| File: | jdk/src/hotspot/cpu/x86/assembler_x86.hpp |
| Warning: | line 233, column 5 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * Copyright (c) 2019, 2021, Intel Corporation. All rights reserved. | |||
| 3 | * | |||
| 4 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
| 5 | * | |||
| 6 | * This code is free software; you can redistribute it and/or modify it | |||
| 7 | * under the terms of the GNU General Public License version 2 only, as | |||
| 8 | * published by the Free Software Foundation. | |||
| 9 | * | |||
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
| 13 | * version 2 for more details (a copy is included in the LICENSE file that | |||
| 14 | * accompanied this code). | |||
| 15 | * | |||
| 16 | * You should have received a copy of the GNU General Public License version | |||
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
| 19 | * | |||
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
| 21 | * or visit www.oracle.com if you need additional information or have any | |||
| 22 | * questions. | |||
| 23 | * | |||
| 24 | */ | |||
| 25 | ||||
| 26 | #include "precompiled.hpp" | |||
| 27 | #include "asm/assembler.hpp" | |||
| 28 | #include "asm/assembler.inline.hpp" | |||
| 29 | #include "runtime/stubRoutines.hpp" | |||
| 30 | #include "macroAssembler_x86.hpp" | |||
| 31 | ||||
| 32 | #ifdef _LP641 | |||
| 33 | ||||
| 34 | void MacroAssembler::roundEnc(XMMRegister key, int rnum) { | |||
| 35 | for (int xmm_reg_no = 0; xmm_reg_no <=rnum; xmm_reg_no++) { | |||
| 36 | vaesenc(as_XMMRegister(xmm_reg_no), as_XMMRegister(xmm_reg_no), key, Assembler::AVX_512bit); | |||
| 37 | } | |||
| 38 | } | |||
| 39 | ||||
| 40 | void MacroAssembler::lastroundEnc(XMMRegister key, int rnum) { | |||
| 41 | for (int xmm_reg_no = 0; xmm_reg_no <=rnum; xmm_reg_no++) { | |||
| 42 | vaesenclast(as_XMMRegister(xmm_reg_no), as_XMMRegister(xmm_reg_no), key, Assembler::AVX_512bit); | |||
| 43 | } | |||
| 44 | } | |||
| 45 | ||||
| 46 | void MacroAssembler::roundDec(XMMRegister key, int rnum) { | |||
| 47 | for (int xmm_reg_no = 0; xmm_reg_no <=rnum; xmm_reg_no++) { | |||
| 48 | vaesdec(as_XMMRegister(xmm_reg_no), as_XMMRegister(xmm_reg_no), key, Assembler::AVX_512bit); | |||
| 49 | } | |||
| 50 | } | |||
| 51 | ||||
| 52 | void MacroAssembler::lastroundDec(XMMRegister key, int rnum) { | |||
| 53 | for (int xmm_reg_no = 0; xmm_reg_no <=rnum; xmm_reg_no++) { | |||
| 54 | vaesdeclast(as_XMMRegister(xmm_reg_no), as_XMMRegister(xmm_reg_no), key, Assembler::AVX_512bit); | |||
| 55 | } | |||
| 56 | } | |||
| 57 | ||||
| 58 | // Load key and shuffle operation | |||
| 59 | void MacroAssembler::ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL__null) { | |||
| 60 | movdqu(xmmdst, Address(key, offset)); | |||
| 61 | if (xmm_shuf_mask != NULL__null) { | |||
| 62 | pshufb(xmmdst, xmm_shuf_mask); | |||
| 63 | } else { | |||
| 64 | pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); | |||
| 65 | } | |||
| 66 | evshufi64x2(xmmdst, xmmdst, xmmdst, 0x0, Assembler::AVX_512bit); | |||
| 67 | } | |||
| 68 | ||||
| 69 | // AES-ECB Encrypt Operation | |||
| 70 | void MacroAssembler::aesecb_encrypt(Register src_addr, Register dest_addr, Register key, Register len) { | |||
| 71 | ||||
| 72 | const Register pos = rax; | |||
| 73 | const Register rounds = r12; | |||
| 74 | ||||
| 75 | Label NO_PARTS, LOOP, Loop_start, LOOP2, AES192, END_LOOP, AES256, REMAINDER, LAST2, END, KEY_192, KEY_256, EXIT; | |||
| 76 | push(r13); | |||
| 77 | push(r12); | |||
| 78 | ||||
| 79 | // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge | |||
| 80 | // context for the registers used, where all instructions below are using 128-bit mode | |||
| 81 | // On EVEX without VL and BW, these instructions will all be AVX. | |||
| 82 | if (VM_Version::supports_avx512vlbw()) { | |||
| 83 | movl(rax, 0xffff); | |||
| 84 | kmovql(k1, rax); | |||
| 85 | } | |||
| 86 | push(len); // Save | |||
| 87 | push(rbx); | |||
| 88 | ||||
| 89 | vzeroupper(); | |||
| 90 | ||||
| 91 | xorptr(pos, pos); | |||
| 92 | ||||
| 93 | // Calculate number of rounds based on key length(128, 192, 256):44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds | |||
| 94 | movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); | |||
| 95 | ||||
| 96 | // Load Key shuf mask | |||
| 97 | const XMMRegister xmm_key_shuf_mask = xmm31; // used temporarily to swap key bytes up front | |||
| 98 | movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); | |||
| 99 | ||||
| 100 | // Load and shuffle key based on number of rounds | |||
| 101 | ev_load_key(xmm8, key, 0 * 16, xmm_key_shuf_mask); | |||
| 102 | ev_load_key(xmm9, key, 1 * 16, xmm_key_shuf_mask); | |||
| 103 | ev_load_key(xmm10, key, 2 * 16, xmm_key_shuf_mask); | |||
| 104 | ev_load_key(xmm23, key, 3 * 16, xmm_key_shuf_mask); | |||
| 105 | ev_load_key(xmm12, key, 4 * 16, xmm_key_shuf_mask); | |||
| 106 | ev_load_key(xmm13, key, 5 * 16, xmm_key_shuf_mask); | |||
| 107 | ev_load_key(xmm14, key, 6 * 16, xmm_key_shuf_mask); | |||
| 108 | ev_load_key(xmm15, key, 7 * 16, xmm_key_shuf_mask); | |||
| 109 | ev_load_key(xmm16, key, 8 * 16, xmm_key_shuf_mask); | |||
| 110 | ev_load_key(xmm17, key, 9 * 16, xmm_key_shuf_mask); | |||
| 111 | ev_load_key(xmm24, key, 10 * 16, xmm_key_shuf_mask); | |||
| 112 | cmpl(rounds, 52); | |||
| 113 | jcc(Assembler::greaterEqual, KEY_192); | |||
| 114 | jmp(Loop_start); | |||
| 115 | ||||
| 116 | bind(KEY_192); | |||
| 117 | ev_load_key(xmm19, key, 11 * 16, xmm_key_shuf_mask); | |||
| 118 | ev_load_key(xmm20, key, 12 * 16, xmm_key_shuf_mask); | |||
| 119 | cmpl(rounds, 60); | |||
| 120 | jcc(Assembler::equal, KEY_256); | |||
| 121 | jmp(Loop_start); | |||
| 122 | ||||
| 123 | bind(KEY_256); | |||
| 124 | ev_load_key(xmm21, key, 13 * 16, xmm_key_shuf_mask); | |||
| 125 | ev_load_key(xmm22, key, 14 * 16, xmm_key_shuf_mask); | |||
| 126 | ||||
| 127 | bind(Loop_start); | |||
| 128 | movq(rbx, len); | |||
| 129 | // Divide length by 16 to convert it to number of blocks | |||
| 130 | shrq(len, 4); | |||
| 131 | shlq(rbx, 60); | |||
| 132 | jcc(Assembler::equal, NO_PARTS); | |||
| 133 | addq(len, 1); | |||
| 134 | // Check if number of blocks is greater than or equal to 32 | |||
| 135 | // If true, 512 bytes are processed at a time (code marked by label LOOP) | |||
| 136 | // If not, 16 bytes are processed (code marked by REMAINDER label) | |||
| 137 | bind(NO_PARTS); | |||
| 138 | movq(rbx, len); | |||
| 139 | shrq(len, 5); | |||
| 140 | jcc(Assembler::equal, REMAINDER); | |||
| 141 | movl(r13, len); | |||
| 142 | // Compute number of blocks that will be processed 512 bytes at a time | |||
| 143 | // Subtract this from the total number of blocks which will then be processed by REMAINDER loop | |||
| 144 | shlq(r13, 5); | |||
| 145 | subq(rbx, r13); | |||
| 146 | //Begin processing 512 bytes | |||
| 147 | bind(LOOP); | |||
| 148 | // Move 64 bytes of PT data into a zmm register, as a result 512 bytes of PT loaded in zmm0-7 | |||
| 149 | evmovdquq(xmm0, Address(src_addr, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 150 | evmovdquq(xmm1, Address(src_addr, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 151 | evmovdquq(xmm2, Address(src_addr, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); | |||
| 152 | evmovdquq(xmm3, Address(src_addr, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); | |||
| 153 | evmovdquq(xmm4, Address(src_addr, pos, Address::times_1, 4 * 64), Assembler::AVX_512bit); | |||
| 154 | evmovdquq(xmm5, Address(src_addr, pos, Address::times_1, 5 * 64), Assembler::AVX_512bit); | |||
| 155 | evmovdquq(xmm6, Address(src_addr, pos, Address::times_1, 6 * 64), Assembler::AVX_512bit); | |||
| 156 | evmovdquq(xmm7, Address(src_addr, pos, Address::times_1, 7 * 64), Assembler::AVX_512bit); | |||
| 157 | // Xor with the first round key | |||
| 158 | evpxorq(xmm0, xmm0, xmm8, Assembler::AVX_512bit); | |||
| 159 | evpxorq(xmm1, xmm1, xmm8, Assembler::AVX_512bit); | |||
| 160 | evpxorq(xmm2, xmm2, xmm8, Assembler::AVX_512bit); | |||
| 161 | evpxorq(xmm3, xmm3, xmm8, Assembler::AVX_512bit); | |||
| 162 | evpxorq(xmm4, xmm4, xmm8, Assembler::AVX_512bit); | |||
| 163 | evpxorq(xmm5, xmm5, xmm8, Assembler::AVX_512bit); | |||
| 164 | evpxorq(xmm6, xmm6, xmm8, Assembler::AVX_512bit); | |||
| 165 | evpxorq(xmm7, xmm7, xmm8, Assembler::AVX_512bit); | |||
| 166 | // 9 Aes encode round operations | |||
| 167 | roundEnc(xmm9, 7); | |||
| 168 | roundEnc(xmm10, 7); | |||
| 169 | roundEnc(xmm23, 7); | |||
| 170 | roundEnc(xmm12, 7); | |||
| 171 | roundEnc(xmm13, 7); | |||
| 172 | roundEnc(xmm14, 7); | |||
| 173 | roundEnc(xmm15, 7); | |||
| 174 | roundEnc(xmm16, 7); | |||
| 175 | roundEnc(xmm17, 7); | |||
| 176 | cmpl(rounds, 52); | |||
| 177 | jcc(Assembler::aboveEqual, AES192); | |||
| 178 | // Aesenclast round operation for keysize = 128 | |||
| 179 | lastroundEnc(xmm24, 7); | |||
| 180 | jmp(END_LOOP); | |||
| 181 | //Additional 2 rounds of Aesenc operation for keysize = 192 | |||
| 182 | bind(AES192); | |||
| 183 | roundEnc(xmm24, 7); | |||
| 184 | roundEnc(xmm19, 7); | |||
| 185 | cmpl(rounds, 60); | |||
| 186 | jcc(Assembler::aboveEqual, AES256); | |||
| 187 | // Aesenclast round for keysize = 192 | |||
| 188 | lastroundEnc(xmm20, 7); | |||
| 189 | jmp(END_LOOP); | |||
| 190 | // 2 rounds of Aesenc operation and Aesenclast for keysize = 256 | |||
| 191 | bind(AES256); | |||
| 192 | roundEnc(xmm20, 7); | |||
| 193 | roundEnc(xmm21, 7); | |||
| 194 | lastroundEnc(xmm22, 7); | |||
| 195 | ||||
| 196 | bind(END_LOOP); | |||
| 197 | // Move 512 bytes of CT to destination | |||
| 198 | evmovdquq(Address(dest_addr, pos, Address::times_1, 0 * 64), xmm0, Assembler::AVX_512bit); | |||
| 199 | evmovdquq(Address(dest_addr, pos, Address::times_1, 1 * 64), xmm1, Assembler::AVX_512bit); | |||
| 200 | evmovdquq(Address(dest_addr, pos, Address::times_1, 2 * 64), xmm2, Assembler::AVX_512bit); | |||
| 201 | evmovdquq(Address(dest_addr, pos, Address::times_1, 3 * 64), xmm3, Assembler::AVX_512bit); | |||
| 202 | evmovdquq(Address(dest_addr, pos, Address::times_1, 4 * 64), xmm4, Assembler::AVX_512bit); | |||
| 203 | evmovdquq(Address(dest_addr, pos, Address::times_1, 5 * 64), xmm5, Assembler::AVX_512bit); | |||
| 204 | evmovdquq(Address(dest_addr, pos, Address::times_1, 6 * 64), xmm6, Assembler::AVX_512bit); | |||
| 205 | evmovdquq(Address(dest_addr, pos, Address::times_1, 7 * 64), xmm7, Assembler::AVX_512bit); | |||
| 206 | ||||
| 207 | addq(pos, 512); | |||
| 208 | decq(len); | |||
| 209 | jcc(Assembler::notEqual, LOOP); | |||
| 210 | ||||
| 211 | bind(REMAINDER); | |||
| 212 | vzeroupper(); | |||
| 213 | cmpq(rbx, 0); | |||
| 214 | jcc(Assembler::equal, END); | |||
| 215 | // Process 16 bytes at a time | |||
| 216 | bind(LOOP2); | |||
| 217 | movdqu(xmm1, Address(src_addr, pos, Address::times_1, 0)); | |||
| 218 | vpxor(xmm1, xmm1, xmm8, Assembler::AVX_128bit); | |||
| 219 | // xmm2 contains shuffled key for Aesenclast operation. | |||
| 220 | vmovdqu(xmm2, xmm24); | |||
| 221 | ||||
| 222 | vaesenc(xmm1, xmm1, xmm9, Assembler::AVX_128bit); | |||
| 223 | vaesenc(xmm1, xmm1, xmm10, Assembler::AVX_128bit); | |||
| 224 | vaesenc(xmm1, xmm1, xmm23, Assembler::AVX_128bit); | |||
| 225 | vaesenc(xmm1, xmm1, xmm12, Assembler::AVX_128bit); | |||
| 226 | vaesenc(xmm1, xmm1, xmm13, Assembler::AVX_128bit); | |||
| 227 | vaesenc(xmm1, xmm1, xmm14, Assembler::AVX_128bit); | |||
| 228 | vaesenc(xmm1, xmm1, xmm15, Assembler::AVX_128bit); | |||
| 229 | vaesenc(xmm1, xmm1, xmm16, Assembler::AVX_128bit); | |||
| 230 | vaesenc(xmm1, xmm1, xmm17, Assembler::AVX_128bit); | |||
| 231 | ||||
| 232 | cmpl(rounds, 52); | |||
| 233 | jcc(Assembler::below, LAST2); | |||
| 234 | vmovdqu(xmm2, xmm20); | |||
| 235 | vaesenc(xmm1, xmm1, xmm24, Assembler::AVX_128bit); | |||
| 236 | vaesenc(xmm1, xmm1, xmm19, Assembler::AVX_128bit); | |||
| 237 | cmpl(rounds, 60); | |||
| 238 | jcc(Assembler::below, LAST2); | |||
| 239 | vmovdqu(xmm2, xmm22); | |||
| 240 | vaesenc(xmm1, xmm1, xmm20, Assembler::AVX_128bit); | |||
| 241 | vaesenc(xmm1, xmm1, xmm21, Assembler::AVX_128bit); | |||
| 242 | ||||
| 243 | bind(LAST2); | |||
| 244 | // Aesenclast round | |||
| 245 | vaesenclast(xmm1, xmm1, xmm2, Assembler::AVX_128bit); | |||
| 246 | // Write 16 bytes of CT to destination | |||
| 247 | movdqu(Address(dest_addr, pos, Address::times_1, 0), xmm1); | |||
| 248 | addq(pos, 16); | |||
| 249 | decq(rbx); | |||
| 250 | jcc(Assembler::notEqual, LOOP2); | |||
| 251 | ||||
| 252 | bind(END); | |||
| 253 | // Zero out the round keys | |||
| 254 | evpxorq(xmm8, xmm8, xmm8, Assembler::AVX_512bit); | |||
| 255 | evpxorq(xmm9, xmm9, xmm9, Assembler::AVX_512bit); | |||
| 256 | evpxorq(xmm10, xmm10, xmm10, Assembler::AVX_512bit); | |||
| 257 | evpxorq(xmm23, xmm23, xmm23, Assembler::AVX_512bit); | |||
| 258 | evpxorq(xmm12, xmm12, xmm12, Assembler::AVX_512bit); | |||
| 259 | evpxorq(xmm13, xmm13, xmm13, Assembler::AVX_512bit); | |||
| 260 | evpxorq(xmm14, xmm14, xmm14, Assembler::AVX_512bit); | |||
| 261 | evpxorq(xmm15, xmm15, xmm15, Assembler::AVX_512bit); | |||
| 262 | evpxorq(xmm16, xmm16, xmm16, Assembler::AVX_512bit); | |||
| 263 | evpxorq(xmm17, xmm17, xmm17, Assembler::AVX_512bit); | |||
| 264 | evpxorq(xmm24, xmm24, xmm24, Assembler::AVX_512bit); | |||
| 265 | cmpl(rounds, 44); | |||
| 266 | jcc(Assembler::belowEqual, EXIT); | |||
| 267 | evpxorq(xmm19, xmm19, xmm19, Assembler::AVX_512bit); | |||
| 268 | evpxorq(xmm20, xmm20, xmm20, Assembler::AVX_512bit); | |||
| 269 | cmpl(rounds, 52); | |||
| 270 | jcc(Assembler::belowEqual, EXIT); | |||
| 271 | evpxorq(xmm21, xmm21, xmm21, Assembler::AVX_512bit); | |||
| 272 | evpxorq(xmm22, xmm22, xmm22, Assembler::AVX_512bit); | |||
| 273 | bind(EXIT); | |||
| 274 | pop(rbx); | |||
| 275 | pop(rax); // return length | |||
| 276 | pop(r12); | |||
| 277 | pop(r13); | |||
| 278 | } | |||
| 279 | ||||
| 280 | // AES-ECB Decrypt Operation | |||
| 281 | void MacroAssembler::aesecb_decrypt(Register src_addr, Register dest_addr, Register key, Register len) { | |||
| 282 | ||||
| 283 | Label NO_PARTS, LOOP, Loop_start, LOOP2, AES192, END_LOOP, AES256, REMAINDER, LAST2, END, KEY_192, KEY_256, EXIT; | |||
| 284 | const Register pos = rax; | |||
| 285 | const Register rounds = r12; | |||
| 286 | push(r13); | |||
| 287 | push(r12); | |||
| 288 | ||||
| 289 | // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge | |||
| 290 | // context for the registers used, where all instructions below are using 128-bit mode | |||
| 291 | // On EVEX without VL and BW, these instructions will all be AVX. | |||
| 292 | if (VM_Version::supports_avx512vlbw()) { | |||
| 293 | movl(rax, 0xffff); | |||
| 294 | kmovql(k1, rax); | |||
| 295 | } | |||
| 296 | ||||
| 297 | push(len); // Save | |||
| 298 | push(rbx); | |||
| 299 | ||||
| 300 | vzeroupper(); | |||
| 301 | ||||
| 302 | xorptr(pos, pos); | |||
| 303 | // Calculate number of rounds i.e. based on key length(128, 192, 256):44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds | |||
| 304 | movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); | |||
| 305 | ||||
| 306 | // Load Key shuf mask | |||
| 307 | const XMMRegister xmm_key_shuf_mask = xmm31; // used temporarily to swap key bytes up front | |||
| 308 | movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); | |||
| 309 | ||||
| 310 | // Load and shuffle round keys. The java expanded key ordering is rotated one position in decryption. | |||
| 311 | // So the first round key is loaded from 1*16 here and last round key is loaded from 0*16 | |||
| 312 | ev_load_key(xmm9, key, 1 * 16, xmm_key_shuf_mask); | |||
| 313 | ev_load_key(xmm10, key, 2 * 16, xmm_key_shuf_mask); | |||
| 314 | ev_load_key(xmm11, key, 3 * 16, xmm_key_shuf_mask); | |||
| 315 | ev_load_key(xmm12, key, 4 * 16, xmm_key_shuf_mask); | |||
| 316 | ev_load_key(xmm13, key, 5 * 16, xmm_key_shuf_mask); | |||
| 317 | ev_load_key(xmm14, key, 6 * 16, xmm_key_shuf_mask); | |||
| 318 | ev_load_key(xmm15, key, 7 * 16, xmm_key_shuf_mask); | |||
| 319 | ev_load_key(xmm16, key, 8 * 16, xmm_key_shuf_mask); | |||
| 320 | ev_load_key(xmm17, key, 9 * 16, xmm_key_shuf_mask); | |||
| 321 | ev_load_key(xmm18, key, 10 * 16, xmm_key_shuf_mask); | |||
| 322 | ev_load_key(xmm27, key, 0 * 16, xmm_key_shuf_mask); | |||
| 323 | cmpl(rounds, 52); | |||
| 324 | jcc(Assembler::greaterEqual, KEY_192); | |||
| 325 | jmp(Loop_start); | |||
| 326 | ||||
| 327 | bind(KEY_192); | |||
| 328 | ev_load_key(xmm19, key, 11 * 16, xmm_key_shuf_mask); | |||
| 329 | ev_load_key(xmm20, key, 12 * 16, xmm_key_shuf_mask); | |||
| 330 | cmpl(rounds, 60); | |||
| 331 | jcc(Assembler::equal, KEY_256); | |||
| 332 | jmp(Loop_start); | |||
| 333 | ||||
| 334 | bind(KEY_256); | |||
| 335 | ev_load_key(xmm21, key, 13 * 16, xmm_key_shuf_mask); | |||
| 336 | ev_load_key(xmm22, key, 14 * 16, xmm_key_shuf_mask); | |||
| 337 | bind(Loop_start); | |||
| 338 | movq(rbx, len); | |||
| 339 | // Convert input length to number of blocks | |||
| 340 | shrq(len, 4); | |||
| 341 | shlq(rbx, 60); | |||
| 342 | jcc(Assembler::equal, NO_PARTS); | |||
| 343 | addq(len, 1); | |||
| 344 | // Check if number of blocks is greater than/ equal to 32 | |||
| 345 | // If true, blocks then 512 bytes are processed at a time (code marked by label LOOP) | |||
| 346 | // If not, 16 bytes are processed (code marked by label REMAINDER) | |||
| 347 | bind(NO_PARTS); | |||
| 348 | movq(rbx, len); | |||
| 349 | shrq(len, 5); | |||
| 350 | jcc(Assembler::equal, REMAINDER); | |||
| 351 | movl(r13, len); | |||
| 352 | // Compute number of blocks that will be processed as 512 bytes at a time | |||
| 353 | // Subtract this from the total number of blocks, which will then be processed by REMAINDER loop. | |||
| 354 | shlq(r13, 5); | |||
| 355 | subq(rbx, r13); | |||
| 356 | ||||
| 357 | bind(LOOP); | |||
| 358 | // Move 64 bytes of CT data into a zmm register, as a result 512 bytes of CT loaded in zmm0-7 | |||
| 359 | evmovdquq(xmm0, Address(src_addr, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 360 | evmovdquq(xmm1, Address(src_addr, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 361 | evmovdquq(xmm2, Address(src_addr, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); | |||
| 362 | evmovdquq(xmm3, Address(src_addr, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); | |||
| 363 | evmovdquq(xmm4, Address(src_addr, pos, Address::times_1, 4 * 64), Assembler::AVX_512bit); | |||
| 364 | evmovdquq(xmm5, Address(src_addr, pos, Address::times_1, 5 * 64), Assembler::AVX_512bit); | |||
| 365 | evmovdquq(xmm6, Address(src_addr, pos, Address::times_1, 6 * 64), Assembler::AVX_512bit); | |||
| 366 | evmovdquq(xmm7, Address(src_addr, pos, Address::times_1, 7 * 64), Assembler::AVX_512bit); | |||
| 367 | // Xor with the first round key | |||
| 368 | evpxorq(xmm0, xmm0, xmm9, Assembler::AVX_512bit); | |||
| 369 | evpxorq(xmm1, xmm1, xmm9, Assembler::AVX_512bit); | |||
| 370 | evpxorq(xmm2, xmm2, xmm9, Assembler::AVX_512bit); | |||
| 371 | evpxorq(xmm3, xmm3, xmm9, Assembler::AVX_512bit); | |||
| 372 | evpxorq(xmm4, xmm4, xmm9, Assembler::AVX_512bit); | |||
| 373 | evpxorq(xmm5, xmm5, xmm9, Assembler::AVX_512bit); | |||
| 374 | evpxorq(xmm6, xmm6, xmm9, Assembler::AVX_512bit); | |||
| 375 | evpxorq(xmm7, xmm7, xmm9, Assembler::AVX_512bit); | |||
| 376 | // 9 rounds of Aesdec | |||
| 377 | roundDec(xmm10, 7); | |||
| 378 | roundDec(xmm11, 7); | |||
| 379 | roundDec(xmm12, 7); | |||
| 380 | roundDec(xmm13, 7); | |||
| 381 | roundDec(xmm14, 7); | |||
| 382 | roundDec(xmm15, 7); | |||
| 383 | roundDec(xmm16, 7); | |||
| 384 | roundDec(xmm17, 7); | |||
| 385 | roundDec(xmm18, 7); | |||
| 386 | cmpl(rounds, 52); | |||
| 387 | jcc(Assembler::aboveEqual, AES192); | |||
| 388 | // Aesdeclast round for keysize = 128 | |||
| 389 | lastroundDec(xmm27, 7); | |||
| 390 | jmp(END_LOOP); | |||
| 391 | ||||
| 392 | bind(AES192); | |||
| 393 | // 2 Additional rounds for keysize = 192 | |||
| 394 | roundDec(xmm19, 7); | |||
| 395 | roundDec(xmm20, 7); | |||
| 396 | cmpl(rounds, 60); | |||
| 397 | jcc(Assembler::aboveEqual, AES256); | |||
| 398 | // Aesdeclast round for keysize = 192 | |||
| 399 | lastroundDec(xmm27, 7); | |||
| 400 | jmp(END_LOOP); | |||
| 401 | bind(AES256); | |||
| 402 | // 2 Additional rounds and Aesdeclast for keysize = 256 | |||
| 403 | roundDec(xmm21, 7); | |||
| 404 | roundDec(xmm22, 7); | |||
| 405 | lastroundDec(xmm27, 7); | |||
| 406 | ||||
| 407 | bind(END_LOOP); | |||
| 408 | // Write 512 bytes of PT to the destination | |||
| 409 | evmovdquq(Address(dest_addr, pos, Address::times_1, 0 * 64), xmm0, Assembler::AVX_512bit); | |||
| 410 | evmovdquq(Address(dest_addr, pos, Address::times_1, 1 * 64), xmm1, Assembler::AVX_512bit); | |||
| 411 | evmovdquq(Address(dest_addr, pos, Address::times_1, 2 * 64), xmm2, Assembler::AVX_512bit); | |||
| 412 | evmovdquq(Address(dest_addr, pos, Address::times_1, 3 * 64), xmm3, Assembler::AVX_512bit); | |||
| 413 | evmovdquq(Address(dest_addr, pos, Address::times_1, 4 * 64), xmm4, Assembler::AVX_512bit); | |||
| 414 | evmovdquq(Address(dest_addr, pos, Address::times_1, 5 * 64), xmm5, Assembler::AVX_512bit); | |||
| 415 | evmovdquq(Address(dest_addr, pos, Address::times_1, 6 * 64), xmm6, Assembler::AVX_512bit); | |||
| 416 | evmovdquq(Address(dest_addr, pos, Address::times_1, 7 * 64), xmm7, Assembler::AVX_512bit); | |||
| 417 | ||||
| 418 | addq(pos, 512); | |||
| 419 | decq(len); | |||
| 420 | jcc(Assembler::notEqual, LOOP); | |||
| 421 | ||||
| 422 | bind(REMAINDER); | |||
| 423 | vzeroupper(); | |||
| 424 | cmpq(rbx, 0); | |||
| 425 | jcc(Assembler::equal, END); | |||
| 426 | // Process 16 bytes at a time | |||
| 427 | bind(LOOP2); | |||
| 428 | movdqu(xmm1, Address(src_addr, pos, Address::times_1, 0)); | |||
| 429 | vpxor(xmm1, xmm1, xmm9, Assembler::AVX_128bit); | |||
| 430 | // xmm2 contains shuffled key for Aesdeclast operation. | |||
| 431 | vmovdqu(xmm2, xmm27); | |||
| 432 | ||||
| 433 | vaesdec(xmm1, xmm1, xmm10, Assembler::AVX_128bit); | |||
| 434 | vaesdec(xmm1, xmm1, xmm11, Assembler::AVX_128bit); | |||
| 435 | vaesdec(xmm1, xmm1, xmm12, Assembler::AVX_128bit); | |||
| 436 | vaesdec(xmm1, xmm1, xmm13, Assembler::AVX_128bit); | |||
| 437 | vaesdec(xmm1, xmm1, xmm14, Assembler::AVX_128bit); | |||
| 438 | vaesdec(xmm1, xmm1, xmm15, Assembler::AVX_128bit); | |||
| 439 | vaesdec(xmm1, xmm1, xmm16, Assembler::AVX_128bit); | |||
| 440 | vaesdec(xmm1, xmm1, xmm17, Assembler::AVX_128bit); | |||
| 441 | vaesdec(xmm1, xmm1, xmm18, Assembler::AVX_128bit); | |||
| 442 | ||||
| 443 | cmpl(rounds, 52); | |||
| 444 | jcc(Assembler::below, LAST2); | |||
| 445 | vaesdec(xmm1, xmm1, xmm19, Assembler::AVX_128bit); | |||
| 446 | vaesdec(xmm1, xmm1, xmm20, Assembler::AVX_128bit); | |||
| 447 | cmpl(rounds, 60); | |||
| 448 | jcc(Assembler::below, LAST2); | |||
| 449 | vaesdec(xmm1, xmm1, xmm21, Assembler::AVX_128bit); | |||
| 450 | vaesdec(xmm1, xmm1, xmm22, Assembler::AVX_128bit); | |||
| 451 | ||||
| 452 | bind(LAST2); | |||
| 453 | // Aesdeclast round | |||
| 454 | vaesdeclast(xmm1, xmm1, xmm2, Assembler::AVX_128bit); | |||
| 455 | // Write 16 bytes of PT to destination | |||
| 456 | movdqu(Address(dest_addr, pos, Address::times_1, 0), xmm1); | |||
| 457 | addq(pos, 16); | |||
| 458 | decq(rbx); | |||
| 459 | jcc(Assembler::notEqual, LOOP2); | |||
| 460 | ||||
| 461 | bind(END); | |||
| 462 | // Zero out the round keys | |||
| 463 | evpxorq(xmm8, xmm8, xmm8, Assembler::AVX_512bit); | |||
| 464 | evpxorq(xmm9, xmm9, xmm9, Assembler::AVX_512bit); | |||
| 465 | evpxorq(xmm10, xmm10, xmm10, Assembler::AVX_512bit); | |||
| 466 | evpxorq(xmm11, xmm11, xmm11, Assembler::AVX_512bit); | |||
| 467 | evpxorq(xmm12, xmm12, xmm12, Assembler::AVX_512bit); | |||
| 468 | evpxorq(xmm13, xmm13, xmm13, Assembler::AVX_512bit); | |||
| 469 | evpxorq(xmm14, xmm14, xmm14, Assembler::AVX_512bit); | |||
| 470 | evpxorq(xmm15, xmm15, xmm15, Assembler::AVX_512bit); | |||
| 471 | evpxorq(xmm16, xmm16, xmm16, Assembler::AVX_512bit); | |||
| 472 | evpxorq(xmm17, xmm17, xmm17, Assembler::AVX_512bit); | |||
| 473 | evpxorq(xmm18, xmm18, xmm18, Assembler::AVX_512bit); | |||
| 474 | evpxorq(xmm27, xmm27, xmm27, Assembler::AVX_512bit); | |||
| 475 | cmpl(rounds, 44); | |||
| 476 | jcc(Assembler::belowEqual, EXIT); | |||
| 477 | evpxorq(xmm19, xmm19, xmm19, Assembler::AVX_512bit); | |||
| 478 | evpxorq(xmm20, xmm20, xmm20, Assembler::AVX_512bit); | |||
| 479 | cmpl(rounds, 52); | |||
| 480 | jcc(Assembler::belowEqual, EXIT); | |||
| 481 | evpxorq(xmm21, xmm21, xmm21, Assembler::AVX_512bit); | |||
| 482 | evpxorq(xmm22, xmm22, xmm22, Assembler::AVX_512bit); | |||
| 483 | bind(EXIT); | |||
| 484 | pop(rbx); | |||
| 485 | pop(rax); // return length | |||
| 486 | pop(r12); | |||
| 487 | pop(r13); | |||
| 488 | } | |||
| 489 | ||||
| 490 | // Multiply 128 x 128 bits, using 4 pclmulqdq operations | |||
| 491 | void MacroAssembler::schoolbookAAD(int i, Register htbl, XMMRegister data, | |||
| 492 | XMMRegister tmp0, XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3) { | |||
| 493 | movdqu(xmm15, Address(htbl, i * 16)); | |||
| 494 | vpclmulhqlqdq(tmp3, data, xmm15); // 0x01 | |||
| 495 | vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit); | |||
| 496 | vpclmulldq(tmp3, data, xmm15); // 0x00 | |||
| 497 | vpxor(tmp0, tmp0, tmp3, Assembler::AVX_128bit); | |||
| 498 | vpclmulhdq(tmp3, data, xmm15); // 0x11 | |||
| 499 | vpxor(tmp1, tmp1, tmp3, Assembler::AVX_128bit); | |||
| 500 | vpclmullqhqdq(tmp3, data, xmm15); // 0x10 | |||
| 501 | vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit); | |||
| 502 | } | |||
| 503 | ||||
| 504 | // Multiply two 128 bit numbers resulting in a 256 bit value | |||
| 505 | // Result of the multiplication followed by reduction stored in state | |||
| 506 | void MacroAssembler::gfmul(XMMRegister tmp0, XMMRegister state) { | |||
| 507 | const XMMRegister tmp1 = xmm4; | |||
| 508 | const XMMRegister tmp2 = xmm5; | |||
| 509 | const XMMRegister tmp3 = xmm6; | |||
| 510 | const XMMRegister tmp4 = xmm7; | |||
| 511 | ||||
| 512 | vpclmulldq(tmp1, state, tmp0); //0x00 (a0 * b0) | |||
| 513 | vpclmulhdq(tmp4, state, tmp0);//0x11 (a1 * b1) | |||
| 514 | vpclmullqhqdq(tmp2, state, tmp0);//0x10 (a1 * b0) | |||
| 515 | vpclmulhqlqdq(tmp3, state, tmp0); //0x01 (a0 * b1) | |||
| 516 | ||||
| 517 | vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit); // (a0 * b1) + (a1 * b0) | |||
| 518 | ||||
| 519 | vpslldq(tmp3, tmp2, 8, Assembler::AVX_128bit); | |||
| 520 | vpsrldq(tmp2, tmp2, 8, Assembler::AVX_128bit); | |||
| 521 | vpxor(tmp1, tmp1, tmp3, Assembler::AVX_128bit); // tmp1 and tmp4 hold the result | |||
| 522 | vpxor(tmp4, tmp4, tmp2, Assembler::AVX_128bit); // of carryless multiplication | |||
| 523 | // Follows the reduction technique mentioned in | |||
| 524 | // Shift-XOR reduction described in Gueron-Kounavis May 2010 | |||
| 525 | // First phase of reduction | |||
| 526 | // | |||
| 527 | vpslld(xmm8, tmp1, 31, Assembler::AVX_128bit); // packed right shift shifting << 31 | |||
| 528 | vpslld(xmm9, tmp1, 30, Assembler::AVX_128bit); // packed right shift shifting << 30 | |||
| 529 | vpslld(xmm10, tmp1, 25, Assembler::AVX_128bit);// packed right shift shifting << 25 | |||
| 530 | // xor the shifted versions | |||
| 531 | vpxor(xmm8, xmm8, xmm9, Assembler::AVX_128bit); | |||
| 532 | vpxor(xmm8, xmm8, xmm10, Assembler::AVX_128bit); | |||
| 533 | vpslldq(xmm9, xmm8, 12, Assembler::AVX_128bit); | |||
| 534 | vpsrldq(xmm8, xmm8, 4, Assembler::AVX_128bit); | |||
| 535 | vpxor(tmp1, tmp1, xmm9, Assembler::AVX_128bit);// first phase of the reduction complete | |||
| 536 | // | |||
| 537 | // Second phase of the reduction | |||
| 538 | // | |||
| 539 | vpsrld(xmm9, tmp1, 1, Assembler::AVX_128bit);// packed left shifting >> 1 | |||
| 540 | vpsrld(xmm10, tmp1, 2, Assembler::AVX_128bit);// packed left shifting >> 2 | |||
| 541 | vpsrld(xmm11, tmp1, 7, Assembler::AVX_128bit);// packed left shifting >> 7 | |||
| 542 | vpxor(xmm9, xmm9, xmm10, Assembler::AVX_128bit);// xor the shifted versions | |||
| 543 | vpxor(xmm9, xmm9, xmm11, Assembler::AVX_128bit); | |||
| 544 | vpxor(xmm9, xmm9, xmm8, Assembler::AVX_128bit); | |||
| 545 | vpxor(tmp1, tmp1, xmm9, Assembler::AVX_128bit); | |||
| 546 | vpxor(state, tmp4, tmp1, Assembler::AVX_128bit);// the result is in state | |||
| 547 | ret(0); | |||
| 548 | } | |||
| 549 | ||||
| 550 | // This method takes the subkey after expansion as input and generates 1 * 16 power of subkey H. | |||
| 551 | // The power of H is used in reduction process for one block ghash | |||
| 552 | void MacroAssembler::generateHtbl_one_block(Register htbl) { | |||
| 553 | const XMMRegister t = xmm13; | |||
| 554 | ||||
| 555 | // load the original subkey hash | |||
| 556 | movdqu(t, Address(htbl, 0)); | |||
| 557 | // shuffle using long swap mask | |||
| 558 | movdqu(xmm10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); | |||
| 559 | vpshufb(t, t, xmm10, Assembler::AVX_128bit); | |||
| 560 | ||||
| 561 | // Compute H' = GFMUL(H, 2) | |||
| 562 | vpsrld(xmm3, t, 7, Assembler::AVX_128bit); | |||
| 563 | movdqu(xmm4, ExternalAddress(StubRoutines::x86::ghash_shufflemask_addr())); | |||
| 564 | vpshufb(xmm3, xmm3, xmm4, Assembler::AVX_128bit); | |||
| 565 | movl(rax, 0xff00); | |||
| 566 | movdl(xmm4, rax); | |||
| 567 | vpshufb(xmm4, xmm4, xmm3, Assembler::AVX_128bit); | |||
| 568 | movdqu(xmm5, ExternalAddress(StubRoutines::x86::ghash_polynomial_addr())); | |||
| 569 | vpand(xmm5, xmm5, xmm4, Assembler::AVX_128bit); | |||
| 570 | vpsrld(xmm3, t, 31, Assembler::AVX_128bit); | |||
| 571 | vpslld(xmm4, t, 1, Assembler::AVX_128bit); | |||
| 572 | vpslldq(xmm3, xmm3, 4, Assembler::AVX_128bit); | |||
| 573 | vpxor(t, xmm4, xmm3, Assembler::AVX_128bit);// t holds p(x) <<1 or H * 2 | |||
| 574 | ||||
| 575 | //Adding p(x)<<1 to xmm5 which holds the reduction polynomial | |||
| 576 | vpxor(t, t, xmm5, Assembler::AVX_128bit); | |||
| 577 | movdqu(Address(htbl, 1 * 16), t); // H * 2 | |||
| 578 | ||||
| 579 | ret(0); | |||
| 580 | } | |||
| 581 | ||||
| 582 | // This method takes the subkey after expansion as input and generates the remaining powers of subkey H. | |||
| 583 | // The power of H is used in reduction process for eight block ghash | |||
| 584 | void MacroAssembler::generateHtbl_eight_blocks(Register htbl) { | |||
| 585 | const XMMRegister t = xmm13; | |||
| 586 | const XMMRegister tmp0 = xmm1; | |||
| 587 | Label GFMUL; | |||
| 588 | ||||
| 589 | movdqu(t, Address(htbl, 1 * 16)); | |||
| 590 | movdqu(tmp0, t); | |||
| 591 | ||||
| 592 | // tmp0 and t hold H. Now we compute powers of H by using GFMUL(H, H) | |||
| 593 | call(GFMUL, relocInfo::none); | |||
| 594 | movdqu(Address(htbl, 2 * 16), t); //H ^ 2 * 2 | |||
| 595 | call(GFMUL, relocInfo::none); | |||
| 596 | movdqu(Address(htbl, 3 * 16), t); //H ^ 3 * 2 | |||
| 597 | call(GFMUL, relocInfo::none); | |||
| 598 | movdqu(Address(htbl, 4 * 16), t); //H ^ 4 * 2 | |||
| 599 | call(GFMUL, relocInfo::none); | |||
| 600 | movdqu(Address(htbl, 5 * 16), t); //H ^ 5 * 2 | |||
| 601 | call(GFMUL, relocInfo::none); | |||
| 602 | movdqu(Address(htbl, 6 * 16), t); //H ^ 6 * 2 | |||
| 603 | call(GFMUL, relocInfo::none); | |||
| 604 | movdqu(Address(htbl, 7 * 16), t); //H ^ 7 * 2 | |||
| 605 | call(GFMUL, relocInfo::none); | |||
| 606 | movdqu(Address(htbl, 8 * 16), t); //H ^ 8 * 2 | |||
| 607 | ret(0); | |||
| 608 | ||||
| 609 | bind(GFMUL); | |||
| 610 | gfmul(tmp0, t); | |||
| 611 | } | |||
| 612 | ||||
| 613 | // Multiblock and single block GHASH computation using Shift XOR reduction technique | |||
| 614 | void MacroAssembler::avx_ghash(Register input_state, Register htbl, | |||
| 615 | Register input_data, Register blocks) { | |||
| 616 | ||||
| 617 | // temporary variables to hold input data and input state | |||
| 618 | const XMMRegister data = xmm1; | |||
| 619 | const XMMRegister state = xmm0; | |||
