) |
5881 | st->print("void"); |
5882 | else { |
5883 | uint i; |
5884 | for (i = Parms; i < _range->cnt()-1; i++) { |
5885 | _range->field_at(i)->dump2(d,depth,st); |
5886 | st->print("/"); |
5887 | } |
5888 | _range->field_at(i)->dump2(d,depth,st); |
5889 | } |
5890 | st->print(" "); |
5891 | st->print("( "); |
5892 | if( !depth || d[this] ) { // Check for recursive dump |
5893 | st->print("...)"); |
5894 | return; |
5895 | } |
5896 | d.Insert((void*)this,(void*)this); // Stop recursion |
5897 | if (Parms < _domain->cnt()) |
5898 | _domain->field_at(Parms)->dump2(d,depth-1,st); |
5899 | for (uint i = Parms+1; i < _domain->cnt(); i++) { |
5900 | st->print(", "); |
5901 | _domain->field_at(i)->dump2(d,depth-1,st); |
5902 | } |
5903 | st->print(" )"); |
5904 | } |
5905 | #endif |
5906 | |
5907 | //------------------------------singleton-------------------------------------- |
5908 | // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple |
5909 | // constants (Ldi nodes). Singletons are integer, float or double constants |
5910 | // or a single symbol. |
5911 | bool TypeFunc::singleton(void) const { |
5912 | return false; // Never a singleton |
5913 | } |
5914 | |
5915 | bool TypeFunc::empty(void) const { |
5916 | return false; // Never empty |
5917 | } |
5918 | |
5919 | |
5920 | BasicType TypeFunc::return_type() const{ |
5921 | if (range()->cnt() == TypeFunc::Parms) { |
5922 | return T_VOID; |
5923 | } |
5924 | return range()->field_at(TypeFunc::Parms)->basic_type(); |
5925 | } |