| 620 | // temporary variables to hold intermediate results | |||
| 621 | const XMMRegister tmp0 = xmm3; | |||
| 622 | const XMMRegister tmp1 = xmm4; | |||
| 623 | const XMMRegister tmp2 = xmm5; | |||
| 624 | const XMMRegister tmp3 = xmm6; | |||
| 625 | // temporary variables to hold byte and long swap masks | |||
| 626 | const XMMRegister bswap_mask = xmm2; | |||
| 627 | const XMMRegister lswap_mask = xmm14; | |||
| 628 | ||||
| 629 | Label GENERATE_HTBL_1_BLK, GENERATE_HTBL_8_BLKS, BEGIN_PROCESS, GFMUL, BLOCK8_REDUCTION, | |||
| 630 | ONE_BLK_INIT, PROCESS_1_BLOCK, PROCESS_8_BLOCKS, SAVE_STATE, EXIT_GHASH; | |||
| 631 | ||||
| 632 | testptr(blocks, blocks); | |||
| 633 | jcc(Assembler::zero, EXIT_GHASH); | |||
| 634 | ||||
| 635 | // Check if Hashtable (1*16) has been already generated | |||
| 636 | // For anything less than 8 blocks, we generate only the first power of H. | |||
| 637 | movdqu(tmp2, Address(htbl, 1 * 16)); | |||
| 638 | ptest(tmp2, tmp2); | |||
| 639 | jcc(Assembler::notZero, BEGIN_PROCESS); | |||
| 640 | call(GENERATE_HTBL_1_BLK, relocInfo::none); | |||
| 641 | ||||
| 642 | // Shuffle the input state | |||
| 643 | bind(BEGIN_PROCESS); | |||
| 644 | movdqu(lswap_mask, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); | |||
| 645 | movdqu(state, Address(input_state, 0)); | |||
| 646 | vpshufb(state, state, lswap_mask, Assembler::AVX_128bit); | |||
| 647 | ||||
| 648 | cmpl(blocks, 8); | |||
| 649 | jcc(Assembler::below, ONE_BLK_INIT); | |||
| 650 | // If we have 8 blocks or more data, then generate remaining powers of H | |||
| 651 | movdqu(tmp2, Address(htbl, 8 * 16)); | |||
| 652 | ptest(tmp2, tmp2); | |||
| 653 | jcc(Assembler::notZero, PROCESS_8_BLOCKS); | |||
| 654 | call(GENERATE_HTBL_8_BLKS, relocInfo::none); | |||
| 655 | ||||
| 656 | //Do 8 multiplies followed by a reduction processing 8 blocks of data at a time | |||
| 657 | //Each block = 16 bytes. | |||
| 658 | bind(PROCESS_8_BLOCKS); | |||
| 659 | subl(blocks, 8); | |||
| 660 | movdqu(bswap_mask, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); | |||
| 661 | movdqu(data, Address(input_data, 16 * 7)); | |||
| 662 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 663 | //Loading 1*16 as calculated powers of H required starts at that location. | |||
| 664 | movdqu(xmm15, Address(htbl, 1 * 16)); | |||
| 665 | //Perform carryless multiplication of (H*2, data block #7) | |||
| 666 | vpclmulhqlqdq(tmp2, data, xmm15);//a0 * b1 | |||
| 667 | vpclmulldq(tmp0, data, xmm15);//a0 * b0 | |||
| 668 | vpclmulhdq(tmp1, data, xmm15);//a1 * b1 | |||
| 669 | vpclmullqhqdq(tmp3, data, xmm15);//a1* b0 | |||
| 670 | vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit);// (a0 * b1) + (a1 * b0) | |||
| 671 | ||||
| 672 | movdqu(data, Address(input_data, 16 * 6)); | |||
| 673 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 674 | // Perform carryless multiplication of (H^2 * 2, data block #6) | |||
| 675 | schoolbookAAD(2, htbl, data, tmp0, tmp1, tmp2, tmp3); | |||
| 676 | ||||
| 677 | movdqu(data, Address(input_data, 16 * 5)); | |||
| 678 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 679 | // Perform carryless multiplication of (H^3 * 2, data block #5) | |||
| 680 | schoolbookAAD(3, htbl, data, tmp0, tmp1, tmp2, tmp3); | |||
| 681 | movdqu(data, Address(input_data, 16 * 4)); | |||
| 682 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 683 | // Perform carryless multiplication of (H^4 * 2, data block #4) | |||
| 684 | schoolbookAAD(4, htbl, data, tmp0, tmp1, tmp2, tmp3); | |||
| 685 | movdqu(data, Address(input_data, 16 * 3)); | |||
| 686 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 687 | // Perform carryless multiplication of (H^5 * 2, data block #3) | |||
| 688 | schoolbookAAD(5, htbl, data, tmp0, tmp1, tmp2, tmp3); | |||
| 689 | movdqu(data, Address(input_data, 16 * 2)); | |||
| 690 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 691 | // Perform carryless multiplication of (H^6 * 2, data block #2) | |||
| 692 | schoolbookAAD(6, htbl, data, tmp0, tmp1, tmp2, tmp3); | |||
| 693 | movdqu(data, Address(input_data, 16 * 1)); | |||
| 694 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 695 | // Perform carryless multiplication of (H^7 * 2, data block #1) | |||
| 696 | schoolbookAAD(7, htbl, data, tmp0, tmp1, tmp2, tmp3); | |||
| 697 | movdqu(data, Address(input_data, 16 * 0)); | |||
| 698 | // xor data block#0 with input state before perfoming carry-less multiplication | |||
| 699 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 700 | vpxor(data, data, state, Assembler::AVX_128bit); | |||
| 701 | // Perform carryless multiplication of (H^8 * 2, data block #0) | |||
| 702 | schoolbookAAD(8, htbl, data, tmp0, tmp1, tmp2, tmp3); | |||
| 703 | vpslldq(tmp3, tmp2, 8, Assembler::AVX_128bit); | |||
| 704 | vpsrldq(tmp2, tmp2, 8, Assembler::AVX_128bit); | |||
| 705 | vpxor(tmp0, tmp0, tmp3, Assembler::AVX_128bit);// tmp0, tmp1 contains aggregated results of | |||
| 706 | vpxor(tmp1, tmp1, tmp2, Assembler::AVX_128bit);// the multiplication operation | |||
| 707 | ||||
| 708 | // we have the 2 128-bit partially accumulated multiplication results in tmp0:tmp1 | |||
| 709 | // with higher 128-bit in tmp1 and lower 128-bit in corresponding tmp0 | |||
| 710 | // Follows the reduction technique mentioned in | |||
| 711 | // Shift-XOR reduction described in Gueron-Kounavis May 2010 | |||
| 712 | bind(BLOCK8_REDUCTION); | |||
| 713 | // First Phase of the reduction | |||
| 714 | vpslld(xmm8, tmp0, 31, Assembler::AVX_128bit); // packed right shifting << 31 | |||
| 715 | vpslld(xmm9, tmp0, 30, Assembler::AVX_128bit); // packed right shifting << 30 | |||
| 716 | vpslld(xmm10, tmp0, 25, Assembler::AVX_128bit); // packed right shifting << 25 | |||
| 717 | // xor the shifted versions | |||
| 718 | vpxor(xmm8, xmm8, xmm10, Assembler::AVX_128bit); | |||
| 719 | vpxor(xmm8, xmm8, xmm9, Assembler::AVX_128bit); | |||
| 720 | ||||
| 721 | vpslldq(xmm9, xmm8, 12, Assembler::AVX_128bit); | |||
| 722 | vpsrldq(xmm8, xmm8, 4, Assembler::AVX_128bit); | |||
| 723 | ||||
| 724 | vpxor(tmp0, tmp0, xmm9, Assembler::AVX_128bit); // first phase of reduction is complete | |||
| 725 | // second phase of the reduction | |||
| 726 | vpsrld(xmm9, tmp0, 1, Assembler::AVX_128bit); // packed left shifting >> 1 | |||
| 727 | vpsrld(xmm10, tmp0, 2, Assembler::AVX_128bit); // packed left shifting >> 2 | |||
| 728 | vpsrld(tmp2, tmp0, 7, Assembler::AVX_128bit); // packed left shifting >> 7 | |||
| 729 | // xor the shifted versions | |||
| 730 | vpxor(xmm9, xmm9, xmm10, Assembler::AVX_128bit); | |||
| 731 | vpxor(xmm9, xmm9, tmp2, Assembler::AVX_128bit); | |||
| 732 | vpxor(xmm9, xmm9, xmm8, Assembler::AVX_128bit); | |||
| 733 | vpxor(tmp0, xmm9, tmp0, Assembler::AVX_128bit); | |||
| 734 | // Final result is in state | |||
| 735 | vpxor(state, tmp0, tmp1, Assembler::AVX_128bit); | |||
| 736 | ||||
| 737 | lea(input_data, Address(input_data, 16 * 8)); | |||
| 738 | cmpl(blocks, 8); | |||
| 739 | jcc(Assembler::below, ONE_BLK_INIT); | |||
| 740 | jmp(PROCESS_8_BLOCKS); | |||
| 741 | ||||
| 742 | // Since this is one block operation we will only use H * 2 i.e. the first power of H | |||
| 743 | bind(ONE_BLK_INIT); | |||
| 744 | movdqu(tmp0, Address(htbl, 1 * 16)); | |||
| 745 | movdqu(bswap_mask, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); | |||
| 746 | ||||
| 747 | //Do one (128 bit x 128 bit) carry-less multiplication at a time followed by a reduction. | |||
| 748 | bind(PROCESS_1_BLOCK); | |||
| 749 | cmpl(blocks, 0); | |||
| 750 | jcc(Assembler::equal, SAVE_STATE); | |||
| 751 | subl(blocks, 1); | |||
| 752 | movdqu(data, Address(input_data, 0)); | |||
| 753 | vpshufb(data, data, bswap_mask, Assembler::AVX_128bit); | |||
| 754 | vpxor(state, state, data, Assembler::AVX_128bit); | |||
| 755 | // gfmul(H*2, state) | |||
| 756 | call(GFMUL, relocInfo::none); | |||
| 757 | addptr(input_data, 16); | |||
| 758 | jmp(PROCESS_1_BLOCK); | |||
| 759 | ||||
| 760 | bind(SAVE_STATE); | |||
| 761 | vpshufb(state, state, lswap_mask, Assembler::AVX_128bit); | |||
| 762 | movdqu(Address(input_state, 0), state); | |||
| 763 | jmp(EXIT_GHASH); | |||
| 764 | ||||
| 765 | bind(GFMUL); | |||
| 766 | gfmul(tmp0, state); | |||
| 767 | ||||
| 768 | bind(GENERATE_HTBL_1_BLK); | |||
| 769 | generateHtbl_one_block(htbl); | |||
| 770 | ||||
| 771 | bind(GENERATE_HTBL_8_BLKS); | |||
| 772 | generateHtbl_eight_blocks(htbl); | |||
| 773 | ||||
| 774 | bind(EXIT_GHASH); | |||
| 775 | // zero out xmm registers used for Htbl storage | |||
| 776 | vpxor(xmm0, xmm0, xmm0, Assembler::AVX_128bit); | |||
| 777 | vpxor(xmm1, xmm1, xmm1, Assembler::AVX_128bit); | |||
| 778 | vpxor(xmm3, xmm3, xmm3, Assembler::AVX_128bit); | |||
| 779 | vpxor(xmm15, xmm15, xmm15, Assembler::AVX_128bit); | |||
| 780 | } | |||
| 781 | ||||
| 782 | // AES Counter Mode using VAES instructions | |||
| 783 | void MacroAssembler::aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter, | |||
| 784 | Register len_reg, Register used, Register used_addr, Register saved_encCounter_start) { | |||
| 785 | ||||
| 786 | const Register rounds = 0; | |||
| 787 | const Register pos = r12; | |||
| 788 | ||||
| 789 | Label PRELOOP_START, EXIT_PRELOOP, REMAINDER, REMAINDER_16, LOOP, END, EXIT, END_LOOP, | |||
| 790 | AES192, AES256, AES192_REMAINDER16, REMAINDER16_END_LOOP, AES256_REMAINDER16, | |||
| 791 | REMAINDER_8, REMAINDER_4, AES192_REMAINDER8, REMAINDER_LOOP, AES256_REMINDER, | |||
| 792 | AES192_REMAINDER, END_REMAINDER_LOOP, AES256_REMAINDER8, REMAINDER8_END_LOOP, | |||
| 793 | AES192_REMAINDER4, AES256_REMAINDER4, AES256_REMAINDER, END_REMAINDER4, EXTRACT_TAILBYTES, | |||
| 794 | EXTRACT_TAIL_4BYTES, EXTRACT_TAIL_2BYTES, EXTRACT_TAIL_1BYTE, STORE_CTR; | |||
| 795 | ||||
| 796 | cmpl(len_reg, 0); | |||
| 797 | jcc(Assembler::belowEqual, EXIT); | |||
| 798 | ||||
| 799 | movl(pos, 0); | |||
| 800 | // if the number of used encrypted counter bytes < 16, | |||
| 801 | // XOR PT with saved encrypted counter to obtain CT | |||
| 802 | bind(PRELOOP_START); | |||
| 803 | cmpl(used, 16); | |||
| 804 | jcc(Assembler::aboveEqual, EXIT_PRELOOP); | |||
| 805 | movb(rbx, Address(saved_encCounter_start, used)); | |||
| 806 | xorb(rbx, Address(src_addr, pos)); | |||
| 807 | movb(Address(dest_addr, pos), rbx); | |||
| 808 | addptr(pos, 1); | |||
| 809 | addptr(used, 1); | |||
| 810 | decrement(len_reg); | |||
| 811 | jmp(PRELOOP_START); | |||
| 812 | ||||
| 813 | bind(EXIT_PRELOOP); | |||
| 814 | movl(Address(used_addr, 0), used); | |||
| 815 | ||||
| 816 | // Calculate number of rounds i.e. 10, 12, 14, based on key length(128, 192, 256). | |||
| 817 | movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); | |||
| 818 | ||||
| 819 | vpxor(xmm0, xmm0, xmm0, Assembler::AVX_128bit); | |||
| 820 | // Move initial counter value in xmm0 | |||
| 821 | movdqu(xmm0, Address(counter, 0)); | |||
| 822 | // broadcast counter value to zmm8 | |||
| 823 | evshufi64x2(xmm8, xmm0, xmm0, 0, Assembler::AVX_512bit); | |||
| 824 | ||||
| 825 | // load lbswap mask | |||
| 826 | evmovdquq(xmm16, ExternalAddress(StubRoutines::x86::counter_mask_addr()), Assembler::AVX_512bit, r15); | |||
| 827 | ||||
| 828 | //shuffle counter using lbswap_mask | |||
| 829 | vpshufb(xmm8, xmm8, xmm16, Assembler::AVX_512bit); | |||
| 830 | ||||
| 831 | // pre-increment and propagate counter values to zmm9-zmm15 registers. | |||
| 832 | // Linc0 increments the zmm8 by 1 (initial value being 0), Linc4 increments the counters zmm9-zmm15 by 4 | |||
| 833 | // The counter is incremented after each block i.e. 16 bytes is processed; | |||
| 834 | // each zmm register has 4 counter values as its MSB | |||
| 835 | // the counters are incremented in parallel | |||
| 836 | vpaddd(xmm8, xmm8, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 64), Assembler::AVX_512bit, r15);//linc0 | |||
| 837 | vpaddd(xmm9, xmm8, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//linc4(rip) | |||
| 838 | vpaddd(xmm10, xmm9, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//Linc4(rip) | |||
| 839 | vpaddd(xmm11, xmm10, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//Linc4(rip) | |||
| 840 | vpaddd(xmm12, xmm11, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//Linc4(rip) | |||
| 841 | vpaddd(xmm13, xmm12, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//Linc4(rip) | |||
| 842 | vpaddd(xmm14, xmm13, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//Linc4(rip) | |||
| 843 | vpaddd(xmm15, xmm14, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//Linc4(rip) | |||
| 844 | ||||
| 845 | // load linc32 mask in zmm register.linc32 increments counter by 32 | |||
| 846 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 256), Assembler::AVX_512bit, r15);//Linc32 | |||
| 847 | ||||
| 848 | // xmm31 contains the key shuffle mask. | |||
| 849 | movdqu(xmm31, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); | |||
| 850 | // Load key function loads 128 bit key and shuffles it. Then we broadcast the shuffled key to convert it into a 512 bit value. | |||
| 851 | // For broadcasting the values to ZMM, vshufi64 is used instead of evbroadcasti64x2 as the source in this case is ZMM register | |||
| 852 | // that holds shuffled key value. | |||
| 853 | ev_load_key(xmm20, key, 0, xmm31); | |||
| 854 | ev_load_key(xmm21, key, 1 * 16, xmm31); | |||
| 855 | ev_load_key(xmm22, key, 2 * 16, xmm31); | |||
| 856 | ev_load_key(xmm23, key, 3 * 16, xmm31); | |||
| 857 | ev_load_key(xmm24, key, 4 * 16, xmm31); | |||
| 858 | ev_load_key(xmm25, key, 5 * 16, xmm31); | |||
| 859 | ev_load_key(xmm26, key, 6 * 16, xmm31); | |||
| 860 | ev_load_key(xmm27, key, 7 * 16, xmm31); | |||
| 861 | ev_load_key(xmm28, key, 8 * 16, xmm31); | |||
| 862 | ev_load_key(xmm29, key, 9 * 16, xmm31); | |||
| 863 | ev_load_key(xmm30, key, 10 * 16, xmm31); | |||
| 864 | ||||
| 865 | // Process 32 blocks or 512 bytes of data | |||
| 866 | bind(LOOP); | |||
| 867 | cmpl(len_reg, 512); | |||
| 868 | jcc(Assembler::less, REMAINDER); | |||
| 869 | subq(len_reg, 512); | |||
| 870 | //Shuffle counter and Exor it with roundkey1. Result is stored in zmm0-7 | |||
| 871 | vpshufb(xmm0, xmm8, xmm16, Assembler::AVX_512bit); | |||
| 872 | evpxorq(xmm0, xmm0, xmm20, Assembler::AVX_512bit); | |||
| 873 | vpshufb(xmm1, xmm9, xmm16, Assembler::AVX_512bit); | |||
| 874 | evpxorq(xmm1, xmm1, xmm20, Assembler::AVX_512bit); | |||
| 875 | vpshufb(xmm2, xmm10, xmm16, Assembler::AVX_512bit); | |||
| 876 | evpxorq(xmm2, xmm2, xmm20, Assembler::AVX_512bit); | |||
| 877 | vpshufb(xmm3, xmm11, xmm16, Assembler::AVX_512bit); | |||
| 878 | evpxorq(xmm3, xmm3, xmm20, Assembler::AVX_512bit); | |||
| 879 | vpshufb(xmm4, xmm12, xmm16, Assembler::AVX_512bit); | |||
| 880 | evpxorq(xmm4, xmm4, xmm20, Assembler::AVX_512bit); | |||
| 881 | vpshufb(xmm5, xmm13, xmm16, Assembler::AVX_512bit); | |||
| 882 | evpxorq(xmm5, xmm5, xmm20, Assembler::AVX_512bit); | |||
| 883 | vpshufb(xmm6, xmm14, xmm16, Assembler::AVX_512bit); | |||
| 884 | evpxorq(xmm6, xmm6, xmm20, Assembler::AVX_512bit); | |||
| 885 | vpshufb(xmm7, xmm15, xmm16, Assembler::AVX_512bit); | |||
| 886 | evpxorq(xmm7, xmm7, xmm20, Assembler::AVX_512bit); | |||
| 887 | // Perform AES encode operations and put results in zmm0-zmm7. | |||
| 888 | // This is followed by incrementing counter values in zmm8-zmm15. | |||
| 889 | // Since we will be processing 32 blocks at a time, the counter is incremented by 32. | |||
| 890 | roundEnc(xmm21, 7); | |||
| 891 | vpaddq(xmm8, xmm8, xmm19, Assembler::AVX_512bit); | |||
| 892 | roundEnc(xmm22, 7); | |||
| 893 | vpaddq(xmm9, xmm9, xmm19, Assembler::AVX_512bit); | |||
| 894 | roundEnc(xmm23, 7); | |||
| 895 | vpaddq(xmm10, xmm10, xmm19, Assembler::AVX_512bit); | |||
| 896 | roundEnc(xmm24, 7); | |||
| 897 | vpaddq(xmm11, xmm11, xmm19, Assembler::AVX_512bit); | |||
| 898 | roundEnc(xmm25, 7); | |||
| 899 | vpaddq(xmm12, xmm12, xmm19, Assembler::AVX_512bit); | |||
| 900 | roundEnc(xmm26, 7); | |||
| 901 | vpaddq(xmm13, xmm13, xmm19, Assembler::AVX_512bit); | |||
| 902 | roundEnc(xmm27, 7); | |||
| 903 | vpaddq(xmm14, xmm14, xmm19, Assembler::AVX_512bit); | |||
| 904 | roundEnc(xmm28, 7); | |||
| 905 | vpaddq(xmm15, xmm15, xmm19, Assembler::AVX_512bit); | |||
| 906 | roundEnc(xmm29, 7); | |||
| 907 | ||||
| 908 | cmpl(rounds, 52); | |||
| 909 | jcc(Assembler::aboveEqual, AES192); | |||
| 910 | lastroundEnc(xmm30, 7); | |||
| 911 | jmp(END_LOOP); | |||
| 912 | ||||
| 913 | bind(AES192); | |||
| 914 | roundEnc(xmm30, 7); | |||
| 915 | ev_load_key(xmm18, key, 11 * 16, xmm31); | |||
| 916 | roundEnc(xmm18, 7); | |||
| 917 | cmpl(rounds, 60); | |||
| 918 | jcc(Assembler::aboveEqual, AES256); | |||
| 919 | ev_load_key(xmm18, key, 12 * 16, xmm31); | |||
| 920 | lastroundEnc(xmm18, 7); | |||
| 921 | jmp(END_LOOP); | |||
| 922 | ||||
| 923 | bind(AES256); | |||
| 924 | ev_load_key(xmm18, key, 12 * 16, xmm31); | |||
| 925 | roundEnc(xmm18, 7); | |||
| 926 | ev_load_key(xmm18, key, 13 * 16, xmm31); | |||
| 927 | roundEnc(xmm18, 7); | |||
| 928 | ev_load_key(xmm18, key, 14 * 16, xmm31); | |||
| 929 | lastroundEnc(xmm18, 7); | |||
| 930 | ||||
| 931 | // After AES encode rounds, the encrypted block cipher lies in zmm0-zmm7 | |||
| 932 | // xor encrypted block cipher and input plaintext and store resultant ciphertext | |||
| 933 | bind(END_LOOP); | |||
| 934 | evpxorq(xmm0, xmm0, Address(src_addr, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 935 | evmovdquq(Address(dest_addr, pos, Address::times_1, 0), xmm0, Assembler::AVX_512bit); | |||
| 936 | evpxorq(xmm1, xmm1, Address(src_addr, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 937 | evmovdquq(Address(dest_addr, pos, Address::times_1, 64), xmm1, Assembler::AVX_512bit); | |||
| 938 | evpxorq(xmm2, xmm2, Address(src_addr, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); | |||
| 939 | evmovdquq(Address(dest_addr, pos, Address::times_1, 2 * 64), xmm2, Assembler::AVX_512bit); | |||
| 940 | evpxorq(xmm3, xmm3, Address(src_addr, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); | |||
| 941 | evmovdquq(Address(dest_addr, pos, Address::times_1, 3 * 64), xmm3, Assembler::AVX_512bit); | |||
| 942 | evpxorq(xmm4, xmm4, Address(src_addr, pos, Address::times_1, 4 * 64), Assembler::AVX_512bit); | |||
| 943 | evmovdquq(Address(dest_addr, pos, Address::times_1, 4 * 64), xmm4, Assembler::AVX_512bit); | |||
| 944 | evpxorq(xmm5, xmm5, Address(src_addr, pos, Address::times_1, 5 * 64), Assembler::AVX_512bit); | |||
| 945 | evmovdquq(Address(dest_addr, pos, Address::times_1, 5 * 64), xmm5, Assembler::AVX_512bit); | |||
| 946 | evpxorq(xmm6, xmm6, Address(src_addr, pos, Address::times_1, 6 * 64), Assembler::AVX_512bit); | |||
| 947 | evmovdquq(Address(dest_addr, pos, Address::times_1, 6 * 64), xmm6, Assembler::AVX_512bit); | |||
| 948 | evpxorq(xmm7, xmm7, Address(src_addr, pos, Address::times_1, 7 * 64), Assembler::AVX_512bit); | |||
| 949 | evmovdquq(Address(dest_addr, pos, Address::times_1, 7 * 64), xmm7, Assembler::AVX_512bit); | |||
| 950 | addq(pos, 512); | |||
| 951 | jmp(LOOP); | |||
| 952 | ||||
| 953 | // Encode 256, 128, 64 or 16 bytes at a time if length is less than 512 bytes | |||
| 954 | bind(REMAINDER); | |||
| 955 | cmpl(len_reg, 0); | |||
| 956 | jcc(Assembler::equal, END); | |||
| 957 | cmpl(len_reg, 256); | |||
| 958 | jcc(Assembler::aboveEqual, REMAINDER_16); | |||
| 959 | cmpl(len_reg, 128); | |||
| 960 | jcc(Assembler::aboveEqual, REMAINDER_8); | |||
| 961 | cmpl(len_reg, 64); | |||
| 962 | jcc(Assembler::aboveEqual, REMAINDER_4); | |||
| 963 | // At this point, we will process 16 bytes of data at a time. | |||
| 964 | // So load xmm19 with counter increment value as 1 | |||
| 965 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 80), Assembler::AVX_128bit, r15); | |||
| 966 | jmp(REMAINDER_LOOP); | |||
| 967 | ||||
| 968 | // Each ZMM register can be used to encode 64 bytes of data, so we have 4 ZMM registers to encode 256 bytes of data | |||
| 969 | bind(REMAINDER_16); | |||
| 970 | subq(len_reg, 256); | |||
| 971 | // As we process 16 blocks at a time, load mask for incrementing the counter value by 16 | |||
| 972 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 320), Assembler::AVX_512bit, r15);//Linc16(rip) | |||
| 973 | // shuffle counter and XOR counter with roundkey1 | |||
| 974 | vpshufb(xmm0, xmm8, xmm16, Assembler::AVX_512bit); | |||
| 975 | evpxorq(xmm0, xmm0, xmm20, Assembler::AVX_512bit); | |||
| 976 | vpshufb(xmm1, xmm9, xmm16, Assembler::AVX_512bit); | |||
| 977 | evpxorq(xmm1, xmm1, xmm20, Assembler::AVX_512bit); | |||
| 978 | vpshufb(xmm2, xmm10, xmm16, Assembler::AVX_512bit); | |||
| 979 | evpxorq(xmm2, xmm2, xmm20, Assembler::AVX_512bit); | |||
| 980 | vpshufb(xmm3, xmm11, xmm16, Assembler::AVX_512bit); | |||
| 981 | evpxorq(xmm3, xmm3, xmm20, Assembler::AVX_512bit); | |||
| 982 | // Increment counter values by 16 | |||
| 983 | vpaddq(xmm8, xmm8, xmm19, Assembler::AVX_512bit); | |||
| 984 | vpaddq(xmm9, xmm9, xmm19, Assembler::AVX_512bit); | |||
| 985 | // AES encode rounds | |||
| 986 | roundEnc(xmm21, 3); | |||
| 987 | roundEnc(xmm22, 3); | |||
| 988 | roundEnc(xmm23, 3); | |||
| 989 | roundEnc(xmm24, 3); | |||
| 990 | roundEnc(xmm25, 3); | |||
| 991 | roundEnc(xmm26, 3); | |||
| 992 | roundEnc(xmm27, 3); | |||
| 993 | roundEnc(xmm28, 3); | |||
| 994 | roundEnc(xmm29, 3); | |||
| 995 | ||||
| 996 | cmpl(rounds, 52); | |||
| 997 | jcc(Assembler::aboveEqual, AES192_REMAINDER16); | |||
| 998 | lastroundEnc(xmm30, 3); | |||
| 999 | jmp(REMAINDER16_END_LOOP); | |||
| 1000 | ||||
| 1001 | bind(AES192_REMAINDER16); | |||
| 1002 | roundEnc(xmm30, 3); | |||
| 1003 | ev_load_key(xmm18, key, 11 * 16, xmm31); | |||
| 1004 | roundEnc(xmm18, 3); | |||
| 1005 | ev_load_key(xmm5, key, 12 * 16, xmm31); | |||
| 1006 | ||||
| 1007 | cmpl(rounds, 60); | |||
| 1008 | jcc(Assembler::aboveEqual, AES256_REMAINDER16); | |||
| 1009 | lastroundEnc(xmm5, 3); | |||
| 1010 | jmp(REMAINDER16_END_LOOP); | |||
| 1011 | bind(AES256_REMAINDER16); | |||
| 1012 | roundEnc(xmm5, 3); | |||
| 1013 | ev_load_key(xmm6, key, 13 * 16, xmm31); | |||
| 1014 | roundEnc(xmm6, 3); | |||
| 1015 | ev_load_key(xmm7, key, 14 * 16, xmm31); | |||
| 1016 | lastroundEnc(xmm7, 3); | |||
| 1017 | ||||
| 1018 | // After AES encode rounds, the encrypted block cipher lies in zmm0-zmm3 | |||
| 1019 | // xor 256 bytes of PT with the encrypted counters to produce CT. | |||
| 1020 | bind(REMAINDER16_END_LOOP); | |||
| 1021 | evpxorq(xmm0, xmm0, Address(src_addr, pos, Address::times_1, 0), Assembler::AVX_512bit); | |||
| 1022 | evmovdquq(Address(dest_addr, pos, Address::times_1, 0), xmm0, Assembler::AVX_512bit); | |||
| 1023 | evpxorq(xmm1, xmm1, Address(src_addr, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 1024 | evmovdquq(Address(dest_addr, pos, Address::times_1, 1 * 64), xmm1, Assembler::AVX_512bit); | |||
| 1025 | evpxorq(xmm2, xmm2, Address(src_addr, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); | |||
| 1026 | evmovdquq(Address(dest_addr, pos, Address::times_1, 2 * 64), xmm2, Assembler::AVX_512bit); | |||
| 1027 | evpxorq(xmm3, xmm3, Address(src_addr, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); | |||
| 1028 | evmovdquq(Address(dest_addr, pos, Address::times_1, 3 * 64), xmm3, Assembler::AVX_512bit); | |||
| 1029 | addq(pos, 256); | |||
| 1030 | ||||
| 1031 | cmpl(len_reg, 128); | |||
| 1032 | jcc(Assembler::aboveEqual, REMAINDER_8); | |||
| 1033 | ||||
| 1034 | cmpl(len_reg, 64); | |||
| 1035 | jcc(Assembler::aboveEqual, REMAINDER_4); | |||
| 1036 | //load mask for incrementing the counter value by 1 | |||
| 1037 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 80), Assembler::AVX_128bit, r15);//Linc0 + 16(rip) | |||
| 1038 | jmp(REMAINDER_LOOP); | |||
| 1039 | ||||
| 1040 | // Each ZMM register can be used to encode 64 bytes of data, so we have 2 ZMM registers to encode 128 bytes of data | |||
| 1041 | bind(REMAINDER_8); | |||
| 1042 | subq(len_reg, 128); | |||
| 1043 | // As we process 8 blocks at a time, load mask for incrementing the counter value by 8 | |||
| 1044 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 192), Assembler::AVX_512bit, r15);//Linc8(rip) | |||
| 1045 | // shuffle counters and xor with roundkey1 | |||
| 1046 | vpshufb(xmm0, xmm8, xmm16, Assembler::AVX_512bit); | |||
| 1047 | evpxorq(xmm0, xmm0, xmm20, Assembler::AVX_512bit); | |||
| 1048 | vpshufb(xmm1, xmm9, xmm16, Assembler::AVX_512bit); | |||
| 1049 | evpxorq(xmm1, xmm1, xmm20, Assembler::AVX_512bit); | |||
| 1050 | // increment counter by 8 | |||
| 1051 | vpaddq(xmm8, xmm8, xmm19, Assembler::AVX_512bit); | |||
| 1052 | // AES encode | |||
| 1053 | roundEnc(xmm21, 1); | |||
| 1054 | roundEnc(xmm22, 1); | |||
| 1055 | roundEnc(xmm23, 1); | |||
| 1056 | roundEnc(xmm24, 1); | |||
| 1057 | roundEnc(xmm25, 1); | |||
| 1058 | roundEnc(xmm26, 1); | |||
| 1059 | roundEnc(xmm27, 1); | |||
| 1060 | roundEnc(xmm28, 1); | |||
| 1061 | roundEnc(xmm29, 1); | |||
| 1062 | ||||
| 1063 | cmpl(rounds, 52); | |||
| 1064 | jcc(Assembler::aboveEqual, AES192_REMAINDER8); | |||
| 1065 | lastroundEnc(xmm30, 1); | |||
| 1066 | jmp(REMAINDER8_END_LOOP); | |||
| 1067 | ||||
| 1068 | bind(AES192_REMAINDER8); | |||
| 1069 | roundEnc(xmm30, 1); | |||
| 1070 | ev_load_key(xmm18, key, 11 * 16, xmm31); | |||
| 1071 | roundEnc(xmm18, 1); | |||
| 1072 | ev_load_key(xmm5, key, 12 * 16, xmm31); | |||
| 1073 | cmpl(rounds, 60); | |||
| 1074 | jcc(Assembler::aboveEqual, AES256_REMAINDER8); | |||
| 1075 | lastroundEnc(xmm5, 1); | |||
| 1076 | jmp(REMAINDER8_END_LOOP); | |||
| 1077 | ||||
| 1078 | bind(AES256_REMAINDER8); | |||
| 1079 | roundEnc(xmm5, 1); | |||
| 1080 | ev_load_key(xmm6, key, 13 * 16, xmm31); | |||
| 1081 | roundEnc(xmm6, 1); | |||
| 1082 | ev_load_key(xmm7, key, 14 * 16, xmm31); | |||
| 1083 | lastroundEnc(xmm7, 1); | |||
| 1084 | ||||
| 1085 | bind(REMAINDER8_END_LOOP); | |||
| 1086 | // After AES encode rounds, the encrypted block cipher lies in zmm0-zmm1 | |||
| 1087 | // XOR PT with the encrypted counter and store as CT | |||
| 1088 | evpxorq(xmm0, xmm0, Address(src_addr, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 1089 | evmovdquq(Address(dest_addr, pos, Address::times_1, 0 * 64), xmm0, Assembler::AVX_512bit); | |||
| 1090 | evpxorq(xmm1, xmm1, Address(src_addr, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 1091 | evmovdquq(Address(dest_addr, pos, Address::times_1, 1 * 64), xmm1, Assembler::AVX_512bit); | |||
| 1092 | addq(pos, 128); | |||
| 1093 | ||||
| 1094 | cmpl(len_reg, 64); | |||
| 1095 | jcc(Assembler::aboveEqual, REMAINDER_4); | |||
| 1096 | // load mask for incrementing the counter value by 1 | |||
| 1097 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 80), Assembler::AVX_128bit, r15);//Linc0 + 16(rip) | |||
| 1098 | jmp(REMAINDER_LOOP); | |||
| 1099 | ||||
| 1100 | // Each ZMM register can be used to encode 64 bytes of data, so we have 1 ZMM register used in this block of code | |||
| 1101 | bind(REMAINDER_4); | |||
| 1102 | subq(len_reg, 64); | |||
| 1103 | // As we process 4 blocks at a time, load mask for incrementing the counter value by 4 | |||
| 1104 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, r15);//Linc4(rip) | |||
| 1105 | // XOR counter with first roundkey | |||
| 1106 | vpshufb(xmm0, xmm8, xmm16, Assembler::AVX_512bit); | |||
| 1107 | evpxorq(xmm0, xmm0, xmm20, Assembler::AVX_512bit); | |||
| 1108 | // Increment counter | |||
| 1109 | vpaddq(xmm8, xmm8, xmm19, Assembler::AVX_512bit); | |||
| 1110 | vaesenc(xmm0, xmm0, xmm21, Assembler::AVX_512bit); | |||
| 1111 | vaesenc(xmm0, xmm0, xmm22, Assembler::AVX_512bit); | |||
| 1112 | vaesenc(xmm0, xmm0, xmm23, Assembler::AVX_512bit); | |||
| 1113 | vaesenc(xmm0, xmm0, xmm24, Assembler::AVX_512bit); | |||
| 1114 | vaesenc(xmm0, xmm0, xmm25, Assembler::AVX_512bit); | |||
| 1115 | vaesenc(xmm0, xmm0, xmm26, Assembler::AVX_512bit); | |||
| 1116 | vaesenc(xmm0, xmm0, xmm27, Assembler::AVX_512bit); | |||
| 1117 | vaesenc(xmm0, xmm0, xmm28, Assembler::AVX_512bit); | |||
| 1118 | vaesenc(xmm0, xmm0, xmm29, Assembler::AVX_512bit); | |||
| 1119 | cmpl(rounds, 52); | |||
| 1120 | jcc(Assembler::aboveEqual, AES192_REMAINDER4); | |||
| 1121 | vaesenclast(xmm0, xmm0, xmm30, Assembler::AVX_512bit); | |||
| 1122 | jmp(END_REMAINDER4); | |||
| 1123 | ||||
| 1124 | bind(AES192_REMAINDER4); | |||
| 1125 | vaesenc(xmm0, xmm0, xmm30, Assembler::AVX_512bit); | |||
| 1126 | ev_load_key(xmm18, key, 11 * 16, xmm31); | |||
| 1127 | vaesenc(xmm0, xmm0, xmm18, Assembler::AVX_512bit); | |||
| 1128 | ev_load_key(xmm5, key, 12 * 16, xmm31); | |||
| 1129 | ||||
| 1130 | cmpl(rounds, 60); | |||
| 1131 | jcc(Assembler::aboveEqual, AES256_REMAINDER4); | |||
| 1132 | vaesenclast(xmm0, xmm0, xmm5, Assembler::AVX_512bit); | |||
| 1133 | jmp(END_REMAINDER4); | |||
| 1134 | ||||
| 1135 | bind(AES256_REMAINDER4); | |||
| 1136 | vaesenc(xmm0, xmm0, xmm5, Assembler::AVX_512bit); | |||
| 1137 | ev_load_key(xmm6, key, 13 * 16, xmm31); | |||
| 1138 | vaesenc(xmm0, xmm0, xmm6, Assembler::AVX_512bit); | |||
| 1139 | ev_load_key(xmm7, key, 14 * 16, xmm31); | |||
| 1140 | vaesenclast(xmm0, xmm0, xmm7, Assembler::AVX_512bit); | |||
| 1141 | // After AES encode rounds, the encrypted block cipher lies in zmm0. | |||
| 1142 | // XOR encrypted block cipher with PT and store 64 bytes of ciphertext | |||
| 1143 | bind(END_REMAINDER4); | |||
| 1144 | evpxorq(xmm0, xmm0, Address(src_addr, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 1145 | evmovdquq(Address(dest_addr, pos, Address::times_1, 0), xmm0, Assembler::AVX_512bit); | |||
| 1146 | addq(pos, 64); | |||
| 1147 | // load mask for incrementing the counter value by 1 | |||
| 1148 | evmovdquq(xmm19, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 80), Assembler::AVX_128bit, r15);//Linc0 + 16(rip) | |||
| 1149 | ||||
| 1150 | // For a single block, the AES rounds start here. | |||
| 1151 | bind(REMAINDER_LOOP); | |||
| 1152 | cmpl(len_reg, 0); | |||
| 1153 | jcc(Assembler::belowEqual, END); | |||
| 1154 | // XOR counter with first roundkey | |||
| 1155 | vpshufb(xmm0, xmm8, xmm16, Assembler::AVX_128bit); | |||
| 1156 | evpxorq(xmm0, xmm0, xmm20, Assembler::AVX_128bit); | |||
| 1157 | vaesenc(xmm0, xmm0, xmm21, Assembler::AVX_128bit); | |||
| 1158 | // Increment counter by 1 | |||
| 1159 | vpaddq(xmm8, xmm8, xmm19, Assembler::AVX_128bit); | |||
| 1160 | vaesenc(xmm0, xmm0, xmm22, Assembler::AVX_128bit); | |||
| 1161 | vaesenc(xmm0, xmm0, xmm23, Assembler::AVX_128bit); | |||
| 1162 | vaesenc(xmm0, xmm0, xmm24, Assembler::AVX_128bit); | |||
| 1163 | vaesenc(xmm0, xmm0, xmm25, Assembler::AVX_128bit); | |||
| 1164 | vaesenc(xmm0, xmm0, xmm26, Assembler::AVX_128bit); | |||
| 1165 | vaesenc(xmm0, xmm0, xmm27, Assembler::AVX_128bit); | |||
| 1166 | vaesenc(xmm0, xmm0, xmm28, Assembler::AVX_128bit); | |||
| 1167 | vaesenc(xmm0, xmm0, xmm29, Assembler::AVX_128bit); | |||
| 1168 | ||||
| 1169 | cmpl(rounds, 52); | |||
| 1170 | jcc(Assembler::aboveEqual, AES192_REMAINDER); | |||
| 1171 | vaesenclast(xmm0, xmm0, xmm30, Assembler::AVX_128bit); | |||
| 1172 | jmp(END_REMAINDER_LOOP); | |||
| 1173 | ||||
| 1174 | bind(AES192_REMAINDER); | |||
| 1175 | vaesenc(xmm0, xmm0, xmm30, Assembler::AVX_128bit); | |||
| 1176 | ev_load_key(xmm18, key, 11 * 16, xmm31); | |||
| 1177 | vaesenc(xmm0, xmm0, xmm18, Assembler::AVX_128bit); | |||
| 1178 | ev_load_key(xmm5, key, 12 * 16, xmm31); | |||
| 1179 | cmpl(rounds, 60); | |||
| 1180 | jcc(Assembler::aboveEqual, AES256_REMAINDER); | |||
| 1181 | vaesenclast(xmm0, xmm0, xmm5, Assembler::AVX_128bit); | |||
| 1182 | jmp(END_REMAINDER_LOOP); | |||
| 1183 | ||||
| 1184 | bind(AES256_REMAINDER); | |||
| 1185 | vaesenc(xmm0, xmm0, xmm5, Assembler::AVX_128bit); | |||
| 1186 | ev_load_key(xmm6, key, 13 * 16, xmm31); | |||
| 1187 | vaesenc(xmm0, xmm0, xmm6, Assembler::AVX_128bit); | |||
| 1188 | ev_load_key(xmm7, key, 14 * 16, xmm31); | |||
| 1189 | vaesenclast(xmm0, xmm0, xmm7, Assembler::AVX_128bit); | |||
| 1190 | ||||
| 1191 | bind(END_REMAINDER_LOOP); | |||
| 1192 | // If the length register is less than the blockSize i.e. 16 | |||
| 1193 | // then we store only those bytes of the CT to the destination | |||
| 1194 | // corresponding to the length register value | |||
| 1195 | // extracting the exact number of bytes is handled by EXTRACT_TAILBYTES | |||
| 1196 | cmpl(len_reg, 16); | |||
| 1197 | jcc(Assembler::less, EXTRACT_TAILBYTES); | |||
| 1198 | subl(len_reg, 16); | |||
| 1199 | // After AES encode rounds, the encrypted block cipher lies in xmm0. | |||
| 1200 | // If the length register is equal to 16 bytes, store CT in dest after XOR operation. | |||
| 1201 | evpxorq(xmm0, xmm0, Address(src_addr, pos, Address::times_1, 0), Assembler::AVX_128bit); | |||
| 1202 | evmovdquq(Address(dest_addr, pos, Address::times_1, 0), xmm0, Assembler::AVX_128bit); | |||
| 1203 | addl(pos, 16); | |||
| 1204 | ||||
| 1205 | jmp(REMAINDER_LOOP); | |||
| 1206 | ||||
| 1207 | bind(EXTRACT_TAILBYTES); | |||
| 1208 | // Save encrypted counter value in xmm0 for next invocation, before XOR operation | |||
| 1209 | movdqu(Address(saved_encCounter_start, 0), xmm0); | |||
| 1210 | // XOR encryted block cipher in xmm0 with PT to produce CT | |||
| 1211 | evpxorq(xmm0, xmm0, Address(src_addr, pos, Address::times_1, 0), Assembler::AVX_128bit); | |||
| 1212 | // extract upto 15 bytes of CT from xmm0 as specified by length register | |||
| 1213 | testptr(len_reg, 8); | |||
| 1214 | jcc(Assembler::zero, EXTRACT_TAIL_4BYTES); | |||
| 1215 | pextrq(Address(dest_addr, pos), xmm0, 0); | |||
| 1216 | psrldq(xmm0, 8); | |||
| 1217 | addl(pos, 8); | |||
| 1218 | bind(EXTRACT_TAIL_4BYTES); | |||
| 1219 | testptr(len_reg, 4); | |||
| 1220 | jcc(Assembler::zero, EXTRACT_TAIL_2BYTES); | |||
| 1221 | pextrd(Address(dest_addr, pos), xmm0, 0); | |||
| 1222 | psrldq(xmm0, 4); | |||
| 1223 | addq(pos, 4); | |||
| 1224 | bind(EXTRACT_TAIL_2BYTES); | |||
| 1225 | testptr(len_reg, 2); | |||
| 1226 | jcc(Assembler::zero, EXTRACT_TAIL_1BYTE); | |||
| 1227 | pextrw(Address(dest_addr, pos), xmm0, 0); | |||
| 1228 | psrldq(xmm0, 2); | |||
| 1229 | addl(pos, 2); | |||
| 1230 | bind(EXTRACT_TAIL_1BYTE); | |||
| 1231 | testptr(len_reg, 1); | |||
| 1232 | jcc(Assembler::zero, END); | |||
| 1233 | pextrb(Address(dest_addr, pos), xmm0, 0); | |||
| 1234 | addl(pos, 1); | |||
| 1235 | ||||
| 1236 | bind(END); | |||
| 1237 | // If there are no tail bytes, store counter value and exit | |||
| 1238 | cmpl(len_reg, 0); | |||
| 1239 | jcc(Assembler::equal, STORE_CTR); | |||
| 1240 | movl(Address(used_addr, 0), len_reg); | |||
| 1241 | ||||
| 1242 | bind(STORE_CTR); | |||
| 1243 | //shuffle updated counter and store it | |||
| 1244 | vpshufb(xmm8, xmm8, xmm16, Assembler::AVX_128bit); | |||
| 1245 | movdqu(Address(counter, 0), xmm8); | |||
| 1246 | // Zero out counter and key registers | |||
| 1247 | evpxorq(xmm8, xmm8, xmm8, Assembler::AVX_512bit); | |||
| 1248 | evpxorq(xmm20, xmm20, xmm20, Assembler::AVX_512bit); | |||
| 1249 | evpxorq(xmm21, xmm21, xmm21, Assembler::AVX_512bit); | |||
| 1250 | evpxorq(xmm22, xmm22, xmm22, Assembler::AVX_512bit); | |||
| 1251 | evpxorq(xmm23, xmm23, xmm23, Assembler::AVX_512bit); | |||
| 1252 | evpxorq(xmm24, xmm24, xmm24, Assembler::AVX_512bit); | |||
| 1253 | evpxorq(xmm25, xmm25, xmm25, Assembler::AVX_512bit); | |||
| 1254 | evpxorq(xmm26, xmm26, xmm26, Assembler::AVX_512bit); | |||
| 1255 | evpxorq(xmm27, xmm27, xmm27, Assembler::AVX_512bit); | |||
| 1256 | evpxorq(xmm28, xmm28, xmm28, Assembler::AVX_512bit); | |||
| 1257 | evpxorq(xmm29, xmm29, xmm29, Assembler::AVX_512bit); | |||
| 1258 | evpxorq(xmm30, xmm30, xmm30, Assembler::AVX_512bit); | |||
| 1259 | cmpl(rounds, 44); | |||
| 1260 | jcc(Assembler::belowEqual, EXIT); | |||
| 1261 | evpxorq(xmm18, xmm18, xmm18, Assembler::AVX_512bit); | |||
| 1262 | evpxorq(xmm5, xmm5, xmm5, Assembler::AVX_512bit); | |||
| 1263 | cmpl(rounds, 52); | |||
| 1264 | jcc(Assembler::belowEqual, EXIT); | |||
| 1265 | evpxorq(xmm6, xmm6, xmm6, Assembler::AVX_512bit); | |||
| 1266 | evpxorq(xmm7, xmm7, xmm7, Assembler::AVX_512bit); | |||
| 1267 | bind(EXIT); | |||
| 1268 | } | |||
| 1269 | ||||
| 1270 | void MacroAssembler::gfmul_avx512(XMMRegister GH, XMMRegister HK) { | |||
| 1271 | const XMMRegister TMP1 = xmm0; | |||
| 1272 | const XMMRegister TMP2 = xmm1; | |||
| 1273 | const XMMRegister TMP3 = xmm2; | |||
| 1274 | ||||
| 1275 | evpclmulqdq(TMP1, GH, HK, 0x11, Assembler::AVX_512bit); | |||
| 1276 | evpclmulqdq(TMP2, GH, HK, 0x00, Assembler::AVX_512bit); | |||
| 1277 | evpclmulqdq(TMP3, GH, HK, 0x01, Assembler::AVX_512bit); | |||
| 1278 | evpclmulqdq(GH, GH, HK, 0x10, Assembler::AVX_512bit); | |||
| 1279 | evpxorq(GH, GH, TMP3, Assembler::AVX_512bit); | |||
| 1280 | vpsrldq(TMP3, GH, 8, Assembler::AVX_512bit); | |||
| 1281 | vpslldq(GH, GH, 8, Assembler::AVX_512bit); | |||
| 1282 | evpxorq(TMP1, TMP1, TMP3, Assembler::AVX_512bit); | |||
| 1283 | evpxorq(GH, GH, TMP2, Assembler::AVX_512bit); | |||
| 1284 | ||||
| 1285 | evmovdquq(TMP3, ExternalAddress(StubRoutines::x86::ghash_polynomial512_addr()), Assembler::AVX_512bit, r15); | |||
| 1286 | evpclmulqdq(TMP2, TMP3, GH, 0x01, Assembler::AVX_512bit); | |||
| 1287 | vpslldq(TMP2, TMP2, 8, Assembler::AVX_512bit); | |||
| 1288 | evpxorq(GH, GH, TMP2, Assembler::AVX_512bit); | |||
| 1289 | evpclmulqdq(TMP2, TMP3, GH, 0x00, Assembler::AVX_512bit); | |||
| 1290 | vpsrldq(TMP2, TMP2, 4, Assembler::AVX_512bit); | |||
| 1291 | evpclmulqdq(GH, TMP3, GH, 0x10, Assembler::AVX_512bit); | |||
| 1292 | vpslldq(GH, GH, 4, Assembler::AVX_512bit); | |||
| 1293 | vpternlogq(GH, 0x96, TMP1, TMP2, Assembler::AVX_512bit); | |||
| 1294 | } | |||
| 1295 | ||||
| 1296 | void MacroAssembler::generateHtbl_48_block_zmm(Register htbl, Register avx512_htbl) { | |||
| 1297 | const XMMRegister HK = xmm6; | |||
| 1298 | const XMMRegister ZT5 = xmm4; | |||
| 1299 | const XMMRegister ZT7 = xmm7; | |||
| 1300 | const XMMRegister ZT8 = xmm8; | |||
| 1301 | ||||
| 1302 | Label GFMUL_AVX512; | |||
| 1303 | ||||
| 1304 | movdqu(HK, Address(htbl, 0)); | |||
| 1305 | movdqu(xmm10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); | |||
| 1306 | vpshufb(HK, HK, xmm10, Assembler::AVX_128bit); | |||
| 1307 | ||||
| 1308 | movdqu(xmm11, ExternalAddress(StubRoutines::x86::ghash_polynomial512_addr() + 64)); // Poly | |||
| 1309 | movdqu(xmm12, ExternalAddress(StubRoutines::x86::ghash_polynomial512_addr() + 80)); // Twoone | |||
| 1310 | // Compute H ^ 2 from the input subkeyH | |||
| 1311 | movdqu(xmm2, xmm6); | |||
| 1312 | vpsllq(xmm6, xmm6, 1, Assembler::AVX_128bit); | |||
| 1313 | vpsrlq(xmm2, xmm2, 63, Assembler::AVX_128bit); | |||
| 1314 | movdqu(xmm1, xmm2); | |||
| 1315 | vpslldq(xmm2, xmm2, 8, Assembler::AVX_128bit); | |||
| 1316 | vpsrldq(xmm1, xmm1, 8, Assembler::AVX_128bit); | |||
| 1317 | vpor(xmm6, xmm6, xmm2, Assembler::AVX_128bit); | |||
| 1318 | ||||
| 1319 | vpshufd(xmm2, xmm1, 0x24, Assembler::AVX_128bit); | |||
| 1320 | vpcmpeqd(xmm2, xmm2, xmm12, AVX_128bit); | |||
| 1321 | vpand(xmm2, xmm2, xmm11, Assembler::AVX_128bit); | |||
| 1322 | vpxor(xmm6, xmm6, xmm2, Assembler::AVX_128bit); | |||
| 1323 | movdqu(Address(avx512_htbl, 16 * 47), xmm6); // H ^ 2 | |||
| 1324 | // Compute the remaining three powers of H using XMM registers and all following powers using ZMM | |||
| 1325 | movdqu(ZT5, HK); | |||
| 1326 | vinserti32x4(ZT7, ZT7, HK, 3); | |||
| 1327 | ||||
| 1328 | gfmul_avx512(ZT5, HK); | |||
| 1329 | movdqu(Address(avx512_htbl, 16 * 46), ZT5); // H ^ 2 * 2 | |||
| 1330 | vinserti32x4(ZT7, ZT7, ZT5, 2); | |||
| 1331 | ||||
| 1332 | gfmul_avx512(ZT5, HK); | |||
| 1333 | movdqu(Address(avx512_htbl, 16 * 45), ZT5); // H ^ 2 * 3 | |||
| 1334 | vinserti32x4(ZT7, ZT7, ZT5, 1); | |||
| 1335 | ||||
| 1336 | gfmul_avx512(ZT5, HK); | |||
| 1337 | movdqu(Address(avx512_htbl, 16 * 44), ZT5); // H ^ 2 * 4 | |||
| 1338 | vinserti32x4(ZT7, ZT7, ZT5, 0); | |||
| 1339 | ||||
| 1340 | evshufi64x2(ZT5, ZT5, ZT5, 0x00, Assembler::AVX_512bit); | |||
| 1341 | evmovdquq(ZT8, ZT7, Assembler::AVX_512bit); | |||
| 1342 | gfmul_avx512(ZT7, ZT5); | |||
| 1343 | evmovdquq(Address(avx512_htbl, 16 * 40), ZT7, Assembler::AVX_512bit); | |||
| 1344 | evshufi64x2(ZT5, ZT7, ZT7, 0x00, Assembler::AVX_512bit); | |||
| 1345 | gfmul_avx512(ZT8, ZT5); | |||
| 1346 | evmovdquq(Address(avx512_htbl, 16 * 36), ZT8, Assembler::AVX_512bit); | |||
| 1347 | gfmul_avx512(ZT7, ZT5); | |||
| 1348 | evmovdquq(Address(avx512_htbl, 16 * 32), ZT7, Assembler::AVX_512bit); | |||
| 1349 | gfmul_avx512(ZT8, ZT5); | |||
| 1350 | evmovdquq(Address(avx512_htbl, 16 * 28), ZT8, Assembler::AVX_512bit); | |||
| 1351 | gfmul_avx512(ZT7, ZT5); | |||
| 1352 | evmovdquq(Address(avx512_htbl, 16 * 24), ZT7, Assembler::AVX_512bit); | |||
| 1353 | gfmul_avx512(ZT8, ZT5); | |||
| 1354 | evmovdquq(Address(avx512_htbl, 16 * 20), ZT8, Assembler::AVX_512bit); | |||
| 1355 | gfmul_avx512(ZT7, ZT5); | |||
| 1356 | evmovdquq(Address(avx512_htbl, 16 * 16), ZT7, Assembler::AVX_512bit); | |||
| 1357 | gfmul_avx512(ZT8, ZT5); | |||
| 1358 | evmovdquq(Address(avx512_htbl, 16 * 12), ZT8, Assembler::AVX_512bit); | |||
| 1359 | gfmul_avx512(ZT7, ZT5); | |||
| 1360 | evmovdquq(Address(avx512_htbl, 16 * 8), ZT7, Assembler::AVX_512bit); | |||
| 1361 | gfmul_avx512(ZT8, ZT5); | |||
| 1362 | evmovdquq(Address(avx512_htbl, 16 * 4), ZT8, Assembler::AVX_512bit); | |||
| 1363 | gfmul_avx512(ZT7, ZT5); | |||
| 1364 | evmovdquq(Address(avx512_htbl, 16 * 0), ZT7, Assembler::AVX_512bit); | |||
| 1365 | ret(0); | |||
| 1366 | } | |||
| 1367 | ||||
| 1368 | #define vclmul_reduce(out, poly, hi128, lo128, tmp0, tmp1)evpclmulqdq(tmp0, poly, lo128, 0x01, Assembler::AVX_512bit); vpslldq (tmp0, tmp0, 8, Assembler::AVX_512bit); evpxorq(tmp0, lo128, tmp0 , Assembler::AVX_512bit); evpclmulqdq(tmp1, poly, tmp0, 0x00, Assembler::AVX_512bit); vpsrldq(tmp1, tmp1, 4, Assembler::AVX_512bit ); evpclmulqdq(out, poly, tmp0, 0x10, Assembler::AVX_512bit); vpslldq(out, out, 4, Assembler::AVX_512bit); vpternlogq(out, 0x96, tmp1, hi128, Assembler::AVX_512bit); \ | |||
| 1369 | evpclmulqdq(tmp0, poly, lo128, 0x01, Assembler::AVX_512bit); \ | |||
| 1370 | vpslldq(tmp0, tmp0, 8, Assembler::AVX_512bit); \ | |||
| 1371 | evpxorq(tmp0, lo128, tmp0, Assembler::AVX_512bit); \ | |||
| 1372 | evpclmulqdq(tmp1, poly, tmp0, 0x00, Assembler::AVX_512bit); \ | |||
| 1373 | vpsrldq(tmp1, tmp1, 4, Assembler::AVX_512bit); \ | |||
| 1374 | evpclmulqdq(out, poly, tmp0, 0x10, Assembler::AVX_512bit); \ | |||
| 1375 | vpslldq(out, out, 4, Assembler::AVX_512bit); \ | |||
| 1376 | vpternlogq(out, 0x96, tmp1, hi128, Assembler::AVX_512bit); \ | |||
| 1377 | ||||
| 1378 | #define vhpxori4x128(reg, tmp)vextracti64x4(tmp, reg, 1); evpxorq(reg, reg, tmp, Assembler:: AVX_256bit); vextracti32x4(tmp, reg, 1); evpxorq(reg, reg, tmp , Assembler::AVX_128bit); \ | |||
| 1379 | vextracti64x4(tmp, reg, 1); \ | |||
| 1380 | evpxorq(reg, reg, tmp, Assembler::AVX_256bit); \ | |||
| 1381 | vextracti32x4(tmp, reg, 1); \ | |||
| 1382 | evpxorq(reg, reg, tmp, Assembler::AVX_128bit); \ | |||
| 1383 | ||||
| 1384 | #define roundEncode(key, dst1, dst2, dst3, dst4)vaesenc(dst1, dst1, key, Assembler::AVX_512bit); vaesenc(dst2 , dst2, key, Assembler::AVX_512bit); vaesenc(dst3, dst3, key, Assembler::AVX_512bit); vaesenc(dst4, dst4, key, Assembler:: AVX_512bit); \ | |||
| 1385 | vaesenc(dst1, dst1, key, Assembler::AVX_512bit); \ | |||
| 1386 | vaesenc(dst2, dst2, key, Assembler::AVX_512bit); \ | |||
| 1387 | vaesenc(dst3, dst3, key, Assembler::AVX_512bit); \ | |||
| 1388 | vaesenc(dst4, dst4, key, Assembler::AVX_512bit); \ | |||
| 1389 | ||||
| 1390 | #define lastroundEncode(key, dst1, dst2, dst3, dst4)vaesenclast(dst1, dst1, key, Assembler::AVX_512bit); vaesenclast (dst2, dst2, key, Assembler::AVX_512bit); vaesenclast(dst3, dst3 , key, Assembler::AVX_512bit); vaesenclast(dst4, dst4, key, Assembler ::AVX_512bit); \ | |||
| 1391 | vaesenclast(dst1, dst1, key, Assembler::AVX_512bit); \ | |||
| 1392 | vaesenclast(dst2, dst2, key, Assembler::AVX_512bit); \ | |||
| 1393 | vaesenclast(dst3, dst3, key, Assembler::AVX_512bit); \ | |||
| 1394 | vaesenclast(dst4, dst4, key, Assembler::AVX_512bit); \ | |||
| 1395 | ||||
| 1396 | #define storeData(dst, position, src1, src2, src3, src4)evmovdquq(Address(dst, position, Address::times_1, 0 * 64), src1 , Assembler::AVX_512bit); evmovdquq(Address(dst, position, Address ::times_1, 1 * 64), src2, Assembler::AVX_512bit); evmovdquq(Address (dst, position, Address::times_1, 2 * 64), src3, Assembler::AVX_512bit ); evmovdquq(Address(dst, position, Address::times_1, 3 * 64) , src4, Assembler::AVX_512bit); \ | |||
| 1397 | evmovdquq(Address(dst, position, Address::times_1, 0 * 64), src1, Assembler::AVX_512bit); \ | |||
| 1398 | evmovdquq(Address(dst, position, Address::times_1, 1 * 64), src2, Assembler::AVX_512bit); \ | |||
| 1399 | evmovdquq(Address(dst, position, Address::times_1, 2 * 64), src3, Assembler::AVX_512bit); \ | |||
| 1400 | evmovdquq(Address(dst, position, Address::times_1, 3 * 64), src4, Assembler::AVX_512bit); \ | |||
| 1401 | ||||
| 1402 | #define loadData(src, position, dst1, dst2, dst3, dst4)evmovdquq(dst1, Address(src, position, Address::times_1, 0 * 64 ), Assembler::AVX_512bit); evmovdquq(dst2, Address(src, position , Address::times_1, 1 * 64), Assembler::AVX_512bit); evmovdquq (dst3, Address(src, position, Address::times_1, 2 * 64), Assembler ::AVX_512bit); evmovdquq(dst4, Address(src, position, Address ::times_1, 3 * 64), Assembler::AVX_512bit); \ | |||
| 1403 | evmovdquq(dst1, Address(src, position, Address::times_1, 0 * 64), Assembler::AVX_512bit); \ | |||
| 1404 | evmovdquq(dst2, Address(src, position, Address::times_1, 1 * 64), Assembler::AVX_512bit); \ | |||
| 1405 | evmovdquq(dst3, Address(src, position, Address::times_1, 2 * 64), Assembler::AVX_512bit); \ | |||
| 1406 | evmovdquq(dst4, Address(src, position, Address::times_1, 3 * 64), Assembler::AVX_512bit); \ | |||
| 1407 | ||||
| 1408 | #define carrylessMultiply(dst00, dst01, dst10, dst11, ghdata, hkey)evpclmulqdq(dst00, ghdata, hkey, 0x00, Assembler::AVX_512bit) ; evpclmulqdq(dst01, ghdata, hkey, 0x01, Assembler::AVX_512bit ); evpclmulqdq(dst10, ghdata, hkey, 0x10, Assembler::AVX_512bit ); evpclmulqdq(dst11, ghdata, hkey, 0x11, Assembler::AVX_512bit ); \ | |||
| 1409 | evpclmulqdq(dst00, ghdata, hkey, 0x00, Assembler::AVX_512bit); \ | |||
| 1410 | evpclmulqdq(dst01, ghdata, hkey, 0x01, Assembler::AVX_512bit); \ | |||
| 1411 | evpclmulqdq(dst10, ghdata, hkey, 0x10, Assembler::AVX_512bit); \ | |||
| 1412 | evpclmulqdq(dst11, ghdata, hkey, 0x11, Assembler::AVX_512bit); \ | |||
| 1413 | ||||
| 1414 | #define shuffleExorRnd1Key(dst0, dst1, dst2, dst3, shufmask, rndkey)vpshufb(dst0, dst0, shufmask, Assembler::AVX_512bit); evpxorq (dst0, dst0, rndkey, Assembler::AVX_512bit); vpshufb(dst1, dst1 , shufmask, Assembler::AVX_512bit); evpxorq(dst1, dst1, rndkey , Assembler::AVX_512bit); vpshufb(dst2, dst2, shufmask, Assembler ::AVX_512bit); evpxorq(dst2, dst2, rndkey, Assembler::AVX_512bit ); vpshufb(dst3, dst3, shufmask, Assembler::AVX_512bit); evpxorq (dst3, dst3, rndkey, Assembler::AVX_512bit); \ | |||
| 1415 | vpshufb(dst0, dst0, shufmask, Assembler::AVX_512bit); \ | |||
| 1416 | evpxorq(dst0, dst0, rndkey, Assembler::AVX_512bit); \ | |||
| 1417 | vpshufb(dst1, dst1, shufmask, Assembler::AVX_512bit); \ | |||
| 1418 | evpxorq(dst1, dst1, rndkey, Assembler::AVX_512bit); \ | |||
| 1419 | vpshufb(dst2, dst2, shufmask, Assembler::AVX_512bit); \ | |||
| 1420 | evpxorq(dst2, dst2, rndkey, Assembler::AVX_512bit); \ | |||
| 1421 | vpshufb(dst3, dst3, shufmask, Assembler::AVX_512bit); \ | |||
| 1422 | evpxorq(dst3, dst3, rndkey, Assembler::AVX_512bit); \ | |||
| 1423 | ||||
| 1424 | #define xorBeforeStore(dst0, dst1, dst2, dst3, src0, src1, src2, src3)evpxorq(dst0, dst0, src0, Assembler::AVX_512bit); evpxorq(dst1 , dst1, src1, Assembler::AVX_512bit); evpxorq(dst2, dst2, src2 , Assembler::AVX_512bit); evpxorq(dst3, dst3, src3, Assembler ::AVX_512bit); \ | |||
| 1425 | evpxorq(dst0, dst0, src0, Assembler::AVX_512bit); \ | |||
| 1426 | evpxorq(dst1, dst1, src1, Assembler::AVX_512bit); \ | |||
| 1427 | evpxorq(dst2, dst2, src2, Assembler::AVX_512bit); \ | |||
| 1428 | evpxorq(dst3, dst3, src3, Assembler::AVX_512bit); \ | |||
| 1429 | ||||
| 1430 | #define xorGHASH(dst0, dst1, dst2, dst3, src02, src03, src12, src13, src22, src23, src32, src33)vpternlogq(dst0, 0x96, src02, src03, Assembler::AVX_512bit); vpternlogq (dst1, 0x96, src12, src13, Assembler::AVX_512bit); vpternlogq (dst2, 0x96, src22, src23, Assembler::AVX_512bit); vpternlogq (dst3, 0x96, src32, src33, Assembler::AVX_512bit); \ | |||
| 1431 | vpternlogq(dst0, 0x96, src02, src03, Assembler::AVX_512bit); \ | |||
| 1432 | vpternlogq(dst1, 0x96, src12, src13, Assembler::AVX_512bit); \ | |||
| 1433 | vpternlogq(dst2, 0x96, src22, src23, Assembler::AVX_512bit); \ | |||
| 1434 | vpternlogq(dst3, 0x96, src32, src33, Assembler::AVX_512bit); \ | |||
| 1435 | ||||
| 1436 | void MacroAssembler::ghash16_encrypt16_parallel(Register key, Register subkeyHtbl, XMMRegister ctr_blockx, XMMRegister aad_hashx, | |||
| 1437 | Register in, Register out, Register data, Register pos, bool first_time_reduction, XMMRegister addmask, bool ghash_input, Register rounds, | |||
| 1438 | Register ghash_pos, bool final_reduction, int i, XMMRegister counter_inc_mask) { | |||
| 1439 | ||||
| 1440 | Label AES_192, AES_256, LAST_AES_RND; | |||
| 1441 | const XMMRegister ZTMP0 = xmm0; | |||
| 1442 | const XMMRegister ZTMP1 = xmm3; | |||
| 1443 | const XMMRegister ZTMP2 = xmm4; | |||
| 1444 | const XMMRegister ZTMP3 = xmm5; | |||
| 1445 | const XMMRegister ZTMP5 = xmm7; | |||
| 1446 | const XMMRegister ZTMP6 = xmm10; | |||
| 1447 | const XMMRegister ZTMP7 = xmm11; | |||
| 1448 | const XMMRegister ZTMP8 = xmm12; | |||
| 1449 | const XMMRegister ZTMP9 = xmm13; | |||
| 1450 | const XMMRegister ZTMP10 = xmm15; | |||
| 1451 | const XMMRegister ZTMP11 = xmm16; | |||
| 1452 | const XMMRegister ZTMP12 = xmm17; | |||
| 1453 | ||||
| 1454 | const XMMRegister ZTMP13 = xmm19; | |||
| 1455 | const XMMRegister ZTMP14 = xmm20; | |||
| 1456 | const XMMRegister ZTMP15 = xmm21; | |||
| 1457 | const XMMRegister ZTMP16 = xmm30; | |||
| 1458 | const XMMRegister ZTMP17 = xmm31; | |||
| 1459 | const XMMRegister ZTMP18 = xmm1; | |||
| 1460 | const XMMRegister ZTMP19 = xmm2; | |||
| 1461 | const XMMRegister ZTMP20 = xmm8; | |||
| 1462 | const XMMRegister ZTMP21 = xmm22; | |||
| 1463 | const XMMRegister ZTMP22 = xmm23; | |||
| 1464 | ||||
| 1465 | // Pre increment counters | |||
| 1466 | vpaddd(ZTMP0, ctr_blockx, counter_inc_mask, Assembler::AVX_512bit); | |||
| 1467 | vpaddd(ZTMP1, ZTMP0, counter_inc_mask, Assembler::AVX_512bit); | |||
| 1468 | vpaddd(ZTMP2, ZTMP1, counter_inc_mask, Assembler::AVX_512bit); | |||
| 1469 | vpaddd(ZTMP3, ZTMP2, counter_inc_mask, Assembler::AVX_512bit); | |||
| 1470 | // Save counter value | |||
| 1471 | evmovdquq(ctr_blockx, ZTMP3, Assembler::AVX_512bit); | |||
| 1472 | ||||
| 1473 | // Reuse ZTMP17 / ZTMP18 for loading AES Keys | |||
| 1474 | // Pre-load AES round keys | |||
| 1475 | ev_load_key(ZTMP17, key, 0, xmm29); | |||
| 1476 | ev_load_key(ZTMP18, key, 1 * 16, xmm29); | |||
| 1477 | ||||
| 1478 | // ZTMP19 & ZTMP20 used for loading hash key | |||
| 1479 | // Pre-load hash key | |||
| 1480 | evmovdquq(ZTMP19, Address(subkeyHtbl, i * 64), Assembler::AVX_512bit); | |||
| 1481 | evmovdquq(ZTMP20, Address(subkeyHtbl, ++i * 64), Assembler::AVX_512bit); | |||
| 1482 | // Load data for computing ghash | |||
| 1483 | evmovdquq(ZTMP21, Address(data, ghash_pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 1484 | vpshufb(ZTMP21, ZTMP21, xmm24, Assembler::AVX_512bit); | |||
| 1485 | ||||
| 1486 | // Xor cipher block 0 with input ghash, if available | |||
| 1487 | if (ghash_input) { | |||
| 1488 | evpxorq(ZTMP21, ZTMP21, aad_hashx, Assembler::AVX_512bit); | |||
| 1489 | } | |||
| 1490 | // Load data for computing ghash | |||
| 1491 | evmovdquq(ZTMP22, Address(data, ghash_pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 1492 | vpshufb(ZTMP22, ZTMP22, xmm24, Assembler::AVX_512bit); | |||
| 1493 | ||||
| 1494 | // stitch AES rounds with GHASH | |||
| 1495 | // AES round 0, xmm24 has shuffle mask | |||
| 1496 | shuffleExorRnd1Key(ZTMP0, ZTMP1, ZTMP2, ZTMP3, xmm24, ZTMP17)vpshufb(ZTMP0, ZTMP0, xmm24, Assembler::AVX_512bit); evpxorq( ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vpshufb(ZTMP1, ZTMP1 , xmm24, Assembler::AVX_512bit); evpxorq(ZTMP1, ZTMP1, ZTMP17 , Assembler::AVX_512bit); vpshufb(ZTMP2, ZTMP2, xmm24, Assembler ::AVX_512bit); evpxorq(ZTMP2, ZTMP2, ZTMP17, Assembler::AVX_512bit ); vpshufb(ZTMP3, ZTMP3, xmm24, Assembler::AVX_512bit); evpxorq (ZTMP3, ZTMP3, ZTMP17, Assembler::AVX_512bit);; | |||
| 1497 | // Reuse ZTMP17 / ZTMP18 for loading remaining AES Keys | |||
| 1498 | ev_load_key(ZTMP17, key, 2 * 16, xmm29); | |||
| 1499 | // GHASH 4 blocks | |||
| 1500 | carrylessMultiply(ZTMP6, ZTMP7, ZTMP8, ZTMP5, ZTMP21, ZTMP19)evpclmulqdq(ZTMP6, ZTMP21, ZTMP19, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP7, ZTMP21, ZTMP19, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP8, ZTMP21, ZTMP19, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP5, ZTMP21, ZTMP19, 0x11, Assembler::AVX_512bit );; | |||
| 1501 | // Load the next hkey and Ghash data | |||
| 1502 | evmovdquq(ZTMP19, Address(subkeyHtbl, ++i * 64), Assembler::AVX_512bit); | |||
| 1503 | evmovdquq(ZTMP21, Address(data, ghash_pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); | |||
| 1504 | vpshufb(ZTMP21, ZTMP21, xmm24, Assembler::AVX_512bit); | |||
| 1505 | ||||
| 1506 | // AES round 1 | |||
| 1507 | roundEncode(ZTMP18, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP18, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP18, Assembler::AVX_512bit);; | |||
| 1508 | ev_load_key(ZTMP18, key, 3 * 16, xmm29); | |||
| 1509 | ||||
| 1510 | // GHASH 4 blocks(11 to 8) | |||
| 1511 | carrylessMultiply(ZTMP10, ZTMP12, ZTMP11, ZTMP9, ZTMP22, ZTMP20)evpclmulqdq(ZTMP10, ZTMP22, ZTMP20, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP12, ZTMP22, ZTMP20, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP11, ZTMP22, ZTMP20, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP9, ZTMP22, ZTMP20, 0x11, Assembler::AVX_512bit );; | |||
| 1512 | // Load the next hkey and GDATA | |||
| 1513 | evmovdquq(ZTMP20, Address(subkeyHtbl, ++i * 64), Assembler::AVX_512bit); | |||
| 1514 | evmovdquq(ZTMP22, Address(data, ghash_pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); | |||
| 1515 | vpshufb(ZTMP22, ZTMP22, xmm24, Assembler::AVX_512bit); | |||
| 1516 | ||||
| 1517 | // AES round 2 | |||
| 1518 | roundEncode(ZTMP17, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP17, Assembler::AVX_512bit);; | |||
| 1519 | ev_load_key(ZTMP17, key, 4 * 16, xmm29); | |||
| 1520 | ||||
| 1521 | // GHASH 4 blocks(7 to 4) | |||
| 1522 | carrylessMultiply(ZTMP14, ZTMP16, ZTMP15, ZTMP13, ZTMP21, ZTMP19)evpclmulqdq(ZTMP14, ZTMP21, ZTMP19, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP16, ZTMP21, ZTMP19, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP15, ZTMP21, ZTMP19, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP13, ZTMP21, ZTMP19, 0x11, Assembler::AVX_512bit );; | |||
| 1523 | // AES rounds 3 | |||
| 1524 | roundEncode(ZTMP18, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP18, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP18, Assembler::AVX_512bit);; | |||
| 1525 | ev_load_key(ZTMP18, key, 5 * 16, xmm29); | |||
| 1526 | ||||
| 1527 | // Gather(XOR) GHASH for 12 blocks | |||
| 1528 | xorGHASH(ZTMP5, ZTMP6, ZTMP8, ZTMP7, ZTMP9, ZTMP13, ZTMP10, ZTMP14, ZTMP12, ZTMP16, ZTMP11, ZTMP15)vpternlogq(ZTMP5, 0x96, ZTMP9, ZTMP13, Assembler::AVX_512bit) ; vpternlogq(ZTMP6, 0x96, ZTMP10, ZTMP14, Assembler::AVX_512bit ); vpternlogq(ZTMP8, 0x96, ZTMP12, ZTMP16, Assembler::AVX_512bit ); vpternlogq(ZTMP7, 0x96, ZTMP11, ZTMP15, Assembler::AVX_512bit );; | |||
| 1529 | ||||
| 1530 | // AES rounds 4 | |||
| 1531 | roundEncode(ZTMP17, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP17, Assembler::AVX_512bit);; | |||
| 1532 | ev_load_key(ZTMP17, key, 6 * 16, xmm29); | |||
| 1533 | ||||
| 1534 | // load plain / cipher text(recycle registers) | |||
| 1535 | loadData(in, pos, ZTMP13, ZTMP14, ZTMP15, ZTMP16)evmovdquq(ZTMP13, Address(in, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); evmovdquq(ZTMP14, Address(in, pos, Address ::times_1, 1 * 64), Assembler::AVX_512bit); evmovdquq(ZTMP15, Address(in, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit ); evmovdquq(ZTMP16, Address(in, pos, Address::times_1, 3 * 64 ), Assembler::AVX_512bit);; | |||
| 1536 | ||||
| 1537 | // AES rounds 5 | |||
| 1538 | roundEncode(ZTMP18, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP18, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP18, Assembler::AVX_512bit);; | |||
| 1539 | ev_load_key(ZTMP18, key, 7 * 16, xmm29); | |||
| 1540 | // GHASH 4 blocks(3 to 0) | |||
| 1541 | carrylessMultiply(ZTMP10, ZTMP12, ZTMP11, ZTMP9, ZTMP22, ZTMP20)evpclmulqdq(ZTMP10, ZTMP22, ZTMP20, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP12, ZTMP22, ZTMP20, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP11, ZTMP22, ZTMP20, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP9, ZTMP22, ZTMP20, 0x11, Assembler::AVX_512bit );; | |||
| 1542 | ||||
| 1543 | // AES round 6 | |||
| 1544 | roundEncode(ZTMP17, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP17, Assembler::AVX_512bit);; | |||
| 1545 | ev_load_key(ZTMP17, key, 8 * 16, xmm29); | |||
| 1546 | ||||
| 1547 | // gather GHASH in ZTMP6(low) and ZTMP5(high) | |||
| 1548 | if (first_time_reduction) { | |||
| 1549 | vpternlogq(ZTMP7, 0x96, ZTMP8, ZTMP12, Assembler::AVX_512bit); | |||
| 1550 | evpxorq(xmm25, ZTMP7, ZTMP11, Assembler::AVX_512bit); | |||
| 1551 | evpxorq(xmm27, ZTMP5, ZTMP9, Assembler::AVX_512bit); | |||
| 1552 | evpxorq(xmm26, ZTMP6, ZTMP10, Assembler::AVX_512bit); | |||
| 1553 | } | |||
| 1554 | else if (!first_time_reduction && !final_reduction) { | |||
| 1555 | xorGHASH(ZTMP7, xmm25, xmm27, xmm26, ZTMP8, ZTMP12, ZTMP7, ZTMP11, ZTMP5, ZTMP9, ZTMP6, ZTMP10)vpternlogq(ZTMP7, 0x96, ZTMP8, ZTMP12, Assembler::AVX_512bit) ; vpternlogq(xmm25, 0x96, ZTMP7, ZTMP11, Assembler::AVX_512bit ); vpternlogq(xmm27, 0x96, ZTMP5, ZTMP9, Assembler::AVX_512bit ); vpternlogq(xmm26, 0x96, ZTMP6, ZTMP10, Assembler::AVX_512bit );; | |||
| 1556 | } | |||
| 1557 | ||||
| 1558 | if (final_reduction) { | |||
| 1559 | // Phase one: Add mid products together | |||
| 1560 | // Also load polynomial constant for reduction | |||
| 1561 | vpternlogq(ZTMP7, 0x96, ZTMP8, ZTMP12, Assembler::AVX_512bit); | |||
| 1562 | vpternlogq(ZTMP7, 0x96, xmm25, ZTMP11, Assembler::AVX_512bit); | |||
| 1563 | vpsrldq(ZTMP11, ZTMP7, 8, Assembler::AVX_512bit); | |||
| 1564 | vpslldq(ZTMP7, ZTMP7, 8, Assembler::AVX_512bit); | |||
| 1565 | evmovdquq(ZTMP12, ExternalAddress(StubRoutines::x86::ghash_polynomial512_addr()), Assembler::AVX_512bit, rbx); | |||
| 1566 | } | |||
| 1567 | // AES round 7 | |||
| 1568 | roundEncode(ZTMP18, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP18, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP18, Assembler::AVX_512bit);; | |||
| 1569 | ev_load_key(ZTMP18, key, 9 * 16, xmm29); | |||
| 1570 | if (final_reduction) { | |||
| 1571 | vpternlogq(ZTMP5, 0x96, ZTMP9, ZTMP11, Assembler::AVX_512bit); | |||
| 1572 | evpxorq(ZTMP5, ZTMP5, xmm27, Assembler::AVX_512bit); | |||
| 1573 | vpternlogq(ZTMP6, 0x96, ZTMP10, ZTMP7, Assembler::AVX_512bit); | |||
| 1574 | evpxorq(ZTMP6, ZTMP6, xmm26, Assembler::AVX_512bit); | |||
| 1575 | } | |||
| 1576 | // AES round 8 | |||
| 1577 | roundEncode(ZTMP17, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP17, Assembler::AVX_512bit);; | |||
| 1578 | ev_load_key(ZTMP17, key, 10 * 16, xmm29); | |||
| 1579 | ||||
| 1580 | // Horizontal xor of low and high 4*128 | |||
| 1581 | if (final_reduction) { | |||
| 1582 | vhpxori4x128(ZTMP5, ZTMP9)vextracti64x4(ZTMP9, ZTMP5, 1); evpxorq(ZTMP5, ZTMP5, ZTMP9, Assembler ::AVX_256bit); vextracti32x4(ZTMP9, ZTMP5, 1); evpxorq(ZTMP5, ZTMP5, ZTMP9, Assembler::AVX_128bit);; | |||
| 1583 | vhpxori4x128(ZTMP6, ZTMP10)vextracti64x4(ZTMP10, ZTMP6, 1); evpxorq(ZTMP6, ZTMP6, ZTMP10 , Assembler::AVX_256bit); vextracti32x4(ZTMP10, ZTMP6, 1); evpxorq (ZTMP6, ZTMP6, ZTMP10, Assembler::AVX_128bit);; | |||
| 1584 | } | |||
| 1585 | // AES round 9 | |||
| 1586 | roundEncode(ZTMP18, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP18, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP18, Assembler::AVX_512bit);; | |||
| 1587 | // First phase of reduction | |||
| 1588 | if (final_reduction) { | |||
| 1589 | evpclmulqdq(ZTMP10, ZTMP12, ZTMP6, 0x01, Assembler::AVX_128bit); | |||
| 1590 | vpslldq(ZTMP10, ZTMP10, 8, Assembler::AVX_128bit); | |||
| 1591 | evpxorq(ZTMP10, ZTMP6, ZTMP10, Assembler::AVX_128bit); | |||
| 1592 | } | |||
| 1593 | cmpl(rounds, 52); | |||
| 1594 | jcc(Assembler::greaterEqual, AES_192); | |||
| 1595 | jmp(LAST_AES_RND); | |||
| 1596 | // AES rounds upto 11 (AES192) or 13 (AES256) | |||
| 1597 | bind(AES_192); | |||
| 1598 | roundEncode(ZTMP17, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP17, Assembler::AVX_512bit);; | |||
| 1599 | ev_load_key(ZTMP18, key, 11 * 16, xmm29); | |||
| 1600 | roundEncode(ZTMP18, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP18, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP18, Assembler::AVX_512bit);; | |||
| 1601 | ev_load_key(ZTMP17, key, 12 * 16, xmm29); | |||
| 1602 | cmpl(rounds, 60); | |||
| 1603 | jcc(Assembler::aboveEqual, AES_256); | |||
| 1604 | jmp(LAST_AES_RND); | |||
| 1605 | ||||
| 1606 | bind(AES_256); | |||
| 1607 | roundEncode(ZTMP17, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP17, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP17, Assembler::AVX_512bit);; | |||
| 1608 | ev_load_key(ZTMP18, key, 13 * 16, xmm29); | |||
| 1609 | roundEncode(ZTMP18, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenc(ZTMP0, ZTMP0, ZTMP18, Assembler::AVX_512bit); vaesenc (ZTMP1, ZTMP1, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP2, ZTMP2, ZTMP18, Assembler::AVX_512bit); vaesenc(ZTMP3, ZTMP3, ZTMP18, Assembler::AVX_512bit);; | |||
| 1610 | ev_load_key(ZTMP17, key, 14 * 16, xmm29); | |||
| 1611 | ||||
| 1612 | bind(LAST_AES_RND); | |||
| 1613 | // Second phase of reduction | |||
| 1614 | if (final_reduction) { | |||
| 1615 | evpclmulqdq(ZTMP9, ZTMP12, ZTMP10, 0x00, Assembler::AVX_128bit); | |||
| 1616 | vpsrldq(ZTMP9, ZTMP9, 4, Assembler::AVX_128bit); // Shift-R 1-DW to obtain 2-DWs shift-R | |||
| 1617 | evpclmulqdq(ZTMP11, ZTMP12, ZTMP10, 0x10, Assembler::AVX_128bit); | |||
| 1618 | vpslldq(ZTMP11, ZTMP11, 4, Assembler::AVX_128bit); // Shift-L 1-DW for result | |||
| 1619 | // ZTMP5 = ZTMP5 X ZTMP11 X ZTMP9 | |||
| 1620 | vpternlogq(ZTMP5, 0x96, ZTMP11, ZTMP9, Assembler::AVX_128bit); | |||
| 1621 | } | |||
| 1622 | // Last AES round | |||
| 1623 | lastroundEncode(ZTMP17, ZTMP0, ZTMP1, ZTMP2, ZTMP3)vaesenclast(ZTMP0, ZTMP0, ZTMP17, Assembler::AVX_512bit); vaesenclast (ZTMP1, ZTMP1, ZTMP17, Assembler::AVX_512bit); vaesenclast(ZTMP2 , ZTMP2, ZTMP17, Assembler::AVX_512bit); vaesenclast(ZTMP3, ZTMP3 , ZTMP17, Assembler::AVX_512bit);; | |||
| 1624 | // XOR against plain / cipher text | |||
| 1625 | xorBeforeStore(ZTMP0, ZTMP1, ZTMP2, ZTMP3, ZTMP13, ZTMP14, ZTMP15, ZTMP16)evpxorq(ZTMP0, ZTMP0, ZTMP13, Assembler::AVX_512bit); evpxorq (ZTMP1, ZTMP1, ZTMP14, Assembler::AVX_512bit); evpxorq(ZTMP2, ZTMP2, ZTMP15, Assembler::AVX_512bit); evpxorq(ZTMP3, ZTMP3, ZTMP16, Assembler::AVX_512bit);; | |||
| 1626 | // store cipher / plain text | |||
| 1627 | storeData(out, pos, ZTMP0, ZTMP1, ZTMP2, ZTMP3)evmovdquq(Address(out, pos, Address::times_1, 0 * 64), ZTMP0, Assembler::AVX_512bit); evmovdquq(Address(out, pos, Address:: times_1, 1 * 64), ZTMP1, Assembler::AVX_512bit); evmovdquq(Address (out, pos, Address::times_1, 2 * 64), ZTMP2, Assembler::AVX_512bit ); evmovdquq(Address(out, pos, Address::times_1, 3 * 64), ZTMP3 , Assembler::AVX_512bit);; | |||
| 1628 | } | |||
| 1629 | ||||
| 1630 | void MacroAssembler::aesgcm_encrypt(Register in, Register len, Register ct, Register out, Register key, | |||
| 1631 | Register state, Register subkeyHtbl, Register avx512_subkeyHtbl, Register counter) { | |||
| 1632 | Label ENC_DEC_DONE, GENERATE_HTBL_48_BLKS, AES_192, AES_256, STORE_CT, GHASH_LAST_32, | |||
| 1633 | AES_32_BLOCKS, GHASH_AES_PARALLEL, LOOP, ACCUMULATE, GHASH_16_AES_16; | |||
| 1634 | const XMMRegister CTR_BLOCKx = xmm9; | |||
| 1635 | const XMMRegister AAD_HASHx = xmm14; | |||
| 1636 | const Register pos = rax; | |||
| ||||
| 1637 | const Register rounds = r15; | |||
| 1638 | Register ghash_pos; | |||
| 1639 | #ifndef _WIN64 | |||
| 1640 | ghash_pos = r14; | |||
| 1641 | #else | |||
| 1642 | ghash_pos = r11; | |||
| 1643 | #endif // !_WIN64 | |||
| 1644 | const XMMRegister ZTMP0 = xmm0; | |||
| 1645 | const XMMRegister ZTMP1 = xmm3; | |||
| 1646 | const XMMRegister ZTMP2 = xmm4; | |||
| 1647 | const XMMRegister ZTMP3 = xmm5; | |||
| 1648 | const XMMRegister ZTMP4 = xmm6; | |||
| 1649 | const XMMRegister ZTMP5 = xmm7; | |||
| 1650 | const XMMRegister ZTMP6 = xmm10; | |||
| 1651 | const XMMRegister ZTMP7 = xmm11; | |||
| 1652 | const XMMRegister ZTMP8 = xmm12; | |||
| 1653 | const XMMRegister ZTMP9 = xmm13; | |||
| 1654 | const XMMRegister ZTMP10 = xmm15; | |||
| 1655 | const XMMRegister ZTMP11 = xmm16; | |||
| 1656 | const XMMRegister ZTMP12 = xmm17; | |||
| 1657 | const XMMRegister ZTMP13 = xmm19; | |||
| 1658 | const XMMRegister ZTMP14 = xmm20; | |||
| 1659 | const XMMRegister ZTMP15 = xmm21; | |||
| 1660 | const XMMRegister ZTMP16 = xmm30; | |||
| 1661 | const XMMRegister COUNTER_INC_MASK = xmm18; | |||
| 1662 | ||||
| 1663 | movl(pos, 0); // Total length processed | |||
| 1664 | // Min data size processed = 768 bytes | |||
| 1665 | cmpl(len, 768); | |||
| 1666 | jcc(Assembler::less, ENC_DEC_DONE); | |||
| 1667 | ||||
| 1668 | // Generate 48 constants for htbl | |||
| 1669 | call(GENERATE_HTBL_48_BLKS, relocInfo::none); | |||
| 1670 | int index = 0; // Index for choosing subkeyHtbl entry | |||
| 1671 | movl(ghash_pos, 0); // Pointer for ghash read and store operations | |||
| 1672 | ||||
| 1673 | // Move initial counter value and STATE value into variables | |||
| 1674 | movdqu(CTR_BLOCKx, Address(counter, 0)); | |||
| 1675 | movdqu(AAD_HASHx, Address(state, 0)); | |||
| 1676 | // Load lswap mask for ghash | |||
| 1677 | movdqu(xmm24, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()), rbx); | |||
| 1678 | // Shuffle input state using lswap mask | |||
| 1679 | vpshufb(AAD_HASHx, AAD_HASHx, xmm24, Assembler::AVX_128bit); | |||
| 1680 | ||||
| 1681 | // Compute #rounds for AES based on the length of the key array | |||
| 1682 | movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); | |||
| 1683 | ||||
| 1684 | // Broadcast counter value to 512 bit register | |||
| 1685 | evshufi64x2(CTR_BLOCKx, CTR_BLOCKx, CTR_BLOCKx, 0, Assembler::AVX_512bit); | |||
| 1686 | // Load counter shuffle mask | |||
| 1687 | evmovdquq(xmm24, ExternalAddress(StubRoutines::x86::counter_mask_addr()), Assembler::AVX_512bit, rbx); | |||
| 1688 | // Shuffle counter | |||
| 1689 | vpshufb(CTR_BLOCKx, CTR_BLOCKx, xmm24, Assembler::AVX_512bit); | |||
| 1690 | ||||
| 1691 | // Load mask for incrementing counter | |||
| 1692 | evmovdquq(COUNTER_INC_MASK, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 128), Assembler::AVX_512bit, rbx); | |||
| 1693 | // Pre-increment counter | |||
| 1694 | vpaddd(ZTMP5, CTR_BLOCKx, ExternalAddress(StubRoutines::x86::counter_mask_addr() + 64), Assembler::AVX_512bit, rbx); | |||
| 1695 | vpaddd(ZTMP6, ZTMP5, COUNTER_INC_MASK, Assembler::AVX_512bit); | |||
| 1696 | vpaddd(ZTMP7, ZTMP6, COUNTER_INC_MASK, Assembler::AVX_512bit); | |||
| 1697 | vpaddd(ZTMP8, ZTMP7, COUNTER_INC_MASK, Assembler::AVX_512bit); | |||
| 1698 | ||||
| 1699 | // Begin 32 blocks of AES processing | |||
| 1700 | bind(AES_32_BLOCKS); | |||
| 1701 | // Save incremented counter before overwriting it with AES data | |||
| 1702 | evmovdquq(CTR_BLOCKx, ZTMP8, Assembler::AVX_512bit); | |||
| 1703 | ||||
| 1704 | // Move 256 bytes of data | |||
| 1705 | loadData(in, pos, ZTMP0, ZTMP1, ZTMP2, ZTMP3)evmovdquq(ZTMP0, Address(in, pos, Address::times_1, 0 * 64), Assembler ::AVX_512bit); evmovdquq(ZTMP1, Address(in, pos, Address::times_1 , 1 * 64), Assembler::AVX_512bit); evmovdquq(ZTMP2, Address(in , pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); evmovdquq (ZTMP3, Address(in, pos, Address::times_1, 3 * 64), Assembler ::AVX_512bit);; | |||
| 1706 | // Load key shuffle mask | |||
| 1707 | movdqu(xmm29, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()), rbx); | |||
| 1708 | // Load 0th AES round key | |||
| 1709 | ev_load_key(ZTMP4, key, 0, xmm29); | |||
| 1710 | // AES-ROUND0, xmm24 has the shuffle mask | |||
| 1711 | shuffleExorRnd1Key(ZTMP5, ZTMP6, ZTMP7, ZTMP8, xmm24, ZTMP4)vpshufb(ZTMP5, ZTMP5, xmm24, Assembler::AVX_512bit); evpxorq( ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vpshufb(ZTMP6, ZTMP6 , xmm24, Assembler::AVX_512bit); evpxorq(ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vpshufb(ZTMP7, ZTMP7, xmm24, Assembler ::AVX_512bit); evpxorq(ZTMP7, ZTMP7, ZTMP4, Assembler::AVX_512bit ); vpshufb(ZTMP8, ZTMP8, xmm24, Assembler::AVX_512bit); evpxorq (ZTMP8, ZTMP8, ZTMP4, Assembler::AVX_512bit);; | |||
| 1712 | ||||
| 1713 | for (int j = 1; j < 10; j++) { | |||
| 1714 | ev_load_key(ZTMP4, key, j * 16, xmm29); | |||
| 1715 | roundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenc(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenc( ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP7, ZTMP7 , ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP8, ZTMP8, ZTMP4, Assembler::AVX_512bit);; | |||
| 1716 | } | |||
| 1717 | ev_load_key(ZTMP4, key, 10 * 16, xmm29); | |||
| 1718 | // AES rounds upto 11 (AES192) or 13 (AES256) | |||
| 1719 | cmpl(rounds, 52); | |||
| 1720 | jcc(Assembler::greaterEqual, AES_192); | |||
| 1721 | lastroundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenclast(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenclast (ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenclast(ZTMP7 , ZTMP7, ZTMP4, Assembler::AVX_512bit); vaesenclast(ZTMP8, ZTMP8 , ZTMP4, Assembler::AVX_512bit);; | |||
| 1722 | jmp(STORE_CT); | |||
| 1723 | ||||
| 1724 | bind(AES_192); | |||
| 1725 | roundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenc(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenc( ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP7, ZTMP7 , ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP8, ZTMP8, ZTMP4, Assembler::AVX_512bit);; | |||
| 1726 | ev_load_key(ZTMP4, key, 11 * 16, xmm29); | |||
| 1727 | roundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenc(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenc( ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP7, ZTMP7 , ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP8, ZTMP8, ZTMP4, Assembler::AVX_512bit);; | |||
| 1728 | cmpl(rounds, 60); | |||
| 1729 | jcc(Assembler::aboveEqual, AES_256); | |||
| 1730 | ev_load_key(ZTMP4, key, 12 * 16, xmm29); | |||
| 1731 | lastroundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenclast(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenclast (ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenclast(ZTMP7 , ZTMP7, ZTMP4, Assembler::AVX_512bit); vaesenclast(ZTMP8, ZTMP8 , ZTMP4, Assembler::AVX_512bit);; | |||
| 1732 | jmp(STORE_CT); | |||
| 1733 | ||||
| 1734 | bind(AES_256); | |||
| 1735 | ev_load_key(ZTMP4, key, 12 * 16, xmm29); | |||
| 1736 | roundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenc(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenc( ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP7, ZTMP7 , ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP8, ZTMP8, ZTMP4, Assembler::AVX_512bit);; | |||
| 1737 | ev_load_key(ZTMP4, key, 13 * 16, xmm29); | |||
| 1738 | roundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenc(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenc( ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP7, ZTMP7 , ZTMP4, Assembler::AVX_512bit); vaesenc(ZTMP8, ZTMP8, ZTMP4, Assembler::AVX_512bit);; | |||
| 1739 | ev_load_key(ZTMP4, key, 14 * 16, xmm29); | |||
| 1740 | // Last AES round | |||
| 1741 | lastroundEncode(ZTMP4, ZTMP5, ZTMP6, ZTMP7, ZTMP8)vaesenclast(ZTMP5, ZTMP5, ZTMP4, Assembler::AVX_512bit); vaesenclast (ZTMP6, ZTMP6, ZTMP4, Assembler::AVX_512bit); vaesenclast(ZTMP7 , ZTMP7, ZTMP4, Assembler::AVX_512bit); vaesenclast(ZTMP8, ZTMP8 , ZTMP4, Assembler::AVX_512bit);; | |||
| 1742 | ||||
| 1743 | bind(STORE_CT); | |||
| 1744 | // Xor the encrypted key with PT to obtain CT | |||
| 1745 | xorBeforeStore(ZTMP5, ZTMP6, ZTMP7, ZTMP8, ZTMP0, ZTMP1, ZTMP2, ZTMP3)evpxorq(ZTMP5, ZTMP5, ZTMP0, Assembler::AVX_512bit); evpxorq( ZTMP6, ZTMP6, ZTMP1, Assembler::AVX_512bit); evpxorq(ZTMP7, ZTMP7 , ZTMP2, Assembler::AVX_512bit); evpxorq(ZTMP8, ZTMP8, ZTMP3, Assembler::AVX_512bit);; | |||
| 1746 | storeData(out, pos, ZTMP5, ZTMP6, ZTMP7, ZTMP8)evmovdquq(Address(out, pos, Address::times_1, 0 * 64), ZTMP5, Assembler::AVX_512bit); evmovdquq(Address(out, pos, Address:: times_1, 1 * 64), ZTMP6, Assembler::AVX_512bit); evmovdquq(Address (out, pos, Address::times_1, 2 * 64), ZTMP7, Assembler::AVX_512bit ); evmovdquq(Address(out, pos, Address::times_1, 3 * 64), ZTMP8 , Assembler::AVX_512bit);; | |||
| 1747 | // 16 blocks encryption completed | |||
| 1748 | addl(pos, 256); | |||
| 1749 | cmpl(pos, 512); | |||
| 1750 | jcc(Assembler::aboveEqual, GHASH_AES_PARALLEL); | |||
| 1751 | vpaddd(ZTMP5, CTR_BLOCKx, COUNTER_INC_MASK, Assembler::AVX_512bit); | |||
| 1752 | vpaddd(ZTMP6, ZTMP5, COUNTER_INC_MASK, Assembler::AVX_512bit); | |||
| 1753 | vpaddd(ZTMP7, ZTMP6, COUNTER_INC_MASK, Assembler::AVX_512bit); | |||
| 1754 | vpaddd(ZTMP8, ZTMP7, COUNTER_INC_MASK, Assembler::AVX_512bit); | |||
| 1755 | jmp(AES_32_BLOCKS); | |||
| 1756 | ||||
| 1757 | bind(GHASH_AES_PARALLEL); | |||
| 1758 | // Ghash16_encrypt16_parallel takes place in the order with three reduction values: | |||
| 1759 | // 1) First time -> cipher xor input ghash | |||
| 1760 | // 2) No reduction -> accumulate multiplication values | |||
| 1761 | // 3) Final reduction post 48 blocks -> new ghash value is computed for the next round | |||
| 1762 | // Reduction value = first time | |||
| 1763 | ghash16_encrypt16_parallel(key, avx512_subkeyHtbl, CTR_BLOCKx, AAD_HASHx, in, out, ct, pos, true, xmm24, true, rounds, ghash_pos, false, index, COUNTER_INC_MASK); | |||
| 1764 | addl(pos, 256); | |||
| 1765 | addl(ghash_pos, 256); | |||
| 1766 | index += 4; | |||
| 1767 | ||||
| 1768 | // At this point we have processed 768 bytes of AES and 256 bytes of GHASH. | |||
| 1769 | // If the remaining length is less than 768, process remaining 512 bytes of ghash in GHASH_LAST_32 code | |||
| 1770 | subl(len, 768); | |||
| 1771 | cmpl(len, 768); | |||
| 1772 | jcc(Assembler::less, GHASH_LAST_32); | |||
| 1773 | ||||
| 1774 | // AES 16 blocks and GHASH 16 blocks in parallel | |||
| 1775 | // For multiples of 48 blocks we will do ghash16_encrypt16 interleaved multiple times | |||
| 1776 | // Reduction value = no reduction means that the carryless multiplication values are accumulated for further calculations | |||
| 1777 | // Each call uses 4 subkeyHtbl values, so increment the index by 4. | |||
| 1778 | bind(GHASH_16_AES_16); | |||
| 1779 | // Reduction value = no reduction | |||
| 1780 | ghash16_encrypt16_parallel(key, avx512_subkeyHtbl, CTR_BLOCKx, AAD_HASHx, in, out, ct, pos, false, xmm24, false, rounds, ghash_pos, false, index, COUNTER_INC_MASK); | |||
| 1781 | addl(pos, 256); | |||
| 1782 | addl(ghash_pos, 256); | |||
| 1783 | index += 4; | |||
| 1784 | // Reduction value = final reduction means that the accumulated values have to be reduced as we have completed 48 blocks of ghash | |||
| 1785 | ghash16_encrypt16_parallel(key, avx512_subkeyHtbl, CTR_BLOCKx, AAD_HASHx, in, out, ct, pos, false, xmm24, false, rounds, ghash_pos, true, index, COUNTER_INC_MASK); | |||
| 1786 | addl(pos, 256); | |||
| 1787 | addl(ghash_pos, 256); | |||
| 1788 | // Calculated ghash value needs to be moved to AAD_HASHX so that we can restart the ghash16-aes16 pipeline | |||
| 1789 | movdqu(AAD_HASHx, ZTMP5); | |||
| 1790 | index = 0; // Reset subkeyHtbl index | |||
| 1791 | ||||
| 1792 | // Restart the pipeline | |||
| 1793 | // Reduction value = first time | |||
| 1794 | ghash16_encrypt16_parallel(key, avx512_subkeyHtbl, CTR_BLOCKx, AAD_HASHx, in, out, ct, pos, true, xmm24, true, rounds, ghash_pos, false, index, COUNTER_INC_MASK); | |||
| 1795 | addl(pos, 256); | |||
| 1796 | addl(ghash_pos, 256); | |||
| 1797 | index += 4; | |||
| 1798 | ||||
| 1799 | subl(len, 768); | |||
| 1800 | cmpl(len, 768); | |||
| 1801 | jcc(Assembler::greaterEqual, GHASH_16_AES_16); | |||
| 1802 | ||||
| 1803 | // GHASH last 32 blocks processed here | |||
| 1804 | // GHASH products accumulated in ZMM27, ZMM25 and ZMM26 during GHASH16-AES16 operation is used | |||
| 1805 | bind(GHASH_LAST_32); | |||
| 1806 | // Use rbx as a pointer to the htbl; For last 32 blocks of GHASH, use key# 4-11 entry in subkeyHtbl | |||
| 1807 | movl(rbx, 256); | |||
| 1808 | // Load cipher blocks | |||
| 1809 | evmovdquq(ZTMP13, Address(ct, ghash_pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 1810 | evmovdquq(ZTMP14, Address(ct, ghash_pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 1811 | vpshufb(ZTMP13, ZTMP13, xmm24, Assembler::AVX_512bit); | |||
| 1812 | vpshufb(ZTMP14, ZTMP14, xmm24, Assembler::AVX_512bit); | |||
| 1813 | // Load ghash keys | |||
| 1814 | evmovdquq(ZTMP15, Address(avx512_subkeyHtbl, rbx, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 1815 | evmovdquq(ZTMP16, Address(avx512_subkeyHtbl, rbx, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 1816 | ||||
| 1817 | // Ghash blocks 0 - 3 | |||
| 1818 | carrylessMultiply(ZTMP2, ZTMP3, ZTMP4, ZTMP1, ZTMP13, ZTMP15)evpclmulqdq(ZTMP2, ZTMP13, ZTMP15, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP3, ZTMP13, ZTMP15, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP4, ZTMP13, ZTMP15, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP1, ZTMP13, ZTMP15, 0x11, Assembler::AVX_512bit );; | |||
| 1819 | // Ghash blocks 4 - 7 | |||
| 1820 | carrylessMultiply(ZTMP6, ZTMP7, ZTMP8, ZTMP5, ZTMP14, ZTMP16)evpclmulqdq(ZTMP6, ZTMP14, ZTMP16, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP7, ZTMP14, ZTMP16, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP8, ZTMP14, ZTMP16, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP5, ZTMP14, ZTMP16, 0x11, Assembler::AVX_512bit );; | |||
| 1821 | ||||
| 1822 | vpternlogq(ZTMP1, 0x96, ZTMP5, xmm27, Assembler::AVX_512bit); // ZTMP1 = ZTMP1 + ZTMP5 + zmm27 | |||
| 1823 | vpternlogq(ZTMP2, 0x96, ZTMP6, xmm26, Assembler::AVX_512bit); // ZTMP2 = ZTMP2 + ZTMP6 + zmm26 | |||
| 1824 | vpternlogq(ZTMP3, 0x96, ZTMP7, xmm25, Assembler::AVX_512bit); // ZTMP3 = ZTMP3 + ZTMP7 + zmm25 | |||
| 1825 | evpxorq(ZTMP4, ZTMP4, ZTMP8, Assembler::AVX_512bit); // ZTMP4 = ZTMP4 + ZTMP8 | |||
| 1826 | ||||
| 1827 | addl(ghash_pos, 128); | |||
| 1828 | addl(rbx, 128); | |||
| 1829 | ||||
| 1830 | // Ghash remaining blocks | |||
| 1831 | bind(LOOP); | |||
| 1832 | cmpl(ghash_pos, pos); | |||
| 1833 | jcc(Assembler::aboveEqual, ACCUMULATE); | |||
| 1834 | // Load next cipher blocks and corresponding ghash keys | |||
| 1835 | evmovdquq(ZTMP13, Address(ct, ghash_pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 1836 | evmovdquq(ZTMP14, Address(ct, ghash_pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 1837 | vpshufb(ZTMP13, ZTMP13, xmm24, Assembler::AVX_512bit); | |||
| 1838 | vpshufb(ZTMP14, ZTMP14, xmm24, Assembler::AVX_512bit); | |||
| 1839 | evmovdquq(ZTMP15, Address(avx512_subkeyHtbl, rbx, Address::times_1, 0 * 64), Assembler::AVX_512bit); | |||
| 1840 | evmovdquq(ZTMP16, Address(avx512_subkeyHtbl, rbx, Address::times_1, 1 * 64), Assembler::AVX_512bit); | |||
| 1841 | ||||
| 1842 | // ghash blocks 0 - 3 | |||
| 1843 | carrylessMultiply(ZTMP6, ZTMP7, ZTMP8, ZTMP5, ZTMP13, ZTMP15)evpclmulqdq(ZTMP6, ZTMP13, ZTMP15, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP7, ZTMP13, ZTMP15, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP8, ZTMP13, ZTMP15, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP5, ZTMP13, ZTMP15, 0x11, Assembler::AVX_512bit );; | |||
| 1844 | ||||
| 1845 | // ghash blocks 4 - 7 | |||
| 1846 | carrylessMultiply(ZTMP10, ZTMP11, ZTMP12, ZTMP9, ZTMP14, ZTMP16)evpclmulqdq(ZTMP10, ZTMP14, ZTMP16, 0x00, Assembler::AVX_512bit ); evpclmulqdq(ZTMP11, ZTMP14, ZTMP16, 0x01, Assembler::AVX_512bit ); evpclmulqdq(ZTMP12, ZTMP14, ZTMP16, 0x10, Assembler::AVX_512bit ); evpclmulqdq(ZTMP9, ZTMP14, ZTMP16, 0x11, Assembler::AVX_512bit );; | |||
| 1847 | ||||
| 1848 | // update sums | |||
| 1849 | // ZTMP1 = ZTMP1 + ZTMP5 + ZTMP9 | |||
| 1850 | // ZTMP2 = ZTMP2 + ZTMP6 + ZTMP10 | |||
| 1851 | // ZTMP3 = ZTMP3 + ZTMP7 xor ZTMP11 | |||
| 1852 | // ZTMP4 = ZTMP4 + ZTMP8 xor ZTMP12 | |||
| 1853 | xorGHASH(ZTMP1, ZTMP2, ZTMP3, ZTMP4, ZTMP5, ZTMP9, ZTMP6, ZTMP10, ZTMP7, ZTMP11, ZTMP8, ZTMP12)vpternlogq(ZTMP1, 0x96, ZTMP5, ZTMP9, Assembler::AVX_512bit); vpternlogq(ZTMP2, 0x96, ZTMP6, ZTMP10, Assembler::AVX_512bit ); vpternlogq(ZTMP3, 0x96, ZTMP7, ZTMP11, Assembler::AVX_512bit ); vpternlogq(ZTMP4, 0x96, ZTMP8, ZTMP12, Assembler::AVX_512bit );; | |||
| 1854 | addl(ghash_pos, 128); | |||
| 1855 | addl(rbx, 128); | |||
| 1856 | jmp(LOOP); | |||
| 1857 | ||||
| 1858 | // Integrate ZTMP3/ZTMP4 into ZTMP1 and ZTMP2 | |||
| 1859 | bind(ACCUMULATE); | |||
| 1860 | evpxorq(ZTMP3, ZTMP3, ZTMP4, Assembler::AVX_512bit); | |||
| 1861 | vpsrldq(ZTMP7, ZTMP3, 8, Assembler::AVX_512bit); | |||
| 1862 | vpslldq(ZTMP8, ZTMP3, 8, Assembler::AVX_512bit); | |||
| 1863 | evpxorq(ZTMP1, ZTMP1, ZTMP7, Assembler::AVX_512bit); | |||
| 1864 | evpxorq(ZTMP2, ZTMP2, ZTMP8, Assembler::AVX_512bit); | |||
| 1865 | ||||
| 1866 | // Add ZTMP1 and ZTMP2 128 - bit words horizontally | |||
| 1867 | vhpxori4x128(ZTMP1, ZTMP11)vextracti64x4(ZTMP11, ZTMP1, 1); evpxorq(ZTMP1, ZTMP1, ZTMP11 , Assembler::AVX_256bit); vextracti32x4(ZTMP11, ZTMP1, 1); evpxorq (ZTMP1, ZTMP1, ZTMP11, Assembler::AVX_128bit);; | |||
| 1868 | vhpxori4x128(ZTMP2, ZTMP12)vextracti64x4(ZTMP12, ZTMP2, 1); evpxorq(ZTMP2, ZTMP2, ZTMP12 , Assembler::AVX_256bit); vextracti32x4(ZTMP12, ZTMP2, 1); evpxorq (ZTMP2, ZTMP2, ZTMP12, Assembler::AVX_128bit);; | |||
| 1869 | // Load reduction polynomial and compute final reduction | |||
| 1870 | evmovdquq(ZTMP15, ExternalAddress(StubRoutines::x86::ghash_polynomial512_addr()), Assembler::AVX_512bit, rbx); | |||
| 1871 | vclmul_reduce(AAD_HASHx, ZTMP15, ZTMP1, ZTMP2, ZTMP3, ZTMP4)evpclmulqdq(ZTMP3, ZTMP15, ZTMP2, 0x01, Assembler::AVX_512bit ); vpslldq(ZTMP3, ZTMP3, 8, Assembler::AVX_512bit); evpxorq(ZTMP3 , ZTMP2, ZTMP3, Assembler::AVX_512bit); evpclmulqdq(ZTMP4, ZTMP15 , ZTMP3, 0x00, Assembler::AVX_512bit); vpsrldq(ZTMP4, ZTMP4, 4 , Assembler::AVX_512bit); evpclmulqdq(AAD_HASHx, ZTMP15, ZTMP3 , 0x10, Assembler::AVX_512bit); vpslldq(AAD_HASHx, AAD_HASHx, 4, Assembler::AVX_512bit); vpternlogq(AAD_HASHx, 0x96, ZTMP4 , ZTMP1, Assembler::AVX_512bit);; | |||
| 1872 | ||||
| 1873 | // Pre-increment counter for next operation | |||
| 1874 | vpaddd(CTR_BLOCKx, CTR_BLOCKx, xmm18, Assembler::AVX_128bit); | |||
| 1875 | // Shuffle counter and save the updated value | |||
| 1876 | vpshufb(CTR_BLOCKx, CTR_BLOCKx, xmm24, Assembler::AVX_512bit); | |||
| 1877 | movdqu(Address(counter, 0), CTR_BLOCKx); | |||
| 1878 | // Load ghash lswap mask | |||
| 1879 | movdqu(xmm24, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); | |||
| 1880 | // Shuffle ghash using lbswap_mask and store it | |||
| 1881 | vpshufb(AAD_HASHx, AAD_HASHx, xmm24, Assembler::AVX_128bit); | |||
| 1882 | movdqu(Address(state, 0), AAD_HASHx); | |||
| 1883 | jmp(ENC_DEC_DONE); | |||
| 1884 | ||||
| 1885 | bind(GENERATE_HTBL_48_BLKS); | |||
| 1886 | generateHtbl_48_block_zmm(subkeyHtbl, avx512_subkeyHtbl); | |||
| 1887 | ||||
| 1888 | bind(ENC_DEC_DONE); | |||
| 1889 | movq(rax, pos); | |||
| 1890 | } | |||
| 1891 | ||||
| 1892 | #endif // _LP64 |
| 1 | /* | |||
| 2 | * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. | |||
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | |||
| 4 | * | |||
| 5 | * This code is free software; you can redistribute it and/or modify it | |||
| 6 | * under the terms of the GNU General Public License version 2 only, as | |||
| 7 | * published by the Free Software Foundation. | |||
| 8 | * | |||
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT | |||
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |||
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |||
| 12 | * version 2 for more details (a copy is included in the LICENSE file that | |||
| 13 | * accompanied this code). | |||
| 14 | * | |||
| 15 | * You should have received a copy of the GNU General Public License version | |||
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, | |||
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |||
| 18 | * | |||
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | |||
| 20 | * or visit www.oracle.com if you need additional information or have any | |||
| 21 | * questions. | |||
| 22 | * | |||
| 23 | */ | |||
| 24 | ||||
| 25 | #ifndef CPU_X86_ASSEMBLER_X86_HPP | |||
| 26 | #define CPU_X86_ASSEMBLER_X86_HPP | |||
| 27 | ||||
| 28 | #include "asm/register.hpp" | |||
| 29 | #include "utilities/powerOfTwo.hpp" | |||
| 30 | ||||
| 31 | // Contains all the definitions needed for x86 assembly code generation. | |||
| 32 | ||||
| 33 | // Calling convention | |||
| 34 | class Argument { | |||
| 35 | public: | |||
| 36 | enum { | |||
| 37 | #ifdef _LP641 | |||
| 38 | #ifdef _WIN64 | |||
| 39 | n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) | |||
| 40 | n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... ) | |||
| 41 | n_int_register_returns_c = 1, // rax | |||
| 42 | n_float_register_returns_c = 1, // xmm0 | |||
| 43 | #else | |||
| 44 | n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) | |||
| 45 | n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... ) | |||
| 46 | n_int_register_returns_c = 2, // rax, rdx | |||
| 47 | n_float_register_returns_c = 2, // xmm0, xmm1 | |||
| 48 | #endif // _WIN64 | |||
| 49 | n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ... | |||
| 50 | n_float_register_parameters_j = 8 // j_farg0, j_farg1, ... | |||
| 51 | #else | |||
| 52 | n_register_parameters = 0 // 0 registers used to pass arguments | |||
| 53 | #endif // _LP64 | |||
| 54 | }; | |||
| 55 | }; | |||
| 56 | ||||
| 57 | ||||
| 58 | #ifdef _LP641 | |||
| 59 | // Symbolically name the register arguments used by the c calling convention. | |||
| 60 | // Windows is different from linux/solaris. So much for standards... | |||
| 61 | ||||
| 62 | #ifdef _WIN64 | |||
| 63 | ||||
| 64 | REGISTER_DECLARATION(Register, c_rarg0, rcx)const Register c_rarg0 = ((Register)rcx); | |||
| 65 | REGISTER_DECLARATION(Register, c_rarg1, rdx)const Register c_rarg1 = ((Register)rdx); | |||
| 66 | REGISTER_DECLARATION(Register, c_rarg2, r8)const Register c_rarg2 = ((Register)r8); | |||
| 67 | REGISTER_DECLARATION(Register, c_rarg3, r9)const Register c_rarg3 = ((Register)r9); | |||
| 68 | ||||
| 69 | REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0)const XMMRegister c_farg0 = ((XMMRegister)xmm0); | |||
| 70 | REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1)const XMMRegister c_farg1 = ((XMMRegister)xmm1); | |||
| 71 | REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2)const XMMRegister c_farg2 = ((XMMRegister)xmm2); | |||
| 72 | REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3)const XMMRegister c_farg3 = ((XMMRegister)xmm3); | |||
| 73 | ||||
| 74 | #else | |||
| 75 | ||||
| 76 | REGISTER_DECLARATION(Register, c_rarg0, rdi)const Register c_rarg0 = ((Register)rdi); | |||
| 77 | REGISTER_DECLARATION(Register, c_rarg1, rsi)const Register c_rarg1 = ((Register)rsi); | |||
| 78 | REGISTER_DECLARATION(Register, c_rarg2, rdx)const Register c_rarg2 = ((Register)rdx); | |||
| 79 | REGISTER_DECLARATION(Register, c_rarg3, rcx)const Register c_rarg3 = ((Register)rcx); | |||
| 80 | REGISTER_DECLARATION(Register, c_rarg4, r8)const Register c_rarg4 = ((Register)r8); | |||
| 81 | REGISTER_DECLARATION(Register, c_rarg5, r9)const Register c_rarg5 = ((Register)r9); | |||
| 82 | ||||
| 83 | REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0)const XMMRegister c_farg0 = ((XMMRegister)xmm0); | |||
| 84 | REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1)const XMMRegister c_farg1 = ((XMMRegister)xmm1); | |||
| 85 | REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2)const XMMRegister c_farg2 = ((XMMRegister)xmm2); | |||
| 86 | REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3)const XMMRegister c_farg3 = ((XMMRegister)xmm3); | |||
| 87 | REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4)const XMMRegister c_farg4 = ((XMMRegister)xmm4); | |||
| 88 | REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5)const XMMRegister c_farg5 = ((XMMRegister)xmm5); | |||
| 89 | REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6)const XMMRegister c_farg6 = ((XMMRegister)xmm6); | |||
| 90 | REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7)const XMMRegister c_farg7 = ((XMMRegister)xmm7); | |||
| 91 | ||||
| 92 | #endif // _WIN64 | |||
| 93 | ||||
| 94 | // Symbolically name the register arguments used by the Java calling convention. | |||
| 95 | // We have control over the convention for java so we can do what we please. | |||
| 96 | // What pleases us is to offset the java calling convention so that when | |||
| 97 | // we call a suitable jni method the arguments are lined up and we don't | |||
| 98 | // have to do little shuffling. A suitable jni method is non-static and a | |||
| 99 | // small number of arguments (two fewer args on windows) | |||
| 100 | // | |||
| 101 | // |-------------------------------------------------------| | |||
| 102 | // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 | | |||
| 103 | // |-------------------------------------------------------| | |||
| 104 | // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg) | |||
| 105 | // | rdi rsi rdx rcx r8 r9 | solaris/linux | |||
| 106 | // |-------------------------------------------------------| | |||
| 107 | // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 | | |||
| 108 | // |-------------------------------------------------------| | |||
| 109 | ||||
| 110 | REGISTER_DECLARATION(Register, j_rarg0, c_rarg1)const Register j_rarg0 = ((Register)c_rarg1); | |||
| 111 | REGISTER_DECLARATION(Register, j_rarg1, c_rarg2)const Register j_rarg1 = ((Register)c_rarg2); | |||
| 112 | REGISTER_DECLARATION(Register, j_rarg2, c_rarg3)const Register j_rarg2 = ((Register)c_rarg3); | |||
| 113 | // Windows runs out of register args here | |||
| 114 | #ifdef _WIN64 | |||
| 115 | REGISTER_DECLARATION(Register, j_rarg3, rdi)const Register j_rarg3 = ((Register)rdi); | |||
| 116 | REGISTER_DECLARATION(Register, j_rarg4, rsi)const Register j_rarg4 = ((Register)rsi); | |||
| 117 | #else | |||
| 118 | REGISTER_DECLARATION(Register, j_rarg3, c_rarg4)const Register j_rarg3 = ((Register)c_rarg4); | |||
| 119 | REGISTER_DECLARATION(Register, j_rarg4, c_rarg5)const Register j_rarg4 = ((Register)c_rarg5); | |||
| 120 | #endif /* _WIN64 */ | |||
| 121 | REGISTER_DECLARATION(Register, j_rarg5, c_rarg0)const Register j_rarg5 = ((Register)c_rarg0); | |||
| 122 | ||||
| 123 | REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0)const XMMRegister j_farg0 = ((XMMRegister)xmm0); | |||
| 124 | REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1)const XMMRegister j_farg1 = ((XMMRegister)xmm1); | |||
| 125 | REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2)const XMMRegister j_farg2 = ((XMMRegister)xmm2); | |||
| 126 | REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3)const XMMRegister j_farg3 = ((XMMRegister)xmm3); | |||
| 127 | REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4)const XMMRegister j_farg4 = ((XMMRegister)xmm4); | |||
| 128 | REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5)const XMMRegister j_farg5 = ((XMMRegister)xmm5); | |||
| 129 | REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6)const XMMRegister j_farg6 = ((XMMRegister)xmm6); | |||
| 130 | REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7)const XMMRegister j_farg7 = ((XMMRegister)xmm7); | |||
| 131 | ||||
| 132 | REGISTER_DECLARATION(Register, rscratch1, r10)const Register rscratch1 = ((Register)r10); // volatile | |||
| 133 | REGISTER_DECLARATION(Register, rscratch2, r11)const Register rscratch2 = ((Register)r11); // volatile | |||
| 134 | ||||
| 135 | REGISTER_DECLARATION(Register, r12_heapbase, r12)const Register r12_heapbase = ((Register)r12); // callee-saved | |||
| 136 | REGISTER_DECLARATION(Register, r15_thread, r15)const Register r15_thread = ((Register)r15); // callee-saved | |||
| 137 | ||||
| 138 | #else | |||
| 139 | // rscratch1 will apear in 32bit code that is dead but of course must compile | |||
| 140 | // Using noreg ensures if the dead code is incorrectly live and executed it | |||
| 141 | // will cause an assertion failure | |||
| 142 | #define rscratch1 noreg | |||
| 143 | #define rscratch2 noreg | |||
| 144 | ||||
| 145 | #endif // _LP64 | |||
| 146 | ||||
| 147 | // JSR 292 | |||
| 148 | // On x86, the SP does not have to be saved when invoking method handle intrinsics | |||
| 149 | // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg. | |||
| 150 | REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg)const Register rbp_mh_SP_save = ((Register)noreg); | |||
| 151 | ||||
| 152 | // Address is an abstraction used to represent a memory location | |||
| 153 | // using any of the amd64 addressing modes with one object. | |||
| 154 | // | |||
| 155 | // Note: A register location is represented via a Register, not | |||
| 156 | // via an address for efficiency & simplicity reasons. | |||
| 157 | ||||
| 158 | class ArrayAddress; | |||
| 159 | ||||
| 160 | class Address { | |||
| 161 | public: | |||
| 162 | enum ScaleFactor { | |||
| 163 | no_scale = -1, | |||
| 164 | times_1 = 0, | |||
| 165 | times_2 = 1, | |||
| 166 | times_4 = 2, | |||
| 167 | times_8 = 3, | |||
| 168 | times_ptr = LP64_ONLY(times_8)times_8 NOT_LP64(times_4) | |||
| 169 | }; | |||
| 170 | static ScaleFactor times(int size) { | |||
| 171 | assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size")do { if (!(size >= 1 && size <= 8 && is_power_of_2 (size))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 171, "assert(" "size >= 1 && size <= 8 && is_power_of_2(size)" ") failed", "bad scale size"); ::breakpoint(); } } while (0); | |||
| 172 | if (size == 8) return times_8; | |||
| 173 | if (size == 4) return times_4; | |||
| 174 | if (size == 2) return times_2; | |||
| 175 | return times_1; | |||
| 176 | } | |||
| 177 | static int scale_size(ScaleFactor scale) { | |||
| 178 | assert(scale != no_scale, "")do { if (!(scale != no_scale)) { (*g_assert_poison) = 'X';; report_vm_error ("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 178, "assert(" "scale != no_scale" ") failed", ""); ::breakpoint (); } } while (0); | |||
| 179 | assert(((1 << (int)times_1) == 1 &&do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0) | |||
| 180 | (1 << (int)times_2) == 2 &&do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0) | |||
| 181 | (1 << (int)times_4) == 4 &&do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0) | |||
| 182 | (1 << (int)times_8) == 8), "")do { if (!(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8))) { (*g_assert_poison ) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 182, "assert(" "((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8)" ") failed", ""); ::breakpoint(); } } while (0); | |||
| 183 | return (1 << (int)scale); | |||
| 184 | } | |||
| 185 | ||||
| 186 | private: | |||
| 187 | Register _base; | |||
| 188 | Register _index; | |||
| 189 | XMMRegister _xmmindex; | |||
| 190 | ScaleFactor _scale; | |||
| 191 | int _disp; | |||
| 192 | bool _isxmmindex; | |||
| 193 | RelocationHolder _rspec; | |||
| 194 | ||||
| 195 | // Easily misused constructors make them private | |||
| 196 | // %%% can we make these go away? | |||
| 197 | NOT_LP64(Address(address loc, RelocationHolder spec);) | |||
| 198 | Address(int disp, address loc, relocInfo::relocType rtype); | |||
| 199 | Address(int disp, address loc, RelocationHolder spec); | |||
| 200 | ||||
| 201 | public: | |||
| 202 | ||||
| 203 | int disp() { return _disp; } | |||
| 204 | // creation | |||
| 205 | Address() | |||
| 206 | : _base(noreg), | |||
| 207 | _index(noreg), | |||
| 208 | _xmmindex(xnoreg), | |||
| 209 | _scale(no_scale), | |||
| 210 | _disp(0), | |||
| 211 | _isxmmindex(false){ | |||
| 212 | } | |||
| 213 | ||||
| 214 | // No default displacement otherwise Register can be implicitly | |||
| 215 | // converted to 0(Register) which is quite a different animal. | |||
| 216 | ||||
| 217 | Address(Register base, int disp) | |||
| 218 | : _base(base), | |||
| 219 | _index(noreg), | |||
| 220 | _xmmindex(xnoreg), | |||
| 221 | _scale(no_scale), | |||
| 222 | _disp(disp), | |||
| 223 | _isxmmindex(false){ | |||
| 224 | } | |||
| 225 | ||||
| 226 | Address(Register base, Register index, ScaleFactor scale, int disp = 0) | |||
| 227 | : _base (base), | |||
| 228 | _index(index), | |||
| 229 | _xmmindex(xnoreg), | |||
| 230 | _scale(scale), | |||
| 231 | _disp (disp), | |||
| 232 | _isxmmindex(false) { | |||
| 233 | assert(!index->is_valid() == (scale == Address::no_scale),do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 234, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0) | |||
| ||||
| 234 | "inconsistent address")do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 234, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0); | |||
| 235 | } | |||
| 236 | ||||
| 237 | Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0) | |||
| 238 | : _base (base), | |||
| 239 | _index(index.register_or_noreg()), | |||
| 240 | _xmmindex(xnoreg), | |||
| 241 | _scale(scale), | |||
| 242 | _disp (disp + (index.constant_or_zero() * scale_size(scale))), | |||
| 243 | _isxmmindex(false){ | |||
| 244 | if (!index.is_register()) scale = Address::no_scale; | |||
| 245 | assert(!_index->is_valid() == (scale == Address::no_scale),do { if (!(!_index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 246, "assert(" "!_index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0) | |||
| 246 | "inconsistent address")do { if (!(!_index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 246, "assert(" "!_index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0); | |||
| 247 | } | |||
| 248 | ||||
| 249 | Address(Register base, XMMRegister index, ScaleFactor scale, int disp = 0) | |||
| 250 | : _base (base), | |||
| 251 | _index(noreg), | |||
| 252 | _xmmindex(index), | |||
| 253 | _scale(scale), | |||
| 254 | _disp(disp), | |||
| 255 | _isxmmindex(true) { | |||
| 256 | assert(!index->is_valid() == (scale == Address::no_scale),do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 257, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0) | |||
| 257 | "inconsistent address")do { if (!(!index->is_valid() == (scale == Address::no_scale ))) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 257, "assert(" "!index->is_valid() == (scale == Address::no_scale)" ") failed", "inconsistent address"); ::breakpoint(); } } while (0); | |||
| 258 | } | |||
| 259 | ||||
| 260 | // The following overloads are used in connection with the | |||
| 261 | // ByteSize type (see sizes.hpp). They simplify the use of | |||
| 262 | // ByteSize'd arguments in assembly code. | |||
| 263 | ||||
| 264 | Address(Register base, ByteSize disp) | |||
| 265 | : Address(base, in_bytes(disp)) {} | |||
| 266 | ||||
| 267 | Address(Register base, Register index, ScaleFactor scale, ByteSize disp) | |||
| 268 | : Address(base, index, scale, in_bytes(disp)) {} | |||
| 269 | ||||
| 270 | Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp) | |||
| 271 | : Address(base, index, scale, in_bytes(disp)) {} | |||
| 272 | ||||
| 273 | Address plus_disp(int disp) const { | |||
| 274 | Address a = (*this); | |||
| 275 | a._disp += disp; | |||
| 276 | return a; | |||
| 277 | } | |||
| 278 | Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const { | |||
| 279 | Address a = (*this); | |||
| 280 | a._disp += disp.constant_or_zero() * scale_size(scale); | |||
| 281 | if (disp.is_register()) { | |||
| 282 | assert(!a.index()->is_valid(), "competing indexes")do { if (!(!a.index()->is_valid())) { (*g_assert_poison) = 'X';; report_vm_error("/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 282, "assert(" "!a.index()->is_valid()" ") failed", "competing indexes" ); ::breakpoint(); } } while (0); | |||
| 283 | a._index = disp.as_register(); | |||
| 284 | a._scale = scale; | |||
| 285 | } | |||
| 286 | return a; | |||
| 287 | } | |||
| 288 | bool is_same_address(Address a) const { | |||
| 289 | // disregard _rspec | |||
| 290 | return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale; | |||
| 291 | } | |||
| 292 | ||||
| 293 | // accessors | |||
| 294 | bool uses(Register reg) const { return _base == reg || _index == reg; } | |||
| 295 | Register base() const { return _base; } | |||
| 296 | Register index() const { return _index; } | |||
| 297 | XMMRegister xmmindex() const { return _xmmindex; } | |||
| 298 | ScaleFactor scale() const { return _scale; } | |||
| 299 | int disp() const { return _disp; } | |||
| 300 | bool isxmmindex() const { return _isxmmindex; } | |||
| 301 | ||||
| 302 | // Convert the raw encoding form into the form expected by the constructor for | |||
| 303 | // Address. An index of 4 (rsp) corresponds to having no index, so convert | |||
| 304 | // that to noreg for the Address constructor. | |||
| 305 | static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc); | |||
| 306 | ||||
| 307 | static Address make_array(ArrayAddress); | |||
| 308 | ||||
| 309 | private: | |||
| 310 | bool base_needs_rex() const { | |||
| 311 | return _base->is_valid() && _base->encoding() >= 8; | |||
| 312 | } | |||
| 313 | ||||
| 314 | bool index_needs_rex() const { | |||
| 315 | return _index->is_valid() &&_index->encoding() >= 8; | |||
| 316 | } | |||
| 317 | ||||
| 318 | bool xmmindex_needs_rex() const { | |||
| 319 | return _xmmindex->is_valid() && _xmmindex->encoding() >= 8; | |||
| 320 | } | |||
| 321 | ||||
| 322 | relocInfo::relocType reloc() const { return _rspec.type(); } | |||
| 323 | ||||
| 324 | friend class Assembler; | |||
| 325 | friend class MacroAssembler; | |||
| 326 | friend class LIR_Assembler; // base/index/scale/disp | |||
| 327 | }; | |||
| 328 | ||||
| 329 | // | |||
| 330 | // AddressLiteral has been split out from Address because operands of this type | |||
| 331 | // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out | |||
| 332 | // the few instructions that need to deal with address literals are unique and the | |||
| 333 | // MacroAssembler does not have to implement every instruction in the Assembler | |||
| 334 | // in order to search for address literals that may need special handling depending | |||
| 335 | // on the instruction and the platform. As small step on the way to merging i486/amd64 | |||
| 336 | // directories. | |||
| 337 | // | |||
| 338 | class AddressLiteral { | |||
| 339 | friend class ArrayAddress; | |||
| 340 | RelocationHolder _rspec; | |||
| 341 | // Typically we use AddressLiterals we want to use their rval | |||
| 342 | // However in some situations we want the lval (effect address) of the item. | |||
| 343 | // We provide a special factory for making those lvals. | |||
| 344 | bool _is_lval; | |||
| 345 | ||||
| 346 | // If the target is far we'll need to load the ea of this to | |||
| 347 | // a register to reach it. Otherwise if near we can do rip | |||
| 348 | // relative addressing. | |||
| 349 | ||||
| 350 | address _target; | |||
| 351 | ||||
| 352 | protected: | |||
| 353 | // creation | |||
| 354 | AddressLiteral() | |||
| 355 | : _is_lval(false), | |||
| 356 | _target(NULL__null) | |||
| 357 | {} | |||
| 358 | ||||
| 359 | public: | |||
| 360 | ||||
| 361 | ||||
| 362 | AddressLiteral(address target, relocInfo::relocType rtype); | |||
| 363 | ||||
| 364 | AddressLiteral(address target, RelocationHolder const& rspec) | |||
| 365 | : _rspec(rspec), | |||
| 366 | _is_lval(false), | |||
| 367 | _target(target) | |||
| 368 | {} | |||
| 369 | ||||
| 370 | AddressLiteral addr() { | |||
| 371 | AddressLiteral ret = *this; | |||
| 372 | ret._is_lval = true; | |||
| 373 | return ret; | |||
| 374 | } | |||
| 375 | ||||
| 376 | ||||
| 377 | private: | |||
| 378 | ||||
| 379 | address target() { return _target; } | |||
| 380 | bool is_lval() { return _is_lval; } | |||
| 381 | ||||
| 382 | relocInfo::relocType reloc() const { return _rspec.type(); } | |||
| 383 | const RelocationHolder& rspec() const { return _rspec; } | |||
| 384 | ||||
| 385 | friend class Assembler; | |||
| 386 | friend class MacroAssembler; | |||
| 387 | friend class Address; | |||
| 388 | friend class LIR_Assembler; | |||
| 389 | }; | |||
| 390 | ||||
| 391 | // Convience classes | |||
| 392 | class RuntimeAddress: public AddressLiteral { | |||
| 393 | ||||
| 394 | public: | |||
| 395 | ||||
| 396 | RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {} | |||
| 397 | ||||
| 398 | }; | |||
| 399 | ||||
| 400 | class ExternalAddress: public AddressLiteral { | |||
| 401 | private: | |||
| 402 | static relocInfo::relocType reloc_for_target(address target) { | |||
| 403 | // Sometimes ExternalAddress is used for values which aren't | |||
| 404 | // exactly addresses, like the card table base. | |||
| 405 | // external_word_type can't be used for values in the first page | |||
| 406 | // so just skip the reloc in that case. | |||
| 407 | return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; | |||
| 408 | } | |||
| 409 | ||||
| 410 | public: | |||
| 411 | ||||
| 412 | ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {} | |||
| 413 | ||||
| 414 | }; | |||
| 415 | ||||
| 416 | class InternalAddress: public AddressLiteral { | |||
| 417 | ||||
| 418 | public: | |||
| 419 | ||||
| 420 | InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} | |||
| 421 | ||||
| 422 | }; | |||
| 423 | ||||
| 424 | // x86 can do array addressing as a single operation since disp can be an absolute | |||
| 425 | // address amd64 can't. We create a class that expresses the concept but does extra | |||
| 426 | // magic on amd64 to get the final result | |||
| 427 | ||||
| 428 | class ArrayAddress { | |||
| 429 | private: | |||
| 430 | ||||
| 431 | AddressLiteral _base; | |||
| 432 | Address _index; | |||
| 433 | ||||
| 434 | public: | |||
| 435 | ||||
| 436 | ArrayAddress() {}; | |||
| 437 | ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {}; | |||
| 438 | AddressLiteral base() { return _base; } | |||
| 439 | Address index() { return _index; } | |||
| 440 | ||||
| 441 | }; | |||
| 442 | ||||
| 443 | class InstructionAttr; | |||
| 444 | ||||
| 445 | // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes | |||
| 446 | // See fxsave and xsave(EVEX enabled) documentation for layout | |||
| 447 | const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize)2688 / wordSize; | |||
| 448 | ||||
| 449 | // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction | |||
| 450 | // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write | |||
| 451 | // is what you get. The Assembler is generating code into a CodeBuffer. | |||
| 452 | ||||
| 453 | class Assembler : public AbstractAssembler { | |||
| 454 | friend class AbstractAssembler; // for the non-virtual hack | |||
| 455 | friend class LIR_Assembler; // as_Address() | |||
| 456 | friend class StubGenerator; | |||
| 457 | ||||
| 458 | public: | |||
| 459 | enum Condition { // The x86 condition codes used for conditional jumps/moves. | |||
| 460 | zero = 0x4, | |||
| 461 | notZero = 0x5, | |||
| 462 | equal = 0x4, | |||
| 463 | notEqual = 0x5, | |||
| 464 | less = 0xc, | |||
| 465 | lessEqual = 0xe, | |||
| 466 | greater = 0xf, | |||
| 467 | greaterEqual = 0xd, | |||
| 468 | below = 0x2, | |||
| 469 | belowEqual = 0x6, | |||
| 470 | above = 0x7, | |||
| 471 | aboveEqual = 0x3, | |||
| 472 | overflow = 0x0, | |||
| 473 | noOverflow = 0x1, | |||
| 474 | carrySet = 0x2, | |||
| 475 | carryClear = 0x3, | |||
| 476 | negative = 0x8, | |||
| 477 | positive = 0x9, | |||
| 478 | parity = 0xa, | |||
| 479 | noParity = 0xb | |||
| 480 | }; | |||
| 481 | ||||
| 482 | enum Prefix { | |||
| 483 | // segment overrides | |||
| 484 | CS_segment = 0x2e, | |||
| 485 | SS_segment = 0x36, | |||
| 486 | DS_segment = 0x3e, | |||
| 487 | ES_segment = 0x26, | |||
| 488 | FS_segment = 0x64, | |||
| 489 | GS_segment = 0x65, | |||
| 490 | ||||
| 491 | REX = 0x40, | |||
| 492 | ||||
| 493 | REX_B = 0x41, | |||
| 494 | REX_X = 0x42, | |||
| 495 | REX_XB = 0x43, | |||
| 496 | REX_R = 0x44, | |||
| 497 | REX_RB = 0x45, | |||
| 498 | REX_RX = 0x46, | |||
| 499 | REX_RXB = 0x47, | |||
| 500 | ||||
| 501 | REX_W = 0x48, | |||
| 502 | ||||
| 503 | REX_WB = 0x49, | |||
| 504 | REX_WX = 0x4A, | |||
| 505 | REX_WXB = 0x4B, | |||
| 506 | REX_WR = 0x4C, | |||
| 507 | REX_WRB = 0x4D, | |||
| 508 | REX_WRX = 0x4E, | |||
| 509 | REX_WRXB = 0x4F, | |||
| 510 | ||||
| 511 | VEX_3bytes = 0xC4, | |||
| 512 | VEX_2bytes = 0xC5, | |||
| 513 | EVEX_4bytes = 0x62, | |||
| 514 | Prefix_EMPTY = 0x0 | |||
| 515 | }; | |||
| 516 | ||||
| 517 | enum VexPrefix { | |||
| 518 | VEX_B = 0x20, | |||
| 519 | VEX_X = 0x40, | |||
| 520 | VEX_R = 0x80, | |||
| 521 | VEX_W = 0x80 | |||
| 522 | }; | |||
| 523 | ||||
| 524 | enum ExexPrefix { | |||
| 525 | EVEX_F = 0x04, | |||
| 526 | EVEX_V = 0x08, | |||
| 527 | EVEX_Rb = 0x10, | |||
| 528 | EVEX_X = 0x40, | |||
| 529 | EVEX_Z = 0x80 | |||
| 530 | }; | |||
| 531 | ||||
| 532 | enum VexSimdPrefix { | |||
| 533 | VEX_SIMD_NONE = 0x0, | |||
| 534 | VEX_SIMD_66 = 0x1, | |||
| 535 | VEX_SIMD_F3 = 0x2, | |||
| 536 | VEX_SIMD_F2 = 0x3 | |||
| 537 | }; | |||
| 538 | ||||
| 539 | enum VexOpcode { | |||
| 540 | VEX_OPCODE_NONE = 0x0, | |||
| 541 | VEX_OPCODE_0F = 0x1, | |||
| 542 | VEX_OPCODE_0F_38 = 0x2, | |||
| 543 | VEX_OPCODE_0F_3A = 0x3, | |||
| 544 | VEX_OPCODE_MASK = 0x1F | |||
| 545 | }; | |||
| 546 | ||||
| 547 | enum AvxVectorLen { | |||
| 548 | AVX_128bit = 0x0, | |||
| 549 | AVX_256bit = 0x1, | |||
| 550 | AVX_512bit = 0x2, | |||
| 551 | AVX_NoVec = 0x4 | |||
| 552 | }; | |||
| 553 | ||||
| 554 | enum EvexTupleType { | |||
| 555 | EVEX_FV = 0, | |||
| 556 | EVEX_HV = 4, | |||
| 557 | EVEX_FVM = 6, | |||
| 558 | EVEX_T1S = 7, | |||
| 559 | EVEX_T1F = 11, | |||
| 560 | EVEX_T2 = 13, | |||
| 561 | EVEX_T4 = 15, | |||
| 562 | EVEX_T8 = 17, | |||
| 563 | EVEX_HVM = 18, | |||
| 564 | EVEX_QVM = 19, | |||
| 565 | EVEX_OVM = 20, | |||
| 566 | EVEX_M128 = 21, | |||
| 567 | EVEX_DUP = 22, | |||
| 568 | EVEX_ETUP = 23 | |||
| 569 | }; | |||
| 570 | ||||
| 571 | enum EvexInputSizeInBits { | |||
| 572 | EVEX_8bit = 0, | |||
| 573 | EVEX_16bit = 1, | |||
| 574 | EVEX_32bit = 2, | |||
| 575 | EVEX_64bit = 3, | |||
| 576 | EVEX_NObit = 4 | |||
| 577 | }; | |||
| 578 | ||||
| 579 | enum WhichOperand { | |||
| 580 | // input to locate_operand, and format code for relocations | |||
| 581 | imm_operand = 0, // embedded 32-bit|64-bit immediate operand | |||
| 582 | disp32_operand = 1, // embedded 32-bit displacement or address | |||
| 583 | call32_operand = 2, // embedded 32-bit self-relative displacement | |||
| 584 | #ifndef _LP641 | |||
| 585 | _WhichOperand_limit = 3 | |||
| 586 | #else | |||
| 587 | narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop | |||
| 588 | _WhichOperand_limit = 4 | |||
| 589 | #endif | |||
| 590 | }; | |||
| 591 | ||||
| 592 | // Comparison predicates for integral types & FP types when using SSE | |||
| 593 | enum ComparisonPredicate { | |||
| 594 | eq = 0, | |||
| 595 | lt = 1, | |||
| 596 | le = 2, | |||
| 597 | _false = 3, | |||
| 598 | neq = 4, | |||
| 599 | nlt = 5, | |||
| 600 | nle = 6, | |||
| 601 | _true = 7 | |||
| 602 | }; | |||
| 603 | ||||
| 604 | // Comparison predicates for FP types when using AVX | |||
| 605 | // O means ordered. U is unordered. When using ordered, any NaN comparison is false. Otherwise, it is true. | |||
| 606 | // S means signaling. Q means non-signaling. When signaling is true, instruction signals #IA on NaN. | |||
| 607 | enum ComparisonPredicateFP { | |||
| 608 | EQ_OQ = 0, | |||
| 609 | LT_OS = 1, | |||
| 610 | LE_OS = 2, | |||
| 611 | UNORD_Q = 3, | |||
| 612 | NEQ_UQ = 4, | |||
| 613 | NLT_US = 5, | |||
| 614 | NLE_US = 6, | |||
| 615 | ORD_Q = 7, | |||
| 616 | EQ_UQ = 8, | |||
| 617 | NGE_US = 9, | |||
| 618 | NGT_US = 0xA, | |||
| 619 | FALSE_OQ = 0XB, | |||
| 620 | NEQ_OQ = 0xC, | |||
| 621 | GE_OS = 0xD, | |||
| 622 | GT_OS = 0xE, | |||
| 623 | TRUE_UQ = 0xF, | |||
| 624 | EQ_OS = 0x10, | |||
| 625 | LT_OQ = 0x11, | |||
| 626 | LE_OQ = 0x12, | |||
| 627 | UNORD_S = 0x13, | |||
| 628 | NEQ_US = 0x14, | |||
| 629 | NLT_UQ = 0x15, | |||
| 630 | NLE_UQ = 0x16, | |||
| 631 | ORD_S = 0x17, | |||
| 632 | EQ_US = 0x18, | |||
| 633 | NGE_UQ = 0x19, | |||
| 634 | NGT_UQ = 0x1A, | |||
| 635 | FALSE_OS = 0x1B, | |||
| 636 | NEQ_OS = 0x1C, | |||
| 637 | GE_OQ = 0x1D, | |||
| 638 | GT_OQ = 0x1E, | |||
| 639 | TRUE_US =0x1F | |||
| 640 | }; | |||
| 641 | ||||
| 642 | enum Width { | |||
| 643 | B = 0, | |||
| 644 | W = 1, | |||
| 645 | D = 2, | |||
| 646 | Q = 3 | |||
| 647 | }; | |||
| 648 | ||||
| 649 | //---< calculate length of instruction >--- | |||
| 650 | // As instruction size can't be found out easily on x86/x64, | |||
| 651 | // we just use '4' for len and maxlen. | |||
| 652 | // instruction must start at passed address | |||
| 653 | static unsigned int instr_len(unsigned char *instr) { return 4; } | |||
| 654 | ||||
| 655 | //---< longest instructions >--- | |||
| 656 | // Max instruction length is not specified in architecture documentation. | |||
| 657 | // We could use a "safe enough" estimate (15), but just default to | |||
| 658 | // instruction length guess from above. | |||
| 659 | static unsigned int instr_maxlen() { return 4; } | |||
| 660 | ||||
| 661 | // NOTE: The general philopsophy of the declarations here is that 64bit versions | |||
| 662 | // of instructions are freely declared without the need for wrapping them an ifdef. | |||
| 663 | // (Some dangerous instructions are ifdef's out of inappropriate jvm's.) | |||
| 664 | // In the .cpp file the implementations are wrapped so that they are dropped out | |||
| 665 | // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL | |||
| 666 | // to the size it was prior to merging up the 32bit and 64bit assemblers. | |||
| 667 | // | |||
| 668 | // This does mean you'll get a linker/runtime error if you use a 64bit only instruction | |||
| 669 | // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down. | |||
| 670 | ||||
| 671 | private: | |||
| 672 | ||||
| 673 | bool _legacy_mode_bw; | |||
| 674 | bool _legacy_mode_dq; | |||
| 675 | bool _legacy_mode_vl; | |||
| 676 | bool _legacy_mode_vlbw; | |||
| 677 | NOT_LP64(bool _is_managed;) | |||
| 678 | ||||
| 679 | class InstructionAttr *_attributes; | |||
| 680 | ||||
| 681 | // 64bit prefixes | |||
| 682 | void prefix(Register reg); | |||
| 683 | void prefix(Register dst, Register src, Prefix p); | |||
| 684 | void prefix(Register dst, Address adr, Prefix p); | |||
| 685 | ||||
| 686 | void prefix(Address adr); | |||
| 687 | void prefix(Address adr, Register reg, bool byteinst = false); | |||
| 688 | void prefix(Address adr, XMMRegister reg); | |||
| 689 | ||||
| 690 | int prefix_and_encode(int reg_enc, bool byteinst = false); | |||
| 691 | int prefix_and_encode(int dst_enc, int src_enc) { | |||
| 692 | return prefix_and_encode(dst_enc, false, src_enc, false); | |||
| 693 | } | |||
| 694 | int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte); | |||
| 695 | ||||
| 696 | // Some prefixq variants always emit exactly one prefix byte, so besides a | |||
| 697 | // prefix-emitting method we provide a method to get the prefix byte to emit, | |||
| 698 | // which can then be folded into a byte stream. | |||
| 699 | int8_t get_prefixq(Address adr); | |||
| 700 | int8_t get_prefixq(Address adr, Register reg); | |||
| 701 | ||||
| 702 | void prefixq(Address adr); | |||
| 703 | void prefixq(Address adr, Register reg); | |||
| 704 | void prefixq(Address adr, XMMRegister reg); | |||
| 705 | ||||
| 706 | int prefixq_and_encode(int reg_enc); | |||
| 707 | int prefixq_and_encode(int dst_enc, int src_enc); | |||
| 708 | ||||
| 709 | void rex_prefix(Address adr, XMMRegister xreg, | |||
| 710 | VexSimdPrefix pre, VexOpcode opc, bool rex_w); | |||
| 711 | int rex_prefix_and_encode(int dst_enc, int src_enc, | |||
| 712 | VexSimdPrefix pre, VexOpcode opc, bool rex_w); | |||
| 713 | ||||
| 714 | void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc); | |||
| 715 | ||||
| 716 | void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, | |||
| 717 | int nds_enc, VexSimdPrefix pre, VexOpcode opc); | |||
| 718 | ||||
| 719 | void vex_prefix(Address adr, int nds_enc, int xreg_enc, | |||
| 720 | VexSimdPrefix pre, VexOpcode opc, | |||
| 721 | InstructionAttr *attributes); | |||
| 722 | ||||
| 723 | int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, | |||
| 724 | VexSimdPrefix pre, VexOpcode opc, | |||
| 725 | InstructionAttr *attributes); | |||
| 726 | ||||
| 727 | void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, | |||
| 728 | VexOpcode opc, InstructionAttr *attributes); | |||
| 729 | ||||
| 730 | int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, | |||
| 731 | VexOpcode opc, InstructionAttr *attributes); | |||
| 732 | ||||
| 733 | // Helper functions for groups of instructions | |||
| 734 | void emit_arith_b(int op1, int op2, Register dst, int imm8); | |||
| 735 | ||||
| 736 | void emit_arith(int op1, int op2, Register dst, int32_t imm32); | |||
| 737 | // Force generation of a 4 byte immediate value even if it fits into 8bit | |||
| 738 | void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32); | |||
| 739 | void emit_arith(int op1, int op2, Register dst, Register src); | |||
| 740 | ||||
| 741 | bool emit_compressed_disp_byte(int &disp); | |||
| 742 | ||||
| 743 | void emit_modrm(int mod, int dst_enc, int src_enc); | |||
| 744 | void emit_modrm_disp8(int mod, int dst_enc, int src_enc, | |||
| 745 | int disp); | |||
| 746 | void emit_modrm_sib(int mod, int dst_enc, int src_enc, | |||
| 747 | Address::ScaleFactor scale, int index_enc, int base_enc); | |||
| 748 | void emit_modrm_sib_disp8(int mod, int dst_enc, int src_enc, | |||
| 749 | Address::ScaleFactor scale, int index_enc, int base_enc, | |||
| 750 | int disp); | |||
| 751 | ||||
| 752 | void emit_operand_helper(int reg_enc, | |||
| 753 | int base_enc, int index_enc, Address::ScaleFactor scale, | |||
| 754 | int disp, | |||
| 755 | RelocationHolder const& rspec, | |||
| 756 | int rip_relative_correction = 0); | |||
| 757 | ||||
| 758 | void emit_operand(Register reg, | |||
| 759 | Register base, Register index, Address::ScaleFactor scale, | |||
| 760 | int disp, | |||
| 761 | RelocationHolder const& rspec, | |||
| 762 | int rip_relative_correction = 0); | |||
| 763 | ||||
| 764 | void emit_operand(Register reg, | |||
| 765 | Register base, XMMRegister index, Address::ScaleFactor scale, | |||
| 766 | int disp, | |||
| 767 | RelocationHolder const& rspec); | |||
| 768 | ||||
| 769 | void emit_operand(XMMRegister xreg, | |||
| 770 | Register base, XMMRegister xindex, Address::ScaleFactor scale, | |||
| 771 | int disp, | |||
| 772 | RelocationHolder const& rspec); | |||
| 773 | ||||
| 774 | void emit_operand(Register reg, Address adr, | |||
| 775 | int rip_relative_correction = 0); | |||
| 776 | ||||
| 777 | void emit_operand(XMMRegister reg, | |||
| 778 | Register base, Register index, Address::ScaleFactor scale, | |||
| 779 | int disp, | |||
| 780 | RelocationHolder const& rspec); | |||
| 781 | ||||
| 782 | void emit_operand(XMMRegister reg, Address adr); | |||
| 783 | ||||
| 784 | // Immediate-to-memory forms | |||
| 785 | void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32); | |||
| 786 | ||||
| 787 | protected: | |||
| 788 | #ifdef ASSERT1 | |||
| 789 | void check_relocation(RelocationHolder const& rspec, int format); | |||
| 790 | #endif | |||
| 791 | ||||
| 792 | void emit_data(jint data, relocInfo::relocType rtype, int format); | |||
| 793 | void emit_data(jint data, RelocationHolder const& rspec, int format); | |||
| 794 | void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); | |||
| 795 | void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); | |||
| 796 | ||||
| 797 | bool reachable(AddressLiteral adr) NOT_LP64({ return true;}); | |||
| 798 | ||||
| 799 | // These are all easily abused and hence protected | |||
| 800 | ||||
| 801 | // 32BIT ONLY SECTION | |||
| 802 | #ifndef _LP641 | |||
| 803 | // Make these disappear in 64bit mode since they would never be correct | |||
| 804 | void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY | |||
| 805 | void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY | |||
| 806 | ||||
| 807 | void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY | |||
| 808 | void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY | |||
| 809 | ||||
| 810 | void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY | |||
| 811 | #else | |||
| 812 | // 64BIT ONLY SECTION | |||
| 813 | void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY | |||
| 814 | ||||
| 815 | void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec); | |||
| 816 | void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec); | |||
| 817 | ||||
| 818 | void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec); | |||
| 819 | void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec); | |||
| 820 | #endif // _LP64 | |||
| 821 | ||||
| 822 | // These are unique in that we are ensured by the caller that the 32bit | |||
| 823 | // relative in these instructions will always be able to reach the potentially | |||
| 824 | // 64bit address described by entry. Since they can take a 64bit address they | |||
| 825 | // don't have the 32 suffix like the other instructions in this class. | |||
| 826 | ||||
| 827 | void call_literal(address entry, RelocationHolder const& rspec); | |||
| 828 | void jmp_literal(address entry, RelocationHolder const& rspec); | |||
| 829 | ||||
| 830 | // Avoid using directly section | |||
| 831 | // Instructions in this section are actually usable by anyone without danger | |||
| 832 | // of failure but have performance issues that are addressed my enhanced | |||
| 833 | // instructions which will do the proper thing base on the particular cpu. | |||
| 834 | // We protect them because we don't trust you... | |||
| 835 | ||||
| 836 | // Don't use next inc() and dec() methods directly. INC & DEC instructions | |||
| 837 | // could cause a partial flag stall since they don't set CF flag. | |||
| 838 | // Use MacroAssembler::decrement() & MacroAssembler::increment() methods | |||
| 839 | // which call inc() & dec() or add() & sub() in accordance with | |||
| 840 | // the product flag UseIncDec value. | |||
| 841 | ||||
| 842 | void decl(Register dst); | |||
| 843 | void decl(Address dst); | |||
| 844 | void decq(Address dst); | |||
| 845 | ||||
| 846 | void incl(Register dst); | |||
| 847 | void incl(Address dst); | |||
| 848 | void incq(Register dst); | |||
| 849 | void incq(Address dst); | |||
| 850 | ||||
| 851 | // New cpus require use of movsd and movss to avoid partial register stall | |||
| 852 | // when loading from memory. But for old Opteron use movlpd instead of movsd. | |||
| 853 | // The selection is done in MacroAssembler::movdbl() and movflt(). | |||
| 854 | ||||
| 855 | // Move Scalar Single-Precision Floating-Point Values | |||
| 856 | void movss(XMMRegister dst, Address src); | |||
| 857 | void movss(XMMRegister dst, XMMRegister src); | |||
| 858 | void movss(Address dst, XMMRegister src); | |||
| 859 | ||||
| 860 | // Move Scalar Double-Precision Floating-Point Values | |||
| 861 | void movsd(XMMRegister dst, Address src); | |||
| 862 | void movsd(XMMRegister dst, XMMRegister src); | |||
| 863 | void movsd(Address dst, XMMRegister src); | |||
| 864 | void movlpd(XMMRegister dst, Address src); | |||
| 865 | ||||
| 866 | // New cpus require use of movaps and movapd to avoid partial register stall | |||
| 867 | // when moving between registers. | |||
| 868 | void movaps(XMMRegister dst, XMMRegister src); | |||
| 869 | void movapd(XMMRegister dst, XMMRegister src); | |||
| 870 | ||||
| 871 | // End avoid using directly | |||
| 872 | ||||
| 873 | ||||
| 874 | // Instruction prefixes | |||
| 875 | void prefix(Prefix p); | |||
| 876 | ||||
| 877 | public: | |||
| 878 | ||||
| 879 | // Creation | |||
| 880 | Assembler(CodeBuffer* code) : AbstractAssembler(code) { | |||
| 881 | init_attributes(); | |||
| 882 | } | |||
| 883 | ||||
| 884 | // Decoding | |||
| 885 | static address locate_operand(address inst, WhichOperand which); | |||
| 886 | static address locate_next_instruction(address inst); | |||
| 887 | ||||
| 888 | // Utilities | |||
| 889 | static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len, | |||
| 890 | int cur_tuple_type, int in_size_in_bits, int cur_encoding); | |||
| 891 | ||||
| 892 | // Generic instructions | |||
| 893 | // Does 32bit or 64bit as needed for the platform. In some sense these | |||
| 894 | // belong in macro assembler but there is no need for both varieties to exist | |||
| 895 | ||||
| 896 | void init_attributes(void); | |||
| 897 | ||||
| 898 | void set_attributes(InstructionAttr *attributes) { _attributes = attributes; } | |||
| 899 | void clear_attributes(void) { _attributes = NULL__null; } | |||
| 900 | ||||
| 901 | void set_managed(void) { NOT_LP64(_is_managed = true;) } | |||
| 902 | void clear_managed(void) { NOT_LP64(_is_managed = false;) } | |||
| 903 | bool is_managed(void) { | |||
| 904 | NOT_LP64(return _is_managed;) | |||
| 905 | LP64_ONLY(return false;)return false; } | |||
| 906 | ||||
| 907 | void lea(Register dst, Address src); | |||
| 908 | ||||
| 909 | void mov(Register dst, Register src); | |||
| 910 | ||||
| 911 | #ifdef _LP641 | |||
| 912 | // support caching the result of some routines | |||
| 913 | ||||
| 914 | // must be called before pusha(), popa(), vzeroupper() - checked with asserts | |||
| 915 | static void precompute_instructions(); | |||
| 916 | ||||
| 917 | void pusha_uncached(); | |||
| 918 | void popa_uncached(); | |||
| 919 | #endif | |||
| 920 | void vzeroupper_uncached(); | |||
| 921 | void decq(Register dst); | |||
| 922 | ||||
| 923 | void pusha(); | |||
| 924 | void popa(); | |||
| 925 | ||||
| 926 | void pushf(); | |||
| 927 | void popf(); | |||
| 928 | ||||
| 929 | void push(int32_t imm32); | |||
| 930 | ||||
| 931 | void push(Register src); | |||
| 932 | ||||
| 933 | void pop(Register dst); | |||
| 934 | ||||
| 935 | // These are dummies to prevent surprise implicit conversions to Register | |||
| 936 | void push(void* v); | |||
| 937 | void pop(void* v); | |||
| 938 | ||||
| 939 | // These do register sized moves/scans | |||
| 940 | void rep_mov(); | |||
| 941 | void rep_stos(); | |||
| 942 | void rep_stosb(); | |||
| 943 | void repne_scan(); | |||
| 944 | #ifdef _LP641 | |||
| 945 | void repne_scanl(); | |||
| 946 | #endif | |||
| 947 | ||||
| 948 | // Vanilla instructions in lexical order | |||
| 949 | ||||
| 950 | void adcl(Address dst, int32_t imm32); | |||
| 951 | void adcl(Address dst, Register src); | |||
| 952 | void adcl(Register dst, int32_t imm32); | |||
| 953 | void adcl(Register dst, Address src); | |||
| 954 | void adcl(Register dst, Register src); | |||
| 955 | ||||
| 956 | void adcq(Register dst, int32_t imm32); | |||
| 957 | void adcq(Register dst, Address src); | |||
| 958 | void adcq(Register dst, Register src); | |||
| 959 | ||||
| 960 | void addb(Address dst, int imm8); | |||
| 961 | void addw(Register dst, Register src); | |||
| 962 | void addw(Address dst, int imm16); | |||
| 963 | ||||
| 964 | void addl(Address dst, int32_t imm32); | |||
| 965 | void addl(Address dst, Register src); | |||
| 966 | void addl(Register dst, int32_t imm32); | |||
| 967 | void addl(Register dst, Address src); | |||
| 968 | void addl(Register dst, Register src); | |||
| 969 | ||||
| 970 | void addq(Address dst, int32_t imm32); | |||
| 971 | void addq(Address dst, Register src); | |||
| 972 | void addq(Register dst, int32_t imm32); | |||
| 973 | void addq(Register dst, Address src); | |||
| 974 | void addq(Register dst, Register src); | |||
| 975 | ||||
| 976 | #ifdef _LP641 | |||
| 977 | //Add Unsigned Integers with Carry Flag | |||
| 978 | void adcxq(Register dst, Register src); | |||
| 979 | ||||
| 980 | //Add Unsigned Integers with Overflow Flag | |||
| 981 | void adoxq(Register dst, Register src); | |||
| 982 | #endif | |||
| 983 | ||||
| 984 | void addr_nop_4(); | |||
| 985 | void addr_nop_5(); | |||
| 986 | void addr_nop_7(); | |||
| 987 | void addr_nop_8(); | |||
| 988 | ||||
| 989 | // Add Scalar Double-Precision Floating-Point Values | |||
| 990 | void addsd(XMMRegister dst, Address src); | |||
| 991 | void addsd(XMMRegister dst, XMMRegister src); | |||
| 992 | ||||
| 993 | // Add Scalar Single-Precision Floating-Point Values | |||
| 994 | void addss(XMMRegister dst, Address src); | |||
| 995 | void addss(XMMRegister dst, XMMRegister src); | |||
| 996 | ||||
| 997 | // AES instructions | |||
| 998 | void aesdec(XMMRegister dst, Address src); | |||
| 999 | void aesdec(XMMRegister dst, XMMRegister src); | |||
| 1000 | void aesdeclast(XMMRegister dst, Address src); | |||
| 1001 | void aesdeclast(XMMRegister dst, XMMRegister src); | |||
| 1002 | void aesenc(XMMRegister dst, Address src); | |||
| 1003 | void aesenc(XMMRegister dst, XMMRegister src); | |||
| 1004 | void aesenclast(XMMRegister dst, Address src); | |||
| 1005 | void aesenclast(XMMRegister dst, XMMRegister src); | |||
| 1006 | // Vector AES instructions | |||
| 1007 | void vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1008 | void vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1009 | void vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1010 | void vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1011 | ||||
| 1012 | void andw(Register dst, Register src); | |||
| 1013 | void andb(Address dst, Register src); | |||
| 1014 | ||||
| 1015 | void andl(Address dst, int32_t imm32); | |||
| 1016 | void andl(Register dst, int32_t imm32); | |||
| 1017 | void andl(Register dst, Address src); | |||
| 1018 | void andl(Register dst, Register src); | |||
| 1019 | void andl(Address dst, Register src); | |||
| 1020 | ||||
| 1021 | void andq(Address dst, int32_t imm32); | |||
| 1022 | void andq(Register dst, int32_t imm32); | |||
| 1023 | void andq(Register dst, Address src); | |||
| 1024 | void andq(Register dst, Register src); | |||
| 1025 | void andq(Address dst, Register src); | |||
| 1026 | ||||
| 1027 | // BMI instructions | |||
| 1028 | void andnl(Register dst, Register src1, Register src2); | |||
| 1029 | void andnl(Register dst, Register src1, Address src2); | |||
| 1030 | void andnq(Register dst, Register src1, Register src2); | |||
| 1031 | void andnq(Register dst, Register src1, Address src2); | |||
| 1032 | ||||
| 1033 | void blsil(Register dst, Register src); | |||
| 1034 | void blsil(Register dst, Address src); | |||
| 1035 | void blsiq(Register dst, Register src); | |||
| 1036 | void blsiq(Register dst, Address src); | |||
| 1037 | ||||
| 1038 | void blsmskl(Register dst, Register src); | |||
| 1039 | void blsmskl(Register dst, Address src); | |||
| 1040 | void blsmskq(Register dst, Register src); | |||
| 1041 | void blsmskq(Register dst, Address src); | |||
| 1042 | ||||
| 1043 | void blsrl(Register dst, Register src); | |||
| 1044 | void blsrl(Register dst, Address src); | |||
| 1045 | void blsrq(Register dst, Register src); | |||
| 1046 | void blsrq(Register dst, Address src); | |||
| 1047 | ||||
| 1048 | void bsfl(Register dst, Register src); | |||
| 1049 | void bsrl(Register dst, Register src); | |||
| 1050 | ||||
| 1051 | #ifdef _LP641 | |||
| 1052 | void bsfq(Register dst, Register src); | |||
| 1053 | void bsrq(Register dst, Register src); | |||
| 1054 | #endif | |||
| 1055 | ||||
| 1056 | void bswapl(Register reg); | |||
| 1057 | ||||
| 1058 | void bswapq(Register reg); | |||
| 1059 | ||||
| 1060 | void call(Label& L, relocInfo::relocType rtype); | |||
| 1061 | void call(Register reg); // push pc; pc <- reg | |||
| 1062 | void call(Address adr); // push pc; pc <- adr | |||
| 1063 | ||||
| 1064 | void cdql(); | |||
| 1065 | ||||
| 1066 | void cdqq(); | |||
| 1067 | ||||
| 1068 | void cld(); | |||
| 1069 | ||||
| 1070 | void clflush(Address adr); | |||
| 1071 | void clflushopt(Address adr); | |||
| 1072 | void clwb(Address adr); | |||
| 1073 | ||||
| 1074 | void cmovl(Condition cc, Register dst, Register src); | |||
| 1075 | void cmovl(Condition cc, Register dst, Address src); | |||
| 1076 | ||||
| 1077 | void cmovq(Condition cc, Register dst, Register src); | |||
| 1078 | void cmovq(Condition cc, Register dst, Address src); | |||
| 1079 | ||||
| 1080 | ||||
| 1081 | void cmpb(Address dst, int imm8); | |||
| 1082 | ||||
| 1083 | void cmpl(Address dst, int32_t imm32); | |||
| 1084 | ||||
| 1085 | void cmp(Register dst, int32_t imm32); | |||
| 1086 | void cmpl(Register dst, int32_t imm32); | |||
| 1087 | void cmpl(Register dst, Register src); | |||
| 1088 | void cmpl(Register dst, Address src); | |||
| 1089 | ||||
| 1090 | void cmpq(Address dst, int32_t imm32); | |||
| 1091 | void cmpq(Address dst, Register src); | |||
| 1092 | ||||
| 1093 | void cmpq(Register dst, int32_t imm32); | |||
| 1094 | void cmpq(Register dst, Register src); | |||
| 1095 | void cmpq(Register dst, Address src); | |||
| 1096 | ||||
| 1097 | // these are dummies used to catch attempting to convert NULL to Register | |||
| 1098 | void cmpl(Register dst, void* junk); // dummy | |||
| 1099 | void cmpq(Register dst, void* junk); // dummy | |||
| 1100 | ||||
| 1101 | void cmpw(Address dst, int imm16); | |||
| 1102 | ||||
| 1103 | void cmpxchg8 (Address adr); | |||
| 1104 | ||||
| 1105 | void cmpxchgb(Register reg, Address adr); | |||
| 1106 | void cmpxchgl(Register reg, Address adr); | |||
| 1107 | ||||
| 1108 | void cmpxchgq(Register reg, Address adr); | |||
| 1109 | void cmpxchgw(Register reg, Address adr); | |||
| 1110 | ||||
| 1111 | // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS | |||
| 1112 | void comisd(XMMRegister dst, Address src); | |||
| 1113 | void comisd(XMMRegister dst, XMMRegister src); | |||
| 1114 | ||||
| 1115 | // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS | |||
| 1116 | void comiss(XMMRegister dst, Address src); | |||
| 1117 | void comiss(XMMRegister dst, XMMRegister src); | |||
| 1118 | ||||
| 1119 | // Identify processor type and features | |||
| 1120 | void cpuid(); | |||
| 1121 | ||||
| 1122 | // CRC32C | |||
| 1123 | void crc32(Register crc, Register v, int8_t sizeInBytes); | |||
| 1124 | void crc32(Register crc, Address adr, int8_t sizeInBytes); | |||
| 1125 | ||||
| 1126 | // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value | |||
| 1127 | void cvtsd2ss(XMMRegister dst, XMMRegister src); | |||
| 1128 | void cvtsd2ss(XMMRegister dst, Address src); | |||
| 1129 | ||||
| 1130 | // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value | |||
| 1131 | void cvtsi2sdl(XMMRegister dst, Register src); | |||
| 1132 | void cvtsi2sdl(XMMRegister dst, Address src); | |||
| 1133 | void cvtsi2sdq(XMMRegister dst, Register src); | |||
| 1134 | void cvtsi2sdq(XMMRegister dst, Address src); | |||
| 1135 | ||||
| 1136 | // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value | |||
| 1137 | void cvtsi2ssl(XMMRegister dst, Register src); | |||
| 1138 | void cvtsi2ssl(XMMRegister dst, Address src); | |||
| 1139 | void cvtsi2ssq(XMMRegister dst, Register src); | |||
| 1140 | void cvtsi2ssq(XMMRegister dst, Address src); | |||
| 1141 | ||||
| 1142 | // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value | |||
| 1143 | void cvtdq2pd(XMMRegister dst, XMMRegister src); | |||
| 1144 | void vcvtdq2pd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1145 | ||||
| 1146 | // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value | |||
| 1147 | void cvtdq2ps(XMMRegister dst, XMMRegister src); | |||
| 1148 | void vcvtdq2ps(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1149 | ||||
| 1150 | // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value | |||
| 1151 | void cvtss2sd(XMMRegister dst, XMMRegister src); | |||
| 1152 | void cvtss2sd(XMMRegister dst, Address src); | |||
| 1153 | ||||
| 1154 | // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer | |||
| 1155 | void cvttsd2sil(Register dst, Address src); | |||
| 1156 | void cvttsd2sil(Register dst, XMMRegister src); | |||
| 1157 | void cvttsd2siq(Register dst, Address src); | |||
| 1158 | void cvttsd2siq(Register dst, XMMRegister src); | |||
| 1159 | ||||
| 1160 | // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer | |||
| 1161 | void cvttss2sil(Register dst, XMMRegister src); | |||
| 1162 | void cvttss2siq(Register dst, XMMRegister src); | |||
| 1163 | ||||
| 1164 | // Convert vector double to int | |||
| 1165 | void cvttpd2dq(XMMRegister dst, XMMRegister src); | |||
| 1166 | ||||
| 1167 | // Convert vector float and double | |||
| 1168 | void vcvtps2pd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1169 | void vcvtpd2ps(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1170 | ||||
| 1171 | // Convert vector float and int | |||
| 1172 | void vcvttps2dq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1173 | ||||
| 1174 | // Convert vector long to vector FP | |||
| 1175 | void evcvtqq2ps(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1176 | void evcvtqq2pd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1177 | ||||
| 1178 | // Convert vector double to long | |||
| 1179 | void evcvttpd2qq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1180 | ||||
| 1181 | // Evex casts with truncation | |||
| 1182 | void evpmovwb(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1183 | void evpmovdw(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1184 | void evpmovdb(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1185 | void evpmovqd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1186 | void evpmovqb(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1187 | void evpmovqw(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1188 | ||||
| 1189 | //Abs of packed Integer values | |||
| 1190 | void pabsb(XMMRegister dst, XMMRegister src); | |||
| 1191 | void pabsw(XMMRegister dst, XMMRegister src); | |||
| 1192 | void pabsd(XMMRegister dst, XMMRegister src); | |||
| 1193 | void vpabsb(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1194 | void vpabsw(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1195 | void vpabsd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1196 | void evpabsq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1197 | ||||
| 1198 | // Divide Scalar Double-Precision Floating-Point Values | |||
| 1199 | void divsd(XMMRegister dst, Address src); | |||
| 1200 | void divsd(XMMRegister dst, XMMRegister src); | |||
| 1201 | ||||
| 1202 | // Divide Scalar Single-Precision Floating-Point Values | |||
| 1203 | void divss(XMMRegister dst, Address src); | |||
| 1204 | void divss(XMMRegister dst, XMMRegister src); | |||
| 1205 | ||||
| 1206 | ||||
| 1207 | #ifndef _LP641 | |||
| 1208 | private: | |||
| 1209 | ||||
| 1210 | void emit_farith(int b1, int b2, int i); | |||
| 1211 | ||||
| 1212 | public: | |||
| 1213 | void emms(); | |||
| 1214 | ||||
| 1215 | void fabs(); | |||
| 1216 | ||||
| 1217 | void fadd(int i); | |||
| 1218 | ||||
| 1219 | void fadd_d(Address src); | |||
| 1220 | void fadd_s(Address src); | |||
| 1221 | ||||
| 1222 | // "Alternate" versions of x87 instructions place result down in FPU | |||
| 1223 | // stack instead of on TOS | |||
| 1224 | ||||
| 1225 | void fadda(int i); // "alternate" fadd | |||
| 1226 | void faddp(int i = 1); | |||
| 1227 | ||||
| 1228 | void fchs(); | |||
| 1229 | ||||
| 1230 | void fcom(int i); | |||
| 1231 | ||||
| 1232 | void fcomp(int i = 1); | |||
| 1233 | void fcomp_d(Address src); | |||
| 1234 | void fcomp_s(Address src); | |||
| 1235 | ||||
| 1236 | void fcompp(); | |||
| 1237 | ||||
| 1238 | void fcos(); | |||
| 1239 | ||||
| 1240 | void fdecstp(); | |||
| 1241 | ||||
| 1242 | void fdiv(int i); | |||
| 1243 | void fdiv_d(Address src); | |||
| 1244 | void fdivr_s(Address src); | |||
| 1245 | void fdiva(int i); // "alternate" fdiv | |||
| 1246 | void fdivp(int i = 1); | |||
| 1247 | ||||
| 1248 | void fdivr(int i); | |||
| 1249 | void fdivr_d(Address src); | |||
| 1250 | void fdiv_s(Address src); | |||
| 1251 | ||||
| 1252 | void fdivra(int i); // "alternate" reversed fdiv | |||
| 1253 | ||||
| 1254 | void fdivrp(int i = 1); | |||
| 1255 | ||||
| 1256 | void ffree(int i = 0); | |||
| 1257 | ||||
| 1258 | void fild_d(Address adr); | |||
| 1259 | void fild_s(Address adr); | |||
| 1260 | ||||
| 1261 | void fincstp(); | |||
| 1262 | ||||
| 1263 | void finit(); | |||
| 1264 | ||||
| 1265 | void fist_s (Address adr); | |||
| 1266 | void fistp_d(Address adr); | |||
| 1267 | void fistp_s(Address adr); | |||
| 1268 | ||||
| 1269 | void fld1(); | |||
| 1270 | ||||
| 1271 | void fld_d(Address adr); | |||
| 1272 | void fld_s(Address adr); | |||
| 1273 | void fld_s(int index); | |||
| 1274 | ||||
| 1275 | void fldcw(Address src); | |||
| 1276 | ||||
| 1277 | void fldenv(Address src); | |||
| 1278 | ||||
| 1279 | void fldlg2(); | |||
| 1280 | ||||
| 1281 | void fldln2(); | |||
| 1282 | ||||
| 1283 | void fldz(); | |||
| 1284 | ||||
| 1285 | void flog(); | |||
| 1286 | void flog10(); | |||
| 1287 | ||||
| 1288 | void fmul(int i); | |||
| 1289 | ||||
| 1290 | void fmul_d(Address src); | |||
| 1291 | void fmul_s(Address src); | |||
| 1292 | ||||
| 1293 | void fmula(int i); // "alternate" fmul | |||
| 1294 | ||||
| 1295 | void fmulp(int i = 1); | |||
| 1296 | ||||
| 1297 | void fnsave(Address dst); | |||
| 1298 | ||||
| 1299 | void fnstcw(Address src); | |||
| 1300 | ||||
| 1301 | void fnstsw_ax(); | |||
| 1302 | ||||
| 1303 | void fprem(); | |||
| 1304 | void fprem1(); | |||
| 1305 | ||||
| 1306 | void frstor(Address src); | |||
| 1307 | ||||
| 1308 | void fsin(); | |||
| 1309 | ||||
| 1310 | void fsqrt(); | |||
| 1311 | ||||
| 1312 | void fst_d(Address adr); | |||
| 1313 | void fst_s(Address adr); | |||
| 1314 | ||||
| 1315 | void fstp_d(Address adr); | |||
| 1316 | void fstp_d(int index); | |||
| 1317 | void fstp_s(Address adr); | |||
| 1318 | ||||
| 1319 | void fsub(int i); | |||
| 1320 | void fsub_d(Address src); | |||
| 1321 | void fsub_s(Address src); | |||
| 1322 | ||||
| 1323 | void fsuba(int i); // "alternate" fsub | |||
| 1324 | ||||
| 1325 | void fsubp(int i = 1); | |||
| 1326 | ||||
| 1327 | void fsubr(int i); | |||
| 1328 | void fsubr_d(Address src); | |||
| 1329 | void fsubr_s(Address src); | |||
| 1330 | ||||
| 1331 | void fsubra(int i); // "alternate" reversed fsub | |||
| 1332 | ||||
| 1333 | void fsubrp(int i = 1); | |||
| 1334 | ||||
| 1335 | void ftan(); | |||
| 1336 | ||||
| 1337 | void ftst(); | |||
| 1338 | ||||
| 1339 | void fucomi(int i = 1); | |||
| 1340 | void fucomip(int i = 1); | |||
| 1341 | ||||
| 1342 | void fwait(); | |||
| 1343 | ||||
| 1344 | void fxch(int i = 1); | |||
| 1345 | ||||
| 1346 | void fyl2x(); | |||
| 1347 | void frndint(); | |||
| 1348 | void f2xm1(); | |||
| 1349 | void fldl2e(); | |||
| 1350 | #endif // !_LP64 | |||
| 1351 | ||||
| 1352 | // operands that only take the original 32bit registers | |||
| 1353 | void emit_operand32(Register reg, Address adr); | |||
| 1354 | ||||
| 1355 | void fld_x(Address adr); // extended-precision (80-bit) format | |||
| 1356 | void fstp_x(Address adr); // extended-precision (80-bit) format | |||
| 1357 | void fxrstor(Address src); | |||
| 1358 | void xrstor(Address src); | |||
| 1359 | ||||
| 1360 | void fxsave(Address dst); | |||
| 1361 | void xsave(Address dst); | |||
| 1362 | ||||
| 1363 | void hlt(); | |||
| 1364 | ||||
| 1365 | void idivl(Register src); | |||
| 1366 | void divl(Register src); // Unsigned division | |||
| 1367 | ||||
| 1368 | #ifdef _LP641 | |||
| 1369 | void idivq(Register src); | |||
| 1370 | #endif | |||
| 1371 | ||||
| 1372 | void imull(Register src); | |||
| 1373 | void imull(Register dst, Register src); | |||
| 1374 | void imull(Register dst, Register src, int value); | |||
| 1375 | void imull(Register dst, Address src, int value); | |||
| 1376 | void imull(Register dst, Address src); | |||
| 1377 | ||||
| 1378 | #ifdef _LP641 | |||
| 1379 | void imulq(Register dst, Register src); | |||
| 1380 | void imulq(Register dst, Register src, int value); | |||
| 1381 | void imulq(Register dst, Address src, int value); | |||
| 1382 | void imulq(Register dst, Address src); | |||
| 1383 | void imulq(Register dst); | |||
| 1384 | #endif | |||
| 1385 | ||||
| 1386 | // jcc is the generic conditional branch generator to run- | |||
| 1387 | // time routines, jcc is used for branches to labels. jcc | |||
| 1388 | // takes a branch opcode (cc) and a label (L) and generates | |||
| 1389 | // either a backward branch or a forward branch and links it | |||
| 1390 | // to the label fixup chain. Usage: | |||
| 1391 | // | |||
| 1392 | // Label L; // unbound label | |||
| 1393 | // jcc(cc, L); // forward branch to unbound label | |||
| 1394 | // bind(L); // bind label to the current pc | |||
| 1395 | // jcc(cc, L); // backward branch to bound label | |||
| 1396 | // bind(L); // illegal: a label may be bound only once | |||
| 1397 | // | |||
| 1398 | // Note: The same Label can be used for forward and backward branches | |||
| 1399 | // but it may be bound only once. | |||
| 1400 | ||||
| 1401 | void jcc(Condition cc, Label& L, bool maybe_short = true); | |||
| 1402 | ||||
| 1403 | // Conditional jump to a 8-bit offset to L. | |||
| 1404 | // WARNING: be very careful using this for forward jumps. If the label is | |||
| 1405 | // not bound within an 8-bit offset of this instruction, a run-time error | |||
| 1406 | // will occur. | |||
| 1407 | ||||
| 1408 | // Use macro to record file and line number. | |||
| 1409 | #define jccb(cc, L)jccb_0(cc, L, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 1409) jccb_0(cc, L, __FILE__"/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp", __LINE__1409) | |||
| 1410 | ||||
| 1411 | void jccb_0(Condition cc, Label& L, const char* file, int line); | |||
| 1412 | ||||
| 1413 | void jmp(Address entry); // pc <- entry | |||
| 1414 | ||||
| 1415 | // Label operations & relative jumps (PPUM Appendix D) | |||
| 1416 | void jmp(Label& L, bool maybe_short = true); // unconditional jump to L | |||
| 1417 | ||||
| 1418 | void jmp(Register entry); // pc <- entry | |||
| 1419 | ||||
| 1420 | // Unconditional 8-bit offset jump to L. | |||
| 1421 | // WARNING: be very careful using this for forward jumps. If the label is | |||
| 1422 | // not bound within an 8-bit offset of this instruction, a run-time error | |||
| 1423 | // will occur. | |||
| 1424 | ||||
| 1425 | // Use macro to record file and line number. | |||
| 1426 | #define jmpb(L)jmpb_0(L, "/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp" , 1426) jmpb_0(L, __FILE__"/home/daniel/Projects/java/jdk/src/hotspot/cpu/x86/assembler_x86.hpp", __LINE__1426) | |||
| 1427 | ||||
| 1428 | void jmpb_0(Label& L, const char* file, int line); | |||
| 1429 | ||||
| 1430 | void ldmxcsr( Address src ); | |||
| 1431 | ||||
| 1432 | void leal(Register dst, Address src); | |||
| 1433 | ||||
| 1434 | void leaq(Register dst, Address src); | |||
| 1435 | ||||
| 1436 | void lfence(); | |||
| 1437 | ||||
| 1438 | void lock(); | |||
| 1439 | void size_prefix(); | |||
| 1440 | ||||
| 1441 | void lzcntl(Register dst, Register src); | |||
| 1442 | ||||
| 1443 | #ifdef _LP641 | |||
| 1444 | void lzcntq(Register dst, Register src); | |||
| 1445 | #endif | |||
| 1446 | ||||
| 1447 | enum Membar_mask_bits { | |||
| 1448 | StoreStore = 1 << 3, | |||
| 1449 | LoadStore = 1 << 2, | |||
| 1450 | StoreLoad = 1 << 1, | |||
| 1451 | LoadLoad = 1 << 0 | |||
| 1452 | }; | |||
| 1453 | ||||
| 1454 | // Serializes memory and blows flags | |||
| 1455 | void membar(Membar_mask_bits order_constraint); | |||
| 1456 | ||||
| 1457 | void mfence(); | |||
| 1458 | void sfence(); | |||
| 1459 | ||||
| 1460 | // Moves | |||
| 1461 | ||||
| 1462 | void mov64(Register dst, int64_t imm64); | |||
| 1463 | void mov64(Register dst, int64_t imm64, relocInfo::relocType rtype, int format); | |||
| 1464 | ||||
| 1465 | void movb(Address dst, Register src); | |||
| 1466 | void movb(Address dst, int imm8); | |||
| 1467 | void movb(Register dst, Address src); | |||
| 1468 | ||||
| 1469 | void movddup(XMMRegister dst, XMMRegister src); | |||
| 1470 | ||||
| 1471 | void kandbl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1472 | void kandwl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1473 | void kanddl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1474 | void kandql(KRegister dst, KRegister src1, KRegister src2); | |||
| 1475 | ||||
| 1476 | void korbl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1477 | void korwl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1478 | void kordl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1479 | void korql(KRegister dst, KRegister src1, KRegister src2); | |||
| 1480 | ||||
| 1481 | void kxorbl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1482 | void kxorwl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1483 | void kxordl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1484 | void kxorql(KRegister dst, KRegister src1, KRegister src2); | |||
| 1485 | void kmovbl(KRegister dst, Register src); | |||
| 1486 | void kmovbl(Register dst, KRegister src); | |||
| 1487 | void kmovbl(KRegister dst, KRegister src); | |||
| 1488 | void kmovwl(KRegister dst, Register src); | |||
| 1489 | void kmovwl(KRegister dst, Address src); | |||
| 1490 | void kmovwl(Register dst, KRegister src); | |||
| 1491 | void kmovwl(Address dst, KRegister src); | |||
| 1492 | void kmovwl(KRegister dst, KRegister src); | |||
| 1493 | void kmovdl(KRegister dst, Register src); | |||
| 1494 | void kmovdl(Register dst, KRegister src); | |||
| 1495 | void kmovql(KRegister dst, KRegister src); | |||
| 1496 | void kmovql(Address dst, KRegister src); | |||
| 1497 | void kmovql(KRegister dst, Address src); | |||
| 1498 | void kmovql(KRegister dst, Register src); | |||
| 1499 | void kmovql(Register dst, KRegister src); | |||
| 1500 | ||||
| 1501 | void knotbl(KRegister dst, KRegister src); | |||
| 1502 | void knotwl(KRegister dst, KRegister src); | |||
| 1503 | void knotdl(KRegister dst, KRegister src); | |||
| 1504 | void knotql(KRegister dst, KRegister src); | |||
| 1505 | ||||
| 1506 | void kortestbl(KRegister dst, KRegister src); | |||
| 1507 | void kortestwl(KRegister dst, KRegister src); | |||
| 1508 | void kortestdl(KRegister dst, KRegister src); | |||
| 1509 | void kortestql(KRegister dst, KRegister src); | |||
| 1510 | ||||
| 1511 | void kxnorbl(KRegister dst, KRegister src1, KRegister src2); | |||
| 1512 | void kshiftlbl(KRegister dst, KRegister src, int imm8); | |||
| 1513 | void kshiftrbl(KRegister dst, KRegister src, int imm8); | |||
| 1514 | void kshiftrwl(KRegister dst, KRegister src, int imm8); | |||
| 1515 | void kshiftrdl(KRegister dst, KRegister src, int imm8); | |||
| 1516 | void kshiftrql(KRegister dst, KRegister src, int imm8); | |||
| 1517 | void ktestq(KRegister src1, KRegister src2); | |||
| 1518 | void ktestd(KRegister src1, KRegister src2); | |||
| 1519 | ||||
| 1520 | void ktestql(KRegister dst, KRegister src); | |||
| 1521 | void ktestdl(KRegister dst, KRegister src); | |||
| 1522 | void ktestwl(KRegister dst, KRegister src); | |||
| 1523 | void ktestbl(KRegister dst, KRegister src); | |||
| 1524 | ||||
| 1525 | void movdl(XMMRegister dst, Register src); | |||
| 1526 | void movdl(Register dst, XMMRegister src); | |||
| 1527 | void movdl(XMMRegister dst, Address src); | |||
| 1528 | void movdl(Address dst, XMMRegister src); | |||
| 1529 | ||||
| 1530 | // Move Double Quadword | |||
| 1531 | void movdq(XMMRegister dst, Register src); | |||
| 1532 | void movdq(Register dst, XMMRegister src); | |||
| 1533 | ||||
| 1534 | // Move Aligned Double Quadword | |||
| 1535 | void movdqa(XMMRegister dst, XMMRegister src); | |||
| 1536 | void movdqa(XMMRegister dst, Address src); | |||
| 1537 | ||||
| 1538 | // Move Unaligned Double Quadword | |||
| 1539 | void movdqu(Address dst, XMMRegister src); | |||
| 1540 | void movdqu(XMMRegister dst, Address src); | |||
| 1541 | void movdqu(XMMRegister dst, XMMRegister src); | |||
| 1542 | ||||
| 1543 | // Move Unaligned 256bit Vector | |||
| 1544 | void vmovdqu(Address dst, XMMRegister src); | |||
| 1545 | void vmovdqu(XMMRegister dst, Address src); | |||
| 1546 | void vmovdqu(XMMRegister dst, XMMRegister src); | |||
| 1547 | ||||
| 1548 | // Move Unaligned 512bit Vector | |||
| 1549 | void evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len); | |||
| 1550 | void evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len); | |||
| 1551 | void evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len); | |||
| 1552 | void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 1553 | void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 1554 | void evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len); | |||
| 1555 | void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 1556 | void evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len); | |||
| 1557 | void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 1558 | void evmovdqul(Address dst, XMMRegister src, int vector_len); | |||
| 1559 | void evmovdqul(XMMRegister dst, Address src, int vector_len); | |||
| 1560 | void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1561 | void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 1562 | void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 1563 | void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 1564 | void evmovdquq(Address dst, XMMRegister src, int vector_len); | |||
| 1565 | void evmovdquq(XMMRegister dst, Address src, int vector_len); | |||
| 1566 | void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1567 | void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 1568 | void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 1569 | void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 1570 | ||||
| 1571 | // Move lower 64bit to high 64bit in 128bit register | |||
| 1572 | void movlhps(XMMRegister dst, XMMRegister src); | |||
| 1573 | ||||
| 1574 | void movl(Register dst, int32_t imm32); | |||
| 1575 | void movl(Address dst, int32_t imm32); | |||
| 1576 | void movl(Register dst, Register src); | |||
| 1577 | void movl(Register dst, Address src); | |||
| 1578 | void movl(Address dst, Register src); | |||
| 1579 | ||||
| 1580 | // These dummies prevent using movl from converting a zero (like NULL) into Register | |||
| 1581 | // by giving the compiler two choices it can't resolve | |||
| 1582 | ||||
| 1583 | void movl(Address dst, void* junk); | |||
| 1584 | void movl(Register dst, void* junk); | |||
| 1585 | ||||
| 1586 | #ifdef _LP641 | |||
| 1587 | void movq(Register dst, Register src); | |||
| 1588 | void movq(Register dst, Address src); | |||
| 1589 | void movq(Address dst, Register src); | |||
| 1590 | void movq(Address dst, int32_t imm32); | |||
| 1591 | void movq(Register dst, int32_t imm32); | |||
| 1592 | ||||
| 1593 | // These dummies prevent using movq from converting a zero (like NULL) into Register | |||
| 1594 | // by giving the compiler two choices it can't resolve | |||
| 1595 | ||||
| 1596 | void movq(Address dst, void* dummy); | |||
| 1597 | void movq(Register dst, void* dummy); | |||
| 1598 | #endif | |||
| 1599 | ||||
| 1600 | // Move Quadword | |||
| 1601 | void movq(Address dst, XMMRegister src); | |||
| 1602 | void movq(XMMRegister dst, Address src); | |||
| 1603 | void movq(XMMRegister dst, XMMRegister src); | |||
| 1604 | void movq(Register dst, XMMRegister src); | |||
| 1605 | void movq(XMMRegister dst, Register src); | |||
| 1606 | ||||
| 1607 | void movsbl(Register dst, Address src); | |||
| 1608 | void movsbl(Register dst, Register src); | |||
| 1609 | ||||
| 1610 | #ifdef _LP641 | |||
| 1611 | void movsbq(Register dst, Address src); | |||
| 1612 | void movsbq(Register dst, Register src); | |||
| 1613 | ||||
| 1614 | // Move signed 32bit immediate to 64bit extending sign | |||
| 1615 | void movslq(Address dst, int32_t imm64); | |||
| 1616 | void movslq(Register dst, int32_t imm64); | |||
| 1617 | ||||
| 1618 | void movslq(Register dst, Address src); | |||
| 1619 | void movslq(Register dst, Register src); | |||
| 1620 | void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous | |||
| 1621 | #endif | |||
| 1622 | ||||
| 1623 | void movswl(Register dst, Address src); | |||
| 1624 | void movswl(Register dst, Register src); | |||
| 1625 | ||||
| 1626 | #ifdef _LP641 | |||
| 1627 | void movswq(Register dst, Address src); | |||
| 1628 | void movswq(Register dst, Register src); | |||
| 1629 | #endif | |||
| 1630 | ||||
| 1631 | void movw(Address dst, int imm16); | |||
| 1632 | void movw(Register dst, Address src); | |||
| 1633 | void movw(Address dst, Register src); | |||
| 1634 | ||||
| 1635 | void movzbl(Register dst, Address src); | |||
| 1636 | void movzbl(Register dst, Register src); | |||
| 1637 | ||||
| 1638 | #ifdef _LP641 | |||
| 1639 | void movzbq(Register dst, Address src); | |||
| 1640 | void movzbq(Register dst, Register src); | |||
| 1641 | #endif | |||
| 1642 | ||||
| 1643 | void movzwl(Register dst, Address src); | |||
| 1644 | void movzwl(Register dst, Register src); | |||
| 1645 | ||||
| 1646 | #ifdef _LP641 | |||
| 1647 | void movzwq(Register dst, Address src); | |||
| 1648 | void movzwq(Register dst, Register src); | |||
| 1649 | #endif | |||
| 1650 | ||||
| 1651 | // Unsigned multiply with RAX destination register | |||
| 1652 | void mull(Address src); | |||
| 1653 | void mull(Register src); | |||
| 1654 | ||||
| 1655 | #ifdef _LP641 | |||
| 1656 | void mulq(Address src); | |||
| 1657 | void mulq(Register src); | |||
| 1658 | void mulxq(Register dst1, Register dst2, Register src); | |||
| 1659 | #endif | |||
| 1660 | ||||
| 1661 | // Multiply Scalar Double-Precision Floating-Point Values | |||
| 1662 | void mulsd(XMMRegister dst, Address src); | |||
| 1663 | void mulsd(XMMRegister dst, XMMRegister src); | |||
| 1664 | ||||
| 1665 | // Multiply Scalar Single-Precision Floating-Point Values | |||
| 1666 | void mulss(XMMRegister dst, Address src); | |||
| 1667 | void mulss(XMMRegister dst, XMMRegister src); | |||
| 1668 | ||||
| 1669 | void negl(Register dst); | |||
| 1670 | void negl(Address dst); | |||
| 1671 | ||||
| 1672 | #ifdef _LP641 | |||
| 1673 | void negq(Register dst); | |||
| 1674 | void negq(Address dst); | |||
| 1675 | #endif | |||
| 1676 | ||||
| 1677 | void nop(int i = 1); | |||
| 1678 | ||||
| 1679 | void notl(Register dst); | |||
| 1680 | ||||
| 1681 | #ifdef _LP641 | |||
| 1682 | void notq(Register dst); | |||
| 1683 | ||||
| 1684 | void btsq(Address dst, int imm8); | |||
| 1685 | void btrq(Address dst, int imm8); | |||
| 1686 | #endif | |||
| 1687 | ||||
| 1688 | void orw(Register dst, Register src); | |||
| 1689 | ||||
| 1690 | void orl(Address dst, int32_t imm32); | |||
| 1691 | void orl(Register dst, int32_t imm32); | |||
| 1692 | void orl(Register dst, Address src); | |||
| 1693 | void orl(Register dst, Register src); | |||
| 1694 | void orl(Address dst, Register src); | |||
| 1695 | ||||
| 1696 | void orb(Address dst, int imm8); | |||
| 1697 | void orb(Address dst, Register src); | |||
| 1698 | ||||
| 1699 | void orq(Address dst, int32_t imm32); | |||
| 1700 | void orq(Address dst, Register src); | |||
| 1701 | void orq(Register dst, int32_t imm32); | |||
| 1702 | void orq(Register dst, Address src); | |||
| 1703 | void orq(Register dst, Register src); | |||
| 1704 | ||||
| 1705 | // Pack with signed saturation | |||
| 1706 | void packsswb(XMMRegister dst, XMMRegister src); | |||
| 1707 | void vpacksswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1708 | void packssdw(XMMRegister dst, XMMRegister src); | |||
| 1709 | void vpackssdw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1710 | ||||
| 1711 | // Pack with unsigned saturation | |||
| 1712 | void packuswb(XMMRegister dst, XMMRegister src); | |||
| 1713 | void packuswb(XMMRegister dst, Address src); | |||
| 1714 | void packusdw(XMMRegister dst, XMMRegister src); | |||
| 1715 | void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1716 | void vpackusdw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1717 | ||||
| 1718 | // Permutations | |||
| 1719 | void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len); | |||
| 1720 | void vpermq(XMMRegister dst, XMMRegister src, int imm8); | |||
| 1721 | void vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1722 | void vpermb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1723 | void vpermb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 1724 | void vpermw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1725 | void vpermd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 1726 | void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1727 | void vperm2i128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); | |||
| 1728 | void vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); | |||
| 1729 | void vpermilps(XMMRegister dst, XMMRegister src, int imm8, int vector_len); | |||
| 1730 | void vpermilpd(XMMRegister dst, XMMRegister src, int imm8, int vector_len); | |||
| 1731 | void vpermpd(XMMRegister dst, XMMRegister src, int imm8, int vector_len); | |||
| 1732 | void evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1733 | void evpermt2b(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1734 | void evpmultishiftqb(XMMRegister dst, XMMRegister ctl, XMMRegister src, int vector_len); | |||
| 1735 | ||||
| 1736 | void pause(); | |||
| 1737 | ||||
| 1738 | // Undefined Instruction | |||
| 1739 | void ud2(); | |||
| 1740 | ||||
| 1741 | // SSE4.2 string instructions | |||
| 1742 | void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8); | |||
| 1743 | void pcmpestri(XMMRegister xmm1, Address src, int imm8); | |||
| 1744 | ||||
| 1745 | void pcmpeqb(XMMRegister dst, XMMRegister src); | |||
| 1746 | void vpcmpCCbwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, int vector_len); | |||
| 1747 | ||||
| 1748 | void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1749 | void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1750 | void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len); | |||
| 1751 | void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); | |||
| 1752 | ||||
| 1753 | void vpcmpgtb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1754 | void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len); | |||
| 1755 | void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); | |||
| 1756 | ||||
| 1757 | void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len); | |||
| 1758 | void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len); | |||
| 1759 | ||||
| 1760 | void pcmpeqw(XMMRegister dst, XMMRegister src); | |||
| 1761 | void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1762 | void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1763 | void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len); | |||
| 1764 | ||||
| 1765 | void vpcmpgtw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1766 | ||||
| 1767 | void pcmpeqd(XMMRegister dst, XMMRegister src); | |||
| 1768 | void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1769 | void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1770 | void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); | |||
| 1771 | ||||
| 1772 | void pcmpeqq(XMMRegister dst, XMMRegister src); | |||
| 1773 | void vpcmpCCq(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, int vector_len); | |||
| 1774 | void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1775 | void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1776 | void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len); | |||
| 1777 | ||||
| 1778 | void pcmpgtq(XMMRegister dst, XMMRegister src); | |||
| 1779 | void vpcmpgtq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1780 | ||||
| 1781 | void pmovmskb(Register dst, XMMRegister src); | |||
| 1782 | void vpmovmskb(Register dst, XMMRegister src, int vec_enc); | |||
| 1783 | void vmovmskps(Register dst, XMMRegister src, int vec_enc); | |||
| 1784 | void vmovmskpd(Register dst, XMMRegister src, int vec_enc); | |||
| 1785 | void vpmaskmovd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 1786 | ||||
| 1787 | // SSE 4.1 extract | |||
| 1788 | void pextrd(Register dst, XMMRegister src, int imm8); | |||
| 1789 | void pextrq(Register dst, XMMRegister src, int imm8); | |||
| 1790 | void pextrd(Address dst, XMMRegister src, int imm8); | |||
| 1791 | void pextrq(Address dst, XMMRegister src, int imm8); | |||
| 1792 | void pextrb(Register dst, XMMRegister src, int imm8); | |||
| 1793 | void pextrb(Address dst, XMMRegister src, int imm8); | |||
| 1794 | // SSE 2 extract | |||
| 1795 | void pextrw(Register dst, XMMRegister src, int imm8); | |||
| 1796 | void pextrw(Address dst, XMMRegister src, int imm8); | |||
| 1797 | ||||
| 1798 | // SSE 4.1 insert | |||
| 1799 | void pinsrd(XMMRegister dst, Register src, int imm8); | |||
| 1800 | void pinsrq(XMMRegister dst, Register src, int imm8); | |||
| 1801 | void pinsrb(XMMRegister dst, Register src, int imm8); | |||
| 1802 | void pinsrd(XMMRegister dst, Address src, int imm8); | |||
| 1803 | void pinsrq(XMMRegister dst, Address src, int imm8); | |||
| 1804 | void pinsrb(XMMRegister dst, Address src, int imm8); | |||
| 1805 | void insertps(XMMRegister dst, XMMRegister src, int imm8); | |||
| 1806 | // SSE 2 insert | |||
| 1807 | void pinsrw(XMMRegister dst, Register src, int imm8); | |||
| 1808 | void pinsrw(XMMRegister dst, Address src, int imm8); | |||
| 1809 | ||||
| 1810 | // AVX insert | |||
| 1811 | void vpinsrd(XMMRegister dst, XMMRegister nds, Register src, int imm8); | |||
| 1812 | void vpinsrb(XMMRegister dst, XMMRegister nds, Register src, int imm8); | |||
| 1813 | void vpinsrq(XMMRegister dst, XMMRegister nds, Register src, int imm8); | |||
| 1814 | void vpinsrw(XMMRegister dst, XMMRegister nds, Register src, int imm8); | |||
| 1815 | void vinsertps(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); | |||
| 1816 | ||||
| 1817 | // Zero extend moves | |||
| 1818 | void pmovzxbw(XMMRegister dst, XMMRegister src); | |||
| 1819 | void pmovzxbw(XMMRegister dst, Address src); | |||
| 1820 | void pmovzxbd(XMMRegister dst, XMMRegister src); | |||
| 1821 | void vpmovzxbw( XMMRegister dst, Address src, int vector_len); | |||
| 1822 | void pmovzxdq(XMMRegister dst, XMMRegister src); | |||
| 1823 | void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1824 | void vpmovzxdq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1825 | void vpmovzxbd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1826 | void vpmovzxbq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1827 | void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len); | |||
| 1828 | ||||
| 1829 | // Sign extend moves | |||
| 1830 | void pmovsxbd(XMMRegister dst, XMMRegister src); | |||
| 1831 | void pmovsxbq(XMMRegister dst, XMMRegister src); | |||
| 1832 | void pmovsxbw(XMMRegister dst, XMMRegister src); | |||
| 1833 | void pmovsxwd(XMMRegister dst, XMMRegister src); | |||
| 1834 | void vpmovsxbd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1835 | void vpmovsxbq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1836 | void vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1837 | void vpmovsxwd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1838 | void vpmovsxwq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1839 | void vpmovsxdq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1840 | ||||
| 1841 | void evpmovwb(Address dst, XMMRegister src, int vector_len); | |||
| 1842 | void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len); | |||
| 1843 | ||||
| 1844 | void vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1845 | ||||
| 1846 | void evpmovdb(Address dst, XMMRegister src, int vector_len); | |||
| 1847 | ||||
| 1848 | // Multiply add | |||
| 1849 | void pmaddwd(XMMRegister dst, XMMRegister src); | |||
| 1850 | void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1851 | void vpmaddubsw(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 1852 | ||||
| 1853 | // Multiply add accumulate | |||
| 1854 | void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1855 | ||||
| 1856 | #ifndef _LP641 // no 32bit push/pop on amd64 | |||
| 1857 | void popl(Address dst); | |||
| 1858 | #endif | |||
| 1859 | ||||
| 1860 | #ifdef _LP641 | |||
| 1861 | void popq(Address dst); | |||
| 1862 | void popq(Register dst); | |||
| 1863 | #endif | |||
| 1864 | ||||
| 1865 | void popcntl(Register dst, Address src); | |||
| 1866 | void popcntl(Register dst, Register src); | |||
| 1867 | ||||
| 1868 | void vpopcntd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1869 | ||||
| 1870 | #ifdef _LP641 | |||
| 1871 | void popcntq(Register dst, Address src); | |||
| 1872 | void popcntq(Register dst, Register src); | |||
| 1873 | #endif | |||
| 1874 | ||||
| 1875 | // Prefetches (SSE, SSE2, 3DNOW only) | |||
| 1876 | ||||
| 1877 | void prefetchnta(Address src); | |||
| 1878 | void prefetchr(Address src); | |||
| 1879 | void prefetcht0(Address src); | |||
| 1880 | void prefetcht1(Address src); | |||
| 1881 | void prefetcht2(Address src); | |||
| 1882 | void prefetchw(Address src); | |||
| 1883 | ||||
| 1884 | // Shuffle Bytes | |||
| 1885 | void pshufb(XMMRegister dst, XMMRegister src); | |||
| 1886 | void pshufb(XMMRegister dst, Address src); | |||
| 1887 | void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1888 | ||||
| 1889 | // Shuffle Packed Doublewords | |||
| 1890 | void pshufd(XMMRegister dst, XMMRegister src, int mode); | |||
| 1891 | void pshufd(XMMRegister dst, Address src, int mode); | |||
| 1892 | void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len); | |||
| 1893 | ||||
| 1894 | // Shuffle Packed High/Low Words | |||
| 1895 | void pshufhw(XMMRegister dst, XMMRegister src, int mode); | |||
| 1896 | void pshuflw(XMMRegister dst, XMMRegister src, int mode); | |||
| 1897 | void pshuflw(XMMRegister dst, Address src, int mode); | |||
| 1898 | ||||
| 1899 | //shuffle floats and doubles | |||
| 1900 | void pshufps(XMMRegister, XMMRegister, int); | |||
| 1901 | void pshufpd(XMMRegister, XMMRegister, int); | |||
| 1902 | void vpshufps(XMMRegister, XMMRegister, XMMRegister, int, int); | |||
| 1903 | void vpshufpd(XMMRegister, XMMRegister, XMMRegister, int, int); | |||
| 1904 | ||||
| 1905 | // Shuffle packed values at 128 bit granularity | |||
| 1906 | void evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); | |||
| 1907 | ||||
| 1908 | // Shift Right by bytes Logical DoubleQuadword Immediate | |||
| 1909 | void psrldq(XMMRegister dst, int shift); | |||
| 1910 | // Shift Left by bytes Logical DoubleQuadword Immediate | |||
| 1911 | void pslldq(XMMRegister dst, int shift); | |||
| 1912 | ||||
| 1913 | // Logical Compare 128bit | |||
| 1914 | void ptest(XMMRegister dst, XMMRegister src); | |||
| 1915 | void ptest(XMMRegister dst, Address src); | |||
| 1916 | // Logical Compare 256bit | |||
| 1917 | void vptest(XMMRegister dst, XMMRegister src); | |||
| 1918 | void vptest(XMMRegister dst, Address src); | |||
| 1919 | ||||
| 1920 | void evptestmb(KRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 1921 | ||||
| 1922 | // Vector compare | |||
| 1923 | void vptest(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 1924 | ||||
| 1925 | // Interleave Low Bytes | |||
| 1926 | void punpcklbw(XMMRegister dst, XMMRegister src); | |||
| 1927 | void punpcklbw(XMMRegister dst, Address src); | |||
| 1928 | ||||
| 1929 | // Interleave Low Doublewords | |||
| 1930 | void punpckldq(XMMRegister dst, XMMRegister src); | |||
| 1931 | void punpckldq(XMMRegister dst, Address src); | |||
| 1932 | ||||
| 1933 | // Interleave Low Quadwords | |||
| 1934 | void punpcklqdq(XMMRegister dst, XMMRegister src); | |||
| 1935 | ||||
| 1936 | #ifndef _LP641 // no 32bit push/pop on amd64 | |||
| 1937 | void pushl(Address src); | |||
| 1938 | #endif | |||
| 1939 | ||||
| 1940 | void pushq(Address src); | |||
| 1941 | ||||
| 1942 | void rcll(Register dst, int imm8); | |||
| 1943 | ||||
| 1944 | void rclq(Register dst, int imm8); | |||
| 1945 | ||||
| 1946 | void rcrq(Register dst, int imm8); | |||
| 1947 | ||||
| 1948 | void rcpps(XMMRegister dst, XMMRegister src); | |||
| 1949 | ||||
| 1950 | void rcpss(XMMRegister dst, XMMRegister src); | |||
| 1951 | ||||
| 1952 | void rdtsc(); | |||
| 1953 | ||||
| 1954 | void ret(int imm16); | |||
| 1955 | ||||
| 1956 | void roll(Register dst); | |||
| 1957 | ||||
| 1958 | void roll(Register dst, int imm8); | |||
| 1959 | ||||
| 1960 | void rorl(Register dst); | |||
| 1961 | ||||
| 1962 | void rorl(Register dst, int imm8); | |||
| 1963 | ||||
| 1964 | #ifdef _LP641 | |||
| 1965 | void rolq(Register dst); | |||
| 1966 | void rolq(Register dst, int imm8); | |||
| 1967 | void rorq(Register dst); | |||
| 1968 | void rorq(Register dst, int imm8); | |||
| 1969 | void rorxq(Register dst, Register src, int imm8); | |||
| 1970 | void rorxd(Register dst, Register src, int imm8); | |||
| 1971 | #endif | |||
| 1972 | ||||
| 1973 | void sahf(); | |||
| 1974 | ||||
| 1975 | void sall(Register dst, int imm8); | |||
| 1976 | void sall(Register dst); | |||
| 1977 | void sall(Address dst, int imm8); | |||
| 1978 | void sall(Address dst); | |||
| 1979 | ||||
| 1980 | void sarl(Address dst, int imm8); | |||
| 1981 | void sarl(Address dst); | |||
| 1982 | void sarl(Register dst, int imm8); | |||
| 1983 | void sarl(Register dst); | |||
| 1984 | ||||
| 1985 | #ifdef _LP641 | |||
| 1986 | void salq(Register dst, int imm8); | |||
| 1987 | void salq(Register dst); | |||
| 1988 | void salq(Address dst, int imm8); | |||
| 1989 | void salq(Address dst); | |||
| 1990 | ||||
| 1991 | void sarq(Address dst, int imm8); | |||
| 1992 | void sarq(Address dst); | |||
| 1993 | void sarq(Register dst, int imm8); | |||
| 1994 | void sarq(Register dst); | |||
| 1995 | #endif | |||
| 1996 | ||||
| 1997 | void sbbl(Address dst, int32_t imm32); | |||
| 1998 | void sbbl(Register dst, int32_t imm32); | |||
| 1999 | void sbbl(Register dst, Address src); | |||
| 2000 | void sbbl(Register dst, Register src); | |||
| 2001 | ||||
| 2002 | void sbbq(Address dst, int32_t imm32); | |||
| 2003 | void sbbq(Register dst, int32_t imm32); | |||
| 2004 | void sbbq(Register dst, Address src); | |||
| 2005 | void sbbq(Register dst, Register src); | |||
| 2006 | ||||
| 2007 | void setb(Condition cc, Register dst); | |||
| 2008 | ||||
| 2009 | void sete(Register dst); | |||
| 2010 | void setl(Register dst); | |||
| 2011 | void setne(Register dst); | |||
| 2012 | ||||
| 2013 | void palignr(XMMRegister dst, XMMRegister src, int imm8); | |||
| 2014 | void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len); | |||
| 2015 | void evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); | |||
| 2016 | ||||
| 2017 | void pblendw(XMMRegister dst, XMMRegister src, int imm8); | |||
| 2018 | void vblendps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len); | |||
| 2019 | ||||
| 2020 | void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8); | |||
| 2021 | void sha1nexte(XMMRegister dst, XMMRegister src); | |||
| 2022 | void sha1msg1(XMMRegister dst, XMMRegister src); | |||
| 2023 | void sha1msg2(XMMRegister dst, XMMRegister src); | |||
| 2024 | // xmm0 is implicit additional source to the following instruction. | |||
| 2025 | void sha256rnds2(XMMRegister dst, XMMRegister src); | |||
| 2026 | void sha256msg1(XMMRegister dst, XMMRegister src); | |||
| 2027 | void sha256msg2(XMMRegister dst, XMMRegister src); | |||
| 2028 | ||||
| 2029 | void shldl(Register dst, Register src); | |||
| 2030 | void shldl(Register dst, Register src, int8_t imm8); | |||
| 2031 | void shrdl(Register dst, Register src); | |||
| 2032 | void shrdl(Register dst, Register src, int8_t imm8); | |||
| 2033 | ||||
| 2034 | void shll(Register dst, int imm8); | |||
| 2035 | void shll(Register dst); | |||
| 2036 | ||||
| 2037 | void shlq(Register dst, int imm8); | |||
| 2038 | void shlq(Register dst); | |||
| 2039 | ||||
| 2040 | void shrl(Register dst, int imm8); | |||
| 2041 | void shrl(Register dst); | |||
| 2042 | void shrl(Address dst); | |||
| 2043 | void shrl(Address dst, int imm8); | |||
| 2044 | ||||
| 2045 | void shrq(Register dst, int imm8); | |||
| 2046 | void shrq(Register dst); | |||
| 2047 | void shrq(Address dst); | |||
| 2048 | void shrq(Address dst, int imm8); | |||
| 2049 | ||||
| 2050 | void smovl(); // QQQ generic? | |||
| 2051 | ||||
| 2052 | // Compute Square Root of Scalar Double-Precision Floating-Point Value | |||
| 2053 | void sqrtsd(XMMRegister dst, Address src); | |||
| 2054 | void sqrtsd(XMMRegister dst, XMMRegister src); | |||
| 2055 | ||||
| 2056 | void roundsd(XMMRegister dst, Address src, int32_t rmode); | |||
| 2057 | void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode); | |||
| 2058 | ||||
| 2059 | // Compute Square Root of Scalar Single-Precision Floating-Point Value | |||
| 2060 | void sqrtss(XMMRegister dst, Address src); | |||
| 2061 | void sqrtss(XMMRegister dst, XMMRegister src); | |||
| 2062 | ||||
| 2063 | void std(); | |||
| 2064 | ||||
| 2065 | void stmxcsr( Address dst ); | |||
| 2066 | ||||
| 2067 | void subl(Address dst, int32_t imm32); | |||
| 2068 | void subl(Address dst, Register src); | |||
| 2069 | void subl(Register dst, int32_t imm32); | |||
| 2070 | void subl(Register dst, Address src); | |||
| 2071 | void subl(Register dst, Register src); | |||
| 2072 | ||||
| 2073 | void subq(Address dst, int32_t imm32); | |||
| 2074 | void subq(Address dst, Register src); | |||
| 2075 | void subq(Register dst, int32_t imm32); | |||
| 2076 | void subq(Register dst, Address src); | |||
| 2077 | void subq(Register dst, Register src); | |||
| 2078 | ||||
| 2079 | // Force generation of a 4 byte immediate value even if it fits into 8bit | |||
| 2080 | void subl_imm32(Register dst, int32_t imm32); | |||
| 2081 | void subq_imm32(Register dst, int32_t imm32); | |||
| 2082 | ||||
| 2083 | // Subtract Scalar Double-Precision Floating-Point Values | |||
| 2084 | void subsd(XMMRegister dst, Address src); | |||
| 2085 | void subsd(XMMRegister dst, XMMRegister src); | |||
| 2086 | ||||
| 2087 | // Subtract Scalar Single-Precision Floating-Point Values | |||
| 2088 | void subss(XMMRegister dst, Address src); | |||
| 2089 | void subss(XMMRegister dst, XMMRegister src); | |||
| 2090 | ||||
| 2091 | void testb(Register dst, int imm8); | |||
| 2092 | void testb(Address dst, int imm8); | |||
| 2093 | ||||
| 2094 | void testl(Register dst, int32_t imm32); | |||
| 2095 | void testl(Register dst, Register src); | |||
| 2096 | void testl(Register dst, Address src); | |||
| 2097 | ||||
| 2098 | void testq(Address dst, int32_t imm32); | |||
| 2099 | void testq(Register dst, int32_t imm32); | |||
| 2100 | void testq(Register dst, Register src); | |||
| 2101 | void testq(Register dst, Address src); | |||
| 2102 | ||||
| 2103 | // BMI - count trailing zeros | |||
| 2104 | void tzcntl(Register dst, Register src); | |||
| 2105 | void tzcntq(Register dst, Register src); | |||
| 2106 | ||||
| 2107 | // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS | |||
| 2108 | void ucomisd(XMMRegister dst, Address src); | |||
| 2109 | void ucomisd(XMMRegister dst, XMMRegister src); | |||
| 2110 | ||||
| 2111 | // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS | |||
| 2112 | void ucomiss(XMMRegister dst, Address src); | |||
| 2113 | void ucomiss(XMMRegister dst, XMMRegister src); | |||
| 2114 | ||||
| 2115 | void xabort(int8_t imm8); | |||
| 2116 | ||||
| 2117 | void xaddb(Address dst, Register src); | |||
| 2118 | void xaddw(Address dst, Register src); | |||
| 2119 | void xaddl(Address dst, Register src); | |||
| 2120 | void xaddq(Address dst, Register src); | |||
| 2121 | ||||
| 2122 | void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none); | |||
| 2123 | ||||
| 2124 | void xchgb(Register reg, Address adr); | |||
| 2125 | void xchgw(Register reg, Address adr); | |||
| 2126 | void xchgl(Register reg, Address adr); | |||
| 2127 | void xchgl(Register dst, Register src); | |||
| 2128 | ||||
| 2129 | void xchgq(Register reg, Address adr); | |||
| 2130 | void xchgq(Register dst, Register src); | |||
| 2131 | ||||
| 2132 | void xend(); | |||
| 2133 | ||||
| 2134 | // Get Value of Extended Control Register | |||
| 2135 | void xgetbv(); | |||
| 2136 | ||||
| 2137 | void xorl(Register dst, int32_t imm32); | |||
| 2138 | void xorl(Address dst, int32_t imm32); | |||
| 2139 | void xorl(Register dst, Address src); | |||
| 2140 | void xorl(Register dst, Register src); | |||
| 2141 | void xorl(Address dst, Register src); | |||
| 2142 | ||||
| 2143 | void xorb(Address dst, Register src); | |||
| 2144 | void xorb(Register dst, Address src); | |||
| 2145 | void xorw(Register dst, Register src); | |||
| 2146 | ||||
| 2147 | void xorq(Register dst, Address src); | |||
| 2148 | void xorq(Address dst, int32_t imm32); | |||
| 2149 | void xorq(Register dst, Register src); | |||
| 2150 | void xorq(Register dst, int32_t imm32); | |||
| 2151 | void xorq(Address dst, Register src); | |||
| 2152 | ||||
| 2153 | void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0 | |||
| 2154 | ||||
| 2155 | // AVX 3-operands scalar instructions (encoded with VEX prefix) | |||
| 2156 | ||||
| 2157 | void vaddsd(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2158 | void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2159 | void vaddss(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2160 | void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2161 | void vdivsd(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2162 | void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2163 | void vdivss(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2164 | void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2165 | void vfmadd231sd(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2166 | void vfmadd231ss(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2167 | void vmulsd(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2168 | void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2169 | void vmulss(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2170 | void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2171 | void vsubsd(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2172 | void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2173 | void vsubss(XMMRegister dst, XMMRegister nds, Address src); | |||
| 2174 | void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2175 | ||||
| 2176 | void vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2177 | void vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2178 | void vminss(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2179 | void vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src); | |||
| 2180 | ||||
| 2181 | void shlxl(Register dst, Register src1, Register src2); | |||
| 2182 | void shlxq(Register dst, Register src1, Register src2); | |||
| 2183 | void shrxl(Register dst, Register src1, Register src2); | |||
| 2184 | void shrxq(Register dst, Register src1, Register src2); | |||
| 2185 | ||||
| 2186 | void bzhiq(Register dst, Register src1, Register src2); | |||
| 2187 | void pdep(Register dst, Register src1, Register src2); | |||
| 2188 | void pext(Register dst, Register src1, Register src2); | |||
| 2189 | ||||
| 2190 | ||||
| 2191 | //====================VECTOR ARITHMETIC===================================== | |||
| 2192 | // Add Packed Floating-Point Values | |||
| 2193 | void addpd(XMMRegister dst, XMMRegister src); | |||
| 2194 | void addpd(XMMRegister dst, Address src); | |||
| 2195 | void addps(XMMRegister dst, XMMRegister src); | |||
| 2196 | void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2197 | void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2198 | void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2199 | void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2200 | ||||
| 2201 | // Subtract Packed Floating-Point Values | |||
| 2202 | void subpd(XMMRegister dst, XMMRegister src); | |||
| 2203 | void subps(XMMRegister dst, XMMRegister src); | |||
| 2204 | void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2205 | void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2206 | void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2207 | void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2208 | ||||
| 2209 | // Multiply Packed Floating-Point Values | |||
| 2210 | void mulpd(XMMRegister dst, XMMRegister src); | |||
| 2211 | void mulpd(XMMRegister dst, Address src); | |||
| 2212 | void mulps(XMMRegister dst, XMMRegister src); | |||
| 2213 | void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2214 | void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2215 | void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2216 | void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2217 | ||||
| 2218 | void vfmadd231pd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2219 | void vfmadd231ps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2220 | void vfmadd231pd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2221 | void vfmadd231ps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2222 | ||||
| 2223 | // Divide Packed Floating-Point Values | |||
| 2224 | void divpd(XMMRegister dst, XMMRegister src); | |||
| 2225 | void divps(XMMRegister dst, XMMRegister src); | |||
| 2226 | void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2227 | void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2228 | void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2229 | void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2230 | ||||
| 2231 | // Sqrt Packed Floating-Point Values | |||
| 2232 | void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2233 | void vsqrtpd(XMMRegister dst, Address src, int vector_len); | |||
| 2234 | void vsqrtps(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2235 | void vsqrtps(XMMRegister dst, Address src, int vector_len); | |||
| 2236 | ||||
| 2237 | // Round Packed Double precision value. | |||
| 2238 | void vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len); | |||
| 2239 | void vroundpd(XMMRegister dst, Address src, int32_t rmode, int vector_len); | |||
| 2240 | void vrndscalepd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len); | |||
| 2241 | void vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len); | |||
| 2242 | ||||
| 2243 | // Bitwise Logical AND of Packed Floating-Point Values | |||
| 2244 | void andpd(XMMRegister dst, XMMRegister src); | |||
| 2245 | void andps(XMMRegister dst, XMMRegister src); | |||
| 2246 | void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2247 | void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2248 | void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2249 | void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2250 | ||||
| 2251 | void unpckhpd(XMMRegister dst, XMMRegister src); | |||
| 2252 | void unpcklpd(XMMRegister dst, XMMRegister src); | |||
| 2253 | ||||
| 2254 | // Bitwise Logical XOR of Packed Floating-Point Values | |||
| 2255 | void xorpd(XMMRegister dst, XMMRegister src); | |||
| 2256 | void xorps(XMMRegister dst, XMMRegister src); | |||
| 2257 | void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2258 | void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2259 | void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2260 | void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2261 | ||||
| 2262 | // Add horizontal packed integers | |||
| 2263 | void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2264 | void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2265 | void phaddw(XMMRegister dst, XMMRegister src); | |||
| 2266 | void phaddd(XMMRegister dst, XMMRegister src); | |||
| 2267 | ||||
| 2268 | // Add packed integers | |||
| 2269 | void paddb(XMMRegister dst, XMMRegister src); | |||
| 2270 | void paddw(XMMRegister dst, XMMRegister src); | |||
| 2271 | void paddd(XMMRegister dst, XMMRegister src); | |||
| 2272 | void paddd(XMMRegister dst, Address src); | |||
| 2273 | void paddq(XMMRegister dst, XMMRegister src); | |||
| 2274 | void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2275 | void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2276 | void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2277 | void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2278 | void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2279 | void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2280 | void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2281 | void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2282 | ||||
| 2283 | // Leaf level assembler routines for masked operations. | |||
| 2284 | void evpaddb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2285 | void evpaddb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2286 | void evpaddw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2287 | void evpaddw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2288 | void evpaddd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2289 | void evpaddd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2290 | void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2291 | void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2292 | void evaddps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2293 | void evaddps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2294 | void evaddpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2295 | void evaddpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2296 | void evpsubb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2297 | void evpsubb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2298 | void evpsubw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2299 | void evpsubw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2300 | void evpsubd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2301 | void evpsubd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2302 | void evpsubq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2303 | void evpsubq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2304 | void evsubps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2305 | void evsubps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2306 | void evsubpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2307 | void evsubpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2308 | void evpmullw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2309 | void evpmullw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2310 | void evpmulld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2311 | void evpmulld(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2312 | void evpmullq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2313 | void evpmullq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2314 | void evmulps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2315 | void evmulps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2316 | void evmulpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2317 | void evmulpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2318 | void evdivps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2319 | void evdivps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2320 | void evdivpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2321 | void evdivpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2322 | void evpabsb(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 2323 | void evpabsb(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 2324 | void evpabsw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 2325 | void evpabsw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 2326 | void evpabsd(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 2327 | void evpabsd(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 2328 | void evpabsq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len); | |||
| 2329 | void evpabsq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len); | |||
| 2330 | void evpfma213ps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2331 | void evpfma213ps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2332 | void evpfma213pd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2333 | void evpfma213pd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2334 | void evpermb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2335 | void evpermb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2336 | void evpermw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2337 | void evpermw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2338 | void evpermd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2339 | void evpermd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2340 | void evpermq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2341 | void evpermq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2342 | void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2343 | void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2344 | void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2345 | void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2346 | void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2347 | void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2348 | void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2349 | void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2350 | void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2351 | void evsqrtps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2352 | void evsqrtps(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2353 | void evsqrtpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2354 | void evsqrtpd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2355 | ||||
| 2356 | void evpsllw(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2357 | void evpslld(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2358 | void evpsllq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2359 | void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2360 | void evpsrld(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2361 | void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2362 | void evpsraw(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2363 | void evpsrad(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2364 | void evpsraq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2365 | ||||
| 2366 | void evpsllvw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2367 | void evpsllvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2368 | void evpsllvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2369 | void evpsrlvw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2370 | void evpsrlvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2371 | void evpsrlvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2372 | void evpsravw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2373 | void evpsravd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2374 | void evpsravq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2375 | void evpmaxsb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2376 | void evpmaxsw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2377 | void evpmaxsd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2378 | void evpmaxsq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2379 | void evpminsb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2380 | void evpminsw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2381 | void evpminsd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2382 | void evpminsq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2383 | void evpmaxsb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2384 | void evpmaxsw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2385 | void evpmaxsd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2386 | void evpmaxsq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2387 | void evpminsb(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2388 | void evpminsw(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2389 | void evpminsd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2390 | void evpminsq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2391 | void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2392 | void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2393 | void evporq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2394 | void evporq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2395 | void evpandd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2396 | void evpandd(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2397 | void evpandq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2398 | void evpandq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2399 | void evpxord(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2400 | void evpxord(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2401 | void evpxorq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2402 | void evpxorq(XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len); | |||
| 2403 | ||||
| 2404 | void evprold(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2405 | void evprolq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2406 | void evprolvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2407 | void evprolvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2408 | void evprord(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2409 | void evprorq(XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vector_len); | |||
| 2410 | void evprorvd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2411 | void evprorvq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2412 | ||||
| 2413 | // Sub packed integers | |||
| 2414 | void psubb(XMMRegister dst, XMMRegister src); | |||
| 2415 | void psubw(XMMRegister dst, XMMRegister src); | |||
| 2416 | void psubd(XMMRegister dst, XMMRegister src); | |||
| 2417 | void psubq(XMMRegister dst, XMMRegister src); | |||
| 2418 | void vpsubusb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2419 | void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2420 | void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2421 | void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2422 | void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2423 | void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2424 | void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2425 | void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2426 | void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2427 | ||||
| 2428 | // Multiply packed integers (only shorts and ints) | |||
| 2429 | void pmullw(XMMRegister dst, XMMRegister src); | |||
| 2430 | void pmulld(XMMRegister dst, XMMRegister src); | |||
| 2431 | void pmuludq(XMMRegister dst, XMMRegister src); | |||
| 2432 | void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2433 | void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2434 | void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2435 | void vpmuludq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2436 | void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2437 | void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2438 | void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2439 | void vpmulhuw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2440 | ||||
| 2441 | // Minimum of packed integers | |||
| 2442 | void pminsb(XMMRegister dst, XMMRegister src); | |||
| 2443 | void vpminsb(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2444 | void pminsw(XMMRegister dst, XMMRegister src); | |||
| 2445 | void vpminsw(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2446 | void pminsd(XMMRegister dst, XMMRegister src); | |||
| 2447 | void vpminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2448 | void vpminsq(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2449 | void minps(XMMRegister dst, XMMRegister src); | |||
| 2450 | void vminps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2451 | void minpd(XMMRegister dst, XMMRegister src); | |||
| 2452 | void vminpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2453 | ||||
| 2454 | // Maximum of packed integers | |||
| 2455 | void pmaxsb(XMMRegister dst, XMMRegister src); | |||
| 2456 | void vpmaxsb(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2457 | void pmaxsw(XMMRegister dst, XMMRegister src); | |||
| 2458 | void vpmaxsw(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2459 | void pmaxsd(XMMRegister dst, XMMRegister src); | |||
| 2460 | void vpmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2461 | void vpmaxsq(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2462 | void maxps(XMMRegister dst, XMMRegister src); | |||
| 2463 | void vmaxps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2464 | void maxpd(XMMRegister dst, XMMRegister src); | |||
| 2465 | void vmaxpd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2466 | ||||
| 2467 | // Shift left packed integers | |||
| 2468 | void psllw(XMMRegister dst, int shift); | |||
| 2469 | void pslld(XMMRegister dst, int shift); | |||
| 2470 | void psllq(XMMRegister dst, int shift); | |||
| 2471 | void psllw(XMMRegister dst, XMMRegister shift); | |||
| 2472 | void pslld(XMMRegister dst, XMMRegister shift); | |||
| 2473 | void psllq(XMMRegister dst, XMMRegister shift); | |||
| 2474 | void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2475 | void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2476 | void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2477 | void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2478 | void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2479 | void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2480 | void vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2481 | ||||
| 2482 | // Logical shift right packed integers | |||
| 2483 | void psrlw(XMMRegister dst, int shift); | |||
| 2484 | void psrld(XMMRegister dst, int shift); | |||
| 2485 | void psrlq(XMMRegister dst, int shift); | |||
| 2486 | void psrlw(XMMRegister dst, XMMRegister shift); | |||
| 2487 | void psrld(XMMRegister dst, XMMRegister shift); | |||
| 2488 | void psrlq(XMMRegister dst, XMMRegister shift); | |||
| 2489 | void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2490 | void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2491 | void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2492 | void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2493 | void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2494 | void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2495 | void vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2496 | void evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2497 | void evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2498 | ||||
| 2499 | // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs) | |||
| 2500 | void psraw(XMMRegister dst, int shift); | |||
| 2501 | void psrad(XMMRegister dst, int shift); | |||
| 2502 | void psraw(XMMRegister dst, XMMRegister shift); | |||
| 2503 | void psrad(XMMRegister dst, XMMRegister shift); | |||
| 2504 | void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2505 | void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2506 | void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2507 | void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2508 | void evpsravw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2509 | void evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2510 | void evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2511 | ||||
| 2512 | // Variable shift left packed integers | |||
| 2513 | void vpsllvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2514 | void vpsllvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2515 | ||||
| 2516 | // Variable shift right packed integers | |||
| 2517 | void vpsrlvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2518 | void vpsrlvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2519 | ||||
| 2520 | // Variable shift right arithmetic packed integers | |||
| 2521 | void vpsravd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2522 | void evpsravq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2523 | ||||
| 2524 | void vpshldvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2525 | void vpshrdvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2526 | ||||
| 2527 | // And packed integers | |||
| 2528 | void pand(XMMRegister dst, XMMRegister src); | |||
| 2529 | void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2530 | void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2531 | void vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2532 | ||||
| 2533 | // Andn packed integers | |||
| 2534 | void pandn(XMMRegister dst, XMMRegister src); | |||
| 2535 | void vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2536 | ||||
| 2537 | // Or packed integers | |||
| 2538 | void por(XMMRegister dst, XMMRegister src); | |||
| 2539 | void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2540 | void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2541 | void vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2542 | ||||
| 2543 | // Xor packed integers | |||
| 2544 | void pxor(XMMRegister dst, XMMRegister src); | |||
| 2545 | void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2546 | void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2547 | void vpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2548 | void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2549 | void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); | |||
| 2550 | ||||
| 2551 | // Ternary logic instruction. | |||
| 2552 | void vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len); | |||
| 2553 | void vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, Address src3, int vector_len); | |||
| 2554 | void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len); | |||
| 2555 | ||||
| 2556 | // Vector Rotate Left/Right instruction. | |||
| 2557 | void evprolvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2558 | void evprolvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2559 | void evprorvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2560 | void evprorvq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); | |||
| 2561 | void evprold(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2562 | void evprolq(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2563 | void evprord(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2564 | void evprorq(XMMRegister dst, XMMRegister src, int shift, int vector_len); | |||
| 2565 | ||||
| 2566 | // vinserti forms | |||
| 2567 | void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); | |||
| 2568 | void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); | |||
| 2569 | void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); | |||
| 2570 | void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); | |||
| 2571 | void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); | |||
| 2572 | ||||
| 2573 | // vinsertf forms | |||
| 2574 | void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); | |||
| 2575 | void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); | |||
| 2576 | void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); | |||
| 2577 | void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); | |||
| 2578 | void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); | |||
| 2579 | void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); | |||
| 2580 | ||||
| 2581 | // vextracti forms | |||
| 2582 | void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2583 | void vextracti128(Address dst, XMMRegister src, uint8_t imm8); | |||
| 2584 | void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2585 | void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8); | |||
| 2586 | void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2587 | void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2588 | void vextracti64x4(Address dst, XMMRegister src, uint8_t imm8); | |||
| 2589 | ||||
| 2590 | // vextractf forms | |||
| 2591 | void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2592 | void vextractf128(Address dst, XMMRegister src, uint8_t imm8); | |||
| 2593 | void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2594 | void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8); | |||
| 2595 | void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2596 | void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8); | |||
| 2597 | void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8); | |||
| 2598 | ||||
| 2599 | // xmm/mem sourced byte/word/dword/qword replicate | |||
| 2600 | void vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2601 | void vpbroadcastb(XMMRegister dst, Address src, int vector_len); | |||
| 2602 | void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2603 | void vpbroadcastw(XMMRegister dst, Address src, int vector_len); | |||
| 2604 | void vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2605 | void vpbroadcastd(XMMRegister dst, Address src, int vector_len); | |||
| 2606 | void vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2607 | void vpbroadcastq(XMMRegister dst, Address src, int vector_len); | |||
| 2608 | ||||
| 2609 | void evbroadcasti32x4(XMMRegister dst, Address src, int vector_len); | |||
| 2610 | void evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2611 | void evbroadcasti64x2(XMMRegister dst, Address src, int vector_len); | |||
| 2612 | ||||
| 2613 | // scalar single/double/128bit precision replicate | |||
| 2614 | void vbroadcastss(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2615 | void vbroadcastss(XMMRegister dst, Address src, int vector_len); | |||
| 2616 | void vbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len); | |||
| 2617 | void vbroadcastsd(XMMRegister dst, Address src, int vector_len); | |||
| 2618 | void vbroadcastf128(XMMRegister dst, Address src, int vector_len); | |||
| 2619 | ||||
| 2620 | // gpr sourced byte/word/dword/qword replicate | |||
| 2621 | void evpbroadcastb(XMMRegister dst, Register src, int vector_len); | |||
| 2622 | void evpbroadcastw(XMMRegister dst, Register src, int vector_len); | |||
| 2623 | void evpbroadcastd(XMMRegister dst, Register src, int vector_len); | |||
| 2624 | void evpbroadcastq(XMMRegister dst, Register src, int vector_len); | |||
| 2625 | ||||
| 2626 | // Gather AVX2 and AVX3 | |||
| 2627 | void vpgatherdd(XMMRegister dst, Address src, XMMRegister mask, int vector_len); | |||
| 2628 | void vpgatherdq(XMMRegister dst, Address src, XMMRegister mask, int vector_len); | |||
| 2629 | void vgatherdpd(XMMRegister dst, Address src, XMMRegister mask, int vector_len); | |||
| 2630 | void vgatherdps(XMMRegister dst, Address src, XMMRegister mask, int vector_len); | |||
| 2631 | void evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len); | |||
| 2632 | void evpgatherdq(XMMRegister dst, KRegister mask, Address src, int vector_len); | |||
| 2633 | void evgatherdpd(XMMRegister dst, KRegister mask, Address src, int vector_len); | |||
| 2634 | void evgatherdps(XMMRegister dst, KRegister mask, Address src, int vector_len); | |||
| 2635 | ||||
| 2636 | //Scatter AVX3 only | |||
| 2637 | void evpscatterdd(Address dst, KRegister mask, XMMRegister src, int vector_len); | |||
| 2638 | void evpscatterdq(Address dst, KRegister mask, XMMRegister src, int vector_len); | |||
| 2639 | void evscatterdps(Address dst, KRegister mask, XMMRegister src, int vector_len); | |||
| 2640 | void evscatterdpd(Address dst, KRegister mask, XMMRegister src, int vector_len); | |||
| 2641 | ||||
| 2642 | // Carry-Less Multiplication Quadword | |||
| 2643 | void pclmulqdq(XMMRegister dst, XMMRegister src, int mask); | |||
| 2644 | void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask); | |||
| 2645 | void evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len); | |||
| 2646 | // AVX instruction which is used to clear upper 128 bits of YMM registers and | |||
| 2647 | // to avoid transaction penalty between AVX and SSE states. There is no | |||
| 2648 | // penalty if legacy SSE instructions are encoded using VEX prefix because | |||
| 2649 | // they always clear upper 128 bits. It should be used before calling | |||
| 2650 | // runtime code and native libraries. | |||
| 2651 | void vzeroupper(); | |||
| 2652 | ||||
| 2653 | // Vector double compares | |||
| 2654 | void vcmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len); | |||
| 2655 | void evcmppd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, | |||
| 2656 | ComparisonPredicateFP comparison, int vector_len); | |||
| 2657 | ||||
| 2658 | // Vector float compares | |||
| 2659 | void vcmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int comparison, int vector_len); | |||
| 2660 | void evcmpps(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, | |||
| 2661 | ComparisonPredicateFP comparison, int vector_len); | |||
| 2662 | ||||
| 2663 | // Vector integer compares | |||
| 2664 | void vpcmpgtd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); | |||
| 2665 | void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, | |||
| 2666 | int comparison, bool is_signed, int vector_len); | |||
| 2667 | void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, Address src, | |||
| 2668 | int comparison, bool is_signed, int vector_len); | |||
| 2669 | ||||
| 2670 | // Vector long compares | |||
| 2671 | void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, | |||
| 2672 | int comparison, bool is_signed, int vector_len); | |||
| 2673 | void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, Address src, | |||
| 2674 | int comparison, bool is_signed, int vector_len); | |||
| 2675 | ||||
| 2676 | // Vector byte compares | |||
| 2677 | void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, | |||
| 2678 | int comparison, bool is_signed, int vector_len); | |||
| 2679 | void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, | |||
| 2680 | int comparison, bool is_signed, int vector_len); | |||
| 2681 | ||||
| 2682 | // Vector short compares | |||
| 2683 | void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, | |||
| 2684 | int comparison, bool is_signed, int vector_len); | |||
| 2685 | void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, Address src, | |||
| 2686 | int comparison, bool is_signed, int vector_len); | |||
| 2687 | ||||
| 2688 | void evpmovb2m(KRegister dst, XMMRegister src, int vector_len); | |||
| 2689 | void evpmovw2m(KRegister dst, XMMRegister src, int vector_len); | |||
| 2690 | void evpmovd2m(KRegister dst, XMMRegister src, int vector_len); | |||
| 2691 | void evpmovq2m(KRegister dst, XMMRegister src, int vector_len); | |||
| 2692 | void evpmovm2b(XMMRegister dst, KRegister src, int vector_len); | |||
| 2693 | void evpmovm2w(XMMRegister dst, KRegister src, int vector_len); | |||
| 2694 | void evpmovm2d(XMMRegister dst, KRegister src, int vector_len); | |||
| 2695 | void evpmovm2q(XMMRegister dst, KRegister src, int vector_len); | |||
| 2696 | ||||
| 2697 | // Vector blends | |||
| 2698 | void blendvps(XMMRegister dst, XMMRegister src); | |||
| 2699 | void blendvpd(XMMRegister dst, XMMRegister src); | |||
| 2700 | void pblendvb(XMMRegister dst, XMMRegister src); | |||
| 2701 | void blendvpb(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2702 | void vblendvps(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len); | |||
| 2703 | void vblendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); | |||
| 2704 | void vpblendvb(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister mask, int vector_len); | |||
| 2705 | void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); | |||
| 2706 | void evblendmpd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2707 | void evblendmps(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2708 | void evpblendmb(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2709 | void evpblendmw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2710 | void evpblendmd(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2711 | void evpblendmq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len); | |||
| 2712 | protected: | |||
| 2713 | // Next instructions require address alignment 16 bytes SSE mode. | |||
| 2714 | // They should be called only from corresponding MacroAssembler instructions. | |||
| 2715 | void andpd(XMMRegister dst, Address src); | |||
| 2716 | void andps(XMMRegister dst, Address src); | |||
| 2717 | void xorpd(XMMRegister dst, Address src); | |||
| 2718 | void xorps(XMMRegister dst, Address src); | |||
| 2719 | ||||
| 2720 | }; | |||
| 2721 | ||||
| 2722 | // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions. | |||
| 2723 | // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction | |||
| 2724 | // are applied. | |||
| 2725 | class InstructionAttr { | |||
| 2726 | public: | |||
| 2727 | InstructionAttr( | |||
| 2728 | int vector_len, // The length of vector to be applied in encoding - for both AVX and EVEX | |||
| 2729 | bool rex_vex_w, // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true | |||
| 2730 | bool legacy_mode, // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX | |||
| 2731 | bool no_reg_mask, // when true, k0 is used when EVEX encoding is chosen, else embedded_opmask_register_specifier is used | |||
| 2732 | bool uses_vl) // This instruction may have legacy constraints based on vector length for EVEX | |||
| 2733 | : | |||
| 2734 | _rex_vex_w(rex_vex_w), | |||
| 2735 | _legacy_mode(legacy_mode || UseAVX < 3), | |||
| 2736 | _no_reg_mask(no_reg_mask), | |||
| 2737 | _uses_vl(uses_vl), | |||
| 2738 | _rex_vex_w_reverted(false), | |||
| 2739 | _is_evex_instruction(false), | |||
| 2740 | _is_clear_context(true), | |||
| 2741 | _is_extended_context(false), | |||
| 2742 | _avx_vector_len(vector_len), | |||
| 2743 | _tuple_type(Assembler::EVEX_ETUP), | |||
| 2744 | _input_size_in_bits(Assembler::EVEX_NObit), | |||
| 2745 | _evex_encoding(0), | |||
| 2746 | _embedded_opmask_register_specifier(0), // hard code k0 | |||
| 2747 | _current_assembler(NULL__null) { } | |||
| 2748 | ||||
| 2749 | ~InstructionAttr() { | |||
| 2750 | if (_current_assembler != NULL__null) { | |||
| 2751 | _current_assembler->clear_attributes(); | |||
| 2752 | } | |||
| 2753 | _current_assembler = NULL__null; | |||
| 2754 | } | |||
| 2755 | ||||
| 2756 | private: | |||
| 2757 | bool _rex_vex_w; | |||
| 2758 | bool _legacy_mode; | |||
| 2759 | bool _no_reg_mask; | |||
| 2760 | bool _uses_vl; | |||
| 2761 | bool _rex_vex_w_reverted; | |||
| 2762 | bool _is_evex_instruction; | |||
| 2763 | bool _is_clear_context; | |||
| 2764 | bool _is_extended_context; | |||
| 2765 | int _avx_vector_len; | |||
| 2766 | int _tuple_type; | |||
| 2767 | int _input_size_in_bits; | |||
| 2768 | int _evex_encoding; | |||
| 2769 | int _embedded_opmask_register_specifier; | |||
| 2770 | ||||
| 2771 | Assembler *_current_assembler; | |||
| 2772 | ||||
| 2773 | public: | |||
| 2774 | // query functions for field accessors | |||
| 2775 | bool is_rex_vex_w(void) const { return _rex_vex_w; } | |||
| 2776 | bool is_legacy_mode(void) const { return _legacy_mode; } | |||
| 2777 | bool is_no_reg_mask(void) const { return _no_reg_mask; } | |||
| 2778 | bool uses_vl(void) const { return _uses_vl; } | |||
| 2779 | bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; } | |||
| 2780 | bool is_evex_instruction(void) const { return _is_evex_instruction; } | |||
| 2781 | bool is_clear_context(void) const { return _is_clear_context; } | |||
| 2782 | bool is_extended_context(void) const { return _is_extended_context; } | |||
| 2783 | int get_vector_len(void) const { return _avx_vector_len; } | |||
| 2784 | int get_tuple_type(void) const { return _tuple_type; } | |||
| 2785 | int get_input_size(void) const { return _input_size_in_bits; } | |||
| 2786 | int get_evex_encoding(void) const { return _evex_encoding; } | |||
| 2787 | int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; } | |||
| 2788 | ||||
| 2789 | // Set the vector len manually | |||
| 2790 | void set_vector_len(int vector_len) { _avx_vector_len = vector_len; } | |||
| 2791 | ||||
| 2792 | // Set revert rex_vex_w for avx encoding | |||
| 2793 | void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; } | |||
| 2794 | ||||
| 2795 | // Set rex_vex_w based on state | |||
| 2796 | void set_rex_vex_w(bool state) { _rex_vex_w = state; } | |||
| 2797 | ||||
| 2798 | // Set the instruction to be encoded in AVX mode | |||
| 2799 | void set_is_legacy_mode(void) { _legacy_mode = true; } | |||
| 2800 | ||||
| 2801 | // Set the current instuction to be encoded as an EVEX instuction | |||
| 2802 | void set_is_evex_instruction(void) { _is_evex_instruction = true; } | |||
| 2803 | ||||
| 2804 | // Internal encoding data used in compressed immediate offset programming | |||
| 2805 | void set_evex_encoding(int value) { _evex_encoding = value; } | |||
| 2806 | ||||
| 2807 | // When the Evex.Z field is set (true), it is used to clear all non directed XMM/YMM/ZMM components. | |||
| 2808 | // This method unsets it so that merge semantics are used instead. | |||
| 2809 | void reset_is_clear_context(void) { _is_clear_context = false; } | |||
| 2810 | ||||
| 2811 | // Map back to current asembler so that we can manage object level assocation | |||
| 2812 | void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; } | |||
| 2813 | ||||
| 2814 | // Address modifiers used for compressed displacement calculation | |||
| 2815 | void set_address_attributes(int tuple_type, int input_size_in_bits); | |||
| 2816 | ||||
| 2817 | // Set embedded opmask register specifier. | |||
| 2818 | void set_embedded_opmask_register_specifier(KRegister mask) { | |||
| 2819 | _embedded_opmask_register_specifier = (*mask).encoding() & 0x7; | |||
| 2820 | } | |||
| 2821 | ||||
| 2822 | }; | |||
| 2823 | ||||
| 2824 | #endif // CPU_X86_ASSEMBLER_X86_HPP